WO2013170533A1 - 超低分子量超低残单均聚n—乙烯基丁内酰胺的合成方法 - Google Patents

超低分子量超低残单均聚n—乙烯基丁内酰胺的合成方法 Download PDF

Info

Publication number
WO2013170533A1
WO2013170533A1 PCT/CN2012/079057 CN2012079057W WO2013170533A1 WO 2013170533 A1 WO2013170533 A1 WO 2013170533A1 CN 2012079057 W CN2012079057 W CN 2012079057W WO 2013170533 A1 WO2013170533 A1 WO 2013170533A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular weight
ultra
initiator
weight
vinyl butyrolactam
Prior art date
Application number
PCT/CN2012/079057
Other languages
English (en)
French (fr)
Inventor
王宇
刘薇
陈占
Original Assignee
上海宇昂化工科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海宇昂化工科技发展有限公司 filed Critical 上海宇昂化工科技发展有限公司
Priority to US14/401,743 priority Critical patent/US9453087B2/en
Publication of WO2013170533A1 publication Critical patent/WO2013170533A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F24/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a heterocyclic ring containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F126/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F126/06Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/28Oxygen or compounds releasing free oxygen
    • C08F4/32Organic compounds
    • C08F4/38Mixtures of peroxy-compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/001Removal of residual monomers by physical means
    • C08F6/003Removal of residual monomers by physical means from polymer solutions, suspensions, dispersions or emulsions without recovery of the polymer therefrom

