WO2013168814A1 - エネルギー管理装置、エネルギー管理方法およびプログラム - Google Patents

エネルギー管理装置、エネルギー管理方法およびプログラム Download PDF

Info

Publication number
WO2013168814A1
WO2013168814A1 PCT/JP2013/063225 JP2013063225W WO2013168814A1 WO 2013168814 A1 WO2013168814 A1 WO 2013168814A1 JP 2013063225 W JP2013063225 W JP 2013063225W WO 2013168814 A1 WO2013168814 A1 WO 2013168814A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
target value
amount
sold
energy management
Prior art date
Application number
PCT/JP2013/063225
Other languages
English (en)
French (fr)
Inventor
佐古 曜一郎
和俊 芹田
猪口 達也
江 呉
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN201380023269.5A priority Critical patent/CN104285353B/zh
Priority to EP13788649.5A priority patent/EP2849302B1/en
Priority to US14/398,574 priority patent/US20150127181A1/en
Publication of WO2013168814A1 publication Critical patent/WO2013168814A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • H02J3/382
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/10Energy trading, including energy flowing from end-user application to grid

Definitions

  • the present disclosure relates to an energy management apparatus, an energy management method, and a program that can effectively perform power sale using, for example, a solar power generation system.
  • Patent Document 1 describes that the length of a power outage period is taken into account when selecting an electric device to be supplied with power by a private power generator during a commercial power outage. For example, when the power failure period is short, the refrigeration unit is kept stopped, whereas when the power failure period is long, the refrigeration unit is stopped and normal operation is alternately performed. .
  • Patent Document 2 when power is supplied from a battery to an electric device at the time of a power failure, the electric device is divided into four groups according to priority in advance, and the priority of the battery is considered in consideration of the remaining capacity of the battery. It is described that power supply is limited in order from the lowest.
  • Patent Document 3 describes performing optimal power control based on a user's lifestyle in a system using a power generation system and a power storage system.
  • Patent Document 4 discloses a technology for switching between power sale to the grid side and storage as energy (storage to the battery) of a photovoltaic power generation facility linked to the grid.
  • a solar power generation system is installed in homes, etc., and a purchase system in which electric power companies purchase generated power is widely used.
  • the purchase system includes a total purchase system that purchases all of the power generated by solar power generation and a purchase system that purchases the remaining power (referred to as surplus power) that is obtained by subtracting the amount of power consumed from the power generated by solar power generation. is there.
  • the surplus power purchase system is the current system.
  • Patent Document 1 and Patent Document 2 described above when priority is set in advance in units of electrical equipment and power is restricted when a power outage occurs, power supply is restricted from electrical equipment with lower priority. ing. Therefore, Patent Document 1 and Patent Document 2 do not have a description about controlling power sale in association with power saving of electric equipment. Similarly, Patent Document 3 and Patent Document 4 have no description about controlling power sale and electric power saving in relation to each other.
  • the power consumption of the electric device is controlled from the viewpoint of power failure countermeasures and power saving, but the control of the power consumption of the electric device is not considered from the viewpoint of power sale. Setting a target for the amount of power sold and being aware that the amount of power sold reaches the target value can increase the motivation for power saving.
  • the present disclosure is intended to provide an energy management device, an energy management method, and a program that can clarify the purpose of power saving because power saving is performed so that the amount of power sold reaches a target value.
  • the present disclosure is configured to sell surplus power generated by a power generation device, Set a target value for the amount of electricity sold in a given period, Predict whether the amount of electricity sold will reach the target value, When it is predicted that the target value will not be reached, the energy management device performs power limitation according to the priority order set for a plurality of electrical devices.
  • the present disclosure is configured to sell surplus power generated by the power generation device, Set a target value for the amount of electricity sold in a given period, Predict whether the amount of electricity sold will reach the target value, In the energy management method, power is limited in accordance with the priority order set for a plurality of electric devices when it is predicted that the target value will not be reached.
  • the present disclosure is configured to sell surplus power generated by the power generation device, Set a target value for the amount of electricity sold in a given period, Predict whether the amount of electricity sold will reach the target value, When it is predicted that the target value will not be reached, this is a program that causes a computer to execute an energy management method that limits power according to the priority order set for a plurality of electrical devices.
  • power consumption is controlled so that the amount of power sold reaches a target value, and power saving is actively performed.
  • FIG. 1 is a block diagram of a first embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram for use in describing the control according to the first embodiment of the present disclosure.
  • FIG. 3 is a flowchart used to describe the control according to the first embodiment of the present disclosure.
  • FIG. 4 is a flowchart used for describing the control according to the second embodiment of the present disclosure.
  • FIG. 5 is a flowchart used for describing the control according to the third embodiment of the present disclosure.
  • FIG. 1 An example of a power system to which the present disclosure can be applied, for example, a home power system, will be described with reference to FIG.
  • a power line is introduced into the building from the outdoor distribution line through the lead-in line, and the power line is connected to a forward tidal watt-hour meter (indicated simply as a meter in FIG. 1) 1.
  • the system power supply is indicated by a symbol 4 for AC power supply.
  • the forward flow watt-hour meter 1 measures the amount of electric power purchased.
  • the forward power watt-hour meter 1 uses the value obtained by dividing the integrated power amount (kWh) obtained by integrating the instantaneous power for 30 minutes by 30 minutes as the demand power (kW).
  • a reverse flow watt-hour meter 2 (simply referred to as a meter in FIG. 1) is connected to the forward flow watt-hour meter 1.
  • the reverse power flow watt-hour meter 2 measures the amount of power sold.
  • a distribution board 3 is connected to the output side of the reverse flow watt-hour meter 2.
  • the reverse flow watt-hour meter 2 measures the amount of power in the same manner as the forward flow watt-hour meter 1.
  • the power generated by the solar cell 5 is supplied to the power conditioner 6.
  • the power conditioner 6 converts the unstable DC output voltage of the solar cell 5 into a stable DC voltage, and further converts the DC voltage into an AC voltage.
  • the power conditioner 6 performs control (Maximum Power Point Tracking (MPPT)) to always follow the maximum power point following the fluctuation of the power generated by the solar cell.
  • MPPT Maximum Power Point Tracking
  • the output is supplied to the distribution board 3 via the total power generation meter 7 (simply referred to as a meter in FIG. 1) and the solar breaker 8.
  • the total power generation meter 7 is connected to the solar power generation system. The amount of electric power generated is measured, and the amount of electric power measured by the total generated electric energy meter 7 is measured in the same manner as the forward tidal current energy meter 1.
  • the total power generation amount and the private power consumption amount have the following relationship.
  • [In-house power consumption] [Total power generation]-[Reverse power flow]
  • Distribution board 3 has a configuration in which a contract breaker, an earth leakage breaker, and a branch breaker are connected in order from the reverse flow watt-hour meter 2 side.
  • the contract breaker is for automatically stopping electricity when a current exceeding the contract with the power company flows.
