WO2013167270A1 - Dispositif photonique organique - Google Patents

Dispositif photonique organique Download PDF

Info

Publication number
WO2013167270A1
WO2013167270A1 PCT/EP2013/001363 EP2013001363W WO2013167270A1 WO 2013167270 A1 WO2013167270 A1 WO 2013167270A1 EP 2013001363 W EP2013001363 W EP 2013001363W WO 2013167270 A1 WO2013167270 A1 WO 2013167270A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
transparent substrate
dielectric layer
geometric thickness
Prior art date
Application number
PCT/EP2013/001363
Other languages
English (en)
Other versions
WO2013167270A8 (fr
Inventor
Benoit Domercq
Original Assignee
Agc Glass Europe
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc Glass Europe filed Critical Agc Glass Europe
Priority to US14/399,729 priority Critical patent/US9397304B2/en
Priority to EA201492043A priority patent/EA028689B1/ru
Priority to EP13739604.0A priority patent/EP2847810A1/fr
Priority to CN201380024056.4A priority patent/CN104321897B/zh
Priority to JP2015510682A priority patent/JP6346886B2/ja
Publication of WO2013167270A1 publication Critical patent/WO2013167270A1/fr
Publication of WO2013167270A8 publication Critical patent/WO2013167270A8/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3639Multilayers containing at least two functional metal layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/366Low-emissivity or solar control coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3668Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties
    • C03C17/3671Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties specially adapted for use as electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0274Optical details, e.g. printed circuits comprising integral optical means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to photonic devices, in particular organic photonic devices.
  • photonic device is meant any type of device that can emit or collect light.
  • Such devices are for example optoelectronic devices such as organic electroluminescent devices known by the acronym OLED (Organic Light Emitting Device) or light collecting devices such as organic photovoltaic cells still called solar cells.
  • OLED Organic Light Emitting Device
  • Organic electroluminescent devices generally comprise a substrate, an electrode disposed on the substrate to provide charges of a first polarity, an electrode disposed on the other side of the device to provide charges of a second polarity opposite to the first, charge-carrying semiconductor organic layers and electroluminescent layers disposed between the electrodes, and an encapsulation system.
  • OLEDs can be used for lighting, whether architectural or decorative, backlighting, or for signage. OLEDs emitting in white are generally preferred for these applications.
  • the present invention relates more particularly to a transparent electrode for organic electroluminescent device.
  • the Color Rendering Index is a quantitative measure of the ability of a light source to faithfully reproduce colors of colors. different objects in comparison with an ideal or natural light source. Light sources with a high CRI are desirable in most lighting applications because they improve the perception of color shades of illuminated objects.
  • the color rendering index is defined by the International Commission on Illumination as the effect of an illuminant on the chromatic aspect of the objects it illuminates, this aspect being compared consciously or not with that of the same illuminated objects. by a reference illuminant, as defined in the following works: "CIE 17.4-1987 International Lighting Vocabulary" or Nickerson, Dorothy; Jerome, Charles W. (April 1965), "Color Rendering of light sources: CI E method of specification and its application", llluminating Engineering (IESNA) 60 (4): 262-271.
  • ITO Indium Tin Oxide
  • multilayers e.g. fluorine-doped tin oxide or an assembly of layers comprising a silver-based metal layer.
  • Multilayers similar to those used in glass pilings for the thermal management of buildings, trains or automobiles may be preferred because they offer the opportunity to significantly improve conduction properties compared to layers of glass. ITO for reasonable electrode thicknesses.
  • the objective of the present invention is the selection of conducting structures comprising two silver-based layers for OLED devices, said selection making it possible to obtain for these OLED devices the best possible combination of a high CRI, a high luminance (ie, high amount of emitted light, high efficiency), and low color variability depending on viewing angle (color Delta).
  • the color Delta combines the color variation along the Planck locus and orthogonally to it.
  • the locus of Planck gathers the emission points of the various Planckian sources and is thus close to the majority of standard white sources (e.g., D65, C, A illuminants). For devices emitting white or near-white light, it is therefore advisable to penalize the orthogonal hue differences with respect to this curve of the Planck locus more strongly as they move away from the white.
  • n is the number of experimental data (with n> 5, distributed in a range of 0 to 60 °).
  • p (x) is a cubic approximation of the Planck locus and the choice of the two scale constants imply that variations parallel to the Planck locus are penalized 2.5 times less than orthogonal variations at the Planck locus. This choice favors angular paths close to the Planck locus compared to other angular paths.
  • the present invention provides a transparent organic electroluminescent device substrate according to claim 1, the dependent claims having preferred embodiments.
  • an organic electroluminescent device transparent substrate comprising an electrode carrier, said electrode consisting of a layer stack comprising at least, in order from the substrate, a first dielectric layer (D1), a first conduction metal layer (M1), a second dielectric layer (D2), a second conduction metal layer (M2) and a third dielectric layer (D3), the number of conductive metal layers (M) in the electrode being two and the third dielectric layer (D3) does not include a layer based on indium oxide. It is characterized in that the geometric thickness of the second dielectric layer (D2) is at least 65 nm and the geometric thickness of the first conduction metal layer (M1) is at least 8.5 nm.
  • Such substrates with such electrodes have the advantage, once integrated in OLED devices, of offering the best compromise possible between a high CRI, a high luminance (ie a high efficiency), and a low color variability depending on the viewing angle.
  • transparent substrates for organic electroluminescent devices exist offering for one of these properties better results, we have found that only a very particular selection of the thickness of the second dielectric and the first metal conduction layer of the electrode both a high CRI, a high luminance and a low color Delta, or better color stability depending on the angle.
  • the substrate of the present invention is said to be transparent, that is to say that it has a light absorption of at most 50%, or even at most 30%, preferably at most 20% or at most 15%. %, more preferably at most 12% or at most 10% in the wavelength range of visible light.
  • the substrate of the present invention comprises a support and an electrode.
  • the support preferably has a refractive index of at least 1.2, 1.4 or 1.5 at a wavelength of 550 nm. This makes it possible, with an equal substrate structure, to increase the quantity of light transmitted or emitted.
  • the term "support” is meant not only the medium as such but also any structure comprising the support and at least one layer of a material having refractive index n ma terial, close to the index of refraction of the medium, n pP su ort, in other words
  • n ma terial close to the index of refraction of the medium, n pP su ort, in other words
  • the support can include additional devices that promote the extraction of light on one or the other of its faces.
  • a diffusion layer is described in published documents WO2009 / 017035, WO2009 / 116531, WO2010 / 084922, WO2010 / 084925, WO2011 / 046156, WO2011 / 046190 and PCT / JP2011 / 074358, all incorporated herein by reference.
  • this diffusion layer has a thickness of more than 5 ⁇ and is not considered as a coherent optical system.
  • n support is then considered to be the index, possibly of the matrix, of this diffusion layer.
  • the substrate according to the invention can thus display a haze value of less than 20%, more preferably less than 10%, or even more preferably less than 2% or 1%.
  • the advantage is that the organic device including such a substrate has an attractive appearance and non-milky when off. A mirror aesthetic may, for example, be obtained if the second opposite charge electrode is reflective; or it is possible to make a transparent glazing assembly if the second electrode is also semi-transparent.
  • the complete organic device can then have a light reflection (according to CIE, illuminant D65 2 °) measured on the support side of more than 20%, or more preferably of more than 40% or even more advantageously more than 60%.
  • the complete organic device can then have a light transmission of at least 5% (according to CIE, illuminant D65 2 °), or more advantageously at least 10% or more preferably at least 20%.
  • the function of the support is to support and / or protect the electrode.
  • the support may be made of glass, rigid plastics material (for example: organic glass, polycarbonate) or flexible polymeric films (for example: PVC, PET, PP, PTFE).
  • the support is preferably rigid. Alternatively, it can be rolled on itself (for example an extra-fine flexible glass that can be used in a "roll to roll" deposition process).
  • the support is made of glass, for example a glass sheet, it preferably has a geometric thickness of at least 0.05 mm.
  • the glass is preferably silico-soda-lime clear or colored in the mass or on the surface.
  • it can be extra-clear, that is to say a glass with a total iron content, expressed as Fe 2 O 3, of less than 0.020% by weight, preferably less than 0.015% by weight.
  • the glass because of its low porosity, has the advantage of providing good protection against any form of contamination of a device comprising the transparent substrate according to the invention.
  • the electrode according to the invention consists of a stack of layers comprising at least, in order from the substrate, a first dielectric layer (D1), a first conduction metal layer (Ml), a second dielectric layer (D2 ), a second metal conduction layer (M2) and a third dielectric layer (D3).
  • the electrode can behave as an anode or, on the contrary, as a cathode.
  • the number of conduction metal layers in the electrode according to the invention is two. This makes it possible to reduce the problems of angular stability of the color emitted by the OLED device.
  • the conduction metal layers of the electrode mainly provide electrical conduction of said electrode. They comprise at least one layer comprising a metal or a mixture of metals.
  • the metal and / or the mixture of metals preferably comprises at least one element selected from Ag, Au, Pd, Pt, Al, Cu, Zn, Cd, In, Si, Zr, Mo, Ni, Cr, Mg, Mn, Co, Sn.
  • the metal and / or the mixture of metals comprises at least one element selected from Ag, Au, Cu, Al.
  • the conductive metal layer comprises at least silver in pure form or in combination with another metal. preferably selected from Pd and Au.
  • the geometric thickness of the first conduction metal layer (M1) is at least 8.5 nm, preferably at least 8.7 nm or at least 9.0 nm, more preferably at least 9.5 nm.
  • the geometrical thickness of the first conductive metal layer (Ml) is less than 13.0 nm, preferably less than 12.5 nm or 12.0 nm, more preferably less than 11.5 nm.
  • the geometric thickness of the second conduction metal layer (M2) is at least 6.0 nm, preferably at least 7.0 nm or at least 7.5 nm, more preferably at least 8.0 nm.
  • the geometrical thickness of the second conductive metal layer (M2) is less than 25.0 or 20.0 nm, preferably less than 18.0 nm or 15.0 nm, more preferably less than 13.0 nm.
  • the total geometrical thickness of the two conduction metal layers of the electrode is less than 30.0 nm, preferably at most 29.0 nm, more preferably at most 28.0 nm. These values allow the multilayer electrode not to absorb too much light emitted by the OLED system.
  • the dielectric layers may comprise one or more sublayers of different natures.
  • they comprise a compound having a refractive index at a wavelength of 550 nm of at least 1.6, at least 1.8 or at least 1.9, and / or at most 2.7 or at most 2.5.
  • they have a refractive index which is greater than that of the support by at least 0.1, preferably at least 0.2.
  • the dielectric layers comprise at least one compound selected from:
  • they comprise at least one compound selected from zinc oxides, tin oxides, titanium oxides, aluminum nitrides, silicon nitrides, and mixtures of at least two of them. , zinc-tin mixed oxides and titanium-zirconium-yttrium mixed oxides.
  • the geometric thickness of the second dielectric layer (D2) is at least 65 nm, preferably at least 67 nm or at least 70 nm, more preferably at least 73 nm.
  • the geometric thickness of the second dielectric layer (D2) is less than 90 nm, preferably less than 88 nm or 86 nm.
  • the geometrical thickness of the second dielectric layer, Ep.D2, and the geometrical thickness of the first conductive metal layer, Ep.M1 can satisfy the following equation:
  • the ratio between the geometric thickness of the second dielectric layer and the geometric thickness of the first dielectric layer, Ep. D2 / Ep.D1 is at least 1.90 or more preferably at least 1.95 or at least 2.00.
  • the geometric thickness of the first dielectric layer, Ep. D1 can be at least 54 or at least 55 nm. It can be less than 80, 70 or 65 nm. A thicker first dielectric layer may help to reduce the sensitivity of the electrode to alkali migration from the substrate.
  • the last dielectric layer of the electrode does not include an indium oxide layer (for example ITO). More preferably, all the dielectric layers of the electrode do not include an indium oxide layer.
  • ITO indium oxide layer
  • all the dielectric layers of the electrode do not include an indium oxide layer.
  • the geometric thickness of the third and last dielectric layer of the electrode is preferably at least 5 nm or at least 8 nm, more preferably at least 10 nm. Preferably, it is less than 30 nm or preferably less than 25 nm, more preferably less than 22 nm, 20 nm or 18 nm.
  • the thickness of the last dielectric layer of the electrode can be defined by its ohmic thickness.
  • the ohmic thickness of a layer is equal to the ratio between, on the one hand, the resistivity (p) of the material constituting this layer and, on the other hand, the geometrical thickness of this same layer.