Definitions

  • the invention relates to the technical field of compound synthesis, in particular to the technical field of homopolymerization of N-vinyl butyrolactam, in particular to a method for synthesizing ultra-low molecular weight ultra-low residual homo-uniform N-vinyl butyrolactam. Background technique
  • the ultra-low molecular weight homopolymer N-ethylglycolyl lactam refers to a homo-polymerized N-vinyl butyrolactam having a weight average molecular weight of 15,000 or less and a K value of 10-17. It is polymerized by N-vinyl butyrolactone under certain conditions (Cui Yingde, Yi Guobin, Liao Lewen. Synthesis and application of polyvinylpyrrolidone [M]. Science Press, 2001, 2:150.)
  • the ultra-low molecular weight homopolymerized N-glycosyl butyrolactam is often used as a dispersing agent and a co-solvent for pharmaceutical liquid preparations because of its small molecular weight and metabolism.
  • the injection of a certain concentration of homopolymerized N-ethylglycolyl lactam can greatly increase the dissolution of penicillin, procaine, insulin and other drugs, and release it in vivo, prolonging the eff
  • Homopolymerized N-ethylglycolyl lactam is widely used due to its unique properties. It not only has excellent solubility, chemical stability, film formation, physiological inertness, bonding ability and protective rubber action. It can be combined with many inorganic and organic compounds. Therefore, homopolymerized N-vinyl butyrolactam has been widely used in medicine, cosmetics, food, brewing, coatings, adhesives, printing and dyeing auxiliaries, separation membranes, etc. Photosensitive materials and other fields (Yan Ruizhen. Water-soluble polymer 2nd edition [M]. Beijing: Chemical Industry Press, 2010, 215-220). Among them, small molecular weight homopolymeric N-vinyl butyrolactam is mainly used in ophthalmic drugs and injections in medical treatment.
  • the method for synthesizing homopolymerized N-vinyl butyrolactam is generally carried out by solution polymerization, and the solvents used for solution polymerization thereof are mainly water, ethanol, isopropanol, methanol and the like.
  • the solvents used for solution polymerization thereof are mainly water, ethanol, isopropanol, methanol and the like.
  • different solvents have different effects on the molecular weight of homopolymerized N-ethylglycolyl lactam in solution polymerization, and it is easier to polymerize high molecular weight homopolymerized N- in general solvents.
  • Vinyl butyrolactam products while lower molecular weight homopoly N-vinyl butyrolactam products such as homopolymeric N-vinyl butyrolactam having a molecular weight between 2000 and 15,000 are difficult to prepare. This is mainly because the polymerization of N-vinylpyrrolidone is a chain reaction, the reaction is difficult to terminate once it starts, and the molecular weight is difficult to control; at the same time, even if a lower molecular weight homopolymeric N-vinyl butyrolactam product is produced, The content of residual monomers in the sauce is also high, and it is difficult to meet the application requirements in the fields of medicine and daily makeup.
  • the content of N-vinyl butyrolamide in the pharmaceutical or food grade homo- N-vinyl butyrolactam residual monomer is less than 10 ppm.
  • Polyurethane polymer post-treatment processes such as activated carbon adsorption, solvent extraction or ultrafiltration, radiation, etc. (Nuber, Dr. Adolf, Sanner, Dr. Axel, Urban, Dr. Dieter. Use of an adsorbent for the removal of vinylpyrrolidon from Vinylpyrrolidon polymer solutions [P].
  • the object of the present invention is to overcome the above disadvantages of the prior art and to provide a method for synthesizing ultra low molecular weight ultra low residual homo-homo-N-ethoxyglycolide, the ultra low molecular weight ultra low residual homopolymer N -
  • the synthesis method of vinyl butyrolactam is ingeniously designed, and the preparation of the ultra-low molecular weight ultra-low residual single homopoly N-vinyl butyrolactam residue is below 10 ppm, K value is 12-17, suitable for Massive application.
  • the method for synthesizing the ultra-low molecular weight ultra-low residual homo- N-vinyl butyrolactam of the present invention is characterized in that
  • the pH of the reaction system is adjusted to 7.0-8.0 with an activator, and the reaction is carried out at a polymerization temperature of 60-85 ° C.
  • the remaining water and the remaining N-ethylglycolyl lactam monomer are added in batches within 4-9 hours from the start of the reaction.
  • the initiator may be composed of any suitable material.
  • the initiator is selected from the group consisting of hydrogen peroxide, t-butyl hydroperoxide, t-amyl hydroperoxide, peroxodisulfate, potassium peroxodisulfate. One or several.
  • the initiator A, the initiator B and the initiator C may be any suitable substance, and more preferably, the initiator A is a mixture of hydrogen peroxide and t-butyl hydroperoxide; the initiator B is a tert-butyl group. Hydrogen peroxide or hydrogen peroxide and t-butyl peroxygen The hydrogen mixture is; the initiator C is t-butyl hydroperoxide or a mixture of hydrogen peroxide and t-butyl hydroperoxide.
  • the catalyst may be any suitable catalyst. Preferably, the catalyst is selected from one or more of an aqueous solution of ferrous sulfate, an aqueous solution of ferrous chloride and an aqueous solution of copper silicate.
  • the molecular weight modifier may be any suitable chain transfer agent.
  • the molecular weight modifier is selected from one or more of the group consisting of ethanol, n-propanol, isopropanol, dodecyl mercaptan and sulfite. kind.
  • the activator may be any suitable activator.
  • the activator is aqueous ammonia, sodium hydroxide, triethanolamine, hydroxylammonium salt or sodium carbonate.
  • the peroxide may be any suitable peroxide, preferably the peroxide is hydrogen peroxide or t-butyl hydroperoxide.
  • the beneficial effects of the present invention are specifically as follows:
  • the method for synthesizing the ultra-low molecular weight ultra-low residual homo-unimeric N-ethylglycolyl lactam of the present invention is to use N-vinylbutene having a mass ratio of 3:17 to 8:12.
  • the amide monomer and water, based on the N-vinyl butyrolactam monomer, are adjusted with 0.5% to 5.0% by weight of the initiator, 0.1% to 5.0% by weight of the catalyst, and 0.1% to 10% by weight of the molecular weight.
  • the initiator wherein the extrusion comprises 25% by weight of initiator A, 67.5% by weight of initiator B and 7.5% by weight of initiator C; in the presence of an inert gas, first 45% of the total weight of water, N-vinyl 30% of the total weight of the butyrolactam monomer, 70% of the total weight of the initiator A, the total weight of the catalyst, and at least 70% of the total weight of the molecular weight modifier.
  • the pH of the reaction system is adjusted to 7.0-8.0 with an activator at a polymerization temperature of 60-85.
  • the reaction is carried out at °C, and the remaining water, the remaining N-vinyl butyrolactam monomer, the initiator B, the remaining catalyst and the remaining molecular weight modifier are added in batches within 4-9 hours from the start of the reaction, during which the pH of the reaction system is adjusted with an activator. After adding to 7.0-8.0, then 80-100 ° C for 30 minutes After the aging for 1-3 hours, 0.01% ⁇ 1% of the total weight of the N-vinyl butyrolactam monomer is added and the peroxide is kept for 2 hours to obtain an ultra-low molecular weight homopolymer N-vinyl butyl group.
  • the amide aqueous solution is dried to obtain a powdery ultra-low molecular weight ultra-low residual homo-homopoly N-vinyl butyrolactam with a K value of 12-17, a molecular weight of 2000-15000, and a residual amount of less than 10 ppm.
  • the design is ingenious, and the preparation is simple.
  • the ultra-low molecular weight ultra-low residual single homopoly N-vinyl butyrolactam has a residual residue of less than 10 ppm and a K value of 12-17, which is suitable for large-scale popularization and application. detailed description