  • the earth leakage breaker is used to detect electricity leakage in indoor wiring and electric appliances and automatically cut off electricity.
  • the branch breaker is attached to each branch circuit that sends electricity from the distribution board 3 to each room. This is for automatically shutting off electricity when a short circuit occurs due to a failure of an electric appliance or wiring, and an overcurrent flows.
  • a plurality of electric devices 9 1 , 9 2 ,..., 9 n for the indoor wiring from the branch breaker of the distribution board 3 (referred to simply as the electric device 9 when it is not necessary to distinguish them) Is connected.
  • Each of these electric devices 9 is provided with a controller 10 1 to 10 n for control (in the case where it is not particularly necessary to distinguish these, simply referred to as a controller 10).
  • the controller 10 transmits a control signal to the electric device 9 by wireless communication, for example, and controls the operation of the electric device 9.
  • a network based on a wireless communication standard such as a wireless LAN (Local Area Network), Bluetooth (registered trademark), or ZigBee can be used.
  • Bluetooth registered trademark
  • ZigBee uses the physical layer of IEEE (Institut of Electric and Electronics Engineers) 802.15.4.
  • IEEE 802.15.4 is the name of a short-range wireless network standard called PAN (Personal Area Network) or W (Wireless) PAN.
  • the controller 10 can remotely control the operation state of the electric device 9 such as power on / off.
  • the controller 10 is connected to the communication unit 12 via the communication path 11.
  • the communication path 11 is, for example, a home network.
  • the communication unit 12 is connected to the control unit 13.
  • the communication path 11 may be a wireless communication path.
  • the control unit 13 controls the power limit (power saving) according to the power sale amount and the target value, and is specifically a home gateway (home server).
  • the control unit 13 includes a CPU that performs various calculation / control processes, a storage unit (ROM (Read Only Memory), RAM (Random Access Memory), etc.) that stores a database, a program, and the like, and information between the control unit 13 and the outside.
  • An input / output interface for controlling the input / output of the device and a clock.
  • a user operation input is supplied from the input unit 16 to the CPU through the input / output interface, and necessary information is supplied to the display unit 17 and displayed.
  • the control part 13 can perform remote control of operation
  • a GPS (Global Positioning System) 18 as a position detection unit is connected to the control unit 13.
  • the control unit 13 can be connected to an external network such as the Internet 15 via the communication unit 14, and can acquire various types of information such as weather information from the Internet 15.
  • the control unit 13 transmits the position information detected by the GPS 18 to a site that provides weather information through the Internet 15. From the site, weather information of the area indicated by the position information, for example, weekly weather forecast (sunny weather / cloudy / rain information, temperature / humidity information, etc.) is transmitted. Information on the weather forecast acquired in this way is stored in the storage unit of the control unit 13.
  • the measured value of the forward flow watt-hour meter 1 and the measured value of the reverse flow watt-hour meter 2 are supplied to the control unit 13.
  • the measurement data of these watt-hour meters is transmitted to the control unit 13 by wireless communication.
  • the measurement data is used to control the amount of power sold so as to reach the target value, and is also used for display on the display unit 17 connected to the control unit 13.
  • the target value of the power sale amount is supplied from the memory 19 to the control unit 13.
  • the target value is set by the user operating the input unit 16. Further, the target value is adjusted to an appropriate value in consideration of seasonal factors and the like in addition to the user's setting. For example, sunshine hours are taken into consideration, and a lower target value is set in a season with a short sunshine time, and a higher target value is set in a season with a long sunshine time. Such adjustment is automatically performed by the control unit 13.
  • the target value is set every predetermined period. For example, the target value is set on a monthly basis.
  • a priority order for performing the power limitation when the power is limited is determined in advance.
  • the power limitation includes disconnection (off) of power supply and intermittent supply of power.
  • power supply is on
  • the case where the operation mode of the electrical device is the energy saving mode is also one mode of power limitation.
  • power consumption can be reduced by lowering the set temperature during heating, and power consumption can be reduced by increasing the set temperature during cooling.
  • FIG. 2 shows an example of the power saving mode.
  • domestic electrical equipment is divided into three groups.
  • the first group of electrical devices should not be turned off, such as security-related devices such as electronic locks, telephones, and the like.
  • the electrical equipment of the second group is a target for power saving, and can be operated with low power consumption (energy saving operation).
  • Air conditioners, television receivers and the like are included in the second group.
  • the electrical equipment of the third group is a target for power saving, energy-saving operation is impossible, and power consumption can be reduced only by turning off the power.
  • AV (audio / visual) devices other than television receivers are included in the third group.
  • the illumination that can be adjusted in brightness is included in the second group, and the illumination that cannot be adjusted in brightness is included in the third group.
  • Power saving mode A 1st group (power-on), 2nd group (energy-saving operation), 3rd group (power-on): The rate of reducing the power consumption is small.
  • Power saving mode B 1st group (power on), 2nd group (energy saving operation), 3rd group (power off): The rate of reducing the amount of power consumption is medium.
  • Power-saving mode C 1st group (power on), 2nd group (power off), 3rd group (power off): The ratio which reduces power consumption is large.
  • the user sets the grouping of the electrical devices 9 in advance.
  • the control unit 13 can set any one of these power saving modes.
  • any one of the power saving modes is set in advance. That is, the user selects the power saving mode according to the target value of the power sale amount.
  • the priority order described above is an example, and the electrical devices may be classified into a larger number of groups, or the priority order may be set for each electrical device.
  • the set priority order is stored in a memory in the control unit 13.
  • Step S1 A target value for the amount of power sold is set.
  • a monthly target value is set by a user operation or automatically.
  • the target value is appropriately set in consideration of the change in daylight hours, the number of family members, and the like.
  • Step S2 The control unit 13 is supplied with measurement data from the reverse flow watt-hour meter 2.
  • the control unit 13 integrates the data on the power sale amount every predetermined period. It is monitored whether or not the amount of power sold reaches the target value set in step S1, and it is determined whether or not it is difficult to achieve the target. For example, when about half of the month has passed, if the target achievement rate (the integrated value / target value of the amount of power sold up to that point) has not reached 50%, it is determined that it is difficult to achieve. This determination is made at predetermined intervals, for example, for one hour. Note that it may be determined whether it is difficult to achieve with the progress rate in the third embodiment described later.
  • Step S3 If it is determined that the target achievement rate is not difficult as a result of the determination in step S2, normal power use is performed. That is, there is no power limitation.
  • Step S4 If it is determined that the target achievement rate is difficult as a result of the determination in step S2, the power saving mode is entered. Among the power saving modes A, B, and C described above, power saving is performed according to a power saving mode selected in advance.
  • Step S5 It is determined whether a predetermined period has elapsed. For example, it is determined whether one month has passed. If it is determined that it has not elapsed, the process returns to step S2 (whether it is difficult to achieve the target). When it is determined that the predetermined period has elapsed, the control for one month is ended, and the integrated value of the power sale amount is reset. Then, the next month's processing is started.