  • the ohmic thickness of the last dielectric layer of the electrode is at most 10 12 Ohm, preferably at most 10 7 Ohm. Of such values make it possible to optimize the optical parameters of the last dielectric layer of the electrode and thus to optimize the quantity of light transmitted while keeping a thickness compatible with electrical properties making it possible to avoid high ignition voltages.
  • geometric thickness values are given here for the layers D1, D2 or D3 of the electrode, they are for a constituent material having a refractive index between 1.8 and 2.2, more preferably between 1.9 and 2.1. or even more preferably between 1.95 and 2.05 at a wavelength of 550 nm. They therefore correspond to an optical thickness equal to the geometrical thickness multiplied by this refractive index which is close to 2. If another choice of material is made, with a different refractive index, it is sufficient to recalculate a corresponding geometrical thickness.
  • the dielectric layers of the electrode in one, several or each of the conduction metal layers may also comprise a nucleation layer contiguous to the face of the metal conduction layer closest to the support.
  • This layer allows a preferential growth of the metal layer, for example silver, constituting the metal conduction layer and thereby obtain good electrical and optical properties of the metal conduction layer, for example by limiting the absorbency stacking. It preferably comprises at least ZnO "(with x ⁇ 1) and / or Zn x Sn y O z (with x + y> 3 and z 6).
  • the Zn x Sn y O z comprises at most 95% by weight of zinc, the weight percentage of zinc being expressed relative to the total weight of the metals present in the layer.
  • the crystallization layer is ZnO.
  • the geometrical thickness of the nucleation layer is advantageously at least 5 or at least 8 nm; it is advantageously not more than 15 or not more than 12 nm. This thickness is counted in the thickness of the dielectric which contains it,
  • the conduction metal layers may also be advantageous to provide one, several or each of the conduction metal layers with a protective barrier layer above that (s) -ci, that is to say on the face of the metal layer of conduction furthest from the support.
  • This layer makes it possible to avoid deterioration of the metallic conduction layer, in particular by oxidation or nitriding. It may comprise a sub-stoichiometric metal, nitride, oxide or oxide comprising at least one element selected from Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, Zn and Al.
  • the sacrificial layer comprises at least Ti, TiO x (with x ⁇ 2), TilM, NiCr, NiCrO x , TiZrO x (TiZrO x indicates a 50% titanium oxide layer. by weight of zirconium oxide), or ZnAlO x (ZnA10 x indicates a layer of zinc oxide with 2 to 5% by weight of aluminum oxide).
  • the barrier layer is a so-called "ceramic" layer, that is to say that it is obtained from a ceramic target. The choice of ceramic barrier may be advantageous to avoid parasitic absorption which decreases the efficiency of the optoelectronic device.
  • the geometric thickness of the barrier layer is advantageously at least 0.4 or at least 0.5 nm; it is advantageously at most 7.0 or at most 6.0 nm.
  • the electrode comprises a thin film of uniformity of the surface electrical properties, relative to the support, at the top of the multilayer stack constituting said electrode.
  • the main function of the thin film of uniformity of surface electrical properties is to enable a uniform charge transfer to be obtained over the entire surface of the electrode. This uniform transfer results in an emitted or converted light flux substantially equivalent at any point on the surface. It also increases the life of the devices photonic since this transfer is substantially the same at each point, thereby eliminating possible hot spots.
  • the uniformization layer has a geometric thickness of at least 0.5 nm, preferably at least 1.0 nm.
  • the uniformization layer has a geometric thickness of at most 6.0 nm, preferably at most 2.5 nm, more preferably at most 2.0 nm.
  • the uniformization layer comprises at least one metal, a nitride, an oxide, a carbide, an oxynitride, an oxycarbide, a carbonitride or an oxycarbonitride. More preferably, the thin film of uniformity of the surface electrical properties comprises at least one Ti oxynitride, a Zr oxynitride, a Ni oxynitride, a NiCr oxynitride, a Ti nitride, a Zr nitride, a nitride of Ni, or a nitride of NiCr.
  • the transparent substrate according to the invention is such that the support carries a functional coating located on the face opposite to the face on which the electrode is deposited.
  • This functional coating may be a layer or stack of several functional layers, for example, antireflection, diffusing, anti-fogging, anti-fouling, anti-scrape or selective absorbent.
  • the subject of the present invention is an organic electroluminescent device comprising a transparent substrate as described above and a system of organic electroluminescent layers (OLED system) emitting a white light, adjacent to the substrate electrode. transparent.
  • OLED system organic electroluminescent layers
  • an OLED system may be formed of a mixture within a single organic layer of compounds emitting red, green, yellow and blue light; by stacking three or four organic layer structures respectively corresponding to the red, green, yellow and blue light emitting parts or two organic layer structures (yellow and blue emission); or by juxtaposition of three or four (emission red, green, blue and yellow) or two structures of organic layers (emission yellow and blue) associated or not with a system of light diffusion.
  • these structures are called “thin” or separated by layers of electron transport and holes (these structures are called “thick” and can be called “traditional performance organic stacks”).
  • white light is understood to mean a light whose chromatic coordinates at 0 °, for a radiation perpendicular to the surface of the substrate, are included in one of the eight quadrilaterals of chromaticity, including quadrilaterals. These quadrilaterals are defined on pages 10 to 12 of the standard ANSI_IMEMA_ANSLG C78.377-2008. These quadrilaterals are shown in Figure A1, entitled “Graphical representation of the chromaticity specification of SSL products in Table 1, on the CIE (x, y) chromaticity diagram".
  • G represents the organic emitting layer emitting predominantly green light
  • B represents the organic emitting layer emitting predominantly blue light
  • R represents the organic emitting layer emitting predominantly red light.
  • the sequences GBR, RGB, BRG, RBG, GRB, BGR are the sequences in which the different emitting layers appear, these sequences are expressed relative to the electrode, the first letter of the sequence corresponding to the emitting layer furthest from said electrode.
  • the organic layers may consist of a single material layer or a plurality of layers each of a different material. It is also possible to use systems with four emitting layers where the yellow color (represented by the letter Y) makes it possible to extend the spectral coverage of the visible light of the OLED system.
  • the organic electroluminescent devices according to the invention may include an OLED system selected from the GBR, RGB, BRG, RBG, GRB and BGR systems; GBR and RGB systems are preferred.
  • Organic electroluminescent devices according to the invention may also include an OLED system selected from BYRG, BRYG systems and their variants; BYRG or BYGR systems are preferred.
  • the organic electroluminescent devices according to the invention include an OLED system formed of a conventional high performance organic stack comprising organic layers, separating at least two of the different emitting layers, which have a thickness of at least 5 nm, more preferably at least 15 nm, or even more preferably at least 30 nm.
  • the organic electroluminescent device is integrated in a glazing unit, a double glazing unit or a laminated glazing unit. It is also possible to integrate several electroluminescent organic devices.
  • the organic electroluminescent device is enclosed in at least one encapsulating material made of glass and / or plastic.
  • the different embodiments of organic electroluminescent devices can be combined.
  • the various organic electroluminescent devices have a wide field of use.
  • the invention is particularly directed to the possible uses of these organic electroluminescent devices for producing one or more light surfaces.
  • the term illuminated surface includes, for example, illuminating slabs, illuminated panels, light partitions, worktops, greenhouses, flashlights, wallpapers, drawer bottoms, illuminated roofs, touch screens, lamps, photo flashes, illuminated backgrounds. display, safety signs, shelves, car or airplane cockpit lights.
  • organic electroluminescent devices according to the invention advantageously have, in combination:
  • a color Delta less than 2.4, preferably less than 2.0 or 1.8, and
  • the organic electroluminescent devices according to the invention can also advantageously have an efficiency greater than 15 lumen / watt at a luminance of 10,000 cd / m 2 .
  • the organic electroluminescent devices according to the invention advantageously incorporate an electrode having a resistance per square much lower than that of traditional ITO electrodes or multilayers with a single silver layer, thus favoring the conduction of the electrode and therefore the effectiveness of the OLED device.
  • the resistance per square of the electrode may be less than 5.0 ⁇ / ⁇ , preferably less than 4.0 ⁇ / ⁇ . This also allows to consider OLED devices larger area without reinforcement adds! electrode.
  • Fig. 1 cross section of an organic electroluminescent device according to the invention
  • Fig. 2 cross-section of another organic electroluminescent device according to the invention
  • the organic electroluminescent device (100) of FIG. 1 comprises a transparent substrate (1), an OLED system (2) and a counter electrode (3), the transparent substrate (1) comprising a support (10) carrying a electrode (11).
  • Said electrode (11) consists of a stack of layers comprising a first dielectric layer (D1), a first conduction metal layer (M1), a second dielectric layer (D2), a second conductive metal layer (M2) and a third dielectric layer (D3).
  • the organic electroluminescent device (200) of FIG. 2 comprises a transparent substrate (1), an OLED system (2) and a counter-electrode (3), the transparent substrate (1) comprising a support (10) carrying a electrode (11).
  • Said electrode (11) consists of a stack of layers comprising a first dielectric layer (D1) which includes a nucleation layer (NI), a first conduction metal layer (M1), a barrier layer (B1), a second dielectric layer (D2) including a nucleation layer (N2), a second conductive metal layer (M2) a barrier layer (B2), a third dielectric layer (D3) and a layer thin uniformity (U).
  • D1 consists of a stack of layers comprising a first dielectric layer (D1) which includes a nucleation layer (NI), a first conduction metal layer (M1), a barrier layer (B1), a second dielectric layer (D2) including a nucleation layer (N2), a second conductive metal layer (M2) a barrier layer
  • the OLED system (2) comprises, in order from the medium (10), a first organic layer (OD4) including a hole transport layer, a blue emitting layer (EMB), a second organic layer (OD3) including an electron transport layer and a hole transport layer, a green emitter layer (EMG), a third organic layer (OD2) including an electron transport layer and a hole transport layer, an emitter layer red (EMR), and a fourth organic layer (OD1) including an electron transport layer.
  • This OLED system is called "RGB”.
  • One or more blocking layer (s) may also be provided in the OLED system in one or more charge transport layer (s).
  • the layers forming the electrode and the organic system are described therein: their nature and their geometrical thickness expressed in nanometers.
  • the light emitted by the OLED system is also defined.
  • Zn 90 SnioO is a mixed oxide of Zn (90 wt%) and Sn (10 wt%) Zn48Sn 52 0 represents a Zn mixed oxide (48 wt%) and Sn (52 wt%)
  • TXO is a layer of Ti0 2 deposited by magnetron sputtering from a ceramic target
  • ITO represents a tin-doped indium oxide layer
  • All the organic electroluminescent devices of the examples and comparative examples have a soda-silico-calcium glass support.
  • the square resistance of the electrode, expressed in ⁇ / D, as well as the performance of the organic electroluminescent devices of the examples and comparative examples are given in Tables I and II.
  • the performances were calculated using the simulation program SETFOS (Semiconducting Emission Thin Film Optics Simulator) of the firm Fluxim (http://www.fluxim.ch), version 2.
  • Luminance (Lum) is expressed in units arbitrary.
  • the given CRI values are CRI averages calculated at angles of 0, 10, 20, 80 degrees according to the formula above.
  • Delta color values (Deltacol) were also calculated according to the formula given above.
  • the luminance is also expressed relative to the reference luminance of the same optimized OLED device with an ITO electrode ("reference") for which the refractive indices come from the ITO.nk file available in SETFOS .
  • the performance of the examples shows an excellent combination of luminance values, CRI and color Delta, with a luminance greater than 80, a luminance equivalent to at least 88% of the luminance of the same OLED device optimized with a reference ITO electrode, a CRI greater than 70 and a color Delta less than 2.
  • the electrodes according to the invention have a much lower square resistance than traditional ITO electrodes or single-layer silver multilayers, thus favoring the conduction of the electrode, so the efficiency of the OLED device, which also allows to consider OLEDs larger surface without electrode reinforcement. While for each of the comparative examples, at least one of these performances shows an unacceptable value (value underlined in Table II).
  • organic electroluminescent devices have actually been manufactured based on Example 5 and Comparative Examples 4 and 12; the external quantum efficiency (EQE) and luminous efficiency of these devices were measured at 10,000 cd / m 2 ; the CRI and color Delta of these devices were measured at 1000 cd / m 2 .
  • EQE external quantum efficiency
  • luminous efficiency of these devices were measured at 10,000 cd / m 2 ; the CRI and color Delta of these devices were measured at 1000 cd / m 2 .
  • the device according to example 5, according to the invention shows an external quantum efficiency of 22.4%, a luminous efficiency of 14 Im / W, a CRI greater than 86 and a color Delta of 2.15.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)