  • N-vinyl butyrolactam monomer to water ratio is 3:17 ⁇ 8:12, initiator 0.5% ⁇ 5.0% (based on N-vinylbutyrolactam), catalyst 0.1% ⁇ 5.0 % (based on N-vinyl butyrolactam), a small amount of activator to adjust the pH of the reaction system, molecular weight regulator 0.1% to 10% (based on N-vinyl butyrolactam);
  • the initiator can be One or more of hydrogen peroxide, t-butyl hydroperoxide, t-amyl hydroperoxide, peroxodisulfate, potassium peroxodisulfate;
  • the activator may be ammonia, sodium hydroxide, triethanolamine, hydroxylammonium salt , sodium carbonate, etc.;
  • the catalyst may be a low concentration aqueous solution of a metal sulfate such as ferrous sulfate, ferrous chloride or copper sulfate;
  • the molecular weight modifier may be
  • Operation steps 45% of the total amount of water is added to the three-necked flask with a reflux condenser and a stirrer, and 30% of the total amount of N-ethylglycolyl lactam monomer is added under stirring with N 2 25% of the total amount of initiator A, 70% of the total amount of the catalyst and at least 70% of the total amount of the molecular weight modifier, and then adjust the pH of the solution to 7.0-8.0 with an appropriate amount of activator, and heat up to 60-85 by heating in an oil bath.
  • the weight average molecular weight was determined by Waters 515 Gel Color Instrument, Waters 2410 Refractive Index Detector; Column: Waters Ultrahydrogel 500he Ultrahydrogel 120 Two Columns in Series (7.8 x 300 mm); Mobile Phase: 0.1 M Sodium Nitrate Solution; Flow Rate: 0.8 ml/ Min; injection volume: 5 (H liter; column temperature: 40 °C;
  • K value of the Fikentscher formula is a parameter that is only related to molecular weight and does not change with the concentration of homopolymeric N-vinyl butyrolactam.
  • a commonly used method for determining the K value is a viscosity method.
  • the Ubbelohde viscometer measures the relative viscosity r
  • K is the Fikentscher constant
  • ⁇ ⁇ is the relative viscosity (the ratio of the solution effluent time to the pure solvent effluent time ⁇ / ⁇ )
  • the determination of the residual monomer content in the homopolymeric N-ethylglycolyl lactam is based on the method specified in the 21st edition of the United States Pharmacopoeia [7] .
  • w (%) where: V! titrate the volume of iodine standard solution (mL) consumed by the blank sample; The titration of the iodine standard solution volume (mL) consumed by the sample;
  • the concentration of iodine standard solution (mol/L);
  • This experiment mainly studies solution polymerization, using different initiators for polymerization, using a variety of initiator systems, such as: hydrogen peroxide (3 ⁇ 40 2 ), t-butyl hydroperoxide, benzoyl peroxide; Redox system, such as: ammonium persulfate-sodium bisulfite; azo, such as: azobisisobutyronitrile, azobisisoheptanenitrile.
  • the initiator is used alone to initiate the reaction, and the polymerization rate is slower and the reaction time is longer, which is not conducive to industrial production requirements.
  • a certain amount of an activator may be appropriately added. Under the experimental conditions, the effect of different activators on the initiator is shown in Table 4 below:
  • the homopolymerized N-ethylglycolyl lactam residue is higher in the general method, especially the ultra-low molecular weight homopolymerized N-vinyl butyrolactam produced under the experimental conditions is yellowish in color. It has been found through experiments that the addition of a small amount of peroxide in the late stage of the reaction can greatly reduce the content of homopolymerized N-ethylglycolyl lactam residue, and the hue change of the homopolymerized N-vinyl butyrolactam product is small. Its 10% aqueous solution APHA is below 100.
  • Base hydrogen peroxide mixture 1.7 parts of 0.001% copper sulfate solution and 0.1 part of dodecyl mercaptan, dilute ammonia water to adjust the pH of the solution to 7.0-8.0, placed in a 60 ° C oil bath, the reaction begins within 4 hours 4 times of 84 parts of N-vinyl butyrolactam monomer, 4.05 parts of t-butyl hydroperoxide, 0.7 parts of 0.001% copper sulfate solution, 0.02 parts of dodecyl mercaptan and 165 parts of water, during this time Adjust the pH of the solution to 7.0-8.00 with dilute ammonia water, then increase the temperature to 90 ° C for 30 min, add 0.45 parts of t-butyl hydroperoxide, continue to incubate for 1 hour, add 1.2 parts of hydrogen peroxide for 2 hours, and cool to obtain colorless.
  • Butyl hydroperoxide mixture 0.05 parts of 0.001% copper sulfate solution and 5 parts of isopropanol, dilute ammonia water to adjust the solution pH 7.0-8.0, placed in a 75 ° C oil bath, the reaction is started 4 times within 9 hours
  • Dilute ammonia water adjustment solution pH 7.0-8.00 then the temperature is raised to 80 ° C for 30 min, add 0.0225 parts by weight of 1:1 mixture of hydrogen peroxide and t-butyl hydroperoxide, continue to heat for 1.5 hours and then add 0.3 parts
  • the hydrogen peroxide was further incubated for 2 hours, and cooled to obtain a yellowish transparent ultra-low molecular weight homopolymerized
  • Example 5 The same operation as in Example 1 was carried out except that the last "1.2 parts of hydrogen peroxide" before the end of the reaction was replaced with "1.2 parts of t-butyl hydroperoxide” to obtain a yellowish transparent homopolymerized N-glycosyl butyl group.
  • the lactam aqueous solution was spray-dried to obtain a powdery product.
  • the K value of the homopoly N-vinylbutyrolactam was 13.1
  • the molecular weight was 2583
  • the residue was 4 ppm.
  • Example 2 The same procedure as in Example 1 was carried out except that the last "1.2 parts of hydrogen peroxide" was removed before the end of the reaction, and a yellowish transparent homopolymerized N-ethylglycolyl lactam aqueous solution was obtained, which was spray-dried to obtain a powdery form.
  • the results of the test showed that the K value of the homo-N-vinyl butyrolactam was 19.2, the molecular weight was 12,800, and the residue was 147 ppm.
  • Comparative example 2 The same operation as in Example 1 was carried out except that "the mixture of hydrogen peroxide and t-butyl hydroperoxide having a weight ratio of 1:1" in the reaction was replaced with hydrogen peroxide to obtain a yellowish transparent homopolymer N.
  • Example 2 The same operation as in Example 2 was carried out except that "the mixture of hydrogen peroxide and t-butyl hydroperoxide having a weight ratio of 1:1" in the reaction was replaced with benzoyl peroxide to obtain a yellow transparent homopolymer.
  • An aqueous solution of N-vinylbutyrolactam was spray-dried to obtain a powdery product.
  • the K value of the homopolymerized N-vinylbutyrolactam was 22.0, the molecular weight was 23050, and the residue was 214 ppm. Comparative example 4
  • Example 2 The same operation as in Example 2 was carried out except that "a mixture of hydrogen peroxide and t-butyl hydroperoxide having a weight ratio of 1:1" in the reaction was replaced with azobisisoheptanenitrile to obtain a yellow transparent A poly(N-vinylbutyrolactam) aqueous solution was spray-dried to obtain a powdery product.
  • the K value of the homopolymeric N-vinylbutyrolactam was 31.5
  • the molecular weight was 52,050
  • the residue was 235 ppm.
  • the present invention develops an ultra low molecular weight super by studying the influence of the initiation system, the amount of the initiator, the time, and the polymerization process on the final product during the synthesis of the homopolymerized N-ethylglycolyl lactam.
  • a method for homogenous poly N-ethylglycolyl lactam By this method, a homopolymeric N-vinyl butyrolactam product having a molecular weight of from 2,000 to 15,000, a K value of from 12 to 17, and a residual amount of less than 1 Oppm can be prepared.
  • the method for synthesizing the ultra-low molecular weight ultra-low residual homo-uniform N-glycosyl butyrolactam of the invention is ingeniously designed, and the ultra-low molecular weight ultra-low residual single homopolymer N-vinyl butyl hydride is prepared.
  • the residue of lactam is below 1 Oppm and K value is 12-17, which is suitable for large-scale popularization and application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerization Catalysts (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