  • the user can set the target value of the power sale amount, and the power limiting operation is automatically performed so that the power sale amount reaches the target value. Since a plurality of power saving modes having different power consumption amounts are prepared, the power saving mode can be selected in association with the setting of the target value. Therefore, since power limitation is performed according to the user's own intention, there is an advantage that the power limitation reflecting the user's intention is possible.
  • Step S11 A target value for the amount of power sold is set. For example, a monthly target value is set by a user operation or automatically. As described above, the target value is appropriately set in consideration of the change in daylight hours, the number of family members, and the like.
  • Step S12 The control unit 13 monitors whether or not the power sale amount reaches the target value set in step S11, and determines whether it is difficult to achieve the target. For example, when about half of the month has passed and the target achievement rate has not reached 50%, it is determined that it is difficult to achieve. This determination is made at predetermined intervals, for example, for one hour.
  • Step S13 If it is determined as a result of the determination in step S12 that the target achievement rate is not difficult, normal power use is performed.
  • Step S14 If the target achievement rate is determined to be difficult as a result of the determination in step S12, the degree of difficulty is determined. That is, it is determined whether the degree of difficulty is large. The power saving mode is selected according to the determination result of step S14.
  • Step S15 If it is determined that the difficulty level is not large as a result of the determination in step S14, the power saving mode A is selected. That is, in the power saving mode, the power saving mode A having the smallest power consumption reduction amount is selected.
  • Step S16 If the degree of difficulty is determined as a result of the determination in step S14, the power saving mode C is selected. That is, in the power saving mode, the power saving mode C having the largest power consumption reduction amount is selected.
  • step S5 it is determined whether or not a predetermined period, for example, one month has passed, as in the process (step S5) in the first embodiment. If it is determined that the time has not elapsed, the process returns to step S12 (determination of whether it is difficult to achieve the target). When it is determined that the predetermined period has elapsed, the control for one month is ended, and the integrated value of the power sale amount is reset. Then, the next month's processing is started.
  • a predetermined period for example, one month has passed
  • the user can set the target value of the power sale amount, and the power limiting operation is automatically performed so that the power sale amount reaches the target value. Is made. Furthermore, the degree of difficulty in achieving the target is determined, and power saving modes having different degrees of reduction in power consumption are automatically selected. Therefore, similarly to the first embodiment, in addition to being able to limit power reflecting the user's will, there is an advantage that the inconvenience experienced by the user at the time of power limitation can be reduced as much as possible. .
  • Step S21 A target value for the amount of power sold is set. For example, a monthly target value is set by a user operation or automatically. As described above, the target value is appropriately set in consideration of the change in daylight hours, the number of family members, and the like.
  • Step S22 It is determined whether there is a lot of fine weather based on weather information, for example, a weekly weather forecast.
  • the control unit 13 transmits position information to a predetermined site through the Internet 15, and acquires weekly weather forecast information from the predetermined site.
  • the percentage of clear sky can be estimated from this weekly weather forecast. For example, when the ratio of sunny days is 50% or more in one week, it is estimated that there are many sunny days.
  • Step S23 If it is determined in step S22 that there is a lot of sunny, it is determined whether or not the progress rate with respect to the target value of the power sale amount is greater than 100%.
  • Step S24 When the progress rate is determined to be greater than 100% in step S23, normal power use is performed. That is, the progress rate is greater than 100%, and there is much clearness in the next week, so it is expected that there is little possibility that the power generation amount of the solar power generation system will be reduced, and thus no power limitation is performed.
  • Step S25 In step S23, if it is determined that the progress rate is 100% or less, the power is limited. As the power saving mode, a pre-selected one among the power saving modes A, B, and C is used.
  • Step S26 In this week's weather forecast, if it is determined that there are few sunny days, it is determined whether or not the progress rate is greater than 120%.
  • Step S27 If the progress rate is determined to be greater than 120% in step S26, normal power use is performed. That is, since the ratio of sunny days in the future week is small and the power generation amount of the solar power generation system may be reduced, the determination value of whether or not the power sales amount can achieve the target is made higher. If it is greater than this value, normal power usage is made. On the other hand, if it is determined in step S26 that the progress rate is 120% or less, power is limited in step S25. As the power saving mode, a pre-selected one among the power saving modes A, B, and C is used.
  • step S5 it is determined whether or not a predetermined period, for example, one month has passed, as in the process (step S5) in the first embodiment. If it is determined that the time has not elapsed, the process returns to step S22 (determining whether the weekly weather forecast is sunny). When it is determined that the predetermined period has elapsed, the control for one month is ended, and the integrated value of the power sale amount is reset. Then, the next month's processing is started.
  • a predetermined period for example, one month has passed
  • the user can set the target value of the power sale amount, and the power limiting operation is automatically performed so that the power sale amount reaches the target value. Is made. Furthermore, the amount of power sold for the next week is predicted with reference to the information of the weekly weather forecast. Therefore, as in the first embodiment, in addition to being able to limit power reflecting the user's will, there is an advantage that the prediction accuracy of the power sale amount can be increased.
  • the unit of the power sale amount is not limited to the power amount, and the amount of power sale may be used.
  • the power saving amount CO2 reduction amount
  • a battery may be provided. In the event of a power failure, power is supplied to the electrical equipment by the battery. When the remaining capacity of the battery is small, the amount of power generated by the solar power generation system may be used for charging the battery.
  • this indication can also take the following structures.
  • the energy management device according to any one of (1), (2), and (3), wherein the power generation device is a solar power generation device, and the weather forecast information is information related to a degree of sunshine.
  • the energy management device When predicting whether the amount of electricity sold will reach the target value, predict the difficulty level, The energy management device according to any one of (1), (2), (3), and (4), wherein the degree of power limitation is changed according to the degree of difficulty to achieve.
  • the power limit is the energy management device according to any one of (1), (2), (3), (4), and (5), which is a combination of power-off of the electric device and energy-saving operation of the electric device.
  • the power storage device is charged with the generated power of the power generation device (1) (2) (3) (4) (5) (6 )
  • the energy management device according to any one of the above.
  • Surplus power generated by the power generator is sold, Set a target value for the amount of electricity sold in a given period, Predict whether the amount of electricity sold will reach the target value, An energy management method for performing power limitation according to a priority order set for a plurality of electrical devices when it is predicted that the target value will not be reached.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

