WO2013167842A2 - Composition immunogène comprenant un peptide dérivé du vegf et ses utilisations - Google Patents

Composition immunogène comprenant un peptide dérivé du vegf et ses utilisations Download PDF

Info

Publication number
WO2013167842A2
WO2013167842A2 PCT/FR2013/051020 FR2013051020W WO2013167842A2 WO 2013167842 A2 WO2013167842 A2 WO 2013167842A2 FR 2013051020 W FR2013051020 W FR 2013051020W WO 2013167842 A2 WO2013167842 A2 WO 2013167842A2
Authority
WO
WIPO (PCT)
Prior art keywords
seq
vegf
peptide
sequence
immunogenic composition
Prior art date
Application number
PCT/FR2013/051020
Other languages
English (en)
Other versions
WO2013167842A3 (fr
Inventor
Marie-Christophe Boissier
Sylviane Muller
Eric ASSIER
Emilie DUVALLET
Original Assignee
Universite Paris 13
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Paris 13 filed Critical Universite Paris 13
Publication of WO2013167842A2 publication Critical patent/WO2013167842A2/fr
Publication of WO2013167842A3 publication Critical patent/WO2013167842A3/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • A61K38/1858Platelet-derived growth factor [PDGF]
    • A61K38/1866Vascular endothelial growth factor [VEGF]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0008Antigens related to auto-immune diseases; Preparations to induce self-tolerance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55566Emulsions, e.g. Freund's adjuvant, MF59
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • A61K2039/6081Albumin; Keyhole limpet haemocyanin [KLH]