一种超低分子量超低残余单体均聚N—乙烯基丁内酰胺的合成方法,采用质量比为3:17~8:12的N—乙烯基丁内酰胺单体与水,再以N—乙烯基丁内酰胺单体为基准,采用0.5%~5.0%重量的引发剂、0.1%~5.0%重量的催化剂和0.1%~5.0%重量的分子量调节剂,其中,引发剂包括25%重量的引发剂A、67.5%重量的引发剂B和7.5%重量的引发剂C;在惰性气体存在条件下,分批加入上述原料,用活化剂调节反应体系pH至7.0—8.0,在聚合温度60—85℃进行反应;最后再加入过氧化物保温2小时得到超低分子量均聚N—乙烯基丁内酰胺水溶液,干燥即得粉末状超低分子量超低残余单体的均聚N—乙烯基丁内酰胺,K值在12—17,分子量在2000—15000,残余单体在10ppm以下。

Description

超低分子量超低残单均聚 N-乙烯基丁内酰胺的合成方法 技术领域
本发明涉及化合物合成技术领域, 特别涉及均聚 N-乙烯基丁内酰胺合成技术领域, 具体 是指一种超低分子量超低残单均聚 N-乙烯基丁内酰胺的合成方法。 背景技术
超低分子量均聚 N-乙婦基丁内酰胺是指重均分子量在 15000以下, K值在 10-17的均聚 N-乙烯基丁内酰胺。它是由 N-乙烯基丁内酰胺在一定的条件下聚合而成的(崔英德, 易国斌, 廖列文.聚乙烯吡咯烷酮的合成与应用 [M].科学出版社, 2001 , 2:150. ), 超低分子量均聚 N- 乙婦基丁内酰胺由于其分子量小, 利于代谢, 常被用于医药液体制剂的分散剂和助溶剂。 添 加一定浓度均聚 N-乙婦基丁内酰胺的注射剂可大大提高青霉素、 普鲁卡因、 胰岛素等药物分 散溶解, 并使其在体内緩释, 延长药效。
均聚 N-乙婦基丁内酰胺由于其独特的性能而得到日益广泛的应用, 它不仅具有优异的溶 解性、 化学稳定性、 成膜性、 生理惰性、 粘接能力和保护胶作用, 还可与许多无机、 有机化 合物结合, 因此, 均聚 N-乙烯基丁内酰胺自面世至今, 已被广泛用于医药、 化妆品、 食品、 酿造、涂料、粘接剂、印染助剂、分离膜、感光材料等领域(严瑞瑄. 水溶性高分子第 2版 [M]. 北京: 化学工业出版社, 2010, 215-220 )。 其中小分子量的均聚 N-乙烯基丁内酰胺主要用于医 药中的眼药和注射液中。
目前工业上合成均聚 N-乙烯基丁内酰胺的方法一般釆用溶液聚合法, 而用于其溶液聚合 的溶剂主要有水、 乙醇、 异丙醇、 甲醇等。 通过张光华等人的研究成果发现: 在溶液聚合法 中不同溶剂对聚合产物均聚 N-乙婦基丁内酰胺分子量的影响不同, 而且在一般溶剂中较容易 聚合出高分子量的均聚 N-乙烯基丁内酰胺产品,而较低分子量的均聚 N-乙烯基丁内酰胺产品 如分子量在 2000-15000之间的均聚 N-乙烯基丁内酰胺则很难制备出。 这主要是因为 N-乙烯 基吡咯烷酮的聚合属于链式反应, 反应一旦开始就难以终止, 分子量难以控制; 与此同时, 即便是做出较低分子量的均聚 N-乙烯基丁内酰胺产品, 其酱料中的残余单体含量也很高, 难 以满足其在医药以及日用化妆等领域的应用要求。
根据美国药典 USP32的规定, 医药或者食品级的均聚 N-乙烯基丁内酰胺残留单体 N-乙 烯基丁内酰胺含量要求低于 lOppm, 目前, 均聚 N-乙烯基丁内酰胺工业化生产多釆用聚合物 料后处理工艺如活性炭吸附、 溶剂萃取或者超滤、 辐射等方式(Nuber, Dr. Adolf , Sanner, Dr. Axel ,Urban, Dr. Dieter. Use of an adsorbent for the removal of vinylpyrrolidon from vinylpyrrolidon polymer solutions [P]. EP 0258854, 1991-3-13; Juergen Detering, Limburgerhof, Hartwig Voss, Frankenthal. Preparation of ultrapure N-vinylpyrrolidone polymers[P]. US 5354945, 1994-10-11; 黎新明. 一种消除聚合物中残留单体 N-乙婦基吡咯烷酮的方法 [P]. CN 1712432, 2005-12-28 )。
因此, 如果能够通过对均聚 N-乙婦基丁内酰胺合成过程中的引发体系、 引发剂用量、 时 间以及聚合工艺等对最终产品的影响研究, 研发出一种可以制备出超低分子量超低残单均聚 N-乙烯基丁内酰胺的方法。 通过该方法可以制备出分子量在 2000-15000, K值在 12-17, 残 单 lOppm以下的均聚 N-乙烯基丁内酰胺产品, 则具有非常重要的意义。 发明内容
本发明的目的是克服了上述现有技术中的缺点, 提供一种超低分子量超低残单均聚 N-乙 婦基丁内酰胺的合成方法, 该超低分子量超低残单均聚 N-乙烯基丁内酰胺的合成方法设计巧 妙, 制备筒单, 制备出的超低分子量超低残单均聚 N-乙烯基丁内酰胺的残单在 lOppm以下、 K值 12-17, 适于大规模推广应用。
为了实现上述目的, 本发明的超低分子量超低残单均聚 N-乙烯基丁内酰胺的合成方法, 其特点是,
釆用质量比为 3:17~8:12的 N-乙烯基丁内酰胺单体与水, 再以 N-乙烯基丁内酰胺单体为基 准, 釆用 0.5%~5.0%重量的引发剂、 0.1 %~5.0%重量的催化剂和 0.1 %~10%重量的分子量调节 剂, 其中引发挤包括 25%重量的引发剂 A、 67.5%重量的引发剂 B和 7.5%重量的引发剂 C; 在惰性气体存在条件下, 首先加入水总重量的 45%、 N-乙烯基丁内酰胺单体总重量的 30%、 引发剂 A、 催化剂总重量的 70%和分子量调节剂总重量的至少 70%, 用活化剂调节反 应体系 pH至 7.0-8.0,在聚合温度 60-85 °C进行反应,反应开始 4-9小时内分批次加入剩余水、 剩余 N-乙婦基丁内酰胺单体、 引发剂 B、 剩余催化剂和剩余分子量调节剂, 期间用活化剂调 节反应体系 pH至 7.0-8.0, 然后 80-100°C保温 30分钟后加入引发剂 C, 继续保温 1-3小时后 加入 N-乙烯基丁内酰胺单体总重量的 0.01%~1%的过氧化物再保温 2小时, 得到超低分子量 均聚 N-乙婦基丁内酰胺水溶液, 干燥即得粉末状超低分子量超低残单均聚 N-乙婦基丁内酰 胺, K值在 12-17, 分子量在 2000-15000, 残单在 lOppm以下。
所述引发剂可以由任何合适的物质组成, 较佳地, 所述引发剂选自过氧化氢、 叔丁基过 氧化氢、 叔戊基过氧化氢、 过二硫酸、 过二硫酸钾中的一种或几种。
引发剂 A、 引发剂 B和引发剂 C可以是任何合适的物质, 更佳地, 所述引发剂 A是过氧化 氢和叔丁基过氧化氢混合液; 所述引发剂 B是叔丁基过氧化氢或者是过氧化氢和叔丁基过氧 化氢混合液; 所述引发剂 C是叔丁基过氧化氢或者是过氧化氢和叔丁基过氧化氢混合液。 所述催化剂可以是任何合适的催化剂, 较佳地, 所述催化剂选自硫酸亚铁水溶液、 氯化 亚铁水溶液和石克酸铜水溶液中的一种或几种。
所述分子量调节剂可以是任何合适的链转移剂, 较佳地, 所述分子量调节剂选自乙醇、 正丙醇、 异丙醇、 十二烷基硫醇和亚硫酸盐中的一种或几种。
所述活化剂可以是任何合适的活化剂, 较佳地, 所述活化剂是氨水、 氢氧化钠、 三乙醇 胺、 羟铵盐或碳酸钠。
所述过氧化物可以是任何合适的过氧化物, 较佳地, 所述过氧化物是过氧化氢或叔丁基 过氧化氢。
本发明的有益效果具体在于: 本发明的超低分子量超低残单均聚 N-乙婦基丁内酰胺的合 成方法釆用质量比为 3:17~8:12的 N-乙烯基丁内酰胺单体与水, 再以 N-乙烯基丁内酰胺单体为 基准, 釆用 0.5%~5.0%重量的引发剂、 0.1%~5.0%重量的催化剂和 0.1%~10%重量的分子量调 节剂, 其中引发挤包括 25%重量的引发剂 A、 67.5%重量的引发剂 B和 7.5%重量的引发剂 C; 在 惰性气体存在条件下, 首先加入水总重量的 45%、 N-乙烯基丁内酰胺单体总重量的 30%、 引 发剂 A、 催化剂总重量的 70%和分子量调节剂总重量的至少 70%, 用活化剂调节反应体系 pH 至 7.0-8.0, 在聚合温度 60-85 °C进行反应, 反应开始 4-9小时内分批次加入剩余水、 剩余 N-乙烯 基丁内酰胺单体、 引发剂 B、 剩余催化剂和剩余分子量调节剂, 期间用活化剂调节反应体系 pH至 7.0-8.0, 然后 80-100°C保温 30分钟后加入引发剂 C, 继续保温 1-3小时后加入 N-乙烯基丁 内酰胺单体总重量的 0.01%~1%的过氧化物再保温 2小时, 得到超低分子量均聚 N-乙烯基丁内 酰胺水溶液, 干燥即得粉末状超低分子量超低残单均聚 N-乙烯基丁内酰胺, K值在 12-17, 分 子量在 2000-15000, 残单在 lOppm以下, 设计巧妙, 制备筒单, 制备出的超低分子量超低残单 均聚 N-乙烯基丁内酰胺的残单在 lOppm以下、 K值 12-17, 适于大规模推广应用。 具体实施方式