発電装置により発生する余剰電力を売電するようになされ、所定期間における売電量の目標値を設定し、売電量が目標値に達するかどうかを予測し、目標値に達しないと予測される場合に、複数の電気機器に関して設定されている優先順位にしたがって電力制限を行う。

Description

エネルギー管理装置、エネルギー管理方法およびプログラム
 本開示は、例えば太陽光発電システムを利用する売電を効果的に行うことができるエネルギー管理装置、エネルギー管理方法およびプログラムに関する。
 家庭等における電力消費は、増加の一途であり、電力需給のバランスを効率的に制御することが望まれる。電力供給量の制限によって、系統電力供給の制限がなされたり、契約電力の制約から消費電力のより一層の抑制が必要とされる。停電が生じた場合に、自家発電装置、バッテリ等の電源を備えていることによって、一時的に停電を回避することができる。しかしながら、一般的に自家発電装置、バッテリ等の電源の電力供給量は、商用電力に比して小さいので、電源による電力供給が予め設定されている優先順位にしたがって行うことが知られている。例えば下記の特許文献1乃至特許文献3に記載されているような方法が提案されている。
 特許文献1には、商用電力の停電時に、自家発電装置による電力供給の対象の電気機器を選択する場合に、停電期間の長さを考慮することが記載されている。例えば停電期間が短い場合には、冷凍冷蔵装置を停止させたままとするのに対して、停電期間が長い場合には、冷凍冷蔵装置を停止と、通常運転とを交互に行うようになされる。
 特許文献2には、停電時において、バッテリから電気機器に対して電力を供する場合に、予め電気機器を優先度によって4つのグループに分けておき、バッテリの残容量等を考慮して優先度の低いものから順に電力供給を制限することが記載されている。
 特許文献3には、発電システムと電力貯蔵システムとを利用したシステムにおいて、ユーザのライフスタイルに基づいた最適な電力制御を行うことが記載されている。
 また、特許文献4には、系統連携させる太陽光発電設備の、系統側への売電およびエネルギーとしての蓄電(バッテリへの蓄電)を切り替える技術が開示されている。
 一方、太陽光発電システムが家庭等に設置され、電力事業会社が発電電力を買い取る買い取り制度が広く運用されている。買い取り制度には、太陽光発電による電力量を全て買い取る全量買い取り制度と、太陽光発電による電力量から消費した電力量を差し引いた残りの電力(余剰電力と称される)を買い取る買い取り制度とがある。余剰電力買い取り制度が現行の制度である。
特開2003−092844号公報 特開2004−328960号公報 特開2012−005168号公報 特開2011−172334号公報
 上述した特許文献1および特許文献2では、電気機器の単位で優先順位を予め設定し、停電等の発生時に電力を制限する場合には、優先順位の低い電気機器から電力供給を制限するようにしている。したがって、特許文献1および特許文献2には、売電と電気機器の節電とを関係付けて制御することについての記載がない。特許文献3および特許文献4も同様に、売電と電気機器の節電とを関係付けて制御することについての記載がない。
 現行の余剰電力買い取り制度のもとでは、消費電力量を少なくすることが売電量の増加につながる。従来の技術では、停電対策および節電の観点から電気機器の消費電力を制御することがなされているが、売電の観点から電気機器の消費電力を制御することについては考慮されていなかった。売電量の目標を設定して、売電量が目標値に達するように意識することは、節電に対する動機付けをより強くすることが可能となる。
 したがって、本開示は、売電量が目標値に達するように節電を行うので、節電の目的が明確とできるエネルギー管理装置、エネルギー管理方法およびプログラムの提供を目的とする。
 上述の課題を解決するために、本開示は、発電装置により発生する余剰電力を売電するようになされ、
 所定期間における売電量の目標値を設定し、
 売電量が目標値に達するかどうかを予測し、
 目標値に達しないと予測される場合に、複数の電気機器に関して設定されている優先順位にしたがって電力制限を行うエネルギー管理装置である。
 本開示は、発電装置により発生する余剰電力を売電するようになされ、
 所定期間における売電量の目標値を設定し、
 売電量が目標値に達するかどうかを予測し、
 目標値に達しないと予測される場合に、複数の電気機器に関して設定されている優先順位にしたがって電力制限を行うエネルギー管理方法である。
 本開示は、発電装置により発生する余剰電力を売電するようになされ、
 所定期間における売電量の目標値を設定し、
 売電量が目標値に達するかどうかを予測し、
 目標値に達しないと予測される場合に、複数の電気機器に関して設定されている優先順位にしたがって電力制限を行うエネルギー管理方法をコンピュータに対して実行させるプログラムである。
 本開示によれば、売電量が目標値に達するように、消費電力の制御がなされ、積極的に節電を行うようになる。
 図1は、本開示の第1の実施の形態のブロック図である。
 図2は、本開示の第1の実施の形態の制御の説明に使用するための略線図である。
 図3は、本開示の第1の実施の形態の制御の説明に使用するフローチャートである。
 図4は、本開示の第2の実施の形態の制御の説明に使用するフローチャートである。
 図5は、本開示の第3の実施の形態の制御の説明に使用するフローチャートである。
 以下に説明する実施の形態は、本開示の好適な具体例であり、技術的に好ましい種々の限定が付されている。しかしながら、本開示の範囲は、以下の説明において、特に本開示を限定する旨の記載がない限り、これらの実施の形態に限定されないものとする。
 以下の説明は、下記の順序にしたがってなされる。
<1.第1の実施の形態>
<2.第2の実施の形態>
<3.第3の実施の形態>
<4.変形例>
<1.第1の実施の形態>
「システム構成」
 図1を参照して本開示を適用できる電力システム例えば家庭の電力システムの一例について説明する。屋外の配電線から引き込み線を通じて建物内に電力線が導入され、電力線が順潮流電力量計(図1では、単にメータと表記する)1に接続される。図1においては、系統電源が交流電源の記号4で示されている。順潮流電力量計1は、買電の電力量を計測するものである。例えば順潮流電力量計1は、瞬時電力を30分間積算して得られる積算電力量(kWh)を30分で割った値を需要電力(kW)としている。
 順潮流電力量計1に対して逆潮流電力量計2(図1では、単にメータと表記する)が接続される。逆潮流電力量計2は、売電の電力量を計測するものである。逆潮流電力量計2の出力側に分電盤3が接続される。逆潮流電力量計2の電力量の計測は、順潮流電力量計1と同様になされる。
 太陽電池5の発電電力がパワーコンディショナ6に供給される。パワーコンディショナ6は、太陽電池5の不安定な直流出力電圧を安定な直流電圧に変換し、さらに、直流電圧を交流電圧に変換する。パワーコンディショナ6は、太陽電池が発電する電力の変動に追従して、常に最大の電力点を追いかける制御(最大電力点追従制御(Maximum Power Point Tracking(MPPT))を行う。パワーコンディショナ6の出力が総発電電力量計7(図1では、単にメータと表記する)および太陽光用ブレーカ8を介して分電盤3に供給される。総発電電力量計7は、太陽光発電システムが発生する電力量を計測するものである。総発電電力量計7の電力量の計測は、順潮流電力量計1と同様になされる。
 太陽光発電システムにおいては、総発電電力量と自家消費電力量は、下記の関係にある。
〔自家消費電力量〕=〔総発電電力量〕−〔逆潮流電力量〕
 売電の対象となるのは、逆潮流電力量である。すなわち、
〔逆潮流電力量〕=〔総発電電力量〕−〔自家消費電力量〕
 である。したがって、売電量を増やすためには、自家消費電力量を少なくする節電が必要とされる。
 分電盤3は、逆潮流電力量計2の側から契約ブレーカ、漏電ブレーカおよび分岐ブレーカが順番に接続された構成を有する。契約ブレーカは、電力会社との契約以上の電流が流れると、自動的に電気を止めるためのものである。漏電ブレーカは、屋内配線や、電気器具の漏電を感知し、自動的に電気を遮断するためのものである。分岐ブレーカは、分電盤3から各部屋に電気を送る分岐回路のそれぞれに取り付けられている。電気器具や配線の故障でショートが発生した時、過電流が流れた時に電気を自動的に遮断するためのものである。
 分電盤3の分岐ブレーカからの屋内配線に対して複数の電気機器9,9,・・・,9(特にこれらを区別する必要がない場合には、単に電気機器9と称する)が接続される。これらの電気機器9のそれぞれに対して制御用のコントローラ10~10(特にこれらを区別する必要がない場合には、単にコントローラ10と称する)がそれぞれ設けられている。コントローラ10は、例えば無線通信でもって電気機器9に対して制御信号を送信し、電気機器9の動作を制御する。