Abstract

L'invention porte sur un substrat transparent pour dispositif électroluminescent organique comprenant un support porteur d'une électrode, ladite électrode consistant en un empilage de couches comprenant au moins, en ordre à partir du substrat, une première couche diélectrique (D1), une première couche métallique de conduction (M1), une deuxième couche diélectrique (D2), une deuxième couche métallique de conduction (M2) et une troisième couche diélectrique (D3) le nombre de couches métalliques de conduction (M) dans l'électrode (11) étant deux et la troisième couche diélectrique (D3) ne comprenant pas de couche à base d'oxyde d'indium. Il se caractérise par le fait que l'épaisseur géométrique de la deuxième couche diélectrique (D2) est d'au moins 65 nm et l'épaisseur géométrique de la première couche métallique de conduction (M1) est d'au moins 8.5 nm.

Description

Dispositif photonique organique
La présente invention a trait à des dispositifs photoniques, en particulier des dispositifs photoniques organiques. Par dispositif photonique, on entend tout type de dispositif pouvant émettre ou collecter de la lumière. De tels dispositifs sont par exemple les dispositifs optoélectroniques tels que les dispositifs organiques électroluminescents connus sous l'acronyme OLED (Organic Light Emitting Device) ou bien les dispositifs collecteurs de lumière tels que les cellules photovoltaïques organiques encore dénommées cellules solaires.
Les dispositifs organiques électroluminescents comprennent généralement un substrat, une électrode disposée sur le substrat pour fournir des charges d'une première polarité, une électrode disposée de l'autre côté du dispositif pour fournir des charges d'une seconde polarité opposée à la première, des couches organiques semi-conductrices transporteuses de charges et des couches électroluminescentes disposées entre les électrodes, et un système d'encapsulation. Les OLED peuvent servir pour l'éclairage, qu'il soit architectural ou décoratif, de type rétro-éclairage, ou pour la signalétique. Des OLED émettant dans le blanc sont généralement préférées pour ces applications.
La présente invention se rapporte plus particulièrement à une électrode transparente pour dispositif électroluminescent organique.
Dans le but de fabriquer un dispositif OLED émettant dans le blanc pour des applications d'éclairage, il est nécessaire de fabriquer une source de lumière avec un rendu de couleur ou CRI (de l'anglais "Color Rendering Index") le plus élevé possible.
L'indice de rendu des couleurs (CRI) est une mesure quantitative de la capacité d'une source de lumière à reproduire fidèlement les couleurs des différents objets en comparaison avec une source de lumière idéale ou naturelle. Les sources lumineuses avec un CRI élevé sont souhaitables dans la plupart des applications d'éclairage car elles améliorent la perception des nuances de couleur des objets illuminés. L'indice de rendu de couleur est défini par la Commission Internationale de l'Éclairage comme l'effet d'un illuminant sur l'aspect chromatique des objets qu'il éclaire, cet aspect étant comparé consciemment ou non à celui des mêmes objets éclairés par un illuminant de référence, comme défini dans les ouvrages suivants : "CIE 17.4-1987 International Lighting Vocabulary" ou Nickerson, Dorothy; Jérôme, Charles W. (April 1965), "Color Rendering of light sources: CI E method of spécification and its application", llluminating Engineering (IESNA) 60 (4): 262-271.
Il est connu, pour les OLED, d'utiliser en tant qu'électrode transparente, des couches en oxyde d'indium dopé étain (ITO: Indium Tin Oxide) ou d'autres couches ou multicouches conducteurs (par exemple, une couche d'oxyde d'étain dopé fluor ou un assemblage de couches comprenant une couche métallique à base d'argent). Les multicouches semblables à ceux utilisés dans les empilages sur verre destiné à la gestion thermique des bâtiments, des trains ou de l'automobile peuvent être préférés car ils offrent l'opportunité d'améliorer sensiblement les propriétés de conduction par rapport à des couches d'ITO pour des épaisseurs d'électrodes raisonnables.
Néanmoins, lorsque les multicouches conducteurs comprennent une seule couche métallique à base d'argent, des problèmes de stabilité angulaire de la couleur émise peuvent apparaître. Une solution est alors d'utiliser des multicouches proches des produits antisolaires architecturaux contenant deux couches métalliques à base d'argent comme décrit dans le document WO2009083693. Ce document expose l'utilisation de structures conductrices comprenant deux couches d'argent pour dispositifs OLED. L'utilisation de ce type de structure dans un dispositif OLED y est décrite comme permettant de limiter la dépendance angulaire du spectre d'émission polychromatique dudit dispositif.
Mais ce concept de stabilisation angulaire est classique pour des couches architecturales et la solution présentée dans ce document n'est pas optimisée pour une utilisation dans un dispositif OLED. Il nous est en effet apparu que l'utilisation de telles couches ne permet pas d'obtenir, pour des dispositifs OLED, des sources de lumière convenables et optimisées, en particulier en termes de rendu de couleur (CRI), notamment avec des "empilements organiques performants classiques". Par "empilement organique performant classique", on entend que la partie organique du dispositif est choisie "épaisse", c'est-à-dire qu'au moins deux des différentes sources émettrices (rouge, vert, bleu, jaune) sont séparées l'une de l'autre par une couche organique de séparation. En outre, l'utilisation de multicouches comprenant trois couches métalliques à base d'argent, connus pour des applications architecturales, ne sont pas non plus optimaux pour utilisation dans un dispositif OLED. Il nous est en effet apparu que ces couches pouvaient présenter trop d'absorption lumineuse, pouvant ainsi diminuer l'efficacité du dispositif optoélectronique.
L'objectif de la présente invention est la sélection de structures conductrices comprenant deux couches à base d'argent pour des dispositifs OLED, ladite sélection permettant d'obtenir pour ces dispositifs OLED, la meilleure combinaison possible d'un CRI élevé, d'une luminance élevée (c'est-à- dire une quantité de lumière émise élevée, soit une efficacité élevée), et d'une faible variabilité de couleur selon l'angle d'observation (Delta de couleur). Le Delta de couleur combine la variation de couleur le long du locus de Planck et orthogonalement à celui-ci. Le locus de Planck regroupe les points d'émission des différentes sources Planckiennes et est donc proche de la majorité des sources blanches standards (par exemple, les illuminants D65, C, A). Pour des dispositifs émettant de la lumière blanche ou quasi-blanche, il est donc judicieux de pénaliser plus fort les écarts de teinte orthogonaux par rapport à cette courbe du locus de Planck car ils s'éloignent du blanc.
Le delta de couleur est ainsi représenté par la formule suivante:
Figure imgf000005_0001
p. = p(x.) = 0.404783758262229
+ 0.290077294746671 * (x, - 0.443946335246864)
- 2.58208279488139 * (χ, - 0.443946335246864)Λ2
- 0.406419069828599 * (x, - 0.443946335246864)Λ3
sx = 0.001 \ * n
sy = 0.00044 * n dans laquelle
n est le nombre de données expérimentales (avec n > 5, réparties dans une gamme de 0 à 60°).
p(x) est une approximation cubique du locus de Planck et le choix des deux constantes d'échelle impliquent que des variations parallèles au locus de Planck sont pénalisées 2.5 fois moins que les variations orthogonales au locus de Planck. Ce choix favorise les chemins angulaires proches du locus de Planck par rapport aux autres chemins angulaires.
- x, et y, sont les coordonnées chromatiques dans le système CIE 1931, à chaque angle i.
Selon un de ses aspects, la présente invention a pour objet un substrat transparent pour dispositif électroluminescent organique selon la revendication 1, les revendications dépendantes présentant des modes de' réalisation préférés. L'invention porte sur un substrat transparent pour dispositif électroluminescent organique comprenant un support porteur d'une électrode, ladite électrode consistant en un empilage de couches comprenant au moins, dans l'ordre à partir du substrat, une première couche diélectrique (Dl), une première couche métallique de conduction (Ml), une deuxième couche diélectrique (D2), une deuxième couche métallique de conduction (M2) et une troisième couche diélectrique (D3), le nombre de couches métalliques de conduction (M) dans l'électrode étant deux et la troisième couche diélectrique (D3) ne comprenant pas de couche à base d'oxyde d'indium. Il se caractérise par le fait que l'épaisseur géométrique de la deuxième couche diélectrique (D2) est d'au moins 65 nm et l'épaisseur géométrique de la première couche métallique de conduction (Ml) est d'au moins 8.5 nm.
De tels substrats avec de telles électrodes ont l'avantage, une fois intégrés dans des dispositifs OLED, d'offrir le meilleur compromis possible entre un CRI élevé, une luminance élevée (c'est-à-dire une efficacité élevée), et une faible variabilité de couleur selon l'angle d'observation. Bien que des substrats transparents pour dispositifs électroluminescents orga niques existent offrant pour une de ces propriétés de meilleurs résultats, nous avons trouvé que seule une sélection bien particulière de l'épaisseur du second diélectrique et de la première couche métallique de conduction de l'électrode offrait à la fois un CRI élevé, une luminance élevée et un faible Delta de couleur, soit une meilleure stabilité de la couleur selon l'angle.