为了能够更清楚地理解本发明的技术内容, 特举以下实施例详细说明。
1.1 实验原料
表 1 主要原料
名称 规格 生产厂家
N-乙烯基丁内酰胺 工业级(减压蒸馏) 上海宇昂化工科技发展有限公司 偶氮二异丁腈 (AIBN) 化学纯 上海试四赫维化工有限公司 碳酸钠 分析纯 国药集团化学试剂有限公司 双氧水 ( 30% )化学纯 国药集团化学试剂有限公司
氨水 ( 25% )化学纯 国药集团化学试剂有限公司
叔丁基过氧化氢 化学纯 国药集团化学试剂有限公司
蒸馏水 自制
过硫酸铵 分析纯 国药集团化学试剂有限公司
亚石克酸氢钠 化学纯 国药集团化学试剂有限公司
三乙醇胺 化学纯 国药集团化学试剂有限公司
氮气 99% 上海沪康气体
1.2 实验仪器
2XZ-2型旋片式真空泵、 RE52CS旋转蒸发器、 250ml三口烧瓶、 HH-WO恒温油浴锅、 乌式粘度计(Φ=0.5ηιηι )、 100°C温度计、 S312 电动搅拌器、 注射器、 FA2004分析天平、 滴 液漏斗、 冷凝管、 锥形瓶、 10 mL移液管、 碱式滴定管。
1.3 聚合
注: 在下面的内容中, 除非特殊说明, 将 "重量份" 仅表示为 "份", "重量%" 仅表示 为 "%,,。
物料准备: N-乙烯基丁内酰胺单体与水之比为 3:17~8:12、 引发剂 0.5%~5.0% (以 N-乙 烯基丁内酰胺为基准)、 催化剂 0.1%~5.0% (以 N-乙烯基丁内酰胺为基准)、 少量活化剂用以 调节反应体系 pH、 分子量调节剂 0.1%~10% (以 N-乙烯基丁内酰胺为基准); 其中引发剂可 以是过氧化氢、 叔丁基过氧化氢、 叔戊基过氧化氢、 过二硫酸、 过二硫酸钾中的一种或几种; 活化剂可以是氨水、 氢氧化钠、 三乙醇胺、 羟铵盐、 碳酸钠等; 催化剂可以是硫酸亚铁、 氯 化亚铁、 硫酸铜等金属硫酸盐的低浓度水溶液; 分子量调节剂可以是乙醇、 正丙醇、 异丙醇、 十二烷基硫醇、 亚硫酸盐等中的一种或几种。
操作步骤: 在带有回流冷凝管和搅拌器的三口烧瓶中先加入水的总量的 45%,通 N2搅拌 下加入 N-乙婦基丁内酰胺单体总量的 30%、 占引发剂总量 25%的引发剂 A、 催化剂总量的 70%以及至少加入分子量调节剂总量的 70%, 再用适量活化剂调节溶液 pH至 7.0-8.0, 油浴 加热升温至 60-85 , 反应开始 4-9小时内分数次加入剩余全部单体、 占引发剂总量 67.5%的 引发剂 B和剩余所有催化剂、 剩余分子量调节剂以及剩余水, 在此过程中用活化剂调节溶液 pH为 7.0-8.0 ,之后 80-100 °C保温 30min后加入占引发剂总量 7.5%的引发剂 C , 继续保温 1-3 小时后加入 0.01%~1% (以 N-乙烯基丁内酰胺为基准)过氧化物再保温 2小时, 既可以得到 超低分子量均聚 N-乙烯基丁内酰胺水溶液,干燥即得粉末状超低分子量超低残单均聚 N-乙烯 基丁内酰胺, K值在 12-17 , 重均分子量在 2000-15000 , 残单 lOppm以下。
1.4 分子量以及残留单体含量的测定
1.4.1 分子量的测定
重均分子量测定选用 Waters 515型凝胶色语仪, Waters2410示差折光检测器;柱子: Waters Ultrahydrogel 500he Ultrahydrogel 120两柱串联( 7.8 x 300mm ); 流动相: 0.1M硝酸钠水溶液; 流速: 0.8ml/min; 进样量: 5(H 升; 柱温: 40 °C ;
通常我们用 Fikentscher公式的 K值来表征均聚 N-乙烯基丁内酰胺的分子量, K值是只 与分子量有关, 不随均聚 N-乙烯基丁内酰胺的浓度而改变的参数。 测定 K值常用的方法是粘 度法, 乌式粘度计在水浴温度 25±0.2°C下, 测定该溶液对水的相对粘度 r|r
才艮据 Fikentscher公式计算!^值 ^口下( H.Fikentscher, Die Messung der Viskositat solvatisierter Sole. Morden Plastics J], 1945,23(3): 157 ):
Figure imgf000006_0001
式中: K为 Fikentscher常数;
c为所取样品的质量(以无水物计), g
ητ为相对黏度 (;溶液流出时间与纯溶剂流出时间的比值 Τ/Το)
1.4.2 残留单体的含量
a. 碘量法
均聚 N-乙婦基丁内酰胺中残留单体含量的测定是参照美国药典 [7]第 21版规定的方法。取 10g 均聚 N-乙烯基丁内酰胺 (准确至 0.002g, 以无水物计), 溶于 80ml蒸馏水中, 加入 lg醋 酸钠, 用 0.1 mol/L碘溶液滴定至溶液不再褪色, 再另加入 3 ml 0.1 mol/L的碘溶液, 放置 10 分钟, 然后用 0.1 mol/L的硫代硫酸钠滴定过量的碘, 当接近终点时加 3 ml的淀粉指示剂, 继 续滴定至溶液颜色消失, 同时与空白实验对照。
结果计算:
( V, - V?) x c x 0.106
w (%) = 式中: V! 滴定空白样品所消耗的碘标准溶液体积 (mL); 滴定样品所消耗的碘标准溶液体积 (mL);
碘标准液的浓度 (mol/L);
-1 mmol/L N-乙烯基丁内酰胺的质量 (g);
-样品的质量 (g)。
b. 高效液相法(略)
2.1 不同引发体系的影响
本实验主要研究的是溶液聚合, 使用不同的引发剂进行聚合, 使用了多种引发体系, 过 氧化物体系, 如: 双氧水(¾02 ), 叔丁基过氧化氢, 过氧化苯甲酰; 氧化还原体系, 如: 过 硫酸铵一亚硫酸氢钠; 偶氮类, 如: 偶氮二异丁腈, 偶氮二异庚腈。
表 2: 不同引发体系对实验结果影响
编号 引发剂种类 残单 K值
1 过氧化氢 0.11% 23
2 叔丁基过氧化氢 0.01% 18
3 过氧化氢 +叔丁基过氧化氢 0.01% 12
4 过石克酸铵 +亚^ 酸氢钠 0.03% 38
5 偶氮二异丁腈 0.02% 35
6 偶氮二异丁腈 +过氧化氢 0.02% 29 从以上表中数据可以看出, 用过氧化氢等无机过氧类引发剂制备出的均聚 N-乙婦基丁内 酰胺残单与其他引发体系相比较高, 这主要是因为釆用过氧类引发剂时, 聚合机理中链的种 植反应中发生吡咯烷酮环的裂解, 导致均聚 N-乙烯基丁内酰胺的第二个端基是醛基, 产物中 会残留一部分吡咯烷酮, 致使产品中残单较高; 用氧化还原引发体系或偶氮类引发剂制备出 均聚 N-乙烯基丁内酰胺时, 引发体系在整个聚合过程中分解出较多的自由基, 导致反应速度 较快聚合难以控制; 当过氧化氢和叔丁基过氧化氢结合使用时, 我们发现做出的均聚 N-乙烯 基丁内酰胺残单较低, 分子量在 2000-15000之间, K值在 12-17范围, 满足要求。
2.2引发剂用量的影响
以水溶液聚合为例, 无论是哪种引发剂, 不同引发剂用量做出均聚 N-乙婦基丁内酰胺的 K值也各不相同。 在此实验条件下, 改变引发剂用量对结果影响如下表 3:
表 3: 引发剂用量对产品 K值影响 编号 引发剂用量(以 NVP计) K值
1 0.12% 65
2 0.18% 54
3 0.24% 48
4 0.50% 38
5 1.00% 33
6 1.50% 22
7 2.00% 13 在本实验条件下,逐步提高引发剂用量得到的均聚 N-乙婦基丁内酰胺产品 K值逐渐降低。 这主要是因为, 当反应体系中的引发剂浓度较高时, 产生的游离基也随之升高, 阻碍了链传 递反应, 反而提高了链终止反应。
2.3 活化剂的影响