 無線通信の方式としては、ワイヤレスLAN(Local Area Network)、Bluetooth(登録商標)、ZigBee等の無線通信規格によるネットワークを利用することができる。Bluetooth(登録商標)は、マルチメディア通信に適用され、一対多接続の通信を行うことができる。ZigBeeは、IEEE(Institute of Electrical and Electronics Engineers)802.15.4の物理層を使用するものである。IEEE802.15.4は、PAN(Personal Area Network)またはW(Wireless)PANと呼ばれる短距離無線ネットワーク規格の名称である。
 コントローラ10は、電気機器9の電源のオン/オフ等の動作状態を遠隔制御することができる。コントローラ10は、通信路11を介して通信部12と接続されている。通信路11は、例えばホームネットワークである。通信部12が制御部13と接続されている。なお、通信路11は、無線通信路であっても良い。
 制御部13は、売電量と目標値とに応じて電力制限(節電)を制御するもので、具体的には、ホームゲートウェイ(ホームサーバ)である。制御部13は、各種演算・制御処理を行うCPUと、データベースやプログラム等を記憶する記憶部(ROM(Read Only Memory)、RAM(Random Access Memory)等)と、制御部13と外部との情報の入出力制御を行う入出力インタフェースと、時計とを含む。入出力インタフェースを通じて入力部16からユーザの操作入力がCPUに対して供給され、必要な情報が表示部17に供給されて表示される。そして、制御部13は、コントローラ10と通信を行うことによって、所望の電気機器の動作を遠隔制御することが可能とされている。
 制御部13に対して位置検出部としてのGPS(Global Positioning System)18が接続されている。制御部13は、通信部14を介して外部のネットワーク例えばインターネット15との接続が可能とされ、インターネット15から各種の情報例えば気象情報を取得することが可能とされている。制御部13がGPS18により検出される位置情報をインターネット15を通じて気象情報の提供を行うサイトに送信する。そして、サイトからは、位置情報で示される地域の気象情報例えば週間の天気予報(晴天/曇り/雨の情報、温度/湿度の情報等)が送信される。このように取得された天気予報の情報は、制御部13の記憶部に記憶される。
 制御部13に対して順潮流電力量計1の測定値および逆潮流電力量計2の測定値が供給される。例えば無線通信によって、これらの電力量計の測定データを制御部13に対して送信する。測定データは、売電量を目標値に達するように制御するのに使用されると共に、制御部13に接続されている表示部17の表示に使用される。
 さらに、制御部13に対してメモリ19から売電量の目標値が供給される。目標値は、入力部16をユーザが操作することによって設定される。さらに、目標値は、ユーザ一の設定に加えて、季節的要因等が加味されて適切な値に調整される。例えば日照時間が考慮され、日照時間の短い季節では、低めの目標値が設定され、日照時間の長い季節では、高めの目標値が設定される。このような調整は、制御部13によって自動的になされる。目標値は、所定期間毎に設定されている。例えば月単位で目標値が設定される。
 制御部13においては、電力制限時に電力制限を行う優先順位が予め定められている。電力制限は、電力の供給の切断(オフ)、電力の断続的な供給を含む。さらに、電力の供給がオンであるが、電気機器の動作モードが省エネルギーモードの場合も電力制限の1態様である。例えば空調機では、暖房時では、設定温度を低くすることによって、消費電力を少なくでき、冷房時では、設定温度を高くすることによって、消費電力を少なくできる。さらに、テレビジョン受像機の場合であれば、画面の明るさを暗くすることによって消費電力を減少させることが可能とされている。
 図2は、節電モードの一例を示す。家庭内の電気機器が3個のグループに分けられる。第1グループの電気機器は、電子錠等のセキュリティ関連の機器、電話等、電源をオフすべきでないものである。第2グループの電気機器は、節電の対象となるものであり、消費電力の少ない運転(省エネ運転)が可能なものである。空調機、テレビジョン受像機等は、第2グループに含まれる。第3グループの電気機器は、節電の対象となるものであり、省エネ運転が不可能であり、電源のオフによってのみ消費電力を少なくできるものである。テレビジョン受像機以外のAV(オーディオ・ビジュアル)機器等が第3グループに含まれる。照明は、明るさ調整が可能なものは、第2グループに含まれ、明るさ調整ができないものは、第3グループに含まれる。
 節電モードとして、下記の3種類のモード(A、B、C)の何れかが可能とされている。
 節電モードA:第1グループ(電源オン)、第2グループ(省エネ運転)、第3グループ(電源オン):消費電力量を低下させる割合が小さい。
 節電モードB:第1グループ(電源オン)、第2グループ(省エネ運転)、第3グループ(電源オフ):消費電力量を低下させる割合が中程度である。
 節電モードC:第1グループ(電源オン)、第2グループ(電源オフ)、第3グループ(電源オフ):消費電力量を低下させる割合が大きい。
 ユーザは、電気機器9のグループ分けを予め設定する。制御部13は、これらの節電モードの何れかを設定することが可能とされている。第1の実施の形態では、何れかの節電モードが予め設定される。すなわち、ユーザが売電量の目標値に応じて節電モードを選択する。
 なお、上述した優先順位は、一例であって、より多くのグループに電気機器を分類したり、電気機器単位で優先順位を設定しても良い。設定された優先順位が制御部13内のメモリに記憶されている。
「第1の実施の形態の制御」
 図3のフローチャートを参照して、制御部13によってなされる第1の実施の形態における制御について説明する。
 ステップS1:売電量の目標値が設定される。例えば月単位の目標値がユーザ操作または自動的に設定される。目標値は、上述したように、日照時間の変化、家族の人数等を加味して適切に設定される。
 ステップS2:制御部13には、逆潮流電力量計2からの測定データが供給されている。制御部13は、売電量のデータを所定期間毎に積算する。ステップS1において設定された目標値に売電量が達するか否かを監視しており、目標の達成が困難かどうかが判定される。例えば月の半分程度経過した時点で、目標達成率(その時点までの売電量の積算値/目標値)が50%に到達していない場合には、達成困難と判定される。この判定は、所定の間隔毎、例えば1時間でもってなされる。なお、後述する第3の実施の形態における進捗率でもって達成困難かどうかを判定しても良い。
 ステップS3:ステップS2の判定の結果、目標達成率が困難でないと判定されると、通常の電力使用がなされる。すなわち、電力制限がなされない。
 ステップS4:ステップS2の判定の結果、目標達成率が困難であると判定されると、節電モードに入る。上述した節電モードA、B、Cの内で、予め選択されている節電モードにしたがって節電がなされる。
 ステップS5:所定期間が経過したかどうかが判定される。例えば一カ月が経過したかどうかが判定される。経過していないと判定されると、処理がステップS2(目標の達成が困難かどうか)に戻る。所定期間が経過したと判定されると、一カ月単位の制御が終了し、売電量の積算値がリセットされる。そして、翌月の処理が開始される。
 このように、売電量の目標値をユーザが設定でき、その目標値に売電量が到達するように自動的に電力制限動作がなされる。消費電力量が相違する複数の節電モードが用意されているので、目標値の設定と関連付けて節電モードを選択することができる。したがって、ユーザ自身の意向にしたがって電力制限がなされるので、ユーザの意志が反映された電力制限が可能となる利点がある。
<2.第2の実施の形態>
「第2の実施の形態の制御」
 第2の実施の形態の電力管理システムの構成は、第1の実施の形態と同様である。制御部13によってなされる電力管理が第1の実施の形態におけるものと相違している。図4のフローチャートを参照して、制御部13によってなされる第2の実施の形態における制御について説明する。
 ステップS11:売電量の目標値が設定される。例えば月単位の目標値がユーザ操作または自動的に設定される。目標値は、上述したように、日照時間の変化、家族の人数等を加味して適切に設定される。