Definitions

  • Immunogenic composition comprising a peptide derived from VEGF and its uses
  • the present invention relates to the medical field.
  • RA Rheumatoid arthritis
  • PR is a source of severe disability and a high social cost.
  • the disease develops with an excess of production of pro-inflammatory cytokines (such as TNF-cc, "Tumor Necrosis Factor-alpha").
  • cytokines such as TNF-cc, "Tumor Necrosis Factor-alpha”
  • RA is also characterized by a strong neovascularization of the synovial membrane that surrounds the joints, thus promoting its hyperplasia and the progressive invasion of surrounding tissues and the destruction of joints.
  • VEGF-A promotes the formation of this synovial hyperplasia by allowing both its vascularization and stimulating the influx of inflammatory cells.
  • Patients with RA have increased serum VEGF expression [Kurosaka et al. 2010]. It has also been shown that very early in the disease there was a correlation between VEGF-A concentration, inflammation parameters and bone destruction [Clavel et al. 2007].
  • VEGF belongs to a family of genes located on different chromosomes (VEGF-A, -B, -C, -D), some of which, like VEGF-A, exist under different isoforms that have various biological effects (angiogenesis, vessel development). lymphatic, scarring, ...) [Cross et al. 2003; Otrock et al. 2007].
  • the diversity of isoforms and the presence of different receptors (VEGFR1-3) and co-receptors (Neuropiline 1-2) for these isoforms of VEGF make it necessary to develop therapies that specifically target one or more forms of VEGF rather than a treatment. overall.
  • the goal is to inhibit the angiogenesis involved in inflammation while retaining the other effects organic. In order to do this, it is the interaction between VEGF-AlI 6 and the VEGF receptor 2 (KDR) that should be targeted.
  • KDR VEGF receptor 2
  • VEGF-specific antibodies capable of inhibiting VEGF binding to VEGF-R1 and VEGF-R2 receptors have been described in WO2009 / 055343.
  • WO00 / 53219 has disclosed the use of liposome-encapsulated VEGF-derived peptides in immunological compositions for the treatment of cancer. They showed the ability to induce antibodies for peptides D and E, and anti-inflammatory activity. However, as will be shown in the experimental section of this document, the production of anti-VEGF-A antibodies is not sufficient to achieve a therapeutic effect. Indeed, the antibodies produced must be functional.
  • the inventors have identified in the present invention a region of VEGF common to several isoforms, in particular VEGF-A, which makes it possible to prepare an immunogenic composition comprising peptides originating from this region, said composition being capable of inducing the production of functional antibodies to have a protective effect.
  • the present invention relates to an immunogenic composition
  • a peptide comprising the sequence (C / S) -E- (C / S) -RPKKDR (SEQ ID No. 1), and not including the sequence CDKPRR (SEQ ID No 2).
  • said peptide has a length of 9 to 50 amino acids, preferably
  • the peptide comprises or consists of an X- (R / K) - (C / S) -E- (C / S) -RPKKDRX- (K / R) -XE- (N / K) sequence, X being any amino acid (SEQ ID No. 3) or a sequence comprising 10 consecutive residues of SEQ ID No. 3.
  • the peptide comprises or consists of a (S / N) - (R / K) - (C / S) -E- (C / S) -RPKKDR- (A / T) - (K) sequence. / R) - (P / Q) -E- (N / K) (SEQ ID No. 4) or a sequence comprising 10 consecutive residues of SEQ ID No. 4.
  • the peptide comprises or consists of a sequence selected from C-E-C-R-P-K-K-D-R (SEQ ID No. 5)
  • said peptide comprises or consists of a sequence selected from
  • NK- (C / S) -E- (C / S) -RPKKDRARQEN SEQ ID No. 20
  • NK- (C / S) -E- (C / S) -RPKKDRARQEK SEQ ID No. 21
  • NKCECRPKKDRARQE- (N) / K) SEQ ID No. 22
  • said peptide is coupled to a carrier protein, preferably KLH.
  • the present invention also relates to an immunogenic composition as described above as a medicament.
  • the present invention also relates to an immunogenic composition as described above for use in the treatment of a disease dependent on increased angiogenesis.
  • the disease is an inflammatory disease, particularly a chronic inflammatory disease, or a proliferative disease. More specifically, the disease is a chronic inflammatory disease, preferably selected from rheumatoid arthritis and spondyloarthropathies. Description of figures
  • FIG. 1 Vaccine protocol.
  • the amounts indicated during vaccination with Vpepl-K and Vpep2-K correspond to the quantities of peptides contained within the complexes with KLH.
  • Figure 2 ELIS A anti-VEGF-Ai peptide antibodies 6 4
  • Figure 3 Clinical Scores of Arthritis
  • the work of the inventors aimed to develop a vaccine strategy, including active immunotherapy, anti-VEGF based on the use of peptides derived from the cytokine sequence.
  • This strategy makes it possible to reduce costs, since a peptide can be produced at low cost, to facilitate the handling of the product and to have a specific effect on VEGF-A, and consequently to reduce side effects since other forms of VEGF remain functional.
  • the inventors have identified in the present invention a region of VEGF common to several isoforms of VEGF-A, which makes it possible to prepare an immunogenic composition comprising peptides originating from this region, said composition being capable of inducing the production of functional antibodies. allowing to have a protective effect.
  • This region is located at the end of the human VEGF-A165 beta 7 leaflet and in the loop downstream of it. This region is common to five of the six isoforms of VEGF-A, namely VEGF-A206, VEGF-A189, VEGF-A18, VEGF-A145 and VEGF-A m .
  • Vpep2 RCDKPRR, SEQ ID No. 30
  • peptides C and D described in WO 00/53219 also target this field.
  • an immunogenic composition directed against VEGF-A in particular the VEGF-A206, VEGF-A189, VEGF-A165, VEGF-A145 and VEGF-A121 isoforms, comprising a peptide whose sequence is derived from the region including the end of the beta sheet 7 (when considering VEGF-A165) and the downstream loop.
  • the present invention therefore relates to an immunogenic composition
  • a peptide comprising the sequence (C / S) -E- (C / S) -RPKKDR (SEQ ID No. 1).
  • this sequence may be selected from the group consisting of CECRPKKDR (SEQ ID No. 5), CESRPKKDR (SEQ ID No. 6), SECRPKKDR (SEQ ID No. 7) and SES-RPKKDR (SEQ ID No. 8).
  • the peptide has a length of 9 to 50 amino acids, preferably 9 to 20 amino acids.
  • this sequence may be selected from the group consisting of C-E-S-R-P-K-K-D-R (SEQ ID No. 6), S-E-C-R-P-K-K-D-R (SEQ ID No. 7) and S-E-S-R-P-K-K-D-R (SEQ ID No. 8).
  • the peptide does not comprise the C-D-K-
  • P-R-R (SEQ ID No. 2), in particular does not include this sequence downstream of the sequence (C / S) -E- (C / S) -R-P-K-K-D-R (SEQ ID No. 1). In a particular embodiment, it does not include the sequence R-C-D-K-P-R-R (SEQ ID No. 30).
  • the peptide comprises or consists of a sequence X- (R / K) - (C / S) -E- (C / S) -RPKKDRX- (K / R) -XE- (N)
  • X is any amino acid (SEQ ID NO: 3), or a sequence comprising 10 consecutive residues of SEQ ID No. 3.
  • the peptide comprises or consists of a (S / N) sequence.
  • the peptide comprises or consists of a sequence selected from
  • NK- (C / S) -E- (C / S) -RPKKDRARQEN SEQ ID No. 20
  • NK- (C / S) -E- (C / S) -RPKKDRARQEK SEQ ID No. 21
  • NKCECRPKKDRARQE- (N) / K) SEQ ID No. 22
  • NKCESRPKKDRARQE- (N / K) SEQ ID NO: 23
  • NKSECRPKKDRARQE- (N / K) SEQ ID NO: 24
  • the peptide may comprise or consist of a sequence selected from
  • the peptide may comprise or consist of a sequence selected from SRCECRPKKDRTKPEN (SEQ ID No. 15), SRCESRPKKDRT-KPEN (SEQ ID No. 16) and a sequence comprising 10 consecutive residues of a sequence selected from SEQ ID Nos. 16.
  • the peptide may comprise or consist of a sequence selected from
  • NK- (C / S) -E- (C / S) -RPKKDRARQEN SEQ ID No. 20
  • NK- (C / S) -E- (C / S) -RPKKDRARQEK SEQ ID No. 21
  • NKCECRPKKDRARQE- (N) / K) SEQ ID No. 22
  • NKCESRPKKDRARQE- (N / K) (SEQ ID NO: 23)
  • NKSECRPKKDRARQE- (N / K) (SEQ ID NO: 24)
  • the immunogenic composition may comprise a peptide as defined above.
  • it may comprise several different peptides as defined above.
  • the peptide according to the present invention may comprise non-natural amino acids.
  • non-natural amino acid is meant an analogue or derivative of a naturally occurring amino acid.
  • the L and D isomers of amino acids are contemplated. Indeed, the D isomers are not sensitive to proteases and the present invention also comprises peptides comprising only or essentially D amino acids. In a particular embodiment, amino acids L are preferred.
  • Ala alanine
  • R Arg arginine
  • N Asn asparagine
  • D Asp aspartic acid
  • Cys (cysteine); Q Gin (glutamine); E Glu (glutamic acid); G Gly (glycine); H His (histidine); Ile (isoleucine); Leu (leucine); K Lily (lysine); M Met (methionine); F Phe (phenylalanine); P Pro (proline); S Ser (serine); T Thr (threonine); W Trp (tryptophan); Y Tyr (tyrosine); V Val (valine).
  • the peptide bonds or peptide bonds according to the present invention can be modified to make them resistant to proteolysis.
  • all the peptide bonds can be replaced.
  • the peptide can comprise either a carboxylic (-COO) or amidated C-terminal end (-CONH 2 ).
  • the peptide may also be optionally modified at its N-terminus, for example by an acetyl radical.
  • the peptide according to the present invention may be modified to make it more stable, and in particular more resistant to proteases.
  • the molecule may carry PEG (polyethylene glycol) groups. PEGylation methods are well known to those skilled in the art (Oison et al., 2009, Integrative Biology, 1 (5-6): 382-393).
  • the peptide may be coupled to a carrier protein.
  • the coupling is covalent.
  • the carrier protein may be selected from Keyhole Limpet Hemocyanin (KLH) protein, bovine serum albumin (BSA), maltose binding protein (MBP), ovalbumin, flagellin, thyroglobulin and toxin. tetanus (Tetanus Toxoid, TT).
  • KLH Keyhole Limpet Hemocyanin
  • BSA bovine serum albumin
  • MBP maltose binding protein
  • ovalbumin ovalbumin
  • flagellin flagellin
  • thyroglobulin thyroglobulin
  • tetanus Tetanus Toxoid, TT
  • the carrier protein is KLH.
  • Conjugation methods are well known to those skilled in the art. Examples that may be mentioned include coupling with carbodiimide, with glutaraldehyde, with bis-diazotized benzidine
  • a coupling facilitating residue may be optionally added at the end or among the three residues forming the end of the peptide. It can be added at the C-terminus of the peptide or at the N-terminus. Preferably, it will instead be added to the N-terminus thereof. In a preferred embodiment, the residue will be a cysteine.
  • the coupling may also be envisioned as a fusion protein that can be engineered.
  • Candelabra-type network couplings or molecules such as transferrin or ferritin can also be used to effectively stimulate the immune response.
  • the peptides according to the invention may in particular be produced by chemical synthesis or by genetic engineering or by any other suitable method.
  • the peptides may be cyclized, if necessary by grafting one or more amino acids at the end of the chain such as cysteines to create a disulfide bridge.
  • the peptides are used in linear form, that is to say uncyclized.
  • Peptides can also be formulated with gold particles or in liposomes.
  • the immunogenic composition according to the present invention may optionally comprise an adjuvant.
  • adjuvants include incomplete Freund's adjuvant, Freund's complete adjuvant, acetylated mannans such as acemannan®, polyoxyethylene-polyoxypropylene copolymers such as TITERMAX®, modified lipid adjuvants, saponin-derived adjuvants, Bordella pertussis killed, a lipopolysaccharide (LPS) of gram (-) bacterium, large polymeric anions such as dextran sulphate, inorganic gels such as aluminum hydroxide or aluminum phosphate, and CpG oligodeoxynucleotides.
  • composition may also include pharmaceutically acceptable carriers, preservatives, diluents, emulsifiers, excipients and / or stabilizers.
  • the present invention relates to a vaccine comprising the immunogenic composition according to the present invention. It further relates to the immunogenic composition according to the present invention as a medicament, the peptide being the active ingredient. Finally, it relates to a pharmaceutical composition comprising a peptide as defined above. This composition may further comprise another active ingredient.
  • the immunogenic composition may be administered by any suitable route, preferably by intramuscular, intravenous, oral or subcutaneous injection.
  • the administration may take place in single or repeated doses one or more times after a certain time interval.
  • an effective amount is meant the amount necessary to elicit an immune response when administered to the patient.
  • it is the amount necessary to elicit an immune response when administered to the patient and to prevent or decrease the disease being treated. This amount can be easily determined by routine experiments.
  • the administered dose may range, for example, from 1 to 1,000 ⁇ g, in particular from 10 to 500 ⁇ g subcutaneously.
  • the composition will be administered several times. For example, it could be given once a month for three months, then periodically depending on the level of serum antibodies induced, for example every 2-6 months.
  • the composition according to the present invention can be used for the treatment of diseases dependent on increased angiogenesis.
  • it can be used for the treatment of inflammatory diseases, preferably chronic inflammatory diseases.
  • inflammatory diseases can particularly affect the joints.
  • inflammatory diseases may be selected, including arthritis, lupus, vasculitis, inflammatory bowel disease, including Crohn's disease, age-related macular degeneration, and psoriasis. More specifically, they may be selected from spondyloarthropathies and rheumatoid arthritis.
  • These inflammatory diseases can be autoimmune diseases.
  • the composition can also be used for the treatment of proliferative diseases.
  • proliferative diseases may be cancers or benign tumors.
  • the cancers are solid tumors.
  • the composition may also comprise another active ingredient, for example an anti-inflammatory active agent.
  • the composition may further comprise another active ingredient, for example an antitumor agent.
  • the present invention also relates to the use of a peptide as defined above for the preparation of a medicament for the treatment of diseases dependent on increased angiogenesis.
  • the diseases are as defined above.
  • the present invention finally relates to a method of treating a patient suffering from an angiogenesis-dependent disease, comprising administering a therapeutically effective dose of the peptide as defined above.
  • the diseases are as defined above.
  • treatment includes preventive, curative and palliative treatment, as well as the management of patients (reduction of suffering, improvement of the duration of life, slowing of progression of the disease, reduction of tumor growth, decrease of tumor size, prevention or reduction of metastases and relapses etc.).
  • the inventors have begun by creating anti-VEGF-A vaccines, based on the use of synthetic peptides derived from the murine cytokine sequence, which have been rendered immunogenic by coupling to KLH. They sought to limit the interaction of VEGF-A with one of its co-receptors, neuropilin-1 (NP-1), which seems to be particularly involved in pathological angiogenesis [Kong et al. 2010; Jubb et al. 2012]. They postulated that this approach had potentially fewer side effects, including healing. To put it in place, they defined sequences in the interaction zone of VEGF-A with NP-1, synthesized peptides corresponding to these sequences, purified, analyzed, coupled with KLH. They then tested their effectiveness in an experimental model of arthritis.
  • Vpepl peptide sequences were selected from the mouse VEGF-A1 (VEGF-A164) sequence.
  • the choice of the Vpepl peptide sequence was motivated by data from the literature concerning peptides antagonizing VEGF-A binding to the NRP-1 co-receptor.
  • the Vpepl peptide SRCECRPKKDRTKPEN (SEQ ID No. 15), 16aa (amino acids), position 98-113 in the VEGF-A164 sequence
  • VEGF-A164 The three-dimensional structure of mouse VEGF-A164 is not described, unlike that of human VEGF-A165 [Muller et al. 1997; Iyer et al. 2001].
  • the protein sequences of both species have 90% identity and 93% homology. Only 19 amino acid residues differ between VEGF-AI 6 4 and VEGF-Ai65 of both species.
  • Vpepl By sequence homology, Vpepl would be "astride” between exon 4 and exon 5 in the plasmin cleavage zone.
  • the Vpep2 peptide (RCDKPRR (SEQ ID NO 30), 7a?) Corresponds to the last seven amino acid residues of VEGF-Ai June 4 (158-164 position in the sequence of VEGF-A164).
  • Vpepl-K was derived from the coupling of Vpep2 to KLH via its cysteine residue at position 2.
  • mice Male DBA / 1 mice, susceptible to bovine collagen II (Cllb) induction of arthritis, were vaccinated with Vpepl-K, Vpep2-K or KLH and PBS controls (13 mice per mouse). group). Three intramuscular injections of incomplete Freund's adjuvanted (IFA) vaccines were performed prior to induction of experimental collagen arthritis (AEC), followed by two others after induction ( Figure 1). In this model, arthritis was induced by two subcutaneous injections of Cllb at the base of the tail. The collagen was emulsified in CFA (Freund's complete adjuvant) during the first injection (J0) and in IFA during the booster at D21.
  • IFA incomplete Freund's adjuvanted
  • Vpepl-K significantly limited the development of arthritis in DBA / 1.
  • Vpep2-K had no impact on the development of arthritis compared with the two control groups KLH and PBS.
  • VEGF may play an important role in the early phase of arthritis development, the inventors investigated whether there were differences between groups in the onset of the first clinical signs of arthritis.
  • VEGF peptide-based vaccine approach could limit the development of arthritis.
  • the use of synthetic peptides has the advantage of being easier than the manipulation of the entire cytokine, of being less expensive, and especially of allowing to specifically target the interaction of certain isoforms of VEGF with one of its receivers or co-receivers.
  • VEGF neuropilin-1
  • Vpepl peptide (16aa) was selected upstream of a sequence involved in the interaction of VEGF with NP-1 [Zachary et al. 2006], and corresponds to the last amino acid residues common between the isoforms of VEGF-A 164, 120 and 188 of mice.
  • this sequence is included in the human polypeptide fragment VEGFm_i65 obtained after cleavage of human VEGF 6 by plasmin. This fragment is an antagonist of VEGF binding to NRP-1 expressed by synoviocytes of RA patients [Kong et al. 2010].
  • mice with the Vpepl-K heterocomplex proved effective in the model of experimental arthritis with collagen, without inducing a detectable side effect.
  • Vpep2 corresponds to a smaller peptide sequence (7 aa), described as having antagonistic properties of human VEGFi 6 s binding to its NRP-1 co-receptor [Starzec et al. 2006].
  • the Vpep2-K heterocomplex formed with KLH did induce the formation of antibodies after vaccination, but these did not exert any influence on the development of arthritis.
  • the size of the target peptide limits the number of epitopes. The very specific antibody response that has been generated is not protective.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Rheumatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Organic Chemistry (AREA)
  • Vascular Medicine (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

La présente invention est relative à une composition immunogénique comprenant un fragment peptidique de VEGF-A et son utilisation pour traiter des maladies inflammatoires ou prolifératives.

Description

Composition immunogène comprenant un peptide dérivé du VEGF et ses utilisations
Domaine de l'invention
La présente invention est relative au domaine médical.
Contexte de l'invention
La polyarthrite rhumatoïde (PR) est une maladie auto-immune inflammatoire chronique entraînant une destruction articulaire progressive et des atteintes vasculaires. Cette maladie grave est le rhumatisme inflammatoire le plus fréquent chez l'homme (0,5 % de la population adulte). La PR est une source de handicap lourd et d'un fort coût social. La maladie se développe avec un excès de production de cytokines pro -inflammatoires (comme le TNF-cc, «Tumor Necrosis Factor-alpha»). La PR se caractérise également par une forte néo-vascularisation de la membrane synoviale qui entoure les articulations, favorisant ainsi son hyperplasie et l'envahissement progressif des tissus environnants et la destruction des articulations.
L'hyperplasie pseudo-tumorale de la membrane synoviale dépend de nombreux facteurs parmi lesquels on trouve des cytokines pro-inf ammatoires (TNF-α, interleukines (IL)- 17, ...) et pro-angiogéniques (Angiopoiétines, VEGF «Vascular Endothelial Growth Factor»,...). Le VEGF-A favorise la formation de cette hyperplasie synoviale en permettant à la fois sa vascularisation et en stimulant l'afflux des cellules inflammatoires. Les patients atteints de PR ont une expression du VEGF sérique augmentée [Kurosaka et al. 2010]. Il a également été démontré que, très tôt dans la maladie, il existait une corrélation entre la concentration en VEGF-A, les paramètres de l'inflammation et la destruction osseuse [Clavel et al. 2007].
Le VEGF appartient à une famille de gènes localisés sur différents chromosomes (VEGF-A, -B, -C, -D), dont certains comme le VEGF-A existent sous différents isoformes qui ont des effets biologiques variés (angiogenèse, développement de vaisseaux lymphatiques, cicatrisation, ...) [Cross et al. 2003; Otrock et al. 2007]. La diversité des isoformes et la présence de différents récepteurs (VEGFR1-3) et co-récepteurs (Neuropiline 1-2) pour ces iso formes du VEGF rendent nécessaire le développement de thérapies ciblant spécifiquement une ou plusieurs formes de VEGF plutôt qu'un traitement globale. Dans la PR, le but est d'inhiber l'angiogenèse impliquée dans l'inflammation tout en conservant les autres effets biologiques. Pour ce faire, c'est l'interaction entre le VEGF-Ai65 et le récepteur 2 du VEGF (KDR) qu'il faudrait cibler.
Une révolution dans la prise en charge de la PR est intervenue voici une dizaine d'années avec l'introduction de thérapies ciblant les acteurs de l'inflammation, comme le TNF-α, avec des anticorps monoclonaux et des récepteurs solubles, toujours aux côtés des traitements de fond classiques (methotrexate, . ..). Cependant, ces thérapies ciblées (immunothérapies passives), sont responsables de nombreux effets secondaires et sont d'un coût très élevé (environ 15Keuros/an/patient), ce qui rend impossible leur utilisation extensive dans tous les pays. Des anticorps spécifiques du VEGF et capables d'inhiber la liaison du VEGF sur les récepteurs VEGF-R1 et VEGF-R2 ont été décrits dans WO2009/055343.
Les inventeurs ont précédemment développé dans leur laboratoire une approche alternative qui cible les cytokines par la vaccination. Cette fois, c'est l'organisme lui-même qui produit les anticorps qui permettent de neutraliser la cytokine. Les études précliniques effectuées au laboratoire dans un modèle d'arthrite spontanée (souris C57B1/6 transgéniques pour le TNF-α humain) ont montré qu'un vaccin composé de TNF humain entier couplé à une protéine porteuse, la KLH {«Keyhole Limpet Hemocyanin»), était efficace à la fois sur les signes cliniques et histologiques de la maladie [LeBuanec et al. 2006; Delavallée et al. 2008; Delavallée et al. 2009]. Des résultats intéressants ont été obtenus lors de premiers essais cliniques menés dans la PR et la maladie de Crohn. Ces travaux ont été réalisés avec la cytokine entière couplée à la KLH. L'inconvénient de cette stratégie est le coût et la difficulté de manipulation puisque la cytokine entière est utilisée. Par ailleurs, cette stratégie pourrait également conduire à des effets secondaires à la suite de réactions immunitaires dirigées contre un épitope partagé par une autre molécule d'intérêt.
Il est également possible de concevoir l'utilisation de peptides couplés à la KLH afin d'obtenir des anticorps réagissant de manière croisée avec la cytokine entière. En collaboration avec l'équipe de bio informatique du CNAM dirigée par Jean-François Zagury, a été développée une approche avec des peptides ciblant l'IL-Ι β, le TNF-α et la sous-unité pl9 spécifique de l'IL-23 chez la souris [Bertin-Maghit et al. 2005; Capini et al. 2004; Ratsimandresy et al. 201 1].
Certaines stratégies ont mené à la production de vaccin comprenant des peptides dérivés des récepteurs VEGF-R1 et VEGF-R2 (WO2010/143435).
WO00/53219 a décrit l'utilisation de peptides dérivés du VEGF encapsulés dans des liposomes dans des compositions immuno logiques pour le traitement du cancer. Ils ont montré la capacité à induire des anticorps pour les peptides D et E, et une activité anti- tumorale pour le peptide F. Cependant, comme le montrera la partie expérimentale du présent document, la production d'anticorps anti- VEGF-A n'est pas suffisante pour obtenir un effet thérapeutique. En effet, il faut que les anticorps produits soient fonctionnels.
Ainsi, il demeure un vif besoin de nouvelles stratégies pour identifier des traitements des maladies inflammatoires et notamment de la polyarthrite rhumatoïde.
Résumé de l'invention
Les inventeurs ont identifié dans la présente invention une région du VEGF commune à plusieurs isoformes, en particulier du VEGF-A, qui permet de préparer une composition immunogène comprenant des peptides issus de cette région, ladite composition étant capable d'induire la production d'anticorps fonctionnels permettant d'avoir un effet protecteur.
Ainsi, la présente invention est relative à une composition immunogène comprenant un peptide comprenant la séquence (C/S)-E-(C/S)-R-P-K-K-D-R (SEQ ID No 1), et ne comprenant pas la séquence C-D-K-P-R-R (SEQ ID No 2).
De préférence, ledit peptide a une longueur de 9 à 50 acides aminés, de préférence de
9 à 20 acides aminés.
De préférence, le peptide comprend ou consiste en une séquence X-(R/K)-(C/S)-E- (C/S)-R-P-K-K-D-R-X-(K/R)-X-E-(N/K), X étant un acide aminé quelconque (SEQ ID No 3) ou une séquence comprenant 10 résidus consécutifs de SEQ ID No 3.
Dans un mode particulièrement préféré, le peptide comprend ou consiste en une séquence (S/N)-(R/K)-(C/S)-E-(C/S)-R-P-K-K-D-R-(A/T)-(K/R)-(P/Q)-E-(N/K) (SEQ ID No 4) ou une séquence comprenant 10 résidus consécutifs de SEQ ID No 4.
De préférence, le peptide comprend ou consiste en une séquence sélectionnée parmi C-E-C-R-P-K-K-D-R (SEQ ID No 5)
C-E-S-R-P-K-K-D-R (SEQ ID No 6)
S-E-C-R-P-K-K-D-R (SEQ ID No 7)
S-E-S-R-P-K-K-D-R (SEQ ID No 8)
Dans des modes très particuliers de l'invention, ledit peptide comprend ou consiste en une séquence sélectionnée parmi
S-R-(C/S)-E-(C/S)-R-P-K-K-D-R-T-K-P-E-(N/K) (SEQ ID No 9)
S-R-(C/S)-E-(C/S)-R-P-K-K-D-R-T-K-P-E-N (SEQ ID No 10) S-R-C-E-C-R-P-K-K-D-R-T-K-P-E-(N/K) (SEQ ID No 11)
S-R-C-E-S-R-P-K-K-D-R-T-K-P-E-(N/K) (SEQ ID No 12)
S-R-S-E-C-R-P-K-K-D-R-T-K-P-E-(N/K) (SEQ ID No 13) S-R-S-E-S-R-P-K-K-D-R-T-K-P-E-(N/K) (SEQ ID No 14)
S-R-C-E-C-R-P-K-K-D-R-T-K-P-E-N (SEQ ID No 15)
S-R-C-E-S-R-P-K-K-D-R-T-K-P-E-N (SEQ ID No 16)
S-R-S-E-C-R-P-K-K-D-R-T-K-P-E-N (SEQ ID No 17)
S-R-S-E-S-R-P-K-K-D-R-T-K-P-E-N (SEQ ID No 18)
N-K-(C/S)-E-(C/S)-R-P-K-K-D-R-A-R-Q-E-(N/K) (SEQ ID No 19)
N-K-(C/S)-E-(C/S)-R-P-K-K-D-R-A-R-Q-E-N (SEQ ID No 20) N-K-(C/S)-E-(C/S)-R-P-K-K-D-R-A-R-Q-E-K (SEQ ID No 21) N-K-C-E-C-R-P-K-K-D-R-A-R-Q-E-(N/K) (SEQ ID No 22)
N-K-C-E-S-R-P-K-K-D-R-A-R-Q-E-(N/K) (SEQ ID No 23)
N-K-S-E-C-R-P-K-K-D-R-A-R-Q-E-(N/K) (SEQ ID No 24)
N-K-S-E-S-R-P-K-K-D-R-A-R-Q-E-(N/K) (SEQ ID No 25)
N-K-C-E-C-R-P-K-K-D-R-A-R-Q-E-N (SEQ ID No 26)
N-K-C-E-S-R-P-K-K-D-R-A-R-Q-E-N (SEQ ID No 27)
N-K-S-E-C-R-P-K-K-D-R-A-R-Q-E-N (SEQ ID No 28)
N-K-S-E-S-R-P-K-K-D-R-A-R-Q-E-N (SEQ ID No 29)
ou une séquence comprenant 10 résidus consécutifs d'une séquence choisie parmi les SEQ ID Nos 9-29.
Dans un mode de réalisation préféré, ledit peptide est couplé à une protéine porteuse, de préférence la KLH.
La présente invention est également relative à une composition immunogène telle que décrite ci-dessus à titre de médicament.
La présente invention est aussi relative à une composition immunogène telle que décrite ci-dessus pour une utilisation dans le traitement d'une maladie dépendante d'une angiogenèse accrue. De préférence, la maladie est une maladie inflammatoire, en particulier une maladie inflammatoire chronique, ou une maladie proliférative. De manière plus spécifique, la maladie est une maladie inflammatoire chronique, de préférence sélectionnée parmi la polyarthrite rhumatoïde et les spondylarthropathies. Description des figures
Figure 1 : Protocole vaccinal. Les quantités indiquées lors de la vaccination par Vpepl-K et Vpep2-K (100μg), correspondent aux quantités de peptides contenus au sein des complexes avec la KLH.
Figure 2 : ELIS A anticorps anti-peptides du VEGF-Ai64 Figure 3 : Scores cliniques d'arthrite
Figure 4 : Délais avant apparition des premiers signes cliniques d'arthrite
Figure 5 : Scores histologiques au sacrifice Description détaillée de l'invention
Les travaux des inventeurs visaient à développer une stratégie vaccinale, notamment par immunothérapie active, anti-VEGF basée sur l'utilisation de peptides issus de la séquence de la cytokine. Cette stratégie permet de réduire les coûts, puisqu'un peptide peut être produit à faible coût, de faciliter la manipulation du produit et d'avoir un effet spécifique sur VEGF- A, et par conséquent de diminuer les effets secondaires puisque les autres formes de VEGF restent fonctionnelles.
Les inventeurs ont identifié dans la présente invention une région du VEGF commune à plusieurs iso formes de VEGF- A, qui permet de préparer une composition immunogène comprenant des peptides issus de cette région, ladite composition étant capable d'induire la production d'anticorps fonctionnels permettant d'avoir un effet protecteur. Cette région se situe à la fin du feuillet bêta 7 du VEGF-A165 humain et dans la boucle en aval de celui-ci. Cette région est commune à cinq des six isoformes du VEGF-A, à savoir VEGF-A206, VEGF- Ai89, VEGF-Aies, VEGF-A145 et VEGF-Am.
Les inventeurs ont également testé un peptide ciblant le domaine de liaison au co- récepteur NRP-1. Il est à remarquer que ce peptide, nommé Vpep2 (RCDKPRR, SEQ ID No 30), n'a pas permis d'obtenir l'effet thérapeutique espéré bien qu'il induise la production d'anticorps. Il est à noter que les peptides C et D décrits dans WO 00/53219 ciblent également ce domaine.
Ainsi, de manière tout à fait surprenante, les inventeurs ont réussi à concevoir une composition immunogène dirigée contre le VEGF-A, en particulier les isoformes VEGF-A206, VEGF-A189, VEGF-A165, VEGF-A145 et VEGF-A121 , comprenant un peptide dont la séquence est issue de la région incluant la fin du feuillet bêta 7 (lorsque l'on considère VEGF-A165) et la boucle en aval. Les inventeurs considèrent que la boucle en aval du feuillet bêta 7 présente un intérêt tout particulier. Outre la capacité de cette composition à induire la production des anticorps, elle serait capable de bloquer l'effet du VEGF-A.
Par « aval » est entendu un élément placé du coté C-terminal par rapport au révérenciel. Par « amont » est entendu un élément placé du coté N-terminal par rapport au révérenciel. La présente invention est donc relative à une composition immunogène comprenant un peptide comprenant la séquence (C/S)-E-(C/S)-R-P-K-K-D-R (SEQ ID No 1). En particulier, cette séquence peut être choisie parmi le groupe consistant en C-E-C-R-P-K-K-D-R (SEQ ID No 5), C-E-S-R-P-K-K-D-R (SEQ ID No 6), S-E-C-R-P-K-K-D-R (SEQ ID No 7) et S-E-S- R-P-K-K-D-R (SEQ ID No 8). De préférence, le peptide a une longueur de 9 à 50 acides aminés, de préférence de 9 à 20 acides aminés.
Dans un mode de réalisation particulier, cette séquence peut être choisie parmi le groupe consistant en C-E-S-R-P-K-K-D-R (SEQ ID No 6), S-E-C-R-P-K-K-D-R (SEQ ID No 7) et S-E-S-R-P-K-K-D-R (SEQ ID No 8).
Dans un mode de réalisation préféré, le peptide ne comprend pas la séquence C-D-K-
P-R-R (SEQ ID No 2), en particulier ne comprend pas cette séquence en aval de la séquence (C/S)-E-(C/S)-R-P-K-K-D-R (SEQ ID No 1). Dans un mode particulier, il ne comprend pas la séquence R-C-D-K-P-R-R (SEQ ID No 30).
Dans un premier mode de réalisation particulier, le peptide comprend ou consiste en une séquence X-(R/K)-(C/S)-E-(C/S)-R-P-K-K-D-R-X-(K/R)-X-E-(N/K), X étant un acide aminé quelconque (SEQ ID No 3), ou une séquence comprenant 10 résidus consécutifs de SEQ ID No 3. De préférence, le peptide comprend ou consiste en une séquence (S/N)-(R/K)- (C/S)-E-(C/S)-R-P-K-K-D-R-(A/T)-(K/R)-(P/Q)-E-(N/K) (SEQ ID No 4), ou une séquence comprenant 10 résidus consécutifs de SEQ ID No 4. Dans un mode de réalisation particulier, le peptide comprend ou consiste en une séquence sélectionnée parmi
S-R-(C/S)-E-(C/S)-R-P-K-K-D-R-T-K-P-E-(N/K) (SEQ ID No 9) S-R-(C/S)-E-(C/S)-R-P-K-K-D-R-T-K-P-E-N (SEQ ID No 10) S-R-C-E-C-R-P-K-K-D-R-T-K-P-E-(N/K) (SEQ ID No 11)
S-R-C-E-S-R-P-K-K-D-R-T-K-P-E-(N/K) (SEQ ID No 12)
S-R-S-E-C-R-P-K-K-D-R-T-K-P-E-(N/K) (SEQ ID No 13)
S-R-S-E-S-R-P-K-K-D-R-T-K-P-E-(N/K) (SEQ ID No 14)
S-R-C-E-C-R-P-K-K-D-R-T-K-P-E-N (SEQ ID No 15)
S-R-C-E-S-R-P-K-K-D-R-T-K-P-E-N (SEQ ID No 16)
S-R-S-E-C-R-P-K-K-D-R-T-K-P-E-N (SEQ ID No 17)
S-R-S-E-S-R-P-K-K-D-R-T-K-P-E-N (SEQ ID No 18)
N-K-(C/S)-E-(C/S)-R-P-K-K-D-R-A-R-Q-E-(N/K) (SEQ ID No 19)
N-K-(C/S)-E-(C/S)-R-P-K-K-D-R-A-R-Q-E-N (SEQ ID No 20) N-K-(C/S)-E-(C/S)-R-P-K-K-D-R-A-R-Q-E-K (SEQ ID No 21) N-K-C-E-C-R-P-K-K-D-R-A-R-Q-E-(N/K) (SEQ ID No 22) N-K-C-E-S-R-P-K-K-D-R-A-R-Q-E-(N/K) (SEQ ID No 23) N-K-S-E-C-R-P-K-K-D-R-A-R-Q-E-(N/K) (SEQ ID No 24)
N-K-S-E-S-R-P-K-K-D-R-A-R-Q-E-(N/K) (SEQ ID No 25)
N-K-C-E-C-R-P-K-K-D-R-A-R-Q-E-N (SEQ ID No 26)
N-K-C-E-S-R-P-K-K-D-R-A-R-Q-E-N (SEQ ID No 27)
N-K-S-E-C-R-P-K-K-D-R-A-R-Q-E-N (SEQ ID No 28)
N-K-S-E-S-R-P-K-K-D-R-A-R-Q-E-N (SEQ ID No 29)
ou une séquence comprenant 10 résidus consécutifs d'une séquence choisie parmi les SEQ ID Nos 9-29.
De préférence, le peptide pourra comprendre ou consister en une séquence sélectionnée parmi
S-R-(C/S)-E-(C/S)-R-P-K-K-D-R-T-K-P-E-(N/K) (SEQ ID No 9) S-R-(C/S)-E-(C/S)-R-P-K-K-D-R-T-K-P-E-N (SEQ ID No 10) S-R-C-E-C-R-P-K-K-D-R-T-K-P-E-(N/K) (SEQ ID No 11)
S-R-C-E-S-R-P-K-K-D-R-T-K-P-E-(N/K) (SEQ ID No 12)
S-R-S-E-C-R-P-K-K-D-R-T-K-P-E-(N/K) (SEQ ID No 13)
S-R-S-E-S-R-P-K-K-D-R-T-K-P-E-(N/K) (SEQ ID No 14)
S-R-C-E-C-R-P-K-K-D-R-T-K-P-E-N (SEQ ID No 15)
S-R-C-E-S-R-P-K-K-D-R-T-K-P-E-N (SEQ ID No 16)
S-R-S-E-C-R-P-K-K-D-R-T-K-P-E-N (SEQ ID No 17)
S-R-S-E-S-R-P-K-K-D-R-T-K-P-E-N (SEQ ID No 18)
ou une séquence comprenant 10 résidus consécutifs d'une séquence choisie parmi les SEQ ID Nos 9-18.
En particulier, le peptide pourra comprendre ou consister en une séquence sélectionnée parmi S-R-C-E-C-R-P-K-K-D-R-T-K-P-E-N (SEQ ID No 15), S-R-C-E-S-R-P-K-K-D-R-T- K-P-E-N (SEQ ID No 16) et une séquence comprenant 10 résidus consécutifs d'une séquence choisie parmi les SEQ ID Nos 15-16.
De manière alternative, le peptide pourra comprendre ou consister en une séquence sélectionnée parmi
N-K-(C/S)-E-(C/S)-R-P-K-K-D-R-A-R-Q-E-(N/K) (SEQ ID No 19)
N-K-(C/S)-E-(C/S)-R-P-K-K-D-R-A-R-Q-E-N (SEQ ID No 20) N-K-(C/S)-E-(C/S)-R-P-K-K-D-R-A-R-Q-E-K (SEQ ID No 21) N-K-C-E-C-R-P-K-K-D-R-A-R-Q-E-(N/K) (SEQ ID No 22)
N-K-C-E-S-R-P-K-K-D-R-A-R-Q-E-(N/K) (SEQ ID No 23) N-K-S-E-C-R-P-K-K-D-R-A-R-Q-E-(N/K) (SEQ ID No 24)
N-K-S-E-S-R-P-K-K-D-R-A-R-Q-E-(N/K) (SEQ ID No 25)
N-K-C-E-C-R-P-K-K-D-R-A-R-Q-E-N (SEQ ID No 26)
N-K-C-E-S-R-P-K-K-D-R-A-R-Q-E-N (SEQ ID No 27)
N-K-S-E-C-R-P-K-K-D-R-A-R-Q-E-N (SEQ ID No 28)
N-K-S-E-S-R-P-K-K-D-R-A-R-Q-E-N (SEQ ID No 29)
ou une séquence comprenant 10 résidus consécutifs d'une séquence choisie parmi les SEQ ID Nos 19-29.
Facultativement, la composition immunogénique peut comprendre un peptide tel que défini ci-dessus. Alternativement, elle peut comprendre plusieurs peptides différents tels que définis ci-dessus.
Le peptide selon la présente invention peut comprendre des acides aminés non- naturels. Par « acide aminé non-naturel » est entendu un analogue ou dérivé d'un acide aminé naturel. Ainsi, les isomères L et D des acides aminés sont envisagés. En effet, les isomères D ne sont pas sensibles aux protéases et la présente invention comprend également des peptides comprenant uniquement ou essentiellement des D acides aminés. Dans un mode particulier, les acides aminés L sont préférés.
Les séquences peptidiques définies dans le présent document sont représentées avec le symbole en une lettre tel qu'indiqué ci-dessous:
A Ala (alanine) ; R Arg (arginine) ; N Asn (asparagine) ; D Asp (acide aspartique) ; C
Cys (cystéine) ; Q Gin (glutamine) ; E Glu (acide glutamique) ; G Gly (glycine) ; H His (histidine) ; I Ile (isoleucine) ; L Leu (leucine) ; K Lys (lysine) ; M Met (méthionine) ; F Phe (phénylalanine) ; P Pro (proline) ; S Ser (sérine) ; T Thr (thréonine) ; W Trp (tryptophane) ; Y Tyr (tyrosine) ; V Val (valine).
Par ailleurs, les ou des liaisons peptidiques du peptide selon la présente invention peuvent être modifiées pour les rendre résistantes à la protéolyse. Par exemple, au moins une liaison peptidique (-CO-NH-) peut être remplacée par une liaison telle que (-CH2-NH-), (-NH- CO-), (-CH2-0-), (-CH2-S-), (-CH2-CH2-), (-CO-CH2-), (-CHOH-CH2-), (-N=N-), et (- CH=CH-), par exemple. Facultativement, toutes les liaisons peptidiques peuvent être remplacées.
Le peptide peut comprendre soit une extrémité C terminale carboxylique (-COO ) ou amidée (-CONH2). Le peptide peut également être facultativement modifié à son extrémité N- terminale, par exemple par un radical acétyle. En outre, le peptide selon la présente invention peut être modifié pour le rendre plus stable, et notamment plus résistant aux protéases. Ainsi, la molécule peut porter des groupements PEG (polyéthylèneglycol). Les procédés de PEGylation sont bien connus de l'homme du métier (Oison et al, 2009, Integrative Biology, 1(5-6): p. 382-393).
Dans la composition immunogène et de façon à augmenter la réponse immunitaire, le peptide peut être couplé à une protéine porteuse. De préférence, le couplage est covalent. Par exemple, la protéine porteuse pourra être choisie parmi la protéine Keyhole Limpet Hemocyanin (KLH), l'albumine sérique bovine (BSA), la protéine de liaison au maltose (MBP), l'ovalbumine, la flagelline, la thyroglobuline et la toxine tétanique (Tetanus Toxoid, TT). Dans un mode de réalisation, la protéine porteuse est la KLH. Les méthodes de conjugaison sont bien connues de l'homme du métier. On peut citer à titre d'exemples le couplage par le carbodiimide, celui par le glutaraldéhyde, par la benzidine bis-diazotée, ou par un maléimide.
La réalisation de ces couplages pourra être facilitée par l'addition ou l'incorporation d'acides aminés à la séquence comme par exemple des résidus lysine, histidine, tyrosine ou cystéine. Un résidu facilitant le couplage pourra être facultativement ajouté à l'extrémité ou parmi les trois résidus formant l'extrémité du peptide. Il peut être ajouté à l'extrémité C- terminale du peptide ou à l'extrémité N-terminale. De préférence, il sera plutôt ajouté à l'extrémité N-terminale de celui-ci. Dans un mode de réalisation préféré, le résidu sera une cystéine. De façon alternative, le couplage peut également être envisagé sous forme de protéine de fusion qui peut être produite par génie génétique.
Des couplages en réseau de type en candélabre ou à des molécules telles que la transferrine ou la ferritine peuvent être également mis en œuvre pour stimuler efficacement la réponse immunitaire.
Les peptides selon l'invention peuvent être notamment produits par synthèse chimique ou par génie génétique ou par toute autre méthode adaptée. Facultativement, les peptides peuvent être cyclisés, au besoin en greffant un ou plusieurs acides aminés en bout de chaîne comme des cystéines pour créer un pont disulfure. Alternativement et de manière préférée, les peptides sont utilisés sous forme linéaire, c'est-à-dire non cyclisée.
Les peptides peuvent également être formulés avec des particules d'or ou dans des liposomes.
La composition immunogène selon la présente invention peut comprendre facultativement un adjuvant. Des exemples non limitatifs d'adjuvants incluent l'adjuvant incomplet de Freund, l'adjuvant complet de Freund, des mannanes acétylés tels que l'acemannan®, des copolymères polyoxyéthylène-polyoxypropylène comme le TITERMAX®, des adjuvants lipidiques modifiés, des adjuvants dérivés de saponine, Bordella pertusis tuée, un lipopolysaccharide (LPS) de bactérie gram (-), des anions polymériques de grande taille comme le sulfate de dextran, des gels inorganiques comme l'hydroxyde d'aluminium ou le phosphate d'aluminium, et les oligodésoxynucléotides CpG.
La composition peut également comprendre des supports pharmaceutiquement acceptables, des agents de préservation, des diluants, des émulsifïants, des excipients et/ou des agents stabilisants.
La présente invention concerne un vaccin comprenant la composition immunogénique selon la présente invention. Elle concerne en outre la composition immunogénique selon la présente invention en tant que médicament, le peptide étant le principe actif. Elle concerne enfin une composition pharmaceutique comprenant un peptide telle que défini ci-dessus. Cette composition peut comprendre en outre un autre principe actif.
La composition immunogène peut être administrée par toute voie appropriée, de préférence par injection intramusculaire, intraveineuse, orale ou sous-cutanée. L'administration peut avoir lieu en dose unique ou répétée une ou plusieurs fois après un certain intervalle de temps.
Par « quantité efficace » est entendue la quantité nécessaire pour provoquer une réponse immune lorsqu'elle est administrée au patient. De préférence, c'est la quantité nécessaire pour provoquer une réponse immune lorsqu'elle est administrée au patient et pour prévenir ou diminuer la maladie traitée. Cette quantité peut être facilement déterminée par des expériences de routine.
A titre d'exemple, la dose administrée peut aller par exemple de 1 à 1000 μg, notamment 10 à 500 μg par voie sous-cutanée. De préférence, la composition sera administrée plusieurs fois. Par exemple, elle pourrait être administrée une fois par mois pendant trois mois, puis périodiquement en fonction du taux des anticorps sériques induits, par exemple tous les 2-6 mois.
La composition selon la présente invention peut être utilisée pour le traitement des maladies dépendantes d'une angiogenèse accrue. Tout particulièrement, elle peut être utilisée pour le traitement des maladies inflammatoires, de préférence les maladies inflammatoires chroniques. Ces maladies peuvent toucher tout particulièrement les articulations. Par exemple, les maladies inflammatoires peuvent être choisies parmi lesquelles les arthrites, les formes de lupus, les vascularites, les entérocolopathies inflammatoires, notamment la maladie de Crohn, la dégénérescence maculaire liée à l'âge, et le psoriasis. De manière plus spécifique, elles peuvent être choisies parmi les spondylarthropathies et la polyarthrite rhumatoïde. Ces maladies inflammatoires peuvent être des maladies auto-immunes. La composition peut également être utilisée pour le traitement des maladies prolifératives. En particulier, les maladies prolifératives peuvent être des cancers ou des tumeurs bénignes. De préférence, les cancers sont des tumeurs solides.
Dans le cadre du traitement des maladies inflammatoires, la composition pourra comprendre en outre un autre principe actif, par exemple un actif anti- inflammatoire. Dans le cadre du traitement d'un cancer, la composition pourra comprendre en outre un autre principe actif, par exemple un agent antitumoral.
La présente invention concerne également l'utilisation d'un peptide tel que défini ci- dessus pour la préparation d'un médicament destiné au traitement des maladies dépendantes d'une angiogenèse accrue. En particulier, les maladies sont telles que définies ci-dessus.
La présente invention est enfin relative à une méthode de traitement d'un patient souffrant d'une maladie dépendante d'une angiogenèse accrue, comprenant l'administration d'une dose thérapeutiquement efficace du peptide tel que défini dans ci-dessus. En particulier, les maladies sont telles que définies ci-dessus.
Dans le contexte de la présente invention, le terme « traitement » ou « traiter » inclut le traitement préventif, curatif, palliatif, ainsi que la prise en charge des patients (réduction de la souffrance, amélioration de la durée de vie, ralentissement de la progression de la maladie, réduction de la croissance tumorale, diminution de la taille des tumeurs, la prévention ou la diminution des métastases et des rechutes etc.).
D'autres aspects et avantages de la présente invention apparaîtront à la lecture des exemples qui suivent, qui doivent être considérés comme illustratifs et non limitatifs.
Exemples
Dans la présente invention, les inventeurs ont commencé par créer des vaccins anti- VEGF-A, basés sur l'utilisation de peptides synthétiques issus de la séquence de la cytokine murine, qui ont été rendus immunogènes par couplage à la KLH. Ils ont cherché à limiter l'interaction du VEGF-A avec l'un de ses co-récepteurs, la neuropiline-1 (NP-1), qui semble être particulièrement impliquée dans l'angiogenèse pathologique [Kong et al. 2010; Jubb et al. 2012]. Ils ont postulé que cette approche présentait potentiellement moins d'effets secondaires, notamment sur la cicatrisation. Pour la mettre en place, ils ont défini des séquences dans la zone d'interaction du VEGF-A avec NP-1, ont synthétisé des peptides correspondant à ces séquences, les ont purifiés, analysés, couplés à la KLH. Ils ont ensuite testé leur efficacité dans un modèle expérimental d'arthrite.
Ces résultats sur la souris semblent transposables à l'homme puisque seuls 19 résidus d'acide aminé diffèrent entre le VEGF-Ai64 de souris et son équivalent chez l'homme, le
Matériel et méthodes
Choix de la séquence peptidique:
Des séquences peptidiques ont été sélectionnées dans la séquence du VEGF-A1 (VEGF-A164) de souris. Le choix de la séquence du peptide Vpepl a été motivé par des données de la littérature concernant des peptides antagonistes de la liaison du VEGF-A au co- récepteur NRP-1. De plus, le peptide Vpepl (SRCECRPKKDRTKPEN (SEQ ID NO 15), 16aa (acides aminés), position 98-113 dans la séquence du VEGF-A164), présentait l'avantage d'être localisé dans une région commune avec deux autres isoformes du VEGF-A de souris: VEGF-A2 (VEGF-A120) et VEGF-A3 (VEGF-Ai88). La structure tridimensionnelle du VEGF- Ai64 de souris n'est pas décrite, contrairement à celle du VEGF-A165 humain [Muller et al. 1997; Iyer et al. 2001]. Les séquences protéiques des deux espèces présentent 90% d'identité et 93% d'homologie. Seuls 19 résidus d'acide aminé diffèrent entre les VEGF-Ai64 et VEGF- Ai65 des deux espèces. Par homologie de séquence, Vpepl se trouverait « à cheval » entre l'exon 4 et l'exon 5 dans la zone de clivage par la plasmine. Le peptide Vpep2 (RCDKPRR (SEQ ID NO 30), 7aa) correspond aux 7 derniers résidus d'acide aminé du VEGF-Ai64 (position 158-164 dans la séquence du VEGF-A164). Le choix de ce court peptide tenait compte des travaux d'une équipe ayant travaillé sur un peptide homologue, antagoniste de la liaison du VEGF-A165 humain à NP-1 [Starzec et al. 2006]. La séquence de Vpep2 est commune avec le VEGF-A165 humain.
Préparation du vaccin:
Lors de la synthèse du peptide Vpepl, le résidu cystéine en position 5 a été muté en sérine (SRCESRPKKDRTKPEN (SEQ ID NO 16)) afin de ne réaliser le couplage à la KLH qu'avec le résidu cystéine en position 3. L'hétéro-complexe ainsi formé a été nommé Vpepl - K. De façon similaire, Vpep2-K était issu du couplage de Vpep2 à la KLH via son résidu cystéine en position 2.
Vaccination dans un modèle d'arthrite expérimentale au collagène:
Des souris DBA/1 mâles, sensibles à l'induction des arthrites par du collagène II bovin (Cllb), ont été vaccinées par Vpepl-K, Vpep2-K ou les contrôles KLH et PBS (13 souris par groupe). Trois injections intramusculaires de vaccins émulsionnés en adjuvant incomplet de Freund (IFA) ont été pratiquées avant l'induction de l'arthrite expérimentale au collagène (AEC), puis deux autres après cette induction (Figure 1). Dans ce modèle, les arthrites ont été induites par deux injections sous-cutanées de Cllb à la base de la queue. Le collagène a été émulsionné en CFA (adjuvant complet de Freund) lors de la première injection (J0) et en IFA lors du rappel à J21.
Résultats
ELISA anticorps anti-peptides
La production d'anticorps anti-peptides a été analysée par ELISA dans les sera collectés au sacrifice pour les différents groupes de souris.
L'injection des peptides couplés à la KLH (Vpepl-K et Vpep2-K) a entraîné une forte production d'anticorps reconnaissant spécifiquement le peptide cible. Il n'y avait pas de reconnaissance croisée entre les deux vaccins, ni de production d'anticorps anti-peptides détectable dans les groupes PBS ou KLH contrôles (Figure 2).
L'observation clinique régulière des articulations des pattes de souris a conduit à l'établissement d'un score cumulé pour chaque souris. Le score moyen des quatre groupes de souris est représenté dans la Figure 3.
Comme le montre la Figure 3, Vpepl-K a limité significativement le développement des arthrites chez la DBA/1. Dans le même temps, Vpep2-K n'a eu aucune incidence sur le développement des arthrites en comparaison avec les deux groupes contrôles KLH et PBS.
Le VEGF pouvant jouer un rôle important dans la phase précoce de développement des arthrites, les inventeurs ont recherché s'il existait des différences entre les groupes dans l'apparition des premiers signes cliniques d'arthrite.
Comme le montre la figure 4, l'analyse de la cinétique d'apparition des arthrites a montré que, contrairement à Vpep2-K, la vaccination par Vpepl-K a permis de retarder significativement l'initiation des arthrites de 4,7 jours par rapport aux souris contrôle KLH.
(Moyennes des groupes: Vpepl-K 33,8 ± 1,6 jours; Vpep2-K 29,1 ± 0,5 jours; PBS 29,5 ± 1,2 jours; KLH 29,1 ± 0,9 jours).
Enfin, l'analyse histo logique de coupes de patte a été réalisée sur les souris au sacrifice (Figure 5). Comme on peut le voir sur cette figure, contrairement à Vpep2-K, la vaccination par Vpepl-K a réduit de façon spectaculaire l'inflammation articulaire (Vpepl-K
2,0 ± 0,2 versus KLH 1,0 ± 0,2; p<0,0001 Mann Whitney) et la destruction articulaire
(Vpepl-K 1,4 ± 0,2 versus KLH 0,7 ± 0,2; p<0,0001 Mann Whitney). Résumé / conclusion
Les travaux réalisés dans cette étude ont montré pour la première fois qu'une approche vaccinale basée sur des peptides du VEGF pouvait limiter le développement des arthrites. L'utilisation de peptides synthétiques présente l'avantage d'être plus aisée que la manipulation de la cytokine entière, d'être moins coûteuse, et surtout de permettre de cibler spécifiquement l'interaction de certains isoformes du VEGF avec l'un de ses récepteurs ou co -récepteurs.
Dans cette étude, les inventeurs ont cherché à limiter l'interaction du VEGF avec l'un de ses co -récepteurs: la neuropiline-1 (NRP-1).
La séquence du peptide Vpepl (16aa) a été choisie en amont d'une séquence impliquée dans l'interaction du VEGF avec NP-1 [Zachary et al. 2006], et correspond aux derniers résidus d'acide aminé communs entre les isoformes du VEGF-A 164, 120 et 188 de souris. De plus, cette séquence est comprise dans le fragment polypeptidique humain VEGFm_i65 obtenu après clivage du VEGFi6s humain par la plasmine. Ce fragment est un antagoniste de la liaison du VEGF à NRP-1 exprimé par des synoviocytes de patients atteints de PR [Kong et al. 2010].
Dans ce contexte, la vaccination précoce des souris par l'hétérocomplexe Vpepl -K s'est révélée efficace dans le modèle d'arthrite expérimentale au collagène, sans pour autant induire d'effet secondaire détectable.
Vpep2 correspond à une séquence peptidique plus petite (7 aa), décrite comme ayant des propriétés antagoniste de la liaison du VEGFi6s humain à son co-recepteur NRP-1 [Starzec et al. 2006]. L'hétérocomplexe Vpep2-K formé avec la KLH a bien induit la formation d'anticorps après vaccination, mais ceux-ci n'a exercé aucune influence sur le développement des arthrites. La taille du peptide cible limite le nombre d'épitopes. La réponse anticorps, très spécifique, qui a été générée, n'est pas protectrice.
Références
* Bertin-Maghit SM, et al. Vaccine. 2005 Jul 21;23(33):4228-35.
* Capini CJ, et al. Vaccine. 2004 Aug 13;22(23-24):3144-53.
* Clavel G, et al. Clin Immunol. 2007 Aug;124(2): 158-64.
* Cross MJ, et al. Trends Biochem Sci. 2003 Sep;28(9):488-94. Review.
* Delavallée L, et al. Ann Rheum Dis. 2008 Sep;67(9): 1332-8.
* Delavallée L, et al. Arthritis Res Ther. 2009; 11(6):R195. * Iyer S, et al. J Biol Chem. 2001 Apr 13;276(15): 12153-61.
Jia H, et al. J Biol Chem. 2006 May 12;281(19): 13493-502.
* Jubb AM, et al. JPathol. 2012 Jan;226(l):50-60.
* Kong JS, et al. Arthritis Rheum. 2010 Jan;62(l): 179-90.
* Kurosaka D, et al. J Rheumatol. 2010 Jun;37(6): l 121-8.
* Le Buanec H, et al. Proc Natl Acad Sci USA. 2006 Dec 19;103(51): 19442-7.
* Muller YA, et al. Structure. 1997 Oct 15;5(10): 1325-38.
* Otrock ZK, et al. Blood Cells Mol Dis. 2007 May-Jun;38(3) :258-68.
* Ratsimandresy RA, et al. Vaccine. 201 1 Nov 21 ;29(50):9329-36.
* Starzec A, et al. Life Sci. 2006 Nov 17;79(25):2370-81.
* Zachary I, et al. J Biol Chem. 2006 May 12;281(19):13493-502.

Claims

Revendications
1- Composition immunogémque comprenant un peptide, ledit peptide comprenant la séquence X-(R/K)-(C/S)-E-(C/S)-R-P-K-K-D-R-X-(K/R)-X-E-(N/K), X étant un acide aminé quelconque (SEQ ID No 3) et ne comprenant pas la séquence C-D-K- P-R-R (SEQ ID No 2).
2- Composition immunogémque selon la revendication 1, dans laquelle le peptide a une longueur de 9 à 50 acides aminés, de préférence de 9 à 20 acides aminés.
3- Composition immunogénique selon l'une quelconque des revendications 1-2, dans laquelle le peptide comprend ou consiste en une séquence (S/N)-(R/K)-(C/S)-E- (C/S)-R-P-K-K-D-R-(A/T)-(K/R)-(P/Q)-E-(N/K) (SEQ ID No 4).
4- Composition immunogénique selon l'une quelconque des revendications 1-3, dans laquelle le peptide comprend ou consiste en une séquence sélectionnée parmi
C-E-C-R-P-K-K-D-R (SEQ ID No 5)
C-E-S-R-P-K-K-D-R (SEQ ID No 6)
S-E-C-R-P-K-K-D-R (SEQ ID No 7)
S-E-S-R-P-K-K-D-R (SEQ ID No 8)
5- Composition immunogénique selon l'une quelconque des revendications 1-3, dans laquelle le peptide comprend ou consiste en une séquence sélectionnée parmi
S-R-(C/S)-E-(C/S)-R-P-K-K-D-R-T-K-P-E-(N/K) (SEQ ID No 9)
S-R-(C/S)-E-(C/S)-R-P-K-K-D-R-T-K-P-E-N (SEQ ID No 10)
S-R-C-E-C-R-P-K-K-D-R-T-K-P-E-(N/K) (SEQ ID No 11)
S-R-C-E-S-R-P-K-K-D-R-T-K-P-E-(N/K) (SEQ ID No 12)
S-R-S-E-C-R-P-K-K-D-R-T-K-P-E-(N/K) (SEQ ID No 13)
S-R-S-E-S-R-P-K-K-D-R-T-K-P-E-(N/K) (SEQ ID No 14)
S-R-C-E-C-R-P-K-K-D-R-T-K-P-E-N (SEQ ID No 15)
S-R-C-E-S-R-P-K-K-D-R-T-K-P-E-N (SEQ ID No 16)
S-R-S-E-C-R-P-K-K-D-R-T-K-P-E-N (SEQ ID No 17)
S-R-S-E-S-R-P-K-K-D-R-T-K-P-E-N (SEQ ID No 18)
N-K-(C/S)-E-(C/S)-R-P-K-K-D-R-A-R-Q-E-(N/K) (SEQ ID No 19) N-K-(C/S)-E-(C/S)-R-P-K-K-D-R-A-R-Q-E-N (SEQ ID No 20)
N-K-(C/S)-E-(C/S)-R-P-K-K-D-R-A-R-Q-E-K (SEQ ID No 21)
N-K-C-E-C-R-P-K-K-D-R-A-R-Q-E-(N/K) (SEQ ID No 22)
N-K-C-E-S-R-P-K-K-D-R-A-R-Q-E-(N/K) (SEQ ID No 23)
N-K-S-E-C-R-P-K-K-D-R-A-R-Q-E-(N/K) (SEQ ID No 24)
N-K-S-E-S-R-P-K-K-D-R-A-R-Q-E-(N/K) (SEQ ID No 25)
N-K-C-E-C-R-P-K-K-D-R-A-R-Q-E-N (SEQ ID No 26)
N-K-C-E-S-R-P-K-K-D-R-A-R-Q-E-N (SEQ ID No 27)
N-K-S-E-C-R-P-K-K-D-R-A-R-Q-E-N (SEQ ID No 28)
N-K-S-E-S-R-P-K-K-D-R-A-R-Q-E-N (SEQ ID No 29)
6- Composition immunogénique selon l'une quelconque des revendications 1-3, dans laquelle le peptide comprend ou consiste en une séquence sélectionnée parmi S-R-(C/S)-E-(C/S)-R-P-K-K-D-R-T-K-P-E-(N/K) (SEQ ID No 9)
S-R-(C/S)-E-(C/S)-R-P-K-K-D-R-T-K-P-E-N (SEQ ID No 10)
S-R-C-E-C-R-P-K-K-D-R-T-K-P-E-(N/K) (SEQ ID No 11)
S-R-C-E-S-R-P-K-K-D-R-T-K-P-E-(N/K) (SEQ ID No 12)
S-R-S-E-C-R-P-K-K-D-R-T-K-P-E-(N/K) (SEQ ID No 13)
S-R-S-E-S-R-P-K-K-D-R-T-K-P-E-(N/K) (SEQ ID No 14)
S-R-C-E-C-R-P-K-K-D-R-T-K-P-E-N (SEQ ID No 15)
S-R-C-E-S-R-P-K-K-D-R-T-K-P-E-N (SEQ ID No 16)
S-R-S-E-C-R-P-K-K-D-R-T-K-P-E-N (SEQ ID No 17)
S-R-S-E-S-R-P-K-K-D-R-T-K-P-E-N (SEQ ID No 18) 7- Composition selon l'une quelconque des revendications précédentes, dans laquelle le peptide est couplé à une protéine porteuse, de préférence la KLH.
8- Composition selon l'une quelconque des revendications précédentes à titre de médicament.
9- Composition selon l'une quelconque des revendications précédentes pour une utilisation pour le traitement d'une maladie dépendante d'une angiogenèse accrue. 10- Composition selon la revendication 9 pour une utilisation dans le traitement d'une maladie inflammatoire, en particulier une maladie inflammatoire chronique, ou une maladie proliférative. 11- Composition selon la revendication 9 ou 10 pour une utilisation dans le traitement d'une maladie inflammatoire chronique, de préférence sélectionnée parmi la polyarthrite rhumatoïde et les spondylarthropathies.
PCT/FR2013/051020 2012-05-10 2013-05-07 Composition immunogène comprenant un peptide dérivé du vegf et ses utilisations WO2013167842A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1254267A FR2990352A1 (fr) 2012-05-10 2012-05-10 Composition immunogene comprenant un peptide derive du vegf et ses utilisations
FR1254267 2012-05-10

Publications (2)

Publication Number Publication Date
WO2013167842A2 true WO2013167842A2 (fr) 2013-11-14
WO2013167842A3 WO2013167842A3 (fr) 2014-01-16

Family

ID=48614041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/051020 WO2013167842A2 (fr) 2012-05-10 2013-05-07 Composition immunogène comprenant un peptide dérivé du vegf et ses utilisations

Country Status (2)

Country Link
FR (1) FR2990352A1 (fr)
WO (1) WO2013167842A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3136652A1 (fr) * 2022-06-20 2023-12-22 Fabien Schweighoffer Compositions et méthodes pour le traitement de néoplasies vasculaires

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000053219A2 (fr) 1999-03-11 2000-09-14 Entremed, Inc. Compositions et techniques permettant de traiter le cancer et les troubles hyperproliferatifs
WO2009055343A2 (fr) 2007-10-22 2009-04-30 Schering Corporation Anticorps anti-vegf entièrement humains et leurs procédés d'utilisation
WO2010143435A1 (fr) 2009-06-11 2010-12-16 Oncotherapy Science, Inc. Thérapie par vaccin pour néo-vascularisation choroïdale

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001072589A (ja) * 1999-07-06 2001-03-21 Toagosei Co Ltd 制癌剤
AU2005213457A1 (en) * 2004-02-05 2005-08-25 The Ohio State University Research Foundation Chimeric VEGF peptides
EP1877433A2 (fr) * 2005-04-29 2008-01-16 (Osi) Eyetech, Inc. Variants du vegf
TW200732347A (en) * 2005-10-06 2007-09-01 Trophogen Inc VEGF analogs and methods of use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000053219A2 (fr) 1999-03-11 2000-09-14 Entremed, Inc. Compositions et techniques permettant de traiter le cancer et les troubles hyperproliferatifs
WO2009055343A2 (fr) 2007-10-22 2009-04-30 Schering Corporation Anticorps anti-vegf entièrement humains et leurs procédés d'utilisation
WO2010143435A1 (fr) 2009-06-11 2010-12-16 Oncotherapy Science, Inc. Thérapie par vaccin pour néo-vascularisation choroïdale

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
BERTIN-MAGHIT SM ET AL., VACCINE, vol. 23, no. 33, 21 July 2005 (2005-07-21), pages 4228 - 35
CAPINI CJ ET AL., VACCINE, vol. 22, no. 23-24, 13 August 2004 (2004-08-13), pages 3144 - 53
CLAVEL G ET AL., CLIN IMMUNOL., vol. 124, no. 2, August 2007 (2007-08-01), pages 158 - 64
CROSS MJ ET AL., TRENDS BIOCHEM SCI., vol. 28, no. 9, September 2003 (2003-09-01), pages 488 - 94
DELAVALLÉE L ET AL., ANN RHEUM DIS., vol. 67, no. 9, September 2008 (2008-09-01), pages 1332 - 8
DELAVALLÉE L ET AL., ARTHRITIS RES THER., vol. 11, no. 6, 2009, pages R195
IYER S ET AL., JBIOL CHEM., vol. 276, no. 15, 13 April 2001 (2001-04-13), pages 12153 - 61
JIA H ET AL., JBIOL CHEM., vol. 281, no. 19, 12 May 2006 (2006-05-12), pages 13493 - 502
JUBB AM ET AL., JPATHOL, vol. 226, no. 1, January 2012 (2012-01-01), pages 50 - 60
KONG JS ET AL., ARTHRITIS RHEUM., vol. 62, no. 1, January 2010 (2010-01-01), pages 179 - 90
KUROSAKA D ET AL., JRHEUMATOL., vol. 37, no. 6, June 2010 (2010-06-01), pages 1121 - 8
LE BUANEC H ET AL., PROC NATL ACAD SCI USA., vol. 103, no. 51, 19 December 2006 (2006-12-19), pages 19442 - 7
MULLER YA ET AL., STRUCTURE, vol. 5, no. 10, 15 October 1997 (1997-10-15), pages 1325 - 38
OLSON ET AL., INTEGRATIVE BIOLOGY, vol. 1, no. 5-6, 2009, pages 382 - 393
OTROCK ZK ET AL., BLOOD CELLS MOL DIS., vol. 38, no. 3, May 2007 (2007-05-01), pages 258 - 68
RATSIMANDRESY RA ET AL., VACCINE, vol. 29, no. 50, 21 November 2011 (2011-11-21), pages 9329 - 36
STARZEC A ET AL., LIFE SCI., vol. 79, no. 25, 17 November 2006 (2006-11-17), pages 2370 - 81
ZACHARY I ET AL., JBIOL CHEM., vol. 281, no. 19, 12 May 2006 (2006-05-12), pages 13493 - 502

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3136652A1 (fr) * 2022-06-20 2023-12-22 Fabien Schweighoffer Compositions et méthodes pour le traitement de néoplasies vasculaires

Also Published As

Publication number Publication date
FR2990352A1 (fr) 2013-11-15
WO2013167842A3 (fr) 2014-01-16

Similar Documents

Publication Publication Date Title
KR102468907B1 (ko) 질환의 요인이 되는 생체내 단백질을 표적으로 하는 컨쥬게이트 백신
US10695406B2 (en) Modulation of cellular stress using a B-cell oxidative and/or endoplasmic reticulum stress inhibitor and a targeting agent
FR2844514A1 (fr) Produit immunogene stable comprenant des heterocomplexes antigeniques, compositions les contenant et procede de preparation
US20230143215A1 (en) Immunization against sars-cov-related diseases
AT505574B1 (de) Mimotope zur behandlung von atherosklerose
EP1651257B1 (fr) Vaccin therapeutique cible contre la p-glycoproteine 170 pour inhiber la resistance multidrogues dans le traitement des cancers
CA2480996C (fr) Peptides derives ou provenant de cytokine et leur application en therapeutique
WO2013167842A2 (fr) Composition immunogène comprenant un peptide dérivé du vegf et ses utilisations
BE1022950B1 (fr) Procedes d&#39;induction d&#39;une reponse immunitaire
EP1427441B1 (fr) SUPERIMMUNOGENE COMPOSITE A USAGE VACCINAL BIFONCTIONNEL Tat-gp160 POUR LE TRAITEMENT du SIDA.
WO2021136841A2 (fr) Composition pharmaceutique pour la prevention ou le traitement des douleurs post-operatoires
JP7242059B2 (ja) シェーグレン症候群の治療用ペプチド
CA3163277A1 (fr) Conjugue immunogene destine a induire une reponse immunitaire dirigee contre l&#39;interleukine-6

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13728442

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 13728442

Country of ref document: EP

Kind code of ref document: A2