一般情况下, 单独使用引发剂引发反应, 聚合速率较慢反应时间较长, 不利于工业化生 产要求。 为了提高反应速度, 可以适当加入一定量的活化剂。 在本实验条件下, 不同活化剂 对引发剂引发效果如下表 4:
表 4: 活化剂对结果影响
活化剂用量(以 N-乙婦基
编号 活化剂 诱导期 K值
丁内酰胺计)
1 无 0 2h未引发 ―
2 三乙醇胺 0.65% 85 22
3 氢氧化钠 0.32% 65 25
4 三乙胺钠 0.80% 65 15
5 碳酸钠 0.95% 80 12
6 氨水 0.55% 35 17 从表中数据可以看出, 在聚合过程中加入一定量的活化剂和大大提高聚合速率, 同时选 择使用一定量的活化剂对均聚 N-乙婦基丁内酰胺分子量也有一定的影响。 结合以上几种活化 剂的加入对实验诱导期和 K值的影响, 本实验优先选择亚硫酸氢钠作为引发剂的活化剂。 2.4 过氧化物处理对均聚 N-乙烯基丁内酰胺残单的影响
釆用一般方法做出来的均聚 N-乙婦基丁内酰胺残单较高, 特别是在本实验条件下做出来 的超低分子量的均聚 N-乙烯基丁内酰胺颜色偏黄。 通过实验发现, 在反应后期加入少量过氧 化物处理,可以大大降低均聚 N-乙婦基丁内酰胺残单含量, 同时做出来的均聚 N-乙烯基丁内 酰胺产品色相变化较小, 其 10%水溶液 APHA在 100以下。
3结 论
通过多次试验验证, 我们发现 NVP单体浓度在 15%~40%时, 再以 N-乙烯基丁内酰胺为 基准, 加入 0.5%~5.0%引发剂、 0.1%~5.0%催化剂、 0.1%~10%分子量调节剂, 同时用适量活 化剂调节反应体系 pH至 7.0-8.0, 最后后期再用 0.01%~1%过氧化物处理, 可以得到超低分子 量的均聚 N-乙烯基丁内酰胺无色透明水溶液, 其分子量在 2000-15000、 K值在 12-17。 下面列举几个实施例更具体地说明本发明, 但本发明不受这些实施例的限制。 在下面的 内容中, 除非特殊说明, 将 "重量份" 仅表示为 "份", 将 "重量%" 仅表示为 "%"。
实施例 1
在带有回流冷凝管和搅拌器的三口烧瓶中加入 135份水, 通 N2搅拌下加入 36份 N-乙烯 基丁内酰胺单体、 1.5份重量比为 1:1的过氧化氢叔丁基过氧化氢混合液、 1.7份 0.001%的硫 酸铜溶液和 0.1份十二烷基硫醇, 稀氨水调节溶液 pH为 7.0-8.0, 放置于 60°C油浴中, 反应 开始 4小时内分 4次加入 84份 N-乙烯基丁内酰胺单体、 4.05份叔丁基过氧化氢、 0.7份 0.001% 的硫酸铜溶液、 0.02份十二烷基硫醇和 165 份水, 在此段时间中用稀氨水调节溶液 pH 为 7.0-8.00, 之后温度升至 90°C保温 30min加入 0.45份叔丁基过氧化氢, 继续保温 1小时后加 入 1.2份过氧化氢再保温 2小时, 冷却得到无色透明的超低分子量均聚 N-乙婦基丁内酰胺溶 液, 喷雾干燥得粉末状产品。 结果检测均聚 N-乙烯基丁内酰胺的 K值为 12.5 , 分子量 2561 , 残单为 7ppm。 实施例 2
在带有回流冷凝管和搅拌器的三口烧瓶中加入 153份水, 通 N2搅拌下加入 18份 N-乙烯 基丁内酰胺单体、 0.075份重量比为 1:1的过氧化氢和叔丁基过氧化氢混合液、 0.05份 0.001% 的硫酸铜溶液和 5份异丙醇, 稀氨水调节溶液 pH为 7.0-8.0, 放置于 75 °C油浴中, 反应开始 9小时内分 4次加入 42份 N-乙烯基丁内酰胺单体、 0.2025份重量比为 1:1的过氧化氢和叔丁 基过氧化氢混合液、 0.01份 0.001%的硫酸铜溶液、 1份异丙醇和 187份水, 在此段时间中用 稀氨水调节溶液 pH为 7.0-8.00, 之后温度升至 80°C保温 30min加入 0.0225份重量比为 1:1 的过氧化氢和叔丁基过氧化氢混合液,继续保温 1.5小时后加入 0.3份过氧化氢再保温 2小时, 冷却得到微黄色透明超低分子量均聚 N-乙烯基丁内酰胺溶液, 喷雾干燥得粉末状产品。 结果 检测均聚 N-乙烯基丁内酰胺的 K值为 17.3 , 分子量 9535 , 残单为 3ppm。
实施例 3
在带有回流冷凝管和搅拌器的三口烧瓶中加入 108份水, 通 N2搅拌下加入 48份 N-乙烯 基丁内酰胺单体、 0.8份重量比为 1:1的过氧化氢和叔丁基过氧化氢混合液、 5.6份 0.001%的 硫酸铜溶液和 5.6份异丙醇, 稀氨水调节溶液 pH为 7.0-8.0, 放置于 85 °C油浴中, 反应开始 6 小时内分 4次加入 112份 N-乙烯基丁内酰胺单体、 2.16份重量比为 1:1的过氧化氢和叔丁基 过氧化氢混合液、 2.4份 0.001%的硫酸铜溶液、 2.4份异丙醇和 132份水, 在此段时间中用稀 氨水调节溶液 pH为 7.0-8.00, 之后温度升至 120°C保温 30min加入 0.24份重量比为 1:1的过 氧化氢和叔丁基过氧化氢混合液, 继续保温 3小时后加入 0.016份过氧化氢再保温 2小时, 冷却得到微黄色透明超低分子量均聚 N-乙婦基丁内酰胺溶液, 喷雾干燥得粉末状产品。 结果 检测均聚 N-乙烯基丁内酰胺的 K值为 17.3 , 分子量 9535 , 残单为 3ppm。
实施例 4
除了将反应结束前最后一次的 "1.2份过氧化氢" 替换为 "1.2份叔丁基过氧化氢", 进行 和实施例 1同样的操作, 得到微黄色透明的均聚 N-乙婦基丁内酰胺水溶液, 喷雾干燥得粉末 状产品, 结果检测均聚 N-乙烯基丁内酰胺的 K值为 13.1 , 分子量 2583 , 残单为 4ppm。 实施例 5
除了将 "5.6份异丙醇"替换为 "10份异丙醇"、 "0.8份重量比为 1:1的过氧化氢和叔丁 基过氧化氢混合液"替换为 "4.0份重量比为 1:1的过氧化氢和叔丁基过氧化氢混合液"以夕卜, 进行和实施例 3同样的操作, 得到无色透明的均聚 N-乙婦基丁内酰胺水溶液, 喷雾干燥得粉 末状产品, 结果检测均聚 N-乙烯基丁内酰胺的 K值为 15.5 , 分子量 6983 , 残单为 2ppm。 对比例 1 :
除了将反应结束前最后一次的 "1.2份过氧化氢"取消加入外, 进行和实施例 1同样的操 作, 得到微黄色透明的均聚 N-乙婦基丁内酰胺水溶液, 喷雾干燥得粉末状产品, 结果检测均 聚 N-乙烯基丁内酰胺的 K值为 19.2, 分子量 12800, 残单为 147ppm。 对比例 2 除了将反应中的 "重量比为 1:1 的过氧化氢和叔丁基过氧化氢混合液" 替换为过氧化氢 以外, 进行和实施例 1同样的操作, 得到微黄色透明的均聚 N-乙烯基丁内酰胺水溶液, 喷雾 干燥得粉末状产品, 结果检测均聚 N-乙烯基丁内酰胺的 K值为 27.8, 分子量 38150, 残单为 115ppm。 对比例 3:
除了将反应中的 "重量比为 1:1 的过氧化氢和叔丁基过氧化氢混合液" 替换为过氧化苯 甲酰以外, 进行和实施例 2同样的操作, 得到黄色透明的均聚 N-乙烯基丁内酰胺水溶液, 喷 雾干燥得粉末状产品, 结果检测均聚 N-乙烯基丁内酰胺的 K值为 22.0, 分子量 23050, 残单 为 214ppm。 对比例 4
除了将反应中的 "重量比为 1:1 的过氧化氢和叔丁基过氧化氢混合液" 替换为偶氮二异 庚腈以外, 进行和实施例 2同样的操作, 得到黄色透明的均聚 N-乙烯基丁内酰胺水溶液, 喷 雾干燥得粉末状产品, 结果检测均聚 N-乙烯基丁内酰胺的 K值为 31.5 , 分子量 52050 , 残单 为 235ppm。 因此, 本发明通过对均聚 N-乙婦基丁内酰胺合成过程中的引发体系、 引发剂用量、 时间 以及聚合工艺等对最终产品的影响研究, 研发出一种可以制备出超低分子量超低残单均聚 N- 乙婦基丁内酰胺的方法。 通过该方法可以制备出分子量在 2000-15000, K值在 12-17, 残单 1 Oppm以下的均聚 N-乙烯基丁内酰胺产品。
综上, 本发明的超低分子量超低残单均聚 N-乙婦基丁内酰胺的合成方法设计巧妙, 制备 筒单,制备出的超低分子量超低残单均聚 N-乙烯基丁内酰胺的残单在 1 Oppm以下、 K值 12- 17 , 适于大规模推广应用。
在此说明书中, 本发明已参照其特定的实施例作了描述。 但是, 很显然仍可以作出各种 修改和变换而不背离本发明的精神和范围。 因此,说明书应被认为是说明性的而非限制性的。