 ステップS12:制御部13は、ステップS11において設定された目標値に売電量が達するか否かを監視しており、目標の達成が困難かどうかが判定される。例えば月の半分程度経過した時点で、目標達成率が50%に到達していない場合には、達成困難と判定される。この判定は、所定の間隔毎、例えば1時間でもってなされる。
 ステップS13:ステップS12の判定の結果、目標達成率が困難でないと判定されると、通常の電力使用がなされる。
 ステップS14:ステップS12の判定の結果、目標達成率が困難であると判定されると、困難の程度が判定される。すなわち、困難度が大きいかどうかが判定される。ステップS14の判定の結果に応じて節電モードが選択される。
 ステップS15:ステップS14の判定の結果、困難度が大きくないと判定されると、節電モードAが選択される。すなわち、節電モードの中で、最も消費電力の削減量が小さい節電モードAが選択される。
 ステップS16:ステップS14の判定の結果、困難度が大きいと判定されると、節電モードCが選択される。すなわち、節電モードの中で、最も消費電力の削減量が大きい節電モードCが選択される。
 なお、図4のフローチャートでは省略されているが、第1の実施の形態における処理(ステップS5)と同様に、所定期間例えば一カ月が経過したかどうかが判定される。経過していないと判定されると、処理がステップS12(目標の達成が困難かどうかの判定)に戻る。所定期間が経過したと判定されると、一カ月単位の制御が終了し、売電量の積算値がリセットされる。そして、翌月の処理が開始される。
 このように、第2の実施の形態では、第1の実施の形態と同様に、売電量の目標値をユーザが設定でき、その目標値に売電量が到達するように自動的に電力制限動作がなされる。さらに、目標の達成が困難な程度が判定され、消費電力量の削減の程度が異なる節電モードが自動的に選択される。したがって、第1の実施の形態と同様に、ユーザの意志が反映された電力制限が可能となるのに加えて、電力制限時のユーザが受ける不自由さをなるべく少なくすることができる利点がある。
<3.第3の実施の形態>
「第3の実施の形態の制御」
 第3の実施の形態の電力管理システムの構成は、第1の実施の形態と同様である。制御部13によってなされる電力管理が第1の実施の形態におけるものと相違している。図5のフローチャートを参照して、制御部13によってなされる第3の実施の形態における制御について説明する。
 ステップS21:売電量の目標値が設定される。例えば月単位の目標値がユーザ操作または自動的に設定される。目標値は、上述したように、日照時間の変化、家族の人数等を加味して適切に設定される。
 ステップS22:気象情報例えば週間天気予報に基づいて晴天が多いかどうかが判定される。制御部13は、インターネット15を通じて位置情報を所定のサイトに送信し、所定のサイトから週間天気予報の情報を取得する。この週間天気予報から晴天の割合を推定できる。例えば晴天の日にちの割合が1週間で50%以上の場合、晴れが多いと推定される。
 ステップS23:ステップS22において晴れが多いと判定されると、売電量の目標値に対する進捗率が100%より大かどうかが判定される。進捗率は、下記の式で表される。
 (その時点までの売電量の積算値/補正目標値)
 (補正目標値=目標値×(その時点までの経過時間/所定期間(例えば一カ月)の総時間)
 ステップS24:ステップS23において、進捗率が100%より大と判定されると、通常の電力使用がなされる。すなわち、進捗率が100%より大であり、今後の1週間は、晴れが多いので、太陽光発電システムの発電量が低下するおそれが少ないと予想されるので、電力制限を行わない。
 ステップS25:ステップS23において、進捗率が100%以下と判定されると、電力制限がなされる。節電モードとしては、節電モードA、B、Cの中の予め選択されたものが使用される。
 ステップS26:ステップS22において、今週の天気予報では、晴れの日にちが少ないと判定されると、進捗率が120%より大かどうかが判定される。
 ステップS27:ステップS26において、進捗率が120%より大と判定されると、通常の電力使用がなされる。すなわち、今後の1週間の晴れの日にちの割合が少なく、太陽光発電システムの発電量が低下するおそれがあるので、売電量が目標を達成できるかどうかの判定の値がより高くされる。この値より大とされる場合には、通常の電力使用がなされる。
 一方、ステップS26の判定において、進捗率が120%以下と判定されると、ステップS25において、電力制限がなされる。節電モードとしては、節電モードA、B、Cの中の予め選択されたものが使用される。
 なお、図5のフローチャートでは省略されているが、第1の実施の形態における処理(ステップS5)と同様に、所定期間例えば一カ月が経過したかどうかが判定される。経過していないと判定されると、処理がステップS22(週間天気予報は晴れが多いかどうかの判定)に戻る。所定期間が経過したと判定されると、一カ月単位の制御が終了し、売電量の積算値がリセットされる。そして、翌月の処理が開始される。
 このように、第3の実施の形態では、第1の実施の形態と同様に、売電量の目標値をユーザが設定でき、その目標値に売電量が到達するように自動的に電力制限動作がなされる。さらに、週間天気予報の情報を参照して今後の1週間の売電量を予測している。したがって、第1の実施の形態と同様に、ユーザの意志が反映された電力制限が可能となるのに加えて、売電量の予測精度を高くすることができる利点がある。
<4.変形例>
 以上、本開示の実施の形態について具体的に説明したが、上述の各実施の形態に限定されるものではなく、本開示の技術的思想に基づく各種の変形が可能である。例えば、上述の実施の形態において挙げた構成、方法、工程、形状、材料および数値などはあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値などを用いても良い。
 例えば本開示において、売電量の単位は、電力量に限らず、売電の金額を使用しても良い。さらに、節電量(CO2削減量)が目標値となるように制御しても良い。さらに、バッテリを備えるようにしても良い。停電時には、バッテリによって電気機器に対して電力が供給される。バッテリの残容量が少ないときに、太陽光発電システムの発電した電力量をバッテリの充電に使用するようにしても良い。
 なお、本開示は、以下のような構成も取ることができる。
(1)
 発電装置により発生する余剰電力を売電するようになされ、
 所定期間における売電量の目標値を設定し、
 売電量が前記目標値に達するかどうかを予測し、
 前記目標値に達しないと予測される場合に、複数の電気機器に関して設定されている優先順位にしたがって電力制限を行うエネルギー管理装置。
(2)
 前記目標値を季節的要因に応じて設定する(1)に記載のエネルギー管理装置。
(3)
 売電量が前記目標値に達するかどうかを予測する場合に、天気予報情報を使用する(1)および(2)の何れかに記載のエネルギー管理装置。
(4)
 前記発電装置が太陽光発電装置であり、前記天気予報情報が日照の程度に関する情報である(1)(2)(3)の何れかに記載のエネルギー管理装置。
(5)
 売電量が前記目標値に達するかどうかを予測する場合に、達成困難度を予測し、
 前記達成困難度に応じて電力制限の程度を変化させる(1)(2)(3)(4)の何れかに記載のエネルギー管理装置。
(6)
 前記電力制限は、電気機器に対する電源のオフと、電気機器の省エネルギー運転とを組み合わせたものである(1)(2)(3)(4)(5)の何れかに記載のエネルギー管理装置。
(7)
 売電量が前記目標値に達するのが比較的容易と予測される場合に、前記発電装置の発電電力でもって蓄電装置を充電する(1)(2)(3)(4)(5)(6)の何れかに記載のエネルギー管理装置。
(8)
 発電装置により発生する余剰電力を売電するようになされ、
 所定期間における売電量の目標値を設定し、
 売電量が前記目標値に達するかどうかを予測し、
 前記目標値に達しないと予測される場合に、複数の電気機器に関して設定されている優先順位にしたがって電力制限を行うエネルギー管理方法。
(9)
 発電装置により発生する余剰電力を売電するようになされ、
 所定期間における売電量の目標値を設定し、
 売電量が前記目標値に達するかどうかを予測し、
 前記目標値に達しないと予測される場合に、複数の電気機器に関して設定されている優先順位にしたがって電力制限を行うエネルギー管理方法をコンピュータに対して実行させるプログラム。
1・・・順潮流電力量計
2・・・逆潮流電力量計
3・・・分電盤
5・・・太陽電池
7・・・総発電電力量計
9,9~9・・・電気機器
10,10~10・・・コントローラ
13・・・制御部