En outre, nous avons trouvé que cette sélection convenait particulièrement pour intégration dans un dispositif OLED dont la partie organique est un empilement organique performant classique, dans lequel a u moins deux des différentes sources émettrices (rouge, vert, bleu, jaune) sont séparées l'une de l'autre par une couche organique de séparation. Le substrat de la présente invention est dit transparent, c'est-à- dire qu'il présente une absorption lumineuse d'au plus 50%, voire d'au plus 30%, préférentiellement d'au plus 20% ou au plus 15%, plus préférentiellement d'au plus 12% ou au plus 10% dans le domaine des longueurs d'onde de la lumière visible. Le substrat de la présente invention comprend un support et une électrode.
Le support présente de préférence un indice de réfraction d'au moins 1.2, 1.4 ou 1.5 à une longueur d'onde de 550 nm. Ceci permet, à structure de substrat égale, d'augmenter la quantité de lumière transmise ou émise. Sous le terme "support", on entend désigner non seulement le support en tant que tel mais également toute structure comprenant le support ainsi qu'au moins une couche d'un matériau ayant indice de réfraction, nmatériau, proche de l'indice de réfraction du support, nsu pPort, en d'autres termes | nSUpport- nmatériau l ≤ 0,1, | nSupport-nmatériau I représentant la valeur absolue de la différence entre les indices de réfraction. On peut citer comme exemple une couche d'oxyde de silicium déposée sur un support en verre silico-sodo-calcique.
Le support peut inclure des dispositifs additionnels favorisant l'extraction de lumière sur l'une et ou l'autre de ses faces. Un de ces dispositifs, à savoir une couche de diffusion, est décrit dans les documents publiés WO2009/017035, WO2009/116531, WO2010/084922, WO2010/084925, WO2011/046156, WO2011/046190 et la demande PCT/JP2011/074358, tous incorporés ici par référence. Généralement, cette couche de diffusion présente une épaisseur de plus de 5 μηι et n'est pas considérée comme un système optique cohérent. Dans le cas où une telle couche de diffusion est en contact avec l'électrode selon l'invention, nsupport est alors considéré comme étant l'indice, éventuellement de la matrice, de cette couche de diffusion. De manière alternative, il peut être souhaitable d'éviter ou de minimiser la diffusion du support. Le substrat selon l'invention peut ainsi afficher une valeur de flou ("haze") inférieure à 20%, plus préférentiellement inférieure à 10%, ou encore plus préférentiellement inférieure à 2% ou à 1%. L'avantage est alors que le dispositif organique incluant un tel substrat présente un aspect attrayant et non laiteux lorsqu'il est hors tension. Une esthétique de miroir peut, par exemple, être obtenue si la seconde électrode de charge opposée est réfléchissante; ou il est possible de réaliser un assemblage de vitrage transparent si la seconde électrode est également semi-transparente. Dans le cas d'une seconde électrode réfléchissante, le dispositif organique complet peut alors présenter une réflexion lumineuse (selon CIE, illuminant D65 2°) mesurée côté support de plus de 20%, ou plus préférentiellement de plus de 40% ou encore plus avantageusement de plus de 60%. Dans le cas d'une seconde électrode semi-transparente, le dispositif organique complet peut alors présenter une transmission lumineuse d'au moins 5% (selon CIE, illuminant D65 2°), ou plus avantageusement d'au moins 10% ou encore plus préférentiellement d'au moins 20%.
La fonction du support est de supporter et/ou de protéger l'électrode. Le support peut être en verre, en matière plastique rigide (par exemple : verre organique, polycarbonate) ou en films polymériques souples (par exemple : PVC, PET, PP, PTFE). Le support est de préférence rigide. Alternativement, il peut être roulé sur lui-même (par exemple un verre souple extra-fin utilisable dans un processus de dépôt "roll to roll").
Lorsque le support est en verre, par exemple une feuille de verre, celui-ci a de préférence une épaisseur géométrique d'au moins 0,05 mm. Le verre est de préférence silico-sodo-calcique clair ou coloré dans la masse ou en surface. Avantageusement, il peut être extra-clair, c'est-à-dire un verre avec un contenu total en fer, exprimé en tant que Fe203, de moins de 0.020 % poids, de préférence de moins de 0.015% poids. Le verre, du fait de sa faible porosité, a l'avantage d'assurer une bonne protection contre toute forme de contamination d'un dispositif comprenant le substrat transparent selon l'invention. L'électrode selon l'invention consiste en un empilage de couches comprenant au moins, dans l'ordre à partir du substrat, une première couche diélectrique (Dl), une première couche métallique de conduction (Ml), une deuxième couche diélectrique (D2), une deuxième couche méta llique de conduction (M2) et une troisième couche diélectrique (D3). L'électrode peut se comporter comme une anode ou, au contraire, comme une cathode.
Le nombre de couches métalliques de conduction dans l'électrode selon l'invention est deux. Ceci permet de réduire les problèmes de stabilité angulaire de la couleur émise par le dispositif OLED.
Les couches métalliques de conduction de l'électrode assurent principalement la conduction électrique de ladite électrode. Elles comprennent au moins une couche comprenant un métal ou un mélange de métaux. Le métal et/ou le mélange de métaux comprend de préférence au moins un élément sélectionné parmi Ag, Au, Pd, Pt, Al, Cu, Zn, Cd, In, Si, Zr, Mo, Ni, Cr, Mg, Mn, Co, Sn. Préférentiellement, le métal et/ou le mélange de métaux comprend au moins un élément sélectionné parmi Ag, Au, Cu, Al. Plus préférentiellement, la couche métallique de conduction comprend au moins de l'argent sous forme pure ou alliée à un autre métal, de préférence sélectionné parmi Pd et Au.
L'épaisseur géométrique de la première couche métallique de conduction (Ml) est d'au moins 8.5 nm, de préférence au moins 8.7 nm ou au moins 9.0 nm, plus préférentiellement au moins 9.5 nm. De préférence, l'épaisseur géométrique de la première couche métallique de conduction (Ml) est inférieure à 13.0 nm, de préférence inférieure à 12.5 nm ou à 12.0 nm, plus préférentiellement inférieure à 11.5 nm.
L'épaisseur géométrique de la deuxième couche métallique de conduction (M2) est d'au moins 6.0 nm, de préférence au moins 7.0 nm ou au moins 7.5 nm, plus préférentiellement au moins 8.0 nm. De préférence, l'épaisseur géométrique de la deuxième couche métallique de conduction (M2) est inférieure à 25.0 ou à 20.0 nm, de préférence inférieure à 18.0 nm ou à 15.0 nm, plus préférentiellement inférieure à 13.0 nm.
Avantageusement, l'épaisseur géométrique totale des deux couches métalliques de conduction de l'électrode, c'est-à-dire l'addition de l'épaisseur géométrique de la première couche métallique de conduction (Ml) et de l'épaisseur géométrique de la deuxième couche métallique de conduction (M2), est inférieure à 30.0 nm, de préférence d'au plus 29.0 nm, plus préférentiellement d'au plus 28.0 nm. Ces valeurs permettent à l'électrode multicouche de ne pas trop absorber la lumière émise par le système OLED.
Les couches diélectriques peuvent comprendre une ou plusieurs sous-couches de natures différentes. Avantageusement, elles comprennent un composé présentant un indice de réfraction à une longueur d'onde de 550 nm d'au moins 1.6, au moins 1.8 ou au moins 1.9, et/ou au plus 2.7 ou au plus 2.5. De préférence, elles présentent un indice de réfraction qui est supérieur à celui du support d'au moins 0.1, de préférence d'au moins 0.2.
De façon préférée, les couches diélectriques comprennent au moins un composé sélectionné parmi :
- les oxydes d'au moins un élément sélectionné parmi Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Zn, Al, Ga, In, Si, Ge, Sn, Sb et Bi, ainsi que les mélanges d'au moins deux d'entre eux; - le nitrure de silicium, l'oxynitrure de silicium, l'oxycarbure de silicium, l'oxycarbonitrure de silicium, le nitrure d'aluminium, l'oxynitrure d'aluminium ainsi que les mélanges d'au moins deux d'entre eux.
Plus préférentiellement encore, elles comprennent au moins un composé sélectionné parmi les oxydes de zinc, les oxydes d'étain, les oxydes de titane, les nitrures d'aluminium, les nitrures de silicium, les mélanges d'au moins deux d'entre eux, les oxydes mixtes de zinc-étain et les oxydes mixtes de titane- zirconium-yttrium.
L'épaisseur géométrique de la deuxième couche diélectrique (D2) est d'au moins 65 nm, de préférence au moins 67 nm ou au moins 70 nm, plus préférentiellement au moins 73 nm. Avantageusement l'épaisseur géométrique de la deuxième couche diélectrique (D2) est inférieure à 90 nm, de préférence inférieure à 88 nm ou à 86 nm.
En outre, nous avons trouvé que des sélections additionnelles au niveau des épaisseurs de la deuxième couche diélectrique (D2) et de la première couche métallique de conduction (Ml) ou de l'épaisseur de première couche diélectrique (Dl) pouvaient viser les mêmes objectifs généraux de l'invention.
Ainsi, l'épaisseur géométrique de la deuxième couche diélectrique, Ép.D2, et l'épaisseur géométrique de la première couche métallique de conduction, Ép.Ml, peuvent répondre à l'équation suivante:
Ép.Ml > -6.266386 + 0.1869915*Ép.D2 + 0.0123539*(Ép.D2-83.45)2 - ,
0.0001814*(Ép.D2-83.45)3
Préférentiellement, le rapport entre l'épaisseur géométrique de la deuxième couche diélectrique et l'épaisseur géométrique de la première couche diélectrique, Ép. D2/Ép.Dl, est d'au moins 1.90 ou plus préférentiellement d'au moins 1.95 ou au moins 2.00. Avantageusement aussi, l'épaisseur géométrique de la première couche diélectrique, Ép. Dl, peut être d'au moins 54 ou au moins 55 nm. Elle peut être inférieure à 80, à 70 ou à 65 nm. Une première couche diélectrique plus épaisse, peut contribuer à diminuer la sensibilité de l'électrode vis-à-vis de la migration d'alcalins en provenance du substrat.
Selon l'invention, la dernière couche diélectrique de l'électrode, celle la plus éloignée du support, c'est-à-dire la troisième couche diélectrique (D3), ne comprend pas de couche à base d'oxyde d'indium (par exemple ITO). Plus préférentiellement, toutes les couches diélectriques de l'électrode ne comprennent pas de couche à base d'oxyde d'indium. En effet l'utilisation d'indium pose un certain nombre de problèmes. Tout d'abord, les ressources en indium sont limitées ce qui entraînera à court terme une augmentation inéluctable du coût de production de ces dispositifs. Par ailleurs, l'indium présent dans les dispositifs organiques électroluminescents a tendance à diffuser dans la partie organique de ces dispositifs entraînant une diminution de leur durée de vie.
L'épaisseur géométrique de la troisième et dernière couche diélectrique de l'électrode est de préférence d'au moins 5 nm ou au moins 8 nm, plus préférentiellement d'au moins 10 nm. Préférentiellement, elle est inférieure à 30 nm ou de préférence inférieure à 25 nm, plus préférentiellement inférieure à 22 nm, à 20 nm ou à 18 nm.
On peut alternativement définir l'épaisseur de la dernière couche diélectrique de l'électrode par son épaisseur ohmique. L'épaisseur ohmique d'une couche est égale au rapport entre d'une part la résistivité (p) du matériau constituant cette couche et d'autre part l'épaisseur géométrique de cette même couche. De préférence l'épaisseur ohmique de la dernière couche diélectrique de l'électrode est d'au plus 1012 Ohm, préférentiellement d'au plus 107 Ohm. De telles valeurs permettent d'optimiser les paramètres optiques de la dernière couche diélectrique de l'électrode et donc d'optimiser la quantité de lumière transmise tout en gardant une épaisseur compatible avec des propriétés électriques permettant d'éviter des tensions d'allumage élevées. De manière générale, lorsque des valeurs d'épaisseur géométrique sont données ici pour les couches Dl, D2 ou D3 de l'électrode, elles le sont pour un matériau constitutif présentant un indice de réfraction entre 1.8 et 2.2, plus préférentiellement entre 1.9 et 2.1 ou encore plus préférentiellement entre 1.95 et 2.05 à une longueur d'onde de 550 nm. Elles correspondent donc à une épaisseur optique égale à l'épaisseur géométrique multipliée par cet indice de réfraction qui est proche de 2. Si un autre choix de matériau est fait, avec un indice de réfraction différent, il suffit de recalculer une épaisseur géométrique correspondante.
De manière avantageuse, les couches diélectriques de l'électrode sous une, plusieurs ou chacune des couches métalliques de conduction peuvent comprendre également une couche de nucléation contiguë à la face de la couche métallique de conduction la plus proche du support. Cette couche permet une croissance préférentielle de la couche métallique, par exemple d'argent, constituant la couche métallique de conduction et d'obtenir de ce fait de bonnes propriétés électriques et optiques de la couche métallique de conduction, par exemple en limitant le pouvoir absorbant de l'empilage. Elle comprend de préférence au moins du ZnO« (avec x < 1) et/ou du ZnxSnyOz (avec x + y > 3 et z 6). Préférentiellement, le ZnxSnyOz comprend au plus 95% en poids de zinc, le pourcentage en poids de zinc étant exprimé par rapport au poids total des métaux présents dans la couche. Préférentiellement, la couche de cristallisation est en ZnO. L'épaisseur géométrique de la couche de nucléation est avantageusement d'au moins 5 ou au moins 8 nm; elle est avantageusement d'au plus 15 ou au plus 12 nm. Cette épaisseur est comptabilisée dans l'épaisseur du diélectrique qui la contient,
Il peut être également avantageux de munir une, plusieurs ou chacune des couches métalliques de conduction d'une couche barrière de protection au-dessus de celle(s)-ci, c'est-à-dire sur la face de la couche métallique de conduction la plus éloignée du support. Cette couche permet d'éviter une détérioration de la couche métallique de conduction, notamment par oxydation ou nitruration. Elle peut comprendre un métal, un nitrure, un oxyde ou un oxyde sous-stœchiométrique comprenant au moins un élément sélectionné parmi Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, Zn et Al. Le plus préférentiellement, la couche sacrificielle comprend au moins Ti, TiOx (avec x < 2), TilM, NiCr, NiCrOx, TiZrOx (TiZrOx indique une couche d'oxyde de titane à 50% en poids d'oxyde de zirconium), ou ZnAlOx (ZnAIOx indique une couche d'oxyde de zinc à 2 à 5% en poids d'oxyde d'aluminium). De préférence, la couche barrière est une couche dite "céramique", c'est-à-dire qu'elle est obtenue à partir d'une cible céramique. Le choix de barrière céramique peut se montrer avantageux pour éviter des absorptions parasites qui diminuent l'efficacité du dispositif optoélectronique. L'épaisseur géométrique de la couche barrière est avantageusement d'au moins 0.4 ou au moins 0.5 nm; elle est avantageusement d'au plus 7.0 ou au plus 6.0 nm.
Avantageusement, l'électrode comprend une couche mince d'uniformisation des propriétés électrique de surface située, par rapport au support, au sommet de l'empilement multicouche constituant ladite électrode. La couche mince d'uniformisation des propriétés électriques de surface a pour fonction principale de permettre l'obtention d'un transfert uniforme de charge sur toute la surface de l'électrode. Ce transfert uniforme se traduit par un flux de lumière émise ou convertie substantiellement équivalent en tout point de la surface. Cela permet également d'augmenter la durée de vie des dispositifs photoniques étant donné que ce transfert est substantiellement le même en chaque point, éliminant de la sorte de possibles points chauds. La couche d'uniformisation a une épaisseur géométrique d'au moins 0.5 nm, préférentiellement d'au moins 1.0 nm. La couche d'uniformisation a une épaisseur géométrique d'au plus 6.0 nm, préférentiellement d'au plus 2.5 nm, plus préférentiellement d'au plus 2.0 nm. La couche d'uniformisation comprend au moins un métal, un nitrure, un oxyde, un carbure, un oxynitrure, un oxycarbure, un carbonitrure ou un oxycarbonitrure. Plus préférentiellement, la couche mince d'uniformisation des propriétés électrique de surface comprend au moins un oxynitrure de Ti, un oxynitrure de Zr, un oxynitrure de Ni, un oxynitrure de NiCr, un nitrure de Ti, un nitrure de Zr, un nitrure de Ni, ou un nitrure de NiCr.
Dans certains modes particuliers de réalisation, le substrat transparent selon l'invention est tel que le support porte un revêtement fonctionnel situé sur la face opposée à la face sur laquelle l'électrode est déposée. Ce revêtement fonctionnel peut être une couche ou un empilement de plusieurs couches à fonction, par exemple, antireflet, diffusante, antibuée, antisalissure, antigriffe ou absorbant sélectif.
Selon un autre de ses aspects, la présente invention a pour objet un dispositif électroluminescent organique comprenant un substrat transparent tel que décrit ci-avant et un système de couches organiques électroluminescentes (système OLED) émettant une lumière blanche, adjacent à l'électrode du substrat transparent.
Pour qu'un système OLED émette une lumière blanche, il peut être formé d'un mélange au sein d'une seule couche organique de composés émettant de la lumière rouge, verte, jaune et bleue; par empilement de trois ou quatre structures de couches organiques correspondant respectivement aux parties émettrices de lumière rouge, verte, jaune et bleue ou de deux structures de couches organiques (émission jaune et bleu); ou par juxtaposition de trois ou quatre (émission rouge, verte, bleu et jaune) ou deux structures de couches organiques (émission jaune et bleu) associées ou non avec un système de diffusion de la lumière. Lorsqu'on parle d'empilement de couches organiques, celles-ci peuvent être çontiguës (ces structures sont dites "minces") ou séparées par des couches de transport d'électrons et de trous (ces structures sont dites "épaisses" et peuvent être appelées "empilements organiques performants classiques"). Par les termes lumière blanche, on entend désigner une lumière dont les coordonnées chromatiques à 0°, pour un rayonnement perpendiculaire à la surface du substrat, sont comprises dans un des huit quadrilatères de chromaticité, contours des quadrilatères compris. Ces quadrilatères sont définis aux pages 10 à 12 de la norme ANSI_IMEMA_ANSLG C78.377-2008. Ces quadrilatères sont représentés sur la figure Al, PART 1 intitulée « Graphical représentation of the chromaticity spécification of SSL products in Table 1, on the CIE (x,y) chromaticity diagramme ».
De manière habituelle, G représente la couche organique émettrice émettant majoritairement de la lumière verte, B représente la couche organique émettrice émettant majoritairement de la lumière bleue et R représente la couche organique émettrice émettant majoritairement de la lumière rouge. Les séquences GBR, RGB, BRG, RBG, GRB, BGR sont les séquences dans lesquelles apparaissent les différentes couches émettrices, ces séquences sont exprimées par rapport à l'électrode, la première lettre de la séquence correspondant à la couche émettrice la plus éloignée de ladite électrode. Les couches organiques peuvent être constituées d'une couche en matériau unique ou d'une pluralité de couches chacune en un matériau différent. On peut aussi utiliser des systèmes à quatre couches émettrices où la couleur jaune (représentée par la lettre Y) permet d'étendre la couverture spectrale de la lumière visible du système OLED.
Les dispositifs organiques électroluminescents selon l'invention peuvent inclure un système OLED sélectionné parmi les systèmes GBR, RGB, BRG, RBG, GRB et BGR; les systèmes GBR et RGB sont préférés. Les dispositifs organiques électroluminescents selon l'invention peuvent aussi inclure un système OLED sélectionné parmi les systèmes BYRG, BRYG et leurs variantes; les systèmes BYRG ou BYGR sont préférés. De préférence, les dispositifs organiques électroluminescents selon l'invention incluent un système OLED formé d'un empilement organique performant classique comprenant des couches organiques, séparant au moins deux des différentes couches émettrices, qui présentent une épaisseur d'au moins 5 nm, plus préférentiellement d'au moins 15 nm, ou encore plus préférentiellement d'au moins 30 nm.
Un exemple de structure dite "mince" et les matériaux associés permettant de fabriquer une structure dite "épaisse" sont décrits par exemple dans Reineke et al. (NATURE, Vol 459, 14 May 2009) ou dans Rosenow et al. (Journal of Applied Physics, Vol. 108, 113113 (2010).
Selon un mode de réalisation particulier, le dispositif organique électroluminescent est intégré dans un vitrage, un double vitrage ou un vitrage feuilleté. Il est également possible d'intégrer plusieurs dispositifs organiques électroluminescents.
Selon un autre mode de réalisation particulier, le dispositif organique électroluminescent est enfermé dans au moins un matériau d'encapsulation en verre et/ou en plastique. Les différents modes de réalisation des dispositifs organiques électroluminescents peuvent être combinés. Enfin, les différents dispositifs organiques électroluminescents ont un vaste domaine d'utilisation. L'invention s'adresse notamment aux utilisations possibles de ces dispositifs organiques électroluminescents pour la réalisation d'une ou plusieurs surfaces lumineuses. Le terme surface lumineuse comprend par exemple les dalles éclairantes, panneaux lumineux, cloisons lumineuses, plans de travail, serres, lampes de poche, fonds d'écran, fonds de tiroirs, toits lumineux, écrans tactiles, lampes, flashs photo, fonds lumineux d'affichage, signaux de sécurité, étagères, éclairages d'habitacle de voiture ou d'avion.
Les dispositifs organiques électroluminescents selon l'invention présentent avantageusement, en combinaison:
- un CRI supérieur à 70, de préférence supérieur à 72 ou à 74,
- un Delta de couleur inférieur à 2.4, de préférence inférieur à 2.0 ou à 1.8, et
- une luminance équivalente à au moins 75%, de préférence au moins 85% ou 88%, ou encore plus préférentiellement au moins 90% ou 95%, de la luminance du même dispositif OLED optimisé cette fois avec une électrode en ITO présentant une épaisseur géométrique de 120 nm et une résistance par carré de
Figure imgf000018_0001
Les dispositifs organiques électroluminescents selon l'invention peuvent également présenter avantageusement une efficacité supérieure à 15 lumen/watt à une luminance de 10000 cd/m2.
En outre, les dispositifs organiques électroluminescents selon l'invention incorporent avantageusement une électrode présentant une résistance par carré bien inférieure à celle des électrodes traditionnelles en ITO ou des multicouches à une seule couche d'argent, favorisant ainsi la conduction de l'électrode et donc l'efficacité du dispositif OLED. La résistance par carré de l'électrode peut être inférieure à 5,0 Ω/α, de préférence inférieure à 4,0 Ω/α. Ceci autorise aussi d'envisager des dispositifs OLED de plus large surface sans renfort additionne! d'électrode.
Des modes de réalisation particuliers de l'invention vont à présent être décrits, en tant qu'exemples, tout en faisant référence aux Figures 1 à 2 et aux exemples 1 à 5. Des exemples comparatifs 1 à 12, ne formant pas partie de l'invention, sont également présentés.
Fig. 1: coupe transversale d'un dispositif électroluminescent organique selon l'invention
Fig. 2: coupe transversale d'un autre dispositif électroluminescent organique selon l'invention
Le dispositif électroluminescent organique (100) de la figure 1 comprend un substrat transparent (1), un système OLED (2) et une contre- électrode (3), le substrat transparent (1) comprenant un support (10) porteur d'une électrode (11). Ladite électrode (11) consiste en un empilage de couches comprenant une première couche diélectrique (Dl), une première couche métallique de conduction (Ml), une deuxième couche diélectrique (D2), une deuxième couche métallique de conduction (M2) et une troisième couche diélectrique (D3).
Le dispositif électroluminescent organique (200) de la figure 2 comprend un substrat transparent (1), un système OLED (2) et une contre- électrode (3), le substrat transparent (1) comprenant un support (10) porteur d'une électrode (11). Ladite électrode (11) consiste en un empilage de couches comprenant une première couche diélectrique (Dl) qui inclut une couche de nucléation (NI), une première couche métallique de conduction (Ml), une couche barrière (Bl), une deuxième couche diélectrique (D2) incluant une couche de nucléation (N2), une deuxième couche métallique de conduction (M2) une couche barrière (B2), une troisième couche diélectrique (D3) et une couche mince d'uniformisation (U). Le système OLED (2) comprend, dans l'ordre à partir du support (10), une première couche organique (OD4) incluant une couche de transport de trous, une couche émettrice bleue (EMB), une deuxième couche organique (OD3) incluant une couche de transport d'électrons et une couche de transport de trous, une couche émettrice verte (EMG), une troisième couche organique (OD2) incluant une couche de transport d'électrons et une couche de transport de trous, une couche émettrice rouge (EMR), et une quatrième couche organique (OD1) incluant une couche de transport d'électrons. Ce système OLED est dit "RGB". Une ou plusieurs couche(s) de blocage (non représentées à la figure 2) peut également être prévue dans le système OLED dans une ou plusieurs couche(s) transporteuse(s) de charges.
Les différents éléments des figures ne sont pas représentés à l'échelle.
Des exemples de dispositifs électroluminescents organiques selon l'invention sont présentés au Tableau I et des exemples comparatifs, ne faisant pas partie de l'invention, sont présentés au Tableau II.
Pour chaque partie du dispositif électroluminescent organique, les couches formant l'électrode et le système organique y sont décrites: leur nature et leur épaisseur géométrique exprimée en nanomètres. La lumière émise par le système OLED est également définie.
Zn90SnioO représente un oxyde mixte de Zn (90% poids) et Sn (10% poids) Zn48Sn520 représente un oxyde mixte de Zn (48% poids) et Sn (52% poids) TxO représente une couche de Ti02 déposée par pulvérisation magnétron à partir d'une cible céramique
ITO représente une couche d'oxyde d'indium dopé étain
Tous les dispositifs électroluminescents organiques des exemples et exemples comparatifs ont un support en verre sodo-silico-calcique. La résistance par carré de l'électrode, exprimée en Ω/D, ainsi que les performances des dispositifs électroluminescents organiques des exemples et exemples comparatifs sont données dans les tableaux I et II. Les performances ont été calculées à l'aide du programme de simulation SETFOS (Semiconducting Emissive Thin Film Optics Simulator) de la firme Fluxim (http://www.fluxim.ch), version 2. La luminance (Lum) est exprimée en unité arbitraire. Les valeurs de CRI données sont des moyennes de CRI calculés à des angles de 0, 10, 20, 80 degrés selon la formule ci-dessus. Les valeurs de Delta de couleur (Deltacol) ont également été calculées selon la formule donnée ci-dessus. La luminance est également exprimée de manière relative ("ratio") par rapport à la luminance de référence du même dispositif OLED optimisé avec une électrode en ITO ("référence") pour lequel les indices de réfraction proviennent du fichier ITO.nk disponible dans SETFOS.
Les performances des exemples montrent une excellente combinaison des valeurs de luminance, CRI et Delta de couleur, avec une luminance supérieure à 80, une luminance équivalente à au moins 88% de la luminance du même dispositif OLED optimisé avec une électrode en ITO de référence, un CRI supérieur à 70 et un Delta de couleur inférieur à 2. De plus, les électrodes selon l'invention présentent une résistance par carré bien inférieure à celle des électrodes traditionnelles en ITO ou des multicouches à une seule couche d'argent, favorisant ainsi la conduction de l'électrode, donc l'efficacité du dispositif OLED, ce qui autorise aussi d'envisager des OLEDs de plus large surface sans renfort d'électrode. Alors que pour chacun des exemples comparatifs, au moins une de ces performances montre une valeur inacceptable (valeur soulignée dans le Tableau II).
Tableau I: Exemples
Figure imgf000022_0001
Figure imgf000022_0002
Figure imgf000022_0003
Figure imgf000023_0001
Figure imgf000023_0002
En outre, des dispositifs électroluminescents organiques ont été effectivement fabriqués sur base de l'exemple 5 et des exemples comparatifs 4 et 12; l'efficacité quantique externe (EQE) et le rendement lumineux de ces dispositifs ont été mesurés à 10000 cd/m2; le CRI et le Delta de couleur de ces dispositifs ont été mesurés à 1000 cd/m2.
Le dispositif selon l'exemple 5, selon l'invention, montre une efficacité quantique externe de 22.4%, un rendement lumineux de 14 Im/W, un CRI supérieur à 86 et un Delta de couleur de 2.15.
Le dispositif selon l'exemple comparatif 4, hors invention, dans lequel l'électrode est un multicouche à une seule couche d'argent, montre une efficacité quantique externe de 16.6%, un rendement lumineux de 13.1 Im/W, un CRI de 61 et un Delta de couleur de 8.9.
Le dispositif selon l'exemple comparatif 12, hors invention, dans lequel l'électrode est un multicouche à deux couches d'argent, mais dont l'épaisseur de D2, 59.8 nm, est inférieure à 65 nm, montre une efficacité quantique externe de 16.6%, un rendement lumineux de 10.8 Im/W, un CRI de 82 et un Delta de couleur de 3.68.
D'autres empilages de couches selon l'invention ont également été réalisé pour étudier l'influence de l'épaisseur du troisième diélectrique. Ils sont ici repris en tant qu'exemples 6 à 9. Seuls les troisièmes diélectriques et éventuellement la couche d'uniformisation différencient ces exemples, selon les structures données dans la Table III. Ces exemples illustrent la préférence pour un troisième diélectrique d'épaisseur inférieure à 30 nm, permettant d'obtenir une tension d'allumage plus faible, ce qui peut se montrer avantageux. Table III Tension d'allumage [V]
D3 U
Exemples @ 10 mA/cm2 oxyde mixte Zn-Sn
6 - 6.2
33 nm
oxyde mixte Zn-Sn TiN
7 5.9
33 nm 0.5 nm
oxyde mixte Zn-Sn
8 - 3.4
12 nm
oxyde mixte Zn-Sn
9 - 3.2-3.4
6 nm

Claims

REVENDICATIONS
1. Substrat transparent (1) pour dispositif électroluminescent organique (100) comprenant un support (10) porteur d'une électrode (11), ladite électrode (11) consistant en un empilage de couches comprenant au moins, dans l'ordre à partir du substrat, une première couche diélectrique (Dl), une première couche métallique de conduction (Ml), une deuxième couche diélectrique (D2), une deuxième couche métallique de conduction (M2) et une troisième couche diélectrique (D3), le nombre de couches métalliques de conduction (M) dans l'électrode (11) étant deux et la troisième couche diélectrique (D3) ne comprenant pas de couche à base d'oxyde d'indium, caractérisé en ce que l'épaisseur géométrique de la deuxième couche diélectrique (D2) est d'au moins 65 nm et l'épaisseur géométrique de la première couche métallique de conduction (Ml) est d'au moins 8.5 nm.
2. Substrat transparent selon la revendication 1, caractérisé en ce que l'épaisseur géométrique de la deuxième couche diélectrique (D2) est inférieure à 90 nm.
3. Substrat transparent selon la revendication 1 ou la revendication 2, caractérisé en ce que l'épaisseur géométrique de la première couche métallique de conduction (Ml) est inférieure à 13 nm.
4. Substrat transparent selon l'une des revendications précédentes, caractérisé en ce que l'épaisseur géométrique de la deuxième couche diélectrique, Ép.D2, et l'épaisseur géométrique de la première couche métallique de conduction, Ép.Ml, répondent en outre à l'équation suivante:
Ép.Ml≥ -6.266386 + 0.1869915*Ép.D2 + 0.0123539*(Ép.D2-83.45)2 - 0.0001814*(Ép.D2-83.45)3
5. Substrat transparent selon l'une des revendications précédentes, caractérisé en ce que le rapport entre l'épaisseur géométrique de la deuxième couche diélectrique et l'épaisseur géométrique de la première couche diélectrique, Ép.D2/Ép.Dl, est d'au moins 1.90.
6. Substrat transparent selon l'une des revendications 1 à 4, caractérisé en ce que l'épaisseur géométrique de la première couche diélectrique, Ép.Dl, est d'au moins 54 nm.
7. Substrat transparent selon l'une des revendications précédentes, caractérisé en ce que l'épaisseur géométrique de la troisième couche diélectrique (D3) est comprise entre 5 et 30 nm.
8. Substrat transparent selon l'une des revendications précédentes, caractérisé en ce que les couches métalliques de conduction de l'électrode (11) comprennent de l'argent.
9. Substrat transparent selon l'une des revendications précédentes, caractérisé en ce que l'épaisseur géométrique totale des deux couches métalliques de conduction de l'électrode, Ép.Ml + Ép.M2, est inférieure à 30.0 nm.
10. Substrat transparent selon l'une des revendications précédentes, caractérisé en ce que les couches diélectriques de l'électrode (11) comprennent un composé présentant un indice de réfraction à une longueur d'onde de 550 nm compris entre 1.6 et 2.5.
11. Substrat transparent selon l'une des revendications précédentes, caractérisé en ce que les couches diélectriques de l'électrode (11) comprennent un composé sélectionné parmi les oxydes de zinc, les oxydes d'étain, les oxydes de titane, les nitrures d'aluminium, les nitrures de silicium, les mélanges d'au moins deux d'entre eux, les oxydes mixtes de zinc-étain et les oxydes mixtes de titane-zirconium-yttrium.
12. Substrat transparent selon l'une des revendications précédentes, caractérisé en ce que toutes les couches diélectriques de l'électrode (11) ne comprennent pas de couche à base d'oxyde d'indium.
13, Dispositif électroluminescent organique (100) comprenant un substrat transparent ( 1) selon l'une des revendications précédentes et un système OLED (2) émettant une lumière blanche, adjacent à l'électrode (11) du substrat transparent (1).
14. Dispositif électroluminescent organique (100) selon la revendication 14, caractérisé en ce qu'il présente une luminance équivalente à au moins 85% de la luminance du même dispositif OLED optimisé avec une électrode en ITO présentant une épaisseur géométrique de 120 nm et une résistance par carré de 12 Ω/ο (+/-0.S Ω/π), un CRI supérieur à 70 et un Delta de couleur inférieur à 2.0.
PCT/EP2013/001363 2012-05-08 2013-05-08 Dispositif photonique organique WO2013167270A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/399,729 US9397304B2 (en) 2012-05-08 2013-05-08 Organic photonic device
EA201492043A EA028689B1 (ru) 2012-05-08 2013-05-08 Органическое электролюминесцентное устройство
EP13739604.0A EP2847810A1 (fr) 2012-05-08 2013-05-08 Dispositif photonique organique
CN201380024056.4A CN104321897B (zh) 2012-05-08 2013-05-08 有机光子器件
JP2015510682A JP6346886B2 (ja) 2012-05-08 2013-05-08 有機フォトニック装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE201200305A BE1020676A3 (fr) 2012-05-08 2012-05-08 Dispositif photonique organique.
BEBE2012/0305 2012-05-08

Publications (2)

Publication Number Publication Date
WO2013167270A1 true WO2013167270A1 (fr) 2013-11-14
WO2013167270A8 WO2013167270A8 (fr) 2014-04-03

Family

ID=48832854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/001363 WO2013167270A1 (fr) 2012-05-08 2013-05-08 Dispositif photonique organique

Country Status (7)

Country Link
US (1) US9397304B2 (fr)
EP (1) EP2847810A1 (fr)
JP (1) JP6346886B2 (fr)
CN (1) CN104321897B (fr)
BE (1) BE1020676A3 (fr)
EA (1) EA028689B1 (fr)
WO (1) WO2013167270A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015140090A1 (fr) * 2014-03-17 2015-09-24 Agc Glass Europe Substrat transparent pour dispositifs photoniques

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101232717B1 (ko) * 2011-05-02 2013-02-13 한국생산기술연구원 Ti-In-Zn-O 투명전극 및 이를 이용한 금속 삽입형 3층 구조 고전도도 투명전극과 이의 제조방법
KR102527217B1 (ko) * 2016-01-15 2023-04-28 삼성디스플레이 주식회사 유기 발광 소자, 이의 제조 방법 및 이를 포함하는 유기 발광 표시 장치
CN107546341B (zh) * 2017-09-06 2019-07-26 蚌埠玻璃工业设计研究院 一种柔性多层透明导电氧化物薄膜的制备方法
CN108179391A (zh) * 2017-12-25 2018-06-19 中建材蚌埠玻璃工业设计研究院有限公司 信息显示用柔性多层透明导电薄膜的制备方法
DE112019006653T5 (de) * 2019-01-15 2021-12-09 Sony Semiconductor Solutions Corporation Anzeigevorrichtung, herstellungsverfahren einer anzeigevorrichtung und elektronische einrichtung
CN112768617A (zh) * 2021-01-06 2021-05-07 武汉华星光电半导体显示技术有限公司 显示面板及其制备方法、显示装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859532A (en) * 1986-11-27 1989-08-22 Asahi Glass Company Ltd. Transparent laminated product
JPH09236811A (ja) * 1995-12-27 1997-09-09 Asahi Glass Co Ltd 液晶ディスプレイ用透明導電基板および透明電極形成方法
US6040056A (en) * 1996-06-07 2000-03-21 Nippon Sheet Glass Co., Ltd. Transparent electrically conductive film-attached substrate and display element using it
KR20020088488A (ko) * 2001-05-17 2002-11-29 한국과학기술연구원 다층 구조의 투명 도전막
WO2009017035A1 (fr) 2007-07-27 2009-02-05 Asahi Glass Co., Ltd. Substrat translucide, procédé de fabrication du substrat translucide, élément del organique et procédé de fabrication de l'élément del organique
WO2009078682A2 (fr) * 2007-12-18 2009-06-25 Electronics And Telecommunications Research Institute Film conducteur transparent et son procédé de préparation
WO2009083693A2 (fr) 2007-12-27 2009-07-09 Saint-Gobain Glass France Substrat pour dispositif electroluminescent organique, ainsi que dispositif electroluminescent organique l'incorporant
WO2009116531A1 (fr) 2008-03-18 2009-09-24 旭硝子株式会社 Substrat pour dispositif électronique, corps constitué en couches pour élément à diode électroluminescente organique, procédé de fabrication de celui-ci, élément à diode électroluminescente organique et procédé de fabrication de celui-ci
WO2010084922A1 (fr) 2009-01-26 2010-07-29 旭硝子株式会社 Verre pour une couche de diffusion d'un dispositif de del organique, et dispositif de del organique
WO2010084925A1 (fr) 2009-01-26 2010-07-29 旭硝子株式会社 Composition de verre et élément comportant ladite composition sur un substrat
WO2011046190A1 (fr) 2009-10-15 2011-04-21 旭硝子株式会社 Elément de del organique, fritte de verre pour couche de diffusion s'utilisant dans un élément de del organique et procédé de production d'une couche de diffusion s'utilisant dans un élément de del organique
WO2011046156A1 (fr) 2009-10-15 2011-04-21 旭硝子株式会社 Verre pour une couche de diffusion dans un élément de diode électroluminescente organique, et élément de diode électroluminescente organique l'utilisant

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4799745A (en) * 1986-06-30 1989-01-24 Southwall Technologies, Inc. Heat reflecting composite films and glazing products containing the same
US4965121A (en) * 1988-09-01 1990-10-23 The Boc Group, Inc. Solar control layered coating for glass windows
EP0464789B1 (fr) * 1990-07-05 1996-10-09 Asahi Glass Company Ltd. Film à faible émittance
CA2179853C (fr) * 1995-06-26 2007-05-22 Susumu Suzuki Stratifie
JP3898357B2 (ja) * 1998-09-28 2007-03-28 日東電工株式会社 プラズマディスプレイパネル用フィルター
CN1107098C (zh) * 1999-09-05 2003-04-30 吉林大学 酚基-吡啶或其衍生物的金属配合物和它们作为电致发光材料的应用
US6919133B2 (en) * 2002-03-01 2005-07-19 Cardinal Cg Company Thin film coating having transparent base layer
US7663300B2 (en) * 2002-08-16 2010-02-16 Universal Display Corporation Organic light emitting devices for illumination
KR100528916B1 (ko) * 2003-06-25 2005-11-15 삼성에스디아이 주식회사 배면발광형 전계발광소자
US20080105298A1 (en) * 2006-11-02 2008-05-08 Guardian Industries Corp. Front electrode for use in photovoltaic device and method of making same
US20080164812A1 (en) * 2007-01-08 2008-07-10 Tpo Displays Corp. Method for fabricating a system for displaying images
US7888594B2 (en) * 2007-11-20 2011-02-15 Guardian Industries Corp. Photovoltaic device including front electrode having titanium oxide inclusive layer with high refractive index
US20090194157A1 (en) * 2008-02-01 2009-08-06 Guardian Industries Corp. Front electrode having etched surface for use in photovoltaic device and method of making same
CN101279888B (zh) * 2008-05-20 2012-05-09 吉林大学 9,10-二乙烯蒽衍生物及其在有机电致发光器件中的应用
CN101359721A (zh) * 2008-09-23 2009-02-04 吉林大学 光谱可调的顶发射有机电致发光器件
CN101423757A (zh) * 2008-12-09 2009-05-06 吉林大学 高性能有机电致发光材料及在有机电致发光器件中的应用
FR2985091B1 (fr) * 2011-12-27 2014-01-10 Saint Gobain Anode transparente pour oled

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859532A (en) * 1986-11-27 1989-08-22 Asahi Glass Company Ltd. Transparent laminated product
JPH09236811A (ja) * 1995-12-27 1997-09-09 Asahi Glass Co Ltd 液晶ディスプレイ用透明導電基板および透明電極形成方法
US6040056A (en) * 1996-06-07 2000-03-21 Nippon Sheet Glass Co., Ltd. Transparent electrically conductive film-attached substrate and display element using it
KR20020088488A (ko) * 2001-05-17 2002-11-29 한국과학기술연구원 다층 구조의 투명 도전막
WO2009017035A1 (fr) 2007-07-27 2009-02-05 Asahi Glass Co., Ltd. Substrat translucide, procédé de fabrication du substrat translucide, élément del organique et procédé de fabrication de l'élément del organique
WO2009078682A2 (fr) * 2007-12-18 2009-06-25 Electronics And Telecommunications Research Institute Film conducteur transparent et son procédé de préparation
WO2009083693A2 (fr) 2007-12-27 2009-07-09 Saint-Gobain Glass France Substrat pour dispositif electroluminescent organique, ainsi que dispositif electroluminescent organique l'incorporant
WO2009116531A1 (fr) 2008-03-18 2009-09-24 旭硝子株式会社 Substrat pour dispositif électronique, corps constitué en couches pour élément à diode électroluminescente organique, procédé de fabrication de celui-ci, élément à diode électroluminescente organique et procédé de fabrication de celui-ci
WO2010084922A1 (fr) 2009-01-26 2010-07-29 旭硝子株式会社 Verre pour une couche de diffusion d'un dispositif de del organique, et dispositif de del organique
WO2010084925A1 (fr) 2009-01-26 2010-07-29 旭硝子株式会社 Composition de verre et élément comportant ladite composition sur un substrat
WO2011046190A1 (fr) 2009-10-15 2011-04-21 旭硝子株式会社 Elément de del organique, fritte de verre pour couche de diffusion s'utilisant dans un élément de del organique et procédé de production d'une couche de diffusion s'utilisant dans un élément de del organique
WO2011046156A1 (fr) 2009-10-15 2011-04-21 旭硝子株式会社 Verre pour une couche de diffusion dans un élément de diode électroluminescente organique, et élément de diode électroluminescente organique l'utilisant

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NICKERSON, DOROTHY; JEROME, CHORLES W: "Color Rendering of light sources: CIE method of specification and its application", ILLUMINATING ENGINEERING (IESNA, vol. 60, no. 4, April 1965 (1965-04-01), pages 262 - 271
REINEKE ET AL., NATURE, vol. 459, 14 May 2009 (2009-05-14)
ROSENOW ET AL., JOURNAL OF APPLIED PHYSLCS, vol. 108, 2010, pages 113

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015140090A1 (fr) * 2014-03-17 2015-09-24 Agc Glass Europe Substrat transparent pour dispositifs photoniques

Also Published As

Publication number Publication date
BE1020676A3 (fr) 2014-03-04
EP2847810A1 (fr) 2015-03-18
WO2013167270A8 (fr) 2014-04-03
JP2015523678A (ja) 2015-08-13
US9397304B2 (en) 2016-07-19
EA201492043A1 (ru) 2015-04-30
JP6346886B2 (ja) 2018-06-20
CN104321897B (zh) 2018-03-02
CN104321897A (zh) 2015-01-28
EA028689B1 (ru) 2017-12-29
US20150115246A1 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
BE1020676A3 (fr) Dispositif photonique organique.
EP2005226B1 (fr) Panneau lumineux
EP2232610B1 (fr) Dispositif électroluminescent organique
EP2399306A1 (fr) Susbstrat transparent pour dispositifs photoniques
EP2408269A1 (fr) Electrode pour dispositif electroluminescent organique, sa gravure acide, ainsi que dispositif electroluminescent organique l&#39;incorporant
BE1020735A3 (fr) Substrat verrier texture a proprietes optiques ameliorees pour dispositif optoelectronique.
EP2268588A2 (fr) Substrat muni d&#39;un empilement a proprietes thermiques
FR2964254A1 (fr) Support de dispositif a diode electroluminescente organique, un tel dispositif a diode electroluminescente organique et son procede de fabrication
CA2598211A1 (fr) Structure lumineuse plane ou sensiblement plane
BE1020675A3 (fr) Dispositif photonique organique.
FR3069241A1 (fr) Materiau comprenant un empilement a proprietes thermiques
EP2883257A1 (fr) Support conducteur diffusant pour dispositif oled, ainsi que dispositif oled l&#39;incorporant
FR2994509A1 (fr) Support conducteur diffusant pour dispositif oled, ainsi que dispositif oled l&#39;incorporant
EP2875535A1 (fr) Electrode supportee transparente pour oled
BE1019243A3 (fr) Substrat transparent pour dispositifs photoniques.
WO2021130442A1 (fr) Système optique avec dispositif fonctionnel électrochimique à propriétés optiques et/ou énergétiques électrocommandables et revêtement de contrôle chromatique en réflexion, procédés associés

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13739604

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015510682

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013739604

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14399729

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 201492043

Country of ref document: EA