Claims

权利要求
1、 一种超低分子量超低残单均聚 N-乙烯基丁内酰胺的合成方法, 其特征在于, 釆用质量比为 3:17~8:12的 N-乙烯基丁内酰胺单体与水, 再以 N-乙烯基丁内酰胺单体为基 准, 釆用 0.5%~5.0%重量的引发剂、 0.1 %~5.0%重量的催化剂和 0.1 %~10%重量的分子量调节 剂, 其中引发挤包括 25%重量的引发剂 A、 67.5%重量的引发剂 B和 7.5%重量的引发剂 C; 在惰性气体存在条件下, 首先加入水总重量的 45%、 N-乙烯基丁内酰胺单体总重量的 30%、 引发剂 A、 催化剂总重量的 70%和分子量调节剂总重量的至少 70%, 用活化剂调节反应 体系 pH至 7.0-8.0, 在聚合温度 60-85 °C进行反应, 反应开始 4-9小时内分批次加入剩余水、 剩 余 N-乙婦基丁内酰胺单体、 引发剂 B、 剩余催化剂和剩余分子量调节剂, 期间用活化剂调节 反应体系 pH至 7.0-8.0 , 然后 80-100 C保温 30分钟后加入 I发剂 C , 继续保温 1-3小时后加入 N- 乙烯基丁内酰胺单体总重量的 0.01%~1%的过氧化物再保温 2小时, 得到超低分子量均聚 N-乙 婦基丁内酰胺水溶液, 干燥即得粉末状超低分子量超低残单均聚 N-乙烯基丁内酰胺, K值在 12-17, 分子量在 2000-15000, 残单在 lOppm以下。
2、 根据权利要求 1所述的超低分子量超低残单均聚 N-乙烯基丁内酰胺的合成方法, 其特 征在于, 所述引发剂选自过氧化氢、 叔丁基过氧化氢、 叔戊基过氧化氢、 过二硫酸、 过二硫 酸钾中的一种或几种。
3、 根据权利要求 2所述的超低分子量超低残单均聚 N-乙烯基丁内酰胺的合成方法, 其特 征在于, 所述引发剂 A是过氧化氢和叔丁基过氧化氢混合液; 所述引发剂 B是叔丁基过氧化氢 或者是过氧化氢和叔丁基过氧化氢混合液; 所述引发剂 C是叔丁基过氧化氢或者是过氧化氢 和叔丁基过氧化氢混合液。
4、 根据权利要求 1所述的超低分子量超低残单均聚 N-乙烯基丁内酰胺的合成方法, 其特 征在于, 所述催化剂选自硫酸亚铁水溶液、 氯化亚铁水溶液和硫酸铜水溶液中的一种或几种。
5、 根据权利要求 1所述的超低分子量超低残单均聚 N-乙婦基丁内酰胺的合成方法, 其特 征在于, 所述分子量调节剂选自乙醇、 正丙醇、 异丙醇、 十二烷基硫醇和亚硫酸盐中的一种 或几种。
6、 根据权利要求 1所述的超低分子量超低残单均聚 N-乙烯基丁内酰胺的合成方法, 其特 征在于, 所述活化剂是氨水、 氢氧化钠、 三乙醇胺、 羟铵盐或碳酸钠。
7、 根据权利要求 1所述的超低分子量超低残单均聚 N-乙烯基丁内酰胺的合成方法, 其特 征在于, 所述过氧化物是过氧化氢或叔丁基过氧化氢。
PCT/CN2012/079057 2012-05-16 2012-07-23 超低分子量超低残单均聚n—乙烯基丁内酰胺的合成方法 WO2013170533A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/401,743 US9453087B2 (en) 2012-05-16 2012-07-23 Method for synthesizing homopolymer N-vinyl butyrolactam with super-low molecular weight and super-low residual monomer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210154939.4 2012-05-16
CN2012101549394A CN102643376B (zh) 2012-05-16 2012-05-16 超低分子量超低残单乙烯基丁内酰胺的合成方法

Publications (1)

Publication Number Publication Date
WO2013170533A1 true WO2013170533A1 (zh) 2013-11-21

Family

ID=46656470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079057 WO2013170533A1 (zh) 2012-05-16 2012-07-23 超低分子量超低残单均聚n—乙烯基丁内酰胺的合成方法

Country Status (3)

Country Link
US (1) US9453087B2 (zh)
CN (1) CN102643376B (zh)
WO (1) WO2013170533A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146715A1 (ja) * 2018-01-26 2019-08-01 三菱ケミカル株式会社 導電性組成物とその製造方法及び水溶性ポリマーとその製造方法
CN115093498B (zh) * 2022-06-17 2023-05-26 中盐安徽红四方股份有限公司 低残单低色度pvp的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5130388A (en) * 1991-05-06 1992-07-14 Isp Investments Inc. Precipitation polymerization process
JP2007238774A (ja) * 2006-03-08 2007-09-20 Dai Ichi Kogyo Seiyaku Co Ltd ビニルピロリドン重合体の製造方法
CN101585893A (zh) * 2009-06-26 2009-11-25 博爱新开源制药股份有限公司 超低分子量聚乙烯基吡咯烷酮的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19727476A1 (de) * 1997-06-27 1999-01-07 Basf Ag Verfahren zur Herstellung von niedermolekularen Homopolymerisaten des N-Vinylpyrrolidons
WO2007023862A1 (ja) * 2005-08-26 2007-03-01 Nippon Shokubai Co., Ltd. 染料移行防止剤、洗濯用洗剤組成物
CN102125053B (zh) * 2011-01-07 2013-08-07 上海宇昂水性新材料科技股份有限公司 高稳定非离子n-乙烯基丁内酰胺碘溶液及相关配制方法
CN102093279B (zh) * 2011-01-07 2012-05-23 上海宇昂化工科技发展有限公司 高稳定非离子n-乙烯基丁内酰胺碘及相关制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5130388A (en) * 1991-05-06 1992-07-14 Isp Investments Inc. Precipitation polymerization process
JP2007238774A (ja) * 2006-03-08 2007-09-20 Dai Ichi Kogyo Seiyaku Co Ltd ビニルピロリドン重合体の製造方法
CN101585893A (zh) * 2009-06-26 2009-11-25 博爱新开源制药股份有限公司 超低分子量聚乙烯基吡咯烷酮的制备方法

Also Published As

Publication number Publication date
US9453087B2 (en) 2016-09-27
CN102643376A (zh) 2012-08-22
US20150141600A1 (en) 2015-05-21
CN102643376B (zh) 2013-12-11

Similar Documents

Publication Publication Date Title
KR900014433A (ko) 음이온 중합반응에 의한 중합체의 제조방법
Perrier et al. Effect of water on copper mediated living radical polymerization
CA2814555C (en) Process for preparing a (meth)acrylate copolymer containing tertiary amino groups by free-radical polymerization in solution
US2665271A (en) Polymerization of n-vinyl lactams
US3843578A (en) Solutions of n-vinyl pyrrolidone copolymers
US6391994B2 (en) Production process for vinylpyrrolidone polymer
WO2013170533A1 (zh) 超低分子量超低残单均聚n—乙烯基丁内酰胺的合成方法
Oliveira et al. Reversible Addition–F ragmentation Chain Transfer Polymerization of Vinyl Acetate in Bulk and Suspension Systems
CN102633925B (zh) 低残单低分子量均聚n-乙烯基丁内酰胺的合成方法
JPS61247712A (ja) 乳化重合方法および同方法によつて形成されたポリマ−
WO2013170536A1 (zh) 低残单中高分子量均聚n-乙烯基丁内酰胺k60水溶液的合成方法
CN115651108B (zh) 一种超低分子量的聚乙烯吡咯烷酮的制备方法
CA2814556C (en) Process for preparing a (meth)acrylate copolymer containing quaternary ammonium groups by free-radical polymerization in solution
US3316224A (en) Process for preparing polymers from open-chain n-vinyl amides in an aqueous medium with a catalyst comprising hydrogen peroxide and a nitrogen compound
US3669919A (en) Polyacrylonitrile process
WO2013170534A1 (zh) 低残单n-乙烯基丁内酰胺均聚物k90水溶液的制备方法
EP0032701A2 (en) Copolymerization of styrene-acrylonitrile with cyano-azoalkane initiators
Mino Copolymerization of styrene and acrylonitrile in aqueous dispersion
Breitenbach et al. The influence of chain transfer agents on rate of polymerization in the heterogeneous and homogeneous polymerization of vinyl chloride
US3697492A (en) Acrylonitrile polymerization
JP6506072B2 (ja) N−ビニルラクタム系重合体およびn−ビニルラクタム系重合体の製造方法
RU2627264C1 (ru) Способ получения сополимера акрилонитрила
Mathew et al. Redox polymerization of 2‐hydroxyethyl methacrylate, 2. Kinetics, mechanism and solvent effect using manganese triacetate/cyanoacetic acid as the redox system
SU602508A1 (ru) Способ получени полимеров
SU765287A1 (ru) Способ получени бифильнорастворимого блоксополимера

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12876847

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14401743

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 12876847

Country of ref document: EP

Kind code of ref document: A1