Claims (9)

  1.  発電装置により発生する余剰電力を売電するようになされ、
     所定期間における売電量の目標値を設定し、
     売電量が前記目標値に達するかどうかを予測し、
     前記目標値に達しないと予測される場合に、複数の電気機器に関して設定されている優先順位にしたがって電力制限を行うエネルギー管理装置。
  2.  前記目標値を季節的要因に応じて設定する請求項1に記載のエネルギー管理装置。
  3.  売電量が前記目標値に達するかどうかを予測する場合に、天気予報情報を使用する請求項1に記載のエネルギー管理装置。
  4.  前記発電装置が太陽光発電装置であり、前記天気予報情報が日照の程度に関する情報である請求項3に記載のエネルギー管理装置。
  5.  売電量が前記目標値に達するかどうかを予測する場合に、達成困難度を予測し、
     前記達成困難度に応じて電力制限の程度を変化させる請求項1に記載のエネルギー管理装置。
  6.  前記電力制限は、電気機器に対する電源のオフと、電気機器の省エネルギー運転とを組み合わせたものである請求項1に記載のエネルギー管理装置。
  7.  売電量が前記目標値に達するのが比較的容易と予測される場合に、前記発電装置の発電電力でもって蓄電装置を充電する請求項1に記載のエネルギー管理装置。
  8.  発電装置により発生する余剰電力を売電するようになされ、
     所定期間における売電量の目標値を設定し、
     売電量が前記目標値に達するかどうかを予測し、
     前記目標値に達しないと予測される場合に、複数の電気機器に関して設定されている優先順位にしたがって電力制限を行うエネルギー管理方法。
  9.  発電装置により発生する余剰電力を売電するようになされ、
     所定期間における売電量の目標値を設定し、
     売電量が前記目標値に達するかどうかを予測し、
     前記目標値に達しないと予測される場合に、複数の電気機器に関して設定されている優先順位にしたがって電力制限を行うエネルギー管理方法をコンピュータに対して実行させるプログラム。
PCT/JP2013/063225 2012-05-10 2013-05-02 エネルギー管理装置、エネルギー管理方法およびプログラム WO2013168814A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380023269.5A CN104285353B (zh) 2012-05-10 2013-05-02 能量管理设备、能量管理方法
EP13788649.5A EP2849302B1 (en) 2012-05-10 2013-05-02 Energy management device, energy management method and program
US14/398,574 US20150127181A1 (en) 2012-05-10 2013-05-02 Energy management device, energy management method and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-108152 2012-05-10
JP2012108152 2012-05-10

Publications (1)

Publication Number Publication Date
WO2013168814A1 true WO2013168814A1 (ja) 2013-11-14

Family

ID=49550845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063225 WO2013168814A1 (ja) 2012-05-10 2013-05-02 エネルギー管理装置、エネルギー管理方法およびプログラム

Country Status (5)

Country Link
US (1) US20150127181A1 (ja)
EP (1) EP2849302B1 (ja)
JP (1) JPWO2013168814A1 (ja)
CN (1) CN104285353B (ja)
WO (1) WO2013168814A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015122831A (ja) * 2013-12-20 2015-07-02 三菱電機株式会社 電力管理装置および電力管理システム
JP2015133782A (ja) * 2014-01-09 2015-07-23 日本電信電話株式会社 電力需給制御装置及び電力需給制御方法
JP2019175417A (ja) * 2018-03-28 2019-10-10 赫普科技発展(北京)有限公司 電力取引システム
CN113812053A (zh) * 2019-03-28 2021-12-17 西门子能源全球有限公司 用于监控能量供应网络的高压设备的运行状态的方法和系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10248146B2 (en) * 2015-10-14 2019-04-02 Honeywell International Inc. System for dynamic control with interactive visualization to optimize energy consumption
JP6745634B2 (ja) * 2016-04-18 2020-08-26 三菱電機株式会社 消費電力制御装置及び消費電力制御システム
JP7485465B2 (ja) 2021-01-12 2024-05-16 東芝エネルギーシステムズ株式会社 電力制御装置、及び電力制御方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003092844A (ja) 2001-09-20 2003-03-28 Fujitsu General Ltd 自家電力供給制御システム
JP2004328960A (ja) 2003-04-28 2004-11-18 Misawa Homes Co Ltd 無停電電力供給装置
WO2011102374A1 (ja) * 2010-02-17 2011-08-25 トヨタ自動車株式会社 住宅用電力システム
JP2012005168A (ja) 2010-06-14 2012-01-05 Daiwa House Industry Co Ltd エネルギーマネジメントシステム及びエネルギーマネジメント方法
JP2012019579A (ja) * 2010-07-06 2012-01-26 Sharp Corp 電力管理装置、電力管理プログラムおよび記録媒体
JP2012055067A (ja) * 2010-08-31 2012-03-15 Sekisui Chem Co Ltd 系統連系方法、および系統連系システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4916328A (en) * 1988-12-08 1990-04-10 Honeywell Inc. Add/shed load control using anticipatory processes
JP3889679B2 (ja) * 2002-06-28 2007-03-07 三菱電機株式会社 電力関連表示装置およびこれを用いた自家発電システム
EP1678587A4 (en) * 2003-10-24 2009-10-28 Square D Co INTELLIGENT ENERGY MANAGEMENT CONTROL SYSTEM
CN201523234U (zh) * 2009-10-20 2010-07-07 杨琛 分区可控式省能设备
CN102097802B (zh) * 2009-12-10 2012-12-26 深圳先进技术研究院 电能管理系统和电能管理方法
US8930037B2 (en) * 2010-10-01 2015-01-06 General Electric Company Energy manager with minimum use energy profile
US9276411B2 (en) * 2010-10-27 2016-03-01 Panasonic Intellectual Property Management Co., Ltd. Electricity supply system
JP5580183B2 (ja) * 2010-12-13 2014-08-27 パナソニック株式会社 電力制御装置及びそれを用いた電力制御システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003092844A (ja) 2001-09-20 2003-03-28 Fujitsu General Ltd 自家電力供給制御システム
JP2004328960A (ja) 2003-04-28 2004-11-18 Misawa Homes Co Ltd 無停電電力供給装置
WO2011102374A1 (ja) * 2010-02-17 2011-08-25 トヨタ自動車株式会社 住宅用電力システム
JP2011172334A (ja) 2010-02-17 2011-09-01 Toyota Motor Corp 住宅用電力システム
JP2012005168A (ja) 2010-06-14 2012-01-05 Daiwa House Industry Co Ltd エネルギーマネジメントシステム及びエネルギーマネジメント方法
JP2012019579A (ja) * 2010-07-06 2012-01-26 Sharp Corp 電力管理装置、電力管理プログラムおよび記録媒体
JP2012055067A (ja) * 2010-08-31 2012-03-15 Sekisui Chem Co Ltd 系統連系方法、および系統連系システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015122831A (ja) * 2013-12-20 2015-07-02 三菱電機株式会社 電力管理装置および電力管理システム
JP2015133782A (ja) * 2014-01-09 2015-07-23 日本電信電話株式会社 電力需給制御装置及び電力需給制御方法
JP2019175417A (ja) * 2018-03-28 2019-10-10 赫普科技発展(北京)有限公司 電力取引システム
CN113812053A (zh) * 2019-03-28 2021-12-17 西门子能源全球有限公司 用于监控能量供应网络的高压设备的运行状态的方法和系统

Also Published As

Publication number Publication date
US20150127181A1 (en) 2015-05-07
EP2849302B1 (en) 2018-11-28
EP2849302A1 (en) 2015-03-18
JPWO2013168814A1 (ja) 2016-01-07
CN104285353B (zh) 2017-12-26
EP2849302A4 (en) 2016-01-20
CN104285353A (zh) 2015-01-14

Similar Documents

Publication Publication Date Title
WO2013168814A1 (ja) エネルギー管理装置、エネルギー管理方法およびプログラム
US11271400B2 (en) Power control device, operation plan planning method, and recording medium
US9513340B2 (en) Power information display device, power information display system and power information display method
US20070203860A1 (en) Energy budget manager
JPWO2017122243A1 (ja) 電力供給装置及び制御装置
JP5705637B2 (ja) 電力制御装置及び電力制御方法
JP6426922B2 (ja) 電力システム、御装置及び充放電制御方法
JP2012019652A (ja) 電力コントロール装置および電力コントロール方法
WO2013157030A1 (ja) 電力監視装置および電力監視システム
JP5845066B2 (ja) 電力供給システム
US9638545B2 (en) Power management apparatus, power management system and power management method
JPWO2015186282A1 (ja) 電力供給装置および電力供給方法
US20160131688A1 (en) Determining an orientation of a metering device in an energy generation system
JP6386064B2 (ja) 電力管理装置、電力管理方法及び電力管理システム
US9851734B2 (en) Alert presentation apparatus and alert presentation method
WO2014185014A1 (ja) 管理装置、機器管理方法、管理システム
KR102145323B1 (ko) 분산전원 플랜트를 관리하기 위한 모니터링 시스템 및 방법
JP2020198751A (ja) 給電制御システム、給電制御方法及び給電制御プログラム
JP5432615B2 (ja) ガス料金設定装置
JP6299514B2 (ja) 電力供給システム
EP2851690B1 (en) Display device, display system, and display method
JP2008122158A (ja) 電力量測定システムおよび電力量計
JP2023055146A (ja) 電気供給システム
AU2012201017A1 (en) Energy budget manager

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13788649

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014514769

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14398574

Country of ref document: US

Ref document number: 2013788649

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE