WO2013165011A1 - 衝突位置検出装置、風力発電装置および風力発電システム - Google Patents

衝突位置検出装置、風力発電装置および風力発電システム Download PDF

Info

Publication number
WO2013165011A1
WO2013165011A1 PCT/JP2013/062689 JP2013062689W WO2013165011A1 WO 2013165011 A1 WO2013165011 A1 WO 2013165011A1 JP 2013062689 W JP2013062689 W JP 2013062689W WO 2013165011 A1 WO2013165011 A1 WO 2013165011A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
piezoelectric element
collision
wind power
collision position
Prior art date
Application number
PCT/JP2013/062689
Other languages
English (en)
French (fr)
Inventor
照夫 岡野
Original Assignee
有限会社エフ・テイ・イノベーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社エフ・テイ・イノベーション filed Critical 有限会社エフ・テイ・イノベーション
Priority to US14/398,033 priority Critical patent/US20150135858A1/en
Priority to EP13784512.9A priority patent/EP2846127A4/en
Priority to CN201380023196.XA priority patent/CN104303008A/zh
Publication of WO2013165011A1 publication Critical patent/WO2013165011A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/10Arrangements for warning air traffic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/003Measuring arrangements characterised by the use of electric or magnetic techniques for measuring position, not involving coordinate determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0052Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes measuring forces due to impact
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a collision position detection apparatus, a wind power generation apparatus and a wind power generation system provided with the collision position detection apparatus.
  • a plurality of line sensors are disposed at different distances from the wind turbine generator, and the line sensor blocks light continuously from the far side to the near side of the wind turbine generator.
  • a flying object detection device that detects the approach of birds by detecting this is known (Patent Document 1).
  • Patent Document 2 is a vibration detection sensor in which a cable-like piezoelectric element is disposed perpendicular to a substrate.
  • the cable-shaped piezoelectric element includes a core electrode, a piezoelectric body disposed around the core electrode, an outer electrode disposed around the piezoelectric body, and a coating layer covering the outer electrode. If an output detector is connected to the end of the cable-shaped piezoelectron, vibration can be detected by detecting an output change when a bending load is applied.
  • the other end of the piezoelectric element is sealed with a conductive resin so that a disconnection detection resistor is connected in the vicinity of the tip of the core electrode, and the tip of the core electrode and the outer electrode can be conducted. Yes.
  • a cable-shaped pressure sensor in which a piezoelectric body is coated on an outer periphery of a core electrode having a circular cross-sectional view, and the piezoelectric body is coated with an outer electrode, and the two outer electrodes are arranged with a space therebetween.
  • a sensor characterized by comprising 1 and an outer electrode 2 Patent Document 3.
  • a signal is detected by the oscillating voltage detecting means 1, and when a pressure is applied to the outer electrode 2, the signal is detected by the oscillating voltage detecting means 2.
  • the signal detection indicates that the pressure is applied to either the outer electrode 1 or the outer electrode 2 of the cable-shaped pressure sensor.
  • a sensor cable in which a core electrode having a circular cross-sectional view is coated with a piezoelectric body, a control resistance coating layer, a piezoresistive coating layer, an electric conductor layer, and a jacket layer (Patent Document 4).
  • the resistance between the electric conductor and the control resistance coating layer and the voltage difference between the core electrode and the control resistance coating layer are measured at both ends of the sensor cable to detect the deformation of the cable.
  • the vibration detection sensor described in Patent Document 2 can sense the vibration of the cable-like piezoelectric element, but cannot identify the vibration position.
  • the cable-shaped pressure sensor described in Patent Document 3 it is only known whether the pressure is applied to the outer electrode 1 or the outer electrode 2, and it is difficult to specify the collision location.
  • the sensor cable described in Patent Document 4 is a special cable in which a control resistance film layer and a piezoresistive film layer are laminated and is not easily available, and the signal is easily attenuated by the resistance film. The signal cannot be received.
  • This invention is made in view of such a situation, and it aims at providing the collision position detection apparatus which can pinpoint a collision position simply, when it collides.
  • the present inventor has studied in detail a long piezoelectric element comprising the piezoelectric body, a conductor laminated on both sides thereof, and a covering body coated on the outer periphery thereof.
  • An electromotive force is generated between the conductors due to the piezoelectric effect, a voltage signal due to the electromotive force is propagated from the impact portion to the front end portion and the rear end portion of the piezoelectric element, and the propagation time to each end portion is Corresponding to the distance from the impact portion to the end portion, and therefore detecting the difference in propagation time between both ends, it was found that the distance to the location where the impact was applied can be calculated, and the present invention was completed. .
  • the present invention includes a piezoelectric element that generates a voltage upon collision, Signal detection means for detecting a signal generated by a collision with the piezoelectric element;
  • a collision position detection device comprising processing means for specifying a collision position to a piezoelectric element from a signal detected by the signal detection means,
  • the piezoelectric element is a long piezoelectric element including a long piezoelectric body and a pair of conductors that transmit a signal generated by the piezoelectric body,
  • the signal detecting means detects both a leading edge signal generated from a leading edge of the long piezoelectric element and a trailing edge signal generated from a trailing edge of the long piezoelectric element;
  • a collision position detection device is provided in which the processing means specifies a collision position of a piezoelectric element from a signal generation time difference between the front end signal and the rear end signal.
  • the present invention provides the collision position detection apparatus, wherein the processing means further evaluates the collision strength based on the signal strengths of the leading edge signal and the trailing edge signal.
  • this invention is a wind power generator provided with the said collision position detection apparatus,
  • the piezoelectric element is disposed in a blade of a windmill, It is an object of the present invention to provide a wind turbine generator capable of specifying a collision position of a collision object that collides with a blade by the signal detection unit and the processing unit.
  • the present invention is a wind power generation system including the wind power generation device and the reception device
  • the receiving device includes a receiving unit, a control unit, and a storage unit
  • the receiving unit receives signal information output from the collision position detection device
  • the storage unit stores the signal information received by the receiving unit, and a signal-impact table that associates the signal information with the type of the colliding object
  • the control unit is configured to compare the signal information stored in the storage unit with the signal-impact object table to identify the type of the collision object that has collided with the blade. Is to provide.
  • the present invention further provides the wind power generation system including a laser irradiation unit that irradiates a laser toward the collision object.
  • the present invention further provides the wind power generation system including a sound generation device that generates sound toward the collision object.
  • the collision position detection apparatus of the present invention it is possible to detect a collision position with a simple configuration.
  • the wind power generation system of the present invention it is possible to detect the position of the collision object that has collided with the blade of the windmill.
  • FIG. 1 It is a figure for demonstrating the wind power generation system of this invention, Comprising: It is a figure which shows a cylindrical diffuser, a laser irradiation apparatus, and the wind power generation system provided with the audio
  • a piezoelectric element that generates a voltage due to a collision
  • a signal detection unit that detects a signal generated by the collision with the piezoelectric element
  • a collision position from the signal detected by the signal detection unit to the piezoelectric element comprising a processing means for specifying, wherein the piezoelectric element comprises a long piezoelectric body and a pair of conductors for transmitting a signal generated by the piezoelectric body.
  • the signal detecting means detects both a front end signal generated from a front end of the long piezoelectric element and a rear end signal generated from a rear end of the long piezoelectric element, and the processing means
  • a collision position detection device for identifying a collision position of a piezoelectric element from a signal generation time difference between the front end signal and the rear end signal.
  • the piezoelectric element 51 used in the present invention includes a long piezoelectric body and a pair of conductors that transmit signals generated by the piezoelectric body, and the outer periphery thereof is covered with a covering. There may be.
  • Each of the pair of conductors disposed on the piezoelectric body functions as an “electrode”.
  • the conductor on the side on which the collision object collides is referred to as an external conductor 51c
  • the other conductor is referred to as a ground conductor 51a.
  • either of the pair of electrodes may be the external conductor 51c, and the other may be the ground conductor 51a.
  • the ground conductor 51a and the external conductor 51c are disposed on the piezoelectric body 51b without contact.
  • a conductor 51a and 51c are laminated on both sides of a long plate-like piezoelectric body 51b, and the outer periphery thereof is further covered with a protective coating 51d.
  • the shape of the piezoelectric body 51b is not limited to a long plate shape, and may be, for example, a cable shape.
  • FIG. 1B shows a cable sensor-like piezoelectric element in which a ground conductor 51a has a cable shape, and a piezoelectric body 51b, an external conductor 51c, and a protective coating 51d are sequentially formed on the outer periphery thereof in the form of a coaxial cable. 51 aspects are shown.
  • the shape of the external conductor 51c is not limited to a plate shape, and may be a cylindrical shape or a film shape covering the piezoelectric body 51b. Therefore, the cable-shaped ground conductor 51a covered with the insulating layer 51e may be laminated or wound with the piezoelectric body 51b covered with the external conductor 51c, and the outer periphery thereof may be covered with the protective coating 51d. .
  • a cable-shaped ground conductor 51a covered with an insulating layer 51e is wound with a coated piezoelectric body A in which a piezoelectric body 51b is covered with an external conductor 51c, and the outer periphery thereof is covered with a protective coating 51d.
  • the piezoelectric element 51 is shown.
  • the ground conductor 51a and the external conductor 51c are composed of members that can function as electrodes, and are preferably metals such as copper, tin, silver, and aluminum.
  • An annealed copper wire, tin-plated annealed copper wire, silver-plated annealed copper wire, copper A wire in which a silver alloy is wound around a wire can be used.
  • the piezoelectric body 51b is a dielectric that generates a voltage when pressure is applied.
  • polyvinylidene fluoride for example, polyvinylidene fluoride, mixtures of polyvinylidene fluoride and other resins, copolymers of vinylidene fluoride and trifluoroethylene, other polymer piezoelectrics; lead titanate, lead zirconate, and mixed crystals of these
  • a certain lead titanate zirconate, a composite formed by adding the above compound to rubber or resin, or a piezoelectric ceramic can be used.
  • a synthetic resin such as polyvinyl chloride, polyethylene, or polypropylene can be suitably used.
  • the shapes of the piezoelectric body, the conductor, and the coating body can be appropriately selected according to the shape of the final long piezoelectric element such as a foil shape, a thin film shape, a cable shape, and a braided net shape in addition to a plate shape.
  • the piezoelectric element is a coaxial cable
  • an annealed copper wire can be suitably used as the ground conductor 51a.
  • the annealed copper wire is covered with polyvinylidene fluoride to form the piezoelectric body 51b, and the outer periphery thereof is braided.
  • An outer conductor 51c covered with an annealed copper wire and a protective coating 51d covered with a synthetic resin film can be suitably used.
  • the external conductor 51c By configuring the external conductor 51c with a braided copper wire made of soft copper, a restoring force after impact can be ensured. If polyvinyl chloride or polyethylene is used as the protective coating 51d, flexibility can be imparted to the piezoelectric element 51, and it can be easily disposed along a curved surface. Furthermore, since it has moderate elasticity, its shape is restored in a short time after impact.
  • the cross-sectional area of the piezoelectric element 51 used in the present invention is preferably 1 to 100 mm 2 , more preferably 2 to 70 mm 2 .
  • the voltage is detected from the piezoelectric element 51, but it is not necessary to extract a large current.
  • the signal strength can be ensured by increasing the thickness of the piezoelectric body 51b within the above range, and the arrangement can be easily performed because it is small and light.
  • the length of the piezoelectric element 51 is preferably 5 to 2000 m, more preferably 10 to 1500 m. In this range, the collision position can be detected with high accuracy.
  • the collision position detection device of the present invention detects a signal from the piezoelectric element 51.
  • one end of the piezoelectric element 51 is referred to as a front end, and the other end is referred to as a rear end.
  • An outline of the collision position detection apparatus 50 of the present invention is shown in FIG.
  • the ground conductor 51 a and the external conductor 51 c at the tip of the piezoelectric element 51 are connected to a pulse waveform shaping circuit 55 via a cable 52.
  • a signal from the tip of the piezoelectric element 51 is input to the pulse waveform shaping circuit 55 and then amplified by the operation amplifier 56a.
  • the ground conductor 51a and the external conductor 51c are connected to the pulse waveform shaping circuit 55 via the cable 52, and the signal input to the pulse waveform shaping circuit 55 is the operation amplifier 56b. Is amplified.
  • the pulse waveform shaping circuit 55 includes a rectifier diode 55a and a smoothing capacitor 55b, and converts the current from the piezoelectric element 51 side into a shaped pulse signal, and corresponds to the signal detection means in the present invention. .
  • the operation amplifiers 56a and 56b are electrically connected to the microcomputer 58.
  • the microcomputer 58 corresponds to processing means, and includes an input / output circuit 58a, a CPU 58b, a storage unit 58c, and a timer circuit 58d.
  • the input / output circuit 58a converts the analog signal input from the operation amplifiers 56a and 56b into a digital signal, for example, a wireless conversion device (not shown) such as information (electrical signal) such as an operation result stored in the storage unit 58c
  • the A / D converter can output the signal.
  • the CPU 58b is a central processing unit that controls the operation of the microcomputer 58 in accordance with a program in the storage unit 58c.
  • the storage unit 58c is a memory that includes a RAM (Random Access Memory) that temporarily stores the results calculated by the CPU 58b and a ROM (Read Only Memory) that stores programs and data.
  • the timer circuit 58d is a circuit that starts or ends counting in accordance with an instruction from the CPU 58b.
  • FIG. 3 shows changes in potential between a signal from the front end of the piezoelectric element 51 and a signal from the rear end, with the horizontal axis representing the time axis and the vertical axis representing the voltage axis.
  • a signal whose potential increases at the time Ta is received from the front end, and a signal whose potential increases at the time Tb is received from the rear end.
  • Each signal is input to the microcomputer 58 after being shaped by the operation amplifiers 56a and 56b.
  • Ta and Tb when the signal is generated are specified by the timer circuit 58d, and the absolute value of Ta ⁇ Tb is calculated by the CPU 58b. The impact position can be calculated from these information and the signal transmission speed of the piezoelectric element 51.
  • and the impact position of the piezoelectric element 51 may be stored in the storage unit 58c in advance. By calculating Ta, Tb and
  • Vth indicates a threshold value in the operational amplifiers 56a and 56b, and if the setting is made such that the signal below Vth is cut by the comparator function of the operation amplifiers 56a and 56b, a signal below a certain level is not measured. Can be configured.
  • a timing generation circuit serving as a reference may be provided in the measurement circuit, and the pulse generation time may be measured based on the reference timing generation circuit, or a signal at Ta or Tb is input. This may be inputted as an interrupt signal of the microcomputer 58, and this may be used as a trigger to measure
  • Va indicates the signal strength of the leading edge signal
  • Vb indicates the signal strength of the trailing edge signal. By measuring this signal strength, the magnitude of the impact can be known.
  • Va and Vb have the same value.
  • Va and Vb differ due to attenuation, it is preferable to measure both and record the larger value.
  • both Va and Vb may be recorded, or the average of Va and Vb may be recorded.
  • the collision position detection apparatus of the present invention may further include a smoothing capacitor 55b in any of the cables 52 that input signals to the pulse waveform shaping circuit 55 from the front end or the rear end.
  • FIG. 2 shows a mode in which a smoothing capacitor 55b is provided in a part of a cable connected to the ground conductor 51a at the tip of the piezoelectric element 51.
  • the measured information such as Ta when receiving the signal from the front end of the piezoelectric element 51, Tb when receiving the signal from the rear end, Va and Vb, the calculated
  • the collision position detection apparatus 50 of the present invention uses the long piezoelectric element 51, when such a piezoelectric element 51 is stretched around the intruder position of an intruder from the outside, the intrusion location can be detected, and security is ensured. Can be used as part of the system. Conventionally, when a wire is stretched, there is a device that receives a wire break as a signal and a device that receives a potential change that has occurred in one of the wires. It was necessary to install. However, in the present invention, by using a wire-shaped piezoelectric element to evaluate the potential change at the front and rear ends, the collision location can be specified, so only by arranging one long piezoelectric element 51, The intrusion point can be specified.
  • the collision position detection apparatus 50 of the present invention uses the long piezoelectric element 51 and can electrically measure the collision force that has collided with the long piezoelectric element 51 to identify the collision position. Since the voltage when the collision object directly collides with the piezoelectric element 51 is directly measured, the influence of other noise can be suppressed, and the sensitivity is excellent. Therefore, for example, in a plant including a pipeline through which a large amount of fluid is transferred, the piezoelectric element 51 is arranged along the pipeline, and the sound generated due to the damage of the pipeline is regarded as vibration, and the damage is caused. The location can also be specified.
  • control is performed so that slight vibration is not detected by reducing the detection sensitivity, and only a signal when the piezoelectric element 51 is buried in the ground such as a forest or a private house and a pressure of a certain level or more is applied to the piezoelectric element 51.
  • the detection of the signal can be detected as an intrusion of a pest or the like.
  • the collision position detection apparatus 50 of the present invention is provided with a mechanism for periodically applying a weak impact to the piezoelectric element 51 and receiving the generated test pulse in order to detect the cutting state of the piezoelectric element 51.
  • a mechanism for periodically applying a weak impact to the piezoelectric element 51 and receiving the generated test pulse in order to detect the cutting state of the piezoelectric element 51.
  • Can do For example, when a test pulse is transmitted to the piezoelectric element 51 and the level of the reflected signal is monitored from the end portion, the deterioration or cutting state of the piezoelectric element 51 can be monitored. When the deterioration occurs due to corrosion or the like, the signal characteristics are also lowered. Therefore, the state of the piezoelectric element 51 can be easily monitored as described above. When the test pulse cannot be received, it can be determined that the disconnection state has occurred.
  • the collision position detection device 50 of the present invention can be connected with a temperature sensor, a threatening sound generation device, and the like.
  • a temperature sensor when a temperature sensor is provided, both an impact and a temperature can be sensed, a fire occurrence in the duct can be easily detected, and an inexpensive fire detection system can be constructed.
  • a threatening sound generating device when a threatening sound generating device is also provided, for example, a threatening sound can be generated at the time of signal reception on the condition that the time of signal reception can be specified as the time of invasion of a harmful animal.
  • a second aspect of the present invention is a wind power generator provided with the collision position detection device, wherein the piezoelectric element is disposed in a blade of a windmill, and a collision position of a collision object that collides with the blade by the signal detection means and the processing means. It is a wind power generation device that can specify.
  • a third aspect of the present invention is a wind power generation system including the wind power generation device and a reception device, wherein the reception device includes a reception unit, a control unit, and a storage unit, and the reception unit includes a collision position. Signal information output from a detection device is received, and the storage unit includes signal information received by the reception unit, and a signal-impact object table in which the signal information is associated with a collision object type. The control unit is configured to compare the signal information stored in the storage unit with the signal-impact object table to identify the type of the collision object that collided with the blade. It is a wind power generation system.
  • the wind power generation system 100 includes a tower 11 erected on a reinforced concrete foundation 12 installed on the ground surface G, and an upper end portion of the tower 11.
  • the wind turbine generator 10 includes a nacelle 20 to be installed, a hub 30 provided on the front end side of the nacelle 20 so as to be rotatable around a substantially horizontal horizontal rotation axis, and a receiving device 80.
  • the wind power generator 10 is provided with the collision position detection device 50.
  • the tower 11 is formed in a cylindrical shape with a metal such as steel. Inside the tower 11, electrical devices that cannot be exposed to external wind and rain are disposed.
  • the nacelle 20 is formed in a cylindrical shape, and a speed change gear 21 and a generator 22 are disposed therein.
  • the hub 30 has a plurality of (for example, three) blades 40 extending in the radial direction.
  • the blade 40 is formed in a hollow shape from a material having a predetermined hardness capable of transmitting vibration caused by an impact, such as FRP (Fiber Reinforced Plastics) or a fiber reinforced composite material.
  • a rotor shaft 23 extending inside the nacelle 20 is connected to the nacelle 20 side of the hub 30. The other end of the rotor shaft 23 is connected to a speed change gear 21 in the nacelle 20.
  • a power transmission shaft 24 is connected to the transmission gear 21. The other end of the power transmission shaft 24 is connected to the generator 22.
  • the rotation of the hub 30 is transmitted to the rotor shaft 23.
  • the transmission gear 21 is rotated by the rotation of the rotor shaft 23, and the generator 22 is driven via the power transmission shaft 24 to generate power.
  • the generated electric power is sent to electric equipment inside the tower 11 by a cable (not shown).
  • the nacelle 20 can be swung in the horizontal direction at the upper end of the tower 11 together with the blades 40, and is controlled by a driving device and a control device (not shown) so that the nacelle 20 can always be efficiently directed in the windward direction. Yes.
  • the piezoelectric element 51 used in the wind power generator 10 or the wind power generation system 100 of the present invention receives an impact on the piezoelectric body 51b, the piezoelectric element 51 generates a voltage due to the piezoelectric effect between the ground conductor 51a and the external conductor 51c.
  • the amount of voltage generated at this time is preferably 100 to 200 V when an object having a mass of 100 g is dropped on the piezoelectric element 51 from a height of 30 cm. This is because, within this range, no voltage is generated in the case of a weak impact such as wind, and the impact of birds can be accurately detected.
  • the piezoelectric material constituting the piezoelectric body is selected, in particular, the content of polyvinylidene fluoride, lead zirconate titanate, etc. in the piezoelectric material, the thickness of the piezoelectric body is adjusted, etc. It can be carried out. Moreover, you may select and use the said sensitivity thing from commercially available sensor cables. If it is the said sensitivity, the function of a signal filter is ensured to the piezoelectric element 51 itself, and it can be made to react only to a fixed impact or more so that a low voltage or a voltage may not generate
  • Vth a signal due to a small impact such as dust or dust is cut by the filter characteristic of the piezoelectric element 51. It is also possible to cut the signal below Vth by the comparator function of the input operational amplifiers 56a and 56b and adjust so that a small impact other than the collision object is not detected, thereby improving the signal accuracy with respect to the collision of the birds.
  • the setting of Vth can be appropriately selected according to the environment in which the wind power generation system 100 is installed.
  • the collision position detection device 50 includes a piezoelectric element 51, signal detection means including two pulse waveform shaping circuits 55, and processing means including a microcomputer 58.
  • the ground conductor 51a and the external conductor 51c of the piezoelectric element 51 on the tip side of the blade 40 are connected to the cable 52, respectively, and the signal is passed through the first rotating transformer 53 including the rotating coil 53a and the fixed coil 53b.
  • the signal is input to the pulse waveform shaping circuit 55, and then the input signal is amplified by the operation amplifier 56a.
  • the ground conductor 51a and the external conductor 51c of the piezoelectric element 51 on the hub 30 side of the blade 40 are also connected to the cable 52, respectively, via a second rotary transformer 54 including a rotary coil 54a and a fixed coil 54b.
  • the signal is input to the pulse waveform shaping circuit 55b, and then the input signal is amplified by the operation amplifier 56b.
  • the signals amplified by the operation amplifiers 56a and 56b are respectively input to processing means including the microcomputer 58, and as described in the section of the collision position detection device 50, Ta and Tb at the time of signal reception, and signal transmission
  • the CPU 58b is generated by the collision P, and the signal transmitted from the front end or rear end is earlier.
  • the signal that arrives may be used as the first collision signal, and the signal that arrives later may be used as the second collision signal.
  • the timer circuit 58d starts timing, and measures the time until the second collision signal that arrives late is input. In this case, the timer circuit 58d is set to stop timing when the second collision signal is input.
  • the piezoelectric element 51 used in the present invention can generally transmit a signal in a length of 50 m in 150 to 300 milliseconds. Since this transmission speed is slower than the transmission time of laser light or the like,
  • a smoothing capacitor 55 b may be provided in the signal transmission circuit on the tip side of the blade 40 of the piezoelectric element 51.
  • a wireless conversion device 59 for transmitting a signal output from the microcomputer 58 to the receiving device 80 is provided.
  • the receiving device 80 includes a receiving unit 81 and a control unit 82.
  • the reception unit 81 performs reception processing corresponding to the transmission method of the wireless conversion device 59.
  • the wireless conversion device 59 a device formed of a weak wireless module driven by a battery can be used.
  • spread spectrum communication can be performed.
  • the transmission side modulates (spreads) the carrier wave using a spread code, and then transmits the signal.
  • the phase of the spread code is shifted by the transmission delay time to synchronize and multiply the received signal.
  • the spread code is phase-shifted by the transmission delay time and despread. To succeed in reception with unknown transmission delay time, repeat the despreading operation while sliding the spreading code little by little.
  • a method using the phase change point of the received signal carrier may be used.
  • a phase change point arranged in time series is compared with a previously generated one-chip time-inverted spread code, and a candidate for the amount of shift (shift amount) between the phase change point and the spread code is calculated.
  • Despreading is attempted using a despreading code obtained for each deviation amount candidate, and it is determined whether demodulation is successful. According to this method, since the despreading is performed using the despreading code estimated in advance, the received signal can be synchronized at high speed.
  • phase change points arranged in time series with those obtained by inverting the spreading code for one chip time even if a short phase change point due to noise is included in the received signal, A change point is not detected as a phase change point that appears at an integral multiple of one chip time. Therefore, even when it is provided in a device that generates large noise such as a wind power generator, it is not affected by the noise.
  • the control unit 82 is a central processing unit that controls the operation of the receiving device 80 in accordance with a program stored in the storage unit 83.
  • the signal information received by the receiving unit 81 is stored in the storage unit 83.
  • the storage unit 83 further stores a signal-impact object table 84 indicating a correlation between signal information generated by the piezoelectric element 51 and an impact object corresponding to the signal information.
  • the signal information includes signal intensity such as measurement voltage and voltage change time, and the impact object includes a bird name.
  • the signal-impact table 84 may include items such as season and time.
  • the signal-impact table 84 is preferably created for each region where the wind power generator 10 is installed. This is because the collision object may differ depending on the region. An example of the signal-impact table 84 is shown in FIG.
  • the wind power generation system 100 configured as described above operates as follows. First, when the operation of the wind turbine generator 10 shown in FIG. 4 is started and the wind hits the blade 40, the hub 30 rotates around the rotor shaft 23. Birds that could not visually recognize the blade 40 rotating at high speed approach the wind power generator 10 and collide with the blade 40 as colliding objects.
  • the piezoelectric element 51 When the birds collide with the blade 40, the piezoelectric element 51 receives an impact directly or indirectly and generates a voltage. Then, the current propagates to the front end side and the rear end side of the piezoelectric element 51, respectively. Since the blade 40 is made of a material having a predetermined hardness capable of transmitting vibration due to an impact, the blade 40 vibrates even if the colliding object does not directly collide with the piezoelectric element 51.
  • the element 51 can generate a voltage.
  • the current that has reached the end of the piezoelectric element 51 is propagated to the first rotary transformer 53 and the second rotary transformer 54 via the cable 52, and to the first rotary transformer 53 and the second rotary transformer 54.
  • the reached currents are converted into pulse signals shaped by the pulse waveform shaping circuit 55, respectively.
  • the pulse signals shaped by the pulse waveform shaping circuit 55 are amplified by operation amplifiers 56a and 56b, respectively.
  • the analog signal signals amplified by the operation amplifiers 56a and 56b are output to the microcomputer 58 and then converted into digital signals by the input / output circuit 58a of the microcomputer 58.
  • the microcomputer 58 measures and stores the signal generation time Ta from the front end of the piezoelectric element 51 and the signal generation time Tb from the rear end, and signals Ta and Tb. Va and Vb, which are intensities, are measured and stored, the absolute values of Ta and Tb are calculated, the collision position is specified, and these pieces of information are stored in the storage unit 58c. These pieces of information are transmitted to the receiving device 80 via the wireless conversion device 59.
  • the information received by the receiving unit 81 includes, after demodulation, at least time difference information A regarding
  • Information such as Ta and Tb may be used instead of the information of the first collision signal.
  • the control unit 82 can identify the impact object by comparing the signal-impact object table 84 stored in the storage unit 83 in advance with the date / time information C and the signal strength information D received by the receiving device 80. For example, when the input date and time information C is January and the signal strength information D is 250 V, the control unit 82 can extract the bird name BBBB as a collision object with reference to the signal-impact object table 84. . When the input date and time information is March and the signal strength information D is 350 V, the control unit 82 can extract the bird name DDDD as a collision object with reference to the signal-impact object table 84.
  • the signal-impact table 84 may be further finely classified.
  • the wind power generation system 100 of the present invention can identify a collision object that collides during operation with a simple mechanism.
  • the present invention by collecting impact data from a plurality of wind power generators, it is possible to grasp the situation of birds and the like colliding with the wind power generators on a global scale. Based on this data, it is possible to specify the location conditions of the wind turbine generator that can avoid the collision. This contributes to environmental conservation. Moreover, since the system of the present invention does not use electromagnetic waves, there is no influence on birds and neighboring residents, and the load on the environment is small.
  • the wind power generation system 100 of the present invention can use the collision position information E stored in the receiving device 80 to take bird repelling means toward the collision object, thereby avoiding a new collision.
  • bird repelling means such as laser irradiating means 90 and 91 for irradiating a collision object with a laser and sound generating devices 95 and 96 for generating sound toward the collision object are provided.
  • the wind power generator 10 to be configured may include a cylindrical diffuser 110 around the blade 40 in order to increase the wind speed toward the blade 40.
  • FIG. 8 shows a mode in which the laser irradiation device 90 is disposed on the ground surface G and the laser irradiation device 91 is disposed on the diffuser 110.
  • the sound generation devices 95 and 96 are devices that generate sound that the bird dislikes.
  • FIG. 8 shows a state in which the sound generation device 95 is disposed on the ground surface G and the sound generation device 96 is disposed on the diffuser 110.
  • the laser irradiation devices 90 and 91 and the sound generation devices 95 and 96 are controlled not only by ON / OFF control but also by the laser irradiation devices 90 and 91 so that lasers of various colors and light amounts are irradiated. Of course, the color and the amount of light may be changed according to the type of bird that has collided. Further, various frequencies and sound volumes may be generated from the sound generators 95 and 96 to avoid a collision of flying birds. It is not limited to the laser irradiation apparatuses 90 and 91, The illuminating device which has a light emitting diode may be arrange
  • a receiving unit 81 and a control unit 82 can include a transmitting unit 85 in the receiving device 80.
  • the control unit 82 controls the laser irradiation devices 90 and 91 and / or the sound generation devices 95 and 96 to ON / OFF control.
  • the collision position detection device 50 when a bird collides with one of the blades 40, Ta, Tb,
  • This information is transmitted to the receiving device 80 via the wireless conversion device 59 and stored in the storage unit 83.
  • the laser irradiation devices 90 and 91 and / or the sound generation devices 95 and 96 are turned on from the control unit 82 toward the collision position, and after a predetermined time has passed, these devices are turned on.
  • An operation signal for returning to OFF is output.
  • the hub 30 of the wind power generation apparatus 10 is configured with a transparent member, and a projector is housed inside the hub 30 so that images of raptors are projected from the projector toward the transparent member. You may make it project.
  • the image of the bird of prey is projected on the surface of the hub 30, and the image can be viewed from the outside through the transparent member. Birds approaching the blade 40 can avoid approaching the hub 30 and the blade 40 by viewing the image of the bird of prey projected from the hub 30.
  • the video is not limited to raptors, and can be widely targeted as long as birds avoid access.
  • Such image projection is performed by causing the control unit 82 to transmit instruction information for projecting the image for a predetermined time from the control unit 82 when the collision position information E is newly stored in the receiving device 80. be able to.
  • a collision position detection device 50 arranged in a certain wind power generation system 100 detects a bird collision
  • the information may be communicated to stop the rotation of the blades 40 of the wind power generation system 100, or the laser irradiation device and the sound generation device of other wind power generation systems 100 may be controlled to be turned on and off. May be.
  • the present invention is not limited to the above-described embodiments, and various modifications and applications are possible. Moreover, it is also possible to freely combine the constituent elements of the above-described embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Wind Motors (AREA)
  • Catching Or Destruction (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

 衝突により電圧を発生する圧電素子(51)と、前記圧電素子(51)への衝突により発生した信号を検出する信号検出手段と前記信号検出手段により検出した信号から圧電素子への衝突位置を特定する処理手段とを備える衝突位置検出装置(50)である。前記圧電素子(51)が、長尺の圧電体(51b)と、前記圧電体(51c)の両面に積層された導電体(51a、51c)と、これらの外周に被覆された被覆体(51d)とからなる長尺圧電素子(51)であり、前記長尺圧電素子(51)の先端から発生した先端信号と、前記長尺圧電素子(51)の後端から発生した後端信号との双方を検出して、衝突位置を特定することができる。これを風車のブレードに配設すると、ブレードに衝突した鳥類の情報を検出することができる。

Description

衝突位置検出装置、風力発電装置および風力発電システム
 本発明は、衝突位置検出装置、前記衝突位置検出装置を配設した風力発電装置および風力発電システムに関する。
 風力発電装置では、回転するブレードを視認できなかった鳥類がブレードに衝突する事故が発生している。風力発電装置にダメージを与えるだけでなく、天然記念物の鳥類や、渡り鳥が風力発電装置のブレード部に衝突し、死亡する事例が一部で発見されている。しかしながら、衝突によって落下した鳥類は近隣の動物の餌となる場合が多く、鳥類衝突の実態を正確に把握する手段が存在しなかった。一方で、昨今の電力不足から、風力発電装置は地上だけでなく、海上にも建設が進んでおり、渡り鳥の飛行ルートに設置されやすいことと相俟って鳥類の被害が懸念される。しかしながら、実態把握が困難なため有効な対策を講じることが困難であった。
 そのような事故を防止するため、風力発電装置から距離の異なる位置に複数のラインセンサを配設し、該ラインセンサが、風力発電装置の遠い側から近い側に光が連続して遮られたことを検知することによって、鳥類の接近を検知する飛来物検知装置が知られている(特許文献1)。
 また、レーダのように、風力発電装置から、電磁波を発射して前方の飛来物や鳥類からの反射を捕らえて検出する方法もある。しかしながら、システムが複雑になり、高価なものになる。また、実際に衝突したかどうかの明確なデータにはなりえなかった。更に、風力発電装置の近くにカメラを設置して連続撮影しておき、飛来する物体を画像処理技術により処理する方法も考えられるが、膨大な撮影データを解析する必要があり、システムが複雑かつ高価になる。
 一方、圧電素子を使用して振動を検知する装置は既に存在する(特許文献2)。特許文献2は、基板に垂直にケーブル状圧電素子を配設した振動検知センサである。前記ケーブル状圧電素子は、芯電極とその周囲に配設された圧電体と、前記圧電体の周囲に配設された外側電極と、前記外側電極を被覆する被覆層とからなる。前記ケーブル状圧電子の端部に出力検出器を接続すれば、曲げ荷重が負荷された際の出力変化を検出することで振動を検知しうるという。なお、前記圧電素子の他端側は、前記芯電極の先端部近傍に断線検知抵抗が接続され、かつ芯電極の先端と前記外側電極とが導通しうるように導電樹脂により封止しされている。
 また、断面視円形の芯電極の外周に圧電体を被覆し、前記圧電体に外電極を被覆したケーブル状圧力センサであって、前記外電極が間隔をあけて配設された2つの外電極1と外電極2からなることを特徴とするセンサもある(特許文献3)。外電極に圧力が印加されるとその部分に電荷(Q)が誘起され、この電荷は芯電極と外電極の静電容量(C)に蓄えられるため、振動電圧(Vd=Q/C)を振動電圧検出手段により検出することができる。外電極1に圧力が印加された場合は振動電圧検出手段1により、外電極2に圧力が印加された場合は振動電圧検出手段2により信号を検出させる。信号検出により、ケーブル状圧力センサの外電極1、外電極2のいずれに圧力が印加されたかがわかるという。
 また、断面視円形の芯電極に、圧電体、制御抵抗被膜層、ピエゾ抵抗膜層、電気伝導体層および外被層をそれぞれ被覆してなるセンサーケーブルもある(特許文献4)。電気伝導体と制御抵抗被膜層の間の抵抗、および芯電極と制御抵被膜層との間の電圧差をセンサーケーブルの両端で測定し、ケーブルの変形を検出するというものである。
特開2009-228554号公報 特開2006-78393号公報 特開2000-230872号公報 米国特許第6534999号明細書
 特許文献1の飛来物検知装置では、鳥類以外の飛来物、例えばビニール袋などを誤って検知してしまう可能性がある一方、実際に衝突したのか、風力発電装置の近郊をとおり抜けたのかの判断が困難であった。特に、豪雪地帯などでは、雪の影響で正確に飛来する鳥類を捉えることが困難で、観測できる時間帯や季節が限定されるという問題があった。また、画像を取得する方式では、夜間の飛来を検出するために赤外線を使った映像システムなどを配備する必要があった。
 一方、風車のブレードに衝突位置検出手段を配設する方法も考えられる。しかしながら、前記特許文献2記載の振動検知センサは、ケーブル状圧電素子の振動を感知しうるが、振動位置を特定することができない。前記特許文献3記載のケーブル状圧力センサも同様であり、外電極1と外電極2とのいずれに圧力が印加されたかが判明するに過ぎず、衝突箇所を特定することが困難である。更に、前記特許文献4記載のセンサーケーブルは、制御抵抗被膜層とピエゾ抵抗膜層とが積層されている特殊なケーブルであり入手が容易でなく、かつ抵抗膜によって信号が減衰しやすく、高感度の信号受信を行うことができない。
 本発明は、このような実情に鑑みてなされたものであり、衝突した場合に、簡便に衝突位置を特定しうる衝突位置検出装置を提供することを目的とする。
 更に、このような衝突位置検出装置を配設し、風車のブレードに鳥類が衝突した場合に、衝突位置を特定しうる風力発電システムを提供することを目的とする。
 本発明者は、前記圧電体と、その両面に積層された導電体と、これらの外周に被覆された被覆体とからなる長尺圧電素子について詳細に検討した結果、衝撃などが負荷されると前記導電体間に圧電効果による起電力が生じること、前記起電力による電圧信号は、衝撃部分から圧電素子の先端部と後端部とにそれぞれ伝播されること、各端部までの伝播時間は衝撃部から端部までの距離に対応すること、従って、両端部の伝播時間の差を検出すれば、衝撃が印加された場所までの距離を算出しうることを見出し、本発明を完成させた。
 すなわち、本発明は、衝突により電圧を発生する圧電素子と、
 前記圧電素子への衝突により発生した信号を検出する信号検出手段と、
 前記信号検出手段により検出した信号から圧電素子への衝突位置を特定する処理手段とを備える衝突位置検出装置であって、
 前記圧電素子が、長尺の圧電体と、前記圧電体が発生する信号を伝達する1対の導電体とを備える長尺圧電素子であり、
 前記信号検出手段が、前記長尺圧電素子の先端から発生した先端信号と、前記長尺圧電素子の後端から発生した後端信号との双方を検出するものであり、
 前記処理手段が、前記先端信号と後端信号との信号発生時間差から圧電素子の衝突位置を特定するものである、衝突位置検出装置を提供するものである。
 また本発明は、前記処理手段が、更に、前記先端信号と後端信号との信号強度に基づいて、衝突の強度を評価するものである、前記衝突位置検出装置を提供するものである。
 また本発明は、上記衝突位置検出装置を備える風力発電装置であり、
 前記圧電素子は風車のブレード内に配設され、
 前記信号検出手段および処理手段によってブレードに衝突する衝突物の衝突位置を特定しうる、風力発電装置を提供するものである。
 また本発明は、上記風力発電装置と受信装置とを備える風力発電システムであって、
 前記受信装置は、受信部と制御部と記憶部とを備え、
 前記受信部は、衝突位置検出装置から出力された信号情報を受信するものであり、
 前記記憶部は、前記受信部が受信した信号情報と、前記信号情報と衝突物の種類とを対応付けた信号-衝撃物テーブルとを保存するものであり、
 前記制御部は、前記記憶部に保存された前記信号情報と前記信号-衝撃物テーブルとを対比させてブレードに衝突した衝突物の種類を特定するものであることを特徴とする、風力発電システムを提供するものである。
 また本発明は、更に、前記衝突物に向けてレーザーを照射するレーザー照射手段を備える前記風力発電システムを提供するものである。
 また本発明は、更に、前記衝突物に向けて音声を発生する音声発生装置を備える前記風力発電システムを提供するものである。
 本発明の衝突位置検出装置によれば、簡便な構成で衝突した衝突位置を検出することができる。
 本発明の風力発電システムによれば、風車のブレードに衝突した衝突物の位置を検出することができる。
本発明の衝突位置検出装置に使用する圧電素子を説明する図である。 本発明の衝突位置検出装置の概略を説明する図である。 本発明の衝突位置検出装置に使用する圧電素子からの信号処理回路のタイムチャート図である。 本発明の風力発電システムを説明するための図である。 本発明の風力発電装置の模式図である。 本発明の風力発電システムに係る受信装置の構成を示すブロック図である。 本発明の風力発電システムに係る受信装置の記憶部に保存されている信号-衝撃物テーブルである。 本発明の風力発電システムを説明するための図であって、円筒状のディフューザーおよびレーザー照射装置および音声発生装置を備えた風力発電システムを示す図である。 本発明の風力発電システムで使用する受信装置の構成を示すブロック図である。
 本発明の第一は、衝突により電圧を発生する圧電素子と、前記圧電素子への衝突により発生した信号を検出する信号検出手段と前記信号検出手段により検出した信号から圧電素子への衝突位置を特定する処理手段とを備える衝突位置検出装置であって、前記圧電素子が、長尺の圧電体と、前記圧電体が発生する信号を伝達する1対の導電体とを備える長尺圧電素子であり、前記信号検出手段が、前記長尺圧電素子の先端から発生した先端信号と、前記長尺圧電素子の後端から発生した後端信号との双方を検出するものであり、前記処理手段が、前記先端信号と後端信号との信号発生時間差から圧電素子の衝突位置を特定するものである、衝突位置検出装置である。
 本発明で使用する圧電素子51は、長尺の圧電体と、前記圧電体が発生する信号を伝達する1対の導電体とを備えるものであり、更にこの外周を被覆体で被覆したものであってもよい。前記圧電体に配設された一対の導電体は、それぞれ「電極」として機能する。便宜のため、衝突物が衝突する側の導電体を外部導電体51cと称し、他の導電体をグランド導電体51aと称する。ただし、一対の電極のいずれを外部導電体51cとし、他をグランド導電体51aとしてもよい。前記グランド導電体51aと外部導電体51cとは接触することなく圧電体51bに配設される。従って、例えば図1(a)に示すように、長尺板状の圧電体51bの両面にそれぞれ導電体51aと51cとを積層し、更にその外周を保護被覆51dで被覆したものなどを使用することができる。圧電体51bの形状は長尺板状に限定されるものではなく、例えばケーブル状であってもよい。図1(b)に、グランド導電体51aがケーブル状であり、その外周に順次、圧電体51bと、外部導電体51cと、保護被覆51dとを同軸ケーブル状に形成したケーブルセンサ状の圧電素子51の態様を示す。更に、外部導電体51cの形状も板状に限定されるものではなく、圧電体51bを被覆する筒状や膜状であってもよい。従って、絶縁層51eで被覆されたケーブル状のグランド導電体51aに、外部導電体51cで被覆された圧電体51bを積層または巻回し、その外周を保護被覆51dで被覆したものであってもよい。図1(c)に絶縁層51eで被覆されたケーブル状のグランド導電体51aに、圧電体51bを外部導電体51cで被覆した被覆圧電体Aを巻回し、その外周を保護被覆51dで被覆した圧電素子51を示す。
 グランド導電体51aおよび外部導電体51cは、電極として機能しうる部材で構成され、好ましくは銅、錫、銀、アルミニウムなどの金属であり、軟銅線、錫メッキ軟銅線、銀メッキ軟銅線、銅線に銀合金がコイル状に巻き付いたものなどを使用することができる。また、圧電体51bは、圧力が加えられると電圧を発生する誘電体である。例えば、ポリフッ化ビニリデンやポリフッ化ビニリデンと他の樹脂との混合物、フッ化ビニリデンとトリフルオロエチレンとの共重合体、その他の高分子圧電体;チタン酸鉛やジルコン酸鉛、これらの混晶であるチタン酸鉛ジルコン酸鉛、前記化合物をゴムや樹脂、その他に添加してなる複合体や圧電性セラミックスなどを使用することができる。また、絶縁層51eや保護被覆51dとしては、ポリ塩化ビニル、ポリエチレン、ポリプロピレンなどの合成樹脂を好適に使用することができる。圧電体、導電体および被膜体の形状は、板状のほか、箔状、薄膜状、ケーブル状、編み込みネット状など最終的な長尺圧電素子の形状に応じて適宜選択することができる。例えば、圧電素子が同軸ケーブル状の場合には、グランド導電体51aとして軟銅線を好適に使用することができ、ポリフッ化ビニリデンで前記軟銅線を被覆して圧電体51bとし、その外周を編組み軟銅線で被覆して外部導電体51cとし、その外周を合成樹脂膜で被覆して保護被覆51dとしたものを好適に使用することができる。外部導電体51cを軟銅による編組み銅線で構成することで、衝撃後の復元力を確保することができる。なお、保護被覆51dとしてポリ塩化ビニル、ポリエチレンを使用すれば、圧電素子51に柔軟性を付与でき、曲面状に沿わせて配設することが容易となる。更に、適度の弾力性を備えているため、衝撃後も短時間に形状が復旧する。
 更に、本発明で使用する圧電素子51の断面積(保護被覆51dの内側面積)は1~100mmであることが好ましく、より好ましくは2~70mmである。本発明では、圧電素子51から電圧を検出するが、大きな電流を取り出す必要はない。上記範囲で圧電体51bを厚くして信号強度を確保でき、しかも小型軽量であるため配設も容易に行うことができる。また、圧電素子51の長さは、5~2000mが好ましく、より好ましくは10~1500mである。この範囲で、衝突位置を精度よく検出することができる。
 本発明の衝突位置検出装置は、圧電素子51からの信号を検出する。便宜のため、前記圧電素子51のいずれか一端を先端と称し、他端を後端と称する。本発明の衝突位置検出装置50の概略を図2に示す。圧電素子51の前記先端のグランド導電体51aと外部導電体51cとは、ケーブル52を介してパルス波形整形回路55に連接される。圧電素子51の先端からの信号は、パルス波形整形回路55入力され、次いでオペレーションアンプ56aにより増幅される。後端からの信号も同様であり、グランド導電体51aと外部導電体51cとはケーブル52を介してパルス波形整形回路55に連接され、パルス波形整形回路55に入力された信号は、オペレーションアンプ56bにより増幅される。
 前記パルス波形整形回路55は、整流ダイオード55aと平滑用コンデンサ55bとを有し、圧電素子51側からの電流を整形されたパルス信号に変換する回路であり、本発明における信号検出手段に該当する。オペレーションアンプ56a、56bは、マイクロコンピュータ58に電気的に接続されている。マイクロコンピュータ58は処理手段に該当し、入出力回路58aと、CPU58bと、記憶部58cと、タイマー回路58dと、を有している。入出力回路58aは、オペレーションアンプ56a、56bから入力されたアナログ信号をデジタル信号に変換したり、例えば、記憶部58cに保存された演算結果などの情報(電気信号)を図示しない無線変換装置などに出力するA/D変換器で構成することができる。CPU58bは、記憶部58c内のプログラムに応じて、マイクロコンピュータ58の動作を制御する中央演算処理装置である。記憶部58cは、CPU58bが演算した結果などを一時的に記憶するRAM(Random Access Memory)と、プログラムやデータが記憶されているROM(Read Only Memory)と、を備えるメモリである。タイマー回路58dは、CPU58bの指示に従ってカウントを開始しまたは終了する回路である。
 圧電素子51に衝撃が加わると、グランド導電体51aと外部導電体51cとの間に圧電効果による起電力が生じ、前記起電力による電圧信号は、衝撃部から圧電素子51の先端と後端とにそれぞれ伝播される。前記パルス波形整形回路55で検出される圧電素子51の先端および後端からの電流ピークは、衝撃部から各端部までの距離に応じた時間差を有する。図3に、横軸を時間軸、縦軸を電圧軸とし、圧電素子51の先端からの信号と、後端からの信号との電位の変化を示す。圧電素子51への衝突物Pの衝突により先端からTa時に電位が上昇する信号が受信され、後端からTb時に電位が上昇する信号が受信される。それぞれの信号はオペレーションアンプ56a、56bで波形整形された後にマイクロコンピュータ58に入力される。マイクロコンピュータ58では、タイマー回路58dにより前記した信号発生時であるTaおよびTbを特定し、CPU58bによってTa-Tbの絶対値を算出する。これらの情報と圧電素子51の信号伝達速度とから衝撃位置を演算することができる。
 例えば、圧電素子51の長さが50mであり、圧電素子51の全長を200ミリ秒で信号が伝播する場合、|Ta-Tb|がゼロであれば、衝突物が圧電素子51の略中央、すなわち先端から25mの位置に衝突したと算出することができる。一方、Ta<Tbであって|Ta-Tb|が200ミリ秒の場合は、圧電素子51の先端に衝突したと算出することができる。
 なお、記憶部58cに、予め、Ta、Tb、|Ta-Tb|と圧電素子51の衝撃位置との相関を示す信号-衝突位置テーブルを保存してもよい。Ta、Tbおよび|Ta-Tb|を算出し、前記信号-衝突位置テーブルと対応させることで圧電素子51のどの位置に衝撃が発生したかを検知することができる。なお、Vthは、オペレーショナルアンプ56a、56bでの閾値を示しており、オペレーションアンプ56a、56bのコンパレータ機能でVth以下の信号をカットするなどの設定を行えば、一定以下の信号は計測しないように構成することができる。
 また、前記信号の計測は、計測回路に基準となるタイミング発生回路を配設し、これを基準としてパルス発生時間を計測してもよいし、Ta時、Tb時のいずれかの信号が入力されたことを、マイクロコンピュータ58の割り込み信号として入力し、これをきっかけとして、|Ta-Tb|を計測するように構成してもよい。本発明によれば、圧電素子51の長さが5m以上であれば、十分に両端での信号遅延差を計測することができる。
 なお、Vaは先端信号の信号強度を、Vbは後端信号の信号強度を示しており、この信号強度を計測することで、衝撃の大きさを知ることができる。圧電素子51内で信号の減衰が発生しない場合は、VaとVbとは同じ値となる。一方、減衰によってVaとVbとが異なる場合には、双方を計測しいずれか大きい方の値を記録することが好ましい。ただし、VaとVbとの双方を記録し、またはVaとVbとの平均を記録してもよい。
 本発明の衝突位置検出装置は、先端または後端から信号をパルス波形整形回路55に入力するケーブル52のいずれかに、更に平滑用コンデンサ55bを含めても良い。図2では、圧電素子51の先端のグランド導電体51aに連設されるケーブルの一部に平滑用コンデンサ55bが配設される態様を示す。平滑用コンデンサ55bの配設により圧電素子51からの衝撃信号がパルス波形整形回路55に入力される時間を数mSecから数十mSecの範囲で遅延させることができ、処理速度が遅いマイクロコンピュータ58を用いても|Ta-Tb|を算出し、および前記|Ta-Tb|から圧電素子51上の衝撃部を特定することができる。光やレーザ反射の計測回路と異なり、高速の精密な信号処理が不要であり、安価な構成のハードウエアで本発明を実現することができる。なお、前記した信号-衝突位置テーブルを保存する場合は、付加的な平滑用コンデンサを含む場合の|Ta-Tb|に基づいて、衝突位置が特定される。
 なお、測定した圧電素子51の先端からの信号受信時Ta、同後端からの信号受信時Tb、VaとVb、算出した|Ta-Tb|、圧電素子51の衝撃位置などの情報は、記憶部58cに保存される。
 本発明の衝突位置検出装置50は、長尺圧電素子51を使用するため、このような圧電素子51を外部からの侵入者の侵入位置に張り巡らせると、侵入場所を検出することができ、セキュリティーシステムの一部として使用することができる。従来は、ワイヤーを張り巡らせた場合に、ワイヤーの切断を信号として受信するものやワイヤーのいずれかに生じた電位変化を受信するものがあり、侵入箇所を特定するには、複数のワイヤーを配設する必要があった。しかしながら、本発明ではワイヤー状の圧電素子を使用してその先端と後端の電位変化を評価することで衝突箇所を特定できるため、1本の長尺の圧電素子51を配設するだけで、侵入箇所を特定することができる。
 本発明の衝突位置検出装置50は、前記長尺圧電素子51を使用し、当該長尺圧電素子51に衝突した衝突力を電気的に測定し、衝突位置を特定しうるものである。直接、圧電素子51に衝突物が衝突した際の電圧を測定するため他のノイズの影響を抑制することができ、感度にも優れる。従って、例えば多くの流体などが移送されるパイプラインを含むプラントなどにおいて、圧電素子51をパイプラインに沿わせて配設し、パイプラインの破損などに伴って発生する音響を振動として捉え、破損箇所を特定することもできる。一方、検出感度を低下させて僅かの振動が検出されないように制御し、森や民家などの地中に圧電素子51を埋設し、圧電素子51に一定以上の圧が負荷された場合の信号のみを受信するように調整し、信号の検出を害獣などの侵入として検知することもできる。
 なお、本発明の衝突位置検出装置50は、圧電素子51の切断状況を検出するために、定期的に微弱な衝撃を圧電素子51に付与し、発生したテストパルスを受信する機構を併設させることができる。例えば、圧電素子51にテストパルスを送信し、末端部から反射信号のレベルをモニターすれば、圧電素子51の劣化や切断状況を監視することができる。腐食などで劣化が生じた場合は信号特性も低下するため、上記により簡便に圧電素子51の状況を監視することができる。テストパスルを受信できない場合は切断状態と判断することができる。
 更に、本発明の衝突位置検出装置50には、温度センサーや威嚇音発生装置などを連設することができる。例えば、温度センサーを配設した場合には、衝撃と温度との双方を感知させ、ダクト内の火災発生なども容易に検出することができ、安価な火災検出システムを構築することができる。更に、威嚇音発生装置を併設する場合には、例えば信号受信時を害獣侵入時として特定しうることを条件に、信号受信時に威嚇音を発生させることもできる。
 本発明の第二は、前記衝突位置検出装置を備える風力発電装置であり、前記圧電素子は風車のブレード内に配設され、前記信号検出手段および処理手段によってブレードに衝突する衝突物の衝突位置を特定しうる、風力発電装置である。また、本発明の第三は、前記風力発電装置と受信装置とを備える風力発電システムであって、前記受信装置は、受信部と制御部と記憶部とを備え、前記受信部は、衝突位置検出装置から出力された信号情報を受信するものであり、前記記憶部は、前記受信部が受信した信号情報と、前記信号情報と衝突物の種類とを対応付けた信号-衝撃物テーブルとを保存するものであり、前記制御部は、前記記憶部に保存された前記信号情報と前記信号-衝撃物テーブルとを対比させてブレードに衝突した衝突物の種類を特定するものであることを特徴とする、風力発電システムである。
 図4に示すように、本発明の実施の形態に係る風力発電システム100は、地表面Gに設置された鉄筋コンクリート製の基礎12上に立設されるタワー11と、このタワー11の上端部に設置されるナセル20と、略水平な横方向の回転軸線周りに回転可能に支持されてナセル20の前端部側に設けられるハブ30とからなる風力発電装置10と、受信装置80とを備える。図5に示すように、前記風力発電装置10には前記衝突位置検出装置50が配設されている。圧電素子51をブレード40に配設することで、衝撃物として鳥類がブレード40に衝突した際の電圧を検出し、ブレード40への衝突状態を検出することができる。
 前記タワー11は、例えば鋼などの金属で筒状に形成されている。タワー11の内部には、外部の風雨に晒すことができない電気機器などが配設されている。ナセル20は、筒状に形成され、その内部には、増速用の変速ギア21と、発電機22とが配設されている。
 ハブ30は、放射方向に延びる複数枚(例えば3枚)のブレード40を有している。ブレード40は、衝撃による振動を伝えることができる所定の硬さを有する材料、例えばFRP(Fiber Reinforced Plastics)や繊維強化複合材料などから中空状に形成されている。
 ハブ30のナセル20側には、ナセル20の内部に延びるローター軸23が接続されている。ローター軸23の他端は、ナセル20内の増速用の変速ギア21に接続されている。変速ギア21には、動力伝達軸24が接続されている。また、動力伝達軸24の他端は発電機22に接続されている。
 以上のように構成された風力発電装置10では、風がブレード40に当たりハブ30が回転すると、ハブ30の回転がローター軸23に伝動される。次いで、ローター軸23の回転によって変速ギア21が回転し、動力伝達軸24を介して発電機22を駆動して発電が行われる。発電された電力は、図示しないケーブルによって、タワー11の内部の電気機器に送られる。
 なお、ナセル20は、ブレード40と共に、タワー11の上端において水平方向に旋回することができ、図示しない駆動装置と制御装置により、常に風上方向に指向して効率良く発電できるように制御されている。
 以下、ブレード40に衝突物が衝突したことを検出する衝突位置検出装置50について説明する。
 本発明の風力発電装置10や風力発電システム100で使用する圧電素子51は、圧電体51bに衝撃を受けると、グランド導電体51aと外部導電体51cとの間の圧電効果により電圧を発生させる。その際の発生電圧量は、圧電素子51に質量100gの物体を高さ30cmから落下させたときに、100~200Vであることが好適である。この範囲であれば、風などの弱い衝撃の場合に電圧を発生させなることがなく、鳥類の衝撃を精度よく検出しうるからである。このような感度に制御するには、圧電体を構成する圧電材料の選択、特に、圧電材料中のポリフッ化ビニリデンやジルコンチタン酸鉛などの含有量の調整、圧電体の厚さの調整などによって行うことができる。また、市販のセンサケーブルなどの中から、上記感度のものを選択して使用してもよい。上記感度であれば、軽微な振動では低電圧か、またはほとんど電圧を発生しないように、圧電素子51自体に信号フィルタの機能を担保し、一定以上の衝撃に対してのみ反応させることができる。これにより、砂塵やごみなどの小さな衝撃による信号は、圧電素子51のフィルタ特性でカットされる。なお、入力のオペレーションアンプ56a、56bのコンパレータ機能でVth以下の信号をカットし、衝突物以外の小さな衝撃が検出されないように調整し、鳥類の衝突に対する信号精度を向上させることもできる。Vthの設定は、風力発電システム100を設置する環境に応じて適宜選択することができる。
 図5に示すように、衝突位置検出装置50は、圧電素子51と、2つのパルス波形整形回路55からなる信号検出手段と、マイクロコンピュータ58からなる処理手段とを備えている。ブレード40の先端側の圧電素子51のグランド導電体51aと外部導電体51cとはそれぞれケーブル52に連接され、信号は、回転コイル53aと固定コイル53bとからなる第1の回転トランス53を介してパルス波形整形回路55に入力され、次いで、入力信号がオペレーションアンプ56aにより増幅される。同様に、ブレード40のハブ30側の圧電素子51のグランド導電体51aと外部導電体51cもそれぞれケーブル52に連接され、回転コイル54aと固定コイル54bとからなる第2の回転トランス54を介してパルス波形整形回路55bに入力され、次いで、入力信号がオペレーションアンプ56bにより増幅される。
 オペレーションアンプ56a、56bにより増幅された信号は、それぞれマイクロコンピュータ58からなる処理手段に入力され、前記衝突位置検出装置50の項で説明したように、信号受信時であるTa、Tb、および信号伝達の差である|Ta-Tb|を算出し、これらの数値に基づいて圧電素子51の衝突位置、ひいてはブレード40の衝突位置を特定することができる。
 なお、CPU58bは、マイクロコンピュータ58に入力された圧電素子51の後端側からの信号と先端側からの信号のうち、衝突Pにより発生し、先端または後端から伝達される信号のうち、早く到達した信号を第1の衝突信号とし、遅く到達した信号を第2の衝突信号としてもよい。第1の衝突信号が入力された場合にタイマー回路58dによる計時を開始させ、遅く到達した第2の衝突信号が入力されるまでの時間を測定する。この場合、第2の衝突信号が入力されるとタイマー回路58dによる計時が停止されるように設定する。
 なお、本発明で使用する圧電素子51は、一般に、長さ50mを150~300ミリ秒で信号を伝達することができる。この伝達速度は、レーザー光などの伝達時間と比較すると遅いため|Ta-Tb|が大きく、このため高感度に|Ta-Tb|を検出することができる。更に図5に示すように、圧電素子51のハブ30側の信号伝達回路に平滑用コンデンサ55bを配設することで信号差|Ta-Tb|を更に大きくすることができる。これにより、汎用コンピューターを使用し、簡便かつ安価な構成で本発明を実施することができる。なお、図5と相異して、圧電素子51のブレード40の先端側の信号伝達回路に平滑用コンデンサ55bを配設してもよい。
 本発明では、マイクロコンピュータ58から出力された信号を、受信装置80に送信する無線変換装置59が配設されている。受信装置80は、図6に示すように、受信部81と、制御部82とを備えている。
 前記受信部81では、無線変換装置59の送信方法に対応した受信処理を行う。例えば、前記無線変換装置59は、電池で駆動する微弱無線モジュールで形成されているものを使用することができる。
 無線変換装置59が微弱無線モジュールで形成される場合にはスペクトラム拡散通信を行うことができる。スペクトラム拡散通信では、送信側で拡散符号を用いて搬送波を変調(拡散)してから送信するが、その際、伝送遅延時間分だけ前記拡散符号の位相をシフトして同期させて受信信号に乗算し、受信側では前記拡散符号を伝送遅延時間分だけ位相シフトして逆拡散する。伝送遅延時間が不明の状態で受信を成功させるには、拡散符号を少しずつスライドさせながら逆拡散操作の試行を繰り返し、例えば、拡散符号に与えるべきシフト量として、試行ステップ毎に1チップ(拡散符号の最低時間単位)時間分ずつ増やしていき、その後、再現された搬送波が有為レベルにあるかどうかによって、受信の成否を判定する同期検出方法を採用することができる。
 また、他の同期検出方法として、受信信号搬送波の位相変化点を用いる方法でもよい。時系列に並べた位相変化点と、予め作成した1チップ時間分の拡散符号を反転させたものとを比較し、位相変化点と拡散符号とのズレ量(シフト量)の候補を計算する。ズレ量の候補毎に求められる逆拡散符号で逆拡散を試行し、復調が成功したか否かの判定を行う。この方法によれば、予め推定した逆拡散符号で逆拡散するので、受信信号を高速で同期することができる。更に、時系列に並べた位相変化点を、1チップ時間分の拡散符号を反転させたものと比較するため、受信信号の中にノイズによる短い位相変化点が含まれている場合でも、その位相変化点を1チップ時間の整数倍で出現する位相変化点として検出することがない。そのため、風力発電装置のように大きなノイズが発生する装置に配設された場合でも、ノイズに影響されることがない。
 マイクロコンピュータ58に入力されたTa、Tb、|Ta-Tb|、VaとVb、衝突位置などの情報は、無線変換装置59から送信され、受信部81で受信される。
 制御部82は、記憶部83に保存されたプログラムに応じて、受信装置80の動作を制御する中央演算処理装置である。受信部81が受信した前記信号情報は、記憶部83に保存される。
 記憶部83には、更に、圧電素子51が発生する信号情報と前記信号情報に対応する衝撃物との相関を示す信号-衝撃物テーブル84が保存されている。信号情報としては、測定電圧や電圧変化時間などの信号強度があり、衝撃物としては、鳥類名がある。信号-衝撃物テーブル84には、季節や時間などの項目を含めてもよい。なお、信号-衝撃物テーブル84は、風力発電装置10が配設される地域毎に作成されることが好ましい。地域によって衝突物が相違する場合があるからである。信号-衝撃物テーブル84の一例を図7に示す。
 以上のように構成された風力発電システム100は、以下のように動作する。
 まず、図4に示す風力発電装置10の運用が開始されて、風がブレード40に当たると、ハブ30がローター軸23を中心に回転する。高速で回転しているブレード40を視認することができなかった鳥類が衝突物として風力発電装置10に接近しブレード40に衝突する。
 鳥類がブレード40に衝突することによって、圧電素子51は直接的または間接的に衝撃を受け、電圧を発生させる。そして、電流が、圧電素子51の先端側および後端側までそれぞれ伝播する。なお、ブレード40は、衝撃による振動を伝えることができる所定の硬さを有する材料で形成されているので、衝突物が圧電素子51に直接衝突しなくても、ブレード40が振動することで圧電素子51は電圧を発生させることができる。
 圧電素子51の端部に到達した電流は、それぞれケーブル52を介して、第1の回転トランス53および第2の回転トランス54に伝播し、第1の回転トランス53および第2の回転トランス54に到達した電流は、それぞれパルス波形整形回路55で整形されたパルス信号に変換される。パルス波形整形回路55で整形されたパルス信号は、それぞれオペレーションアンプ56a、56bで増幅される。
 オペレーションアンプ56a、56bで増幅されたアナログ信号信号は、マイクロコンピュータ58に出力され、次いでマイクロコンピュータ58の入出力回路58aでデジタル信号に変換される。
 マイクロコンピュータ58は、前記衝突位置検出装置の項で記載したように、圧電素子51の先端からの信号発生時Taおよび後端からの信号発生時Tbを測定および保存し、前記TaとTbの信号強度であるVaおよびVbを測定および保存し、TaとTbとの絶対値を算出し、衝突位置の特定を行い、これらの情報を記憶部58cに保存している。これらの情報は、無線変換装置59を介して受信装置80に送信される。
 受信部81で受信した情報は、復調後、少なくとも、|Ta-Tb|に関する時間差情報A、前記TaまたはTbの間で先に発生した信号(第1の衝突信号)に関する衝突情報B、第1の衝突信号が入力された日時に関する日時情報C、第1の衝突信号の信号強度に関する信号強度情報D、衝撃位置の情報に関する衝突位置情報Eなどを、制御部82に配設される記憶部83に保存する。前記第1の衝突信号の各情報に変えて、TaおよびTbなどの情報を使用してもよい。
 制御部82は、予め記憶部83に保存された信号-衝撃物テーブル84と、受信装置80が受信した日時情報C、信号強度情報Dとを対比し、衝撃物を特定することができる。例えば、入力された日時情報Cが1月、信号強度情報Dが250Vである場合、制御部82は、信号-衝撃物テーブル84を参照して、衝突物として鳥名BBBBを抽出することができる。また、入力された日時情報が3月、信号強度情報Dが350Vである場合、制御部82は、信号-衝撃物テーブル84を参照して、衝突物として鳥名DDDDを抽出することができる。なお、信号-衝撃物テーブル84は、更に細かく分類されていてもよい。例えば、0~6時、6~12時、12~18時、18~24時など、時間毎に分類されていてもよい。鳥類の大きさ、飛来時間、季節などの情報は、鳥類の研究により、ある程度把握されているため、これらの情報と比較することで、衝突した鳥類をほぼ特定することができる。なお、受信装置80に表示装置が配設される場合には、衝突物がブレード40に衝突した位置を上記衝突位置情報Eに基づいて表示装置に表示させてもよい。更に、特定された衝突物の情報を表示装置に表示させてもよい。本発明の風力発電システム100は、簡便な機構で稼働中に衝突する衝突物を特定することができる。
 本発明では、複数の風力発電装置からの衝撃データを集計することで、風力発電装置に衝突する鳥類などの状況を世界的な規模で把握することができる。このデータに基づき、衝突を回避しうる風力発電装置の立地条件を特定することができる。これにより、環境保全に寄与する。しかも、本発明のシステムは、電磁波を使わないため、鳥類や近隣の住民に対する影響がなく、環境に対する負荷が少ない。
 本発明の風力発電システム100は、受信装置80に保存された衝突位置情報Eを用いて、衝突物に向けて鳥類忌避手段を講ずることができ、これによって新たな衝突を回避することができる。例えば、図8に示すように、衝突物に向けてレーザーを照射するレーザー照射手段90、91や、衝突物に向けて音声を発生する音声発生装置95、96などの鳥類忌避手段を配設することができる。なお、構成する風力発電装置10は、ブレード40に向かう風速を増加させるため、ブレード40の周りに円筒状のディフューザー110を備えてもよい。図8では、前記レーザー照射装置90が地表面Gに、レーザー照射装置91がディフューザー110に配設される態様を示す。また、音声発生装置95、96は、鳥が嫌がる音声を発生させる装置であり、図8では、音声発生装置95が地表面Gに、音声発生装置96がディフューザー110に配設される態様を示す。前記レーザー照射装置90、91や音声発生装置95、96の制御は、ON-OFF制御のみならず、レーザー照射装置90、91で、種々の色や光量のレーザーを照射するように制御してもよく、衝突した鳥類の種類に応じて色や光量を変更できるようにしてもよい。更に、音声発生装置95、96から種々の周波数や音量を発生させ、飛来する鳥類の衝突を回避してもよい。レーザー照射装置90、91に限定されず、発光ダイオードを有する照明装置が配設されてもよい。
 鳥類忌避手段を配設する風力発電システム100として、例えば図9に示すように、受信装置80に受信部81と制御部82とに送信部85を含めることができる。例えば、受信装置80に新たに衝突位置情報Eが保存されると、制御部82から送信部85に、レーザー照射装置90、91および/または音声発生装置95、96をON-OFF制御するための操作信号が出力されるように設定する。例えば、いずれかのブレード40に鳥類が衝突すると、衝突位置検出装置50によって、Ta、Tb、|Ta-Tb|、衝突位置情報が特定され、処理手段であるマイクロコンピューター58の記憶部58cに保存される。この情報が無線変換装置59を介して受信装置80に送信され、記憶部83に保存される。新たな衝撃によって衝突位置情報Eが更新されると、制御部82から衝突位置に向けてレーザー照射装置90、91および/または音声発生装置95、96をONし、所定の時間の経過後にこれら装置をOFFに戻す操作信号が出力される。渡り鳥などが群れをなして飛来する場合、最初の衝突を感知した後に鳥類忌避手段を講ずることで、新たな衝突を回避することができる。
 本発明の風力発電システム100は、鳥類忌避手段として、風力発電装置10のハブ30を透明部材で構成し、ハブ30の内部に映写機を収納させ、映写機から透明部材に向けて猛禽類の映像を投射させてもよい。猛禽類の映像はハブ30表面に投影され、透明部材を介して外部から映像を目視することができる。ブレード40に近寄った鳥類が、ハブ30から投影される猛禽類の映像を視認することで、ハブ30やブレード40への接近を回避させることができる。なお、映像は猛禽類に限定されず、鳥類が接近を忌避するものであれば、広く対象とすることができる。このような映像の投影は、受信装置80に新たに衝突位置情報Eが保存された場合に、制御部82から送信部85に、映像を所定時間、投影させる指示情報を送信させることで実施することができる。
 複数の風力発電システム100によってウィンドファームを構成する場合には、ある風力発電システム100に配設されている衝突位置検出装置50が鳥類の衝突を検知した場合に、他の風力発電システム100にその情報を通信し、これら風力発電システム100のブレード40の回転を止めるように構成してもよいし、他の風力発電システム100のレーザー照射装置および音声発生装置をON-OFF制御しうるように構成してもよい。
 本発明は、上述した実施形態に限定されず、種々の変形及び応用が可能である。また、上述した実施形態の各構成要素を自由に組み合わせることも可能である。
 本発明は2012年5月1日に出願された日本国特許出願2012-104490号に基づく。本明細書中に日本国特許出願2012-104490号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。
 10:風力発電装置、11:タワー、12:基礎、15:照明装置、20:ナセル、21:変速ギア、22:発電機、23:ローター軸、24:動力伝達軸、30:ハブ、40:ブレード、50:衝突位置検出装置、51:圧電素子、51a:グランド導電体、51b:圧電体、51c:外部導電体、51d:保護被覆、51e:絶縁層、52:ケーブル、53:第1の回転トランス、53a:回転コイル、53b:固定コイル、54:第2の回転トランス、54a:回転コイル、54b:固定コイル、55:パルス波形整形回路、55a:整流ダイオード、55b:平滑用コンデンサ、56a、56b:オペレーションアンプ、58:マイクロコンピュータ、58a:入出力回路、58b:CPU、58c:記憶部、58d:タイマー回路、59:無線変換装置、80:受信装置、81:受信部、82:制御部、83:記憶部、84:信号-衝撃物テーブル、85:送信部、90、91:レーザー照射装置、95、96:音声発生装置、100:風力発電システム、110:ディフューザー

Claims (6)

  1.  衝突により電圧を発生する圧電素子と、
     前記圧電素子への衝突により発生した信号を検出する信号検出手段と、
     前記信号検出手段により検出した信号から圧電素子への衝突位置を特定する処理手段とを備える衝突位置検出装置であって、
     前記圧電素子が、長尺の圧電体と、前記圧電体が発生する信号を伝達する1対の導電体とを備える長尺圧電素子であり、
     前記信号検出手段が、前記長尺圧電素子の先端から発生した先端信号と、前記長尺圧電素子の後端から発生した後端信号との双方を検出するものであり、
     前記処理手段が、前記先端信号と後端信号との信号発生時間差から圧電素子の衝突位置を特定するものである、衝突位置検出装置。
  2.  前記処理手段が、更に、前記先端信号と後端信号との信号強度に基づいて、衝突の強度を評価するものである、請求項1記載の衝突位置検出装置。
  3.  請求項1または2に記載の衝突位置検出装置を備える風力発電装置であり、
     前記圧電素子は風車のブレード内に配設され、
     前記信号検出手段および処理手段によってブレードに衝突する衝突物の衝突位置を特定しうる、風力発電装置。
  4.  請求項3記載の風力発電装置と受信装置とを備える風力発電システムであって、
     前記受信装置は、受信部と制御部と記憶部とを備え、
     前記受信部は、衝突位置検出装置から出力された信号情報を受信するものであり、
     前記記憶部は、前記受信部が受信した信号情報と、前記信号情報と衝突物の種類とを対応付けた信号-衝撃物テーブルとを保存するものであり、
     前記制御部は、前記記憶部に保存された前記信号情報と前記信号-衝撃物テーブルとを対比させてブレードに衝突した衝突物の種類を特定するものであることを特徴とする、風力発電システム。
  5.  更に、前記衝突物に向けてレーザーを照射するレーザー照射手段を備える請求項4記載の風力発電システム。
  6.  更に、前記衝突物に向けて音声を発生する音声発生装置を備える請求項4または5記載の風力発電システム。
PCT/JP2013/062689 2012-05-01 2013-05-01 衝突位置検出装置、風力発電装置および風力発電システム WO2013165011A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/398,033 US20150135858A1 (en) 2012-05-01 2013-05-01 Collision position detection device, wind power generation device and wind power generation system
EP13784512.9A EP2846127A4 (en) 2012-05-01 2013-05-01 COLLISION POSITION DETECTION DEVICE, WIND ENGINEERING DEVICE AND WIND ENERGY GENERATION SYSTEM
CN201380023196.XA CN104303008A (zh) 2012-05-01 2013-05-01 碰撞位置检测装置、风力发电装置及风力发电系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012104490 2012-05-01
JP2012-104490 2012-05-01

Publications (1)

Publication Number Publication Date
WO2013165011A1 true WO2013165011A1 (ja) 2013-11-07

Family

ID=49514409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062689 WO2013165011A1 (ja) 2012-05-01 2013-05-01 衝突位置検出装置、風力発電装置および風力発電システム

Country Status (5)

Country Link
US (1) US20150135858A1 (ja)
EP (1) EP2846127A4 (ja)
JP (1) JPWO2013165011A1 (ja)
CN (1) CN104303008A (ja)
WO (1) WO2013165011A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116857A1 (ja) 2016-12-21 2018-06-28 帝人株式会社 圧電センサ及び衝突検知方法
JP2020197463A (ja) * 2019-06-04 2020-12-10 国立大学法人福島大学 位置検出システム
CN113358318A (zh) * 2021-07-02 2021-09-07 中国空气动力研究与发展中心低速空气动力研究所 一种线缆碰撞检测方法、装置、设备及存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3036796B1 (fr) * 2015-05-29 2018-09-07 Safran Aircraft Engines Dispositif et procede de detection de choc sur une pale
ES2695923A1 (es) * 2017-07-07 2019-01-11 Adwen Offshore S L Dispositivo de iluminacion de balizado y aerogenerador que comprende el dispositivo
CN107859596B (zh) * 2017-10-11 2019-04-19 江苏中工高端装备研究院有限公司 一种安全可靠的有利于生态环境的智能型风力发电机
CN111716350B (zh) * 2020-04-28 2022-06-07 珠海格力智能装备有限公司 一种碰撞检测方法、装置、碰撞检测器、系统及存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201102A (ja) * 1987-11-04 1989-08-14 Alan Laborderie 動体による1限界の通過点を位置づけるための装置
JP2000230872A (ja) 1999-02-12 2000-08-22 Matsushita Electric Ind Co Ltd ケーブル状圧力センサおよび圧力検出装置
US6534999B2 (en) 2000-11-16 2003-03-18 Measurement Specialties, Inc. Cable sensor
JP2003532835A (ja) * 2000-05-06 2003-11-05 アロイス・ヴォベン 風力装置を運転する方法及び該方法を実施するための風力装置
JP2006078393A (ja) 2004-09-10 2006-03-23 Matsushita Electric Ind Co Ltd ケーブル状圧電素子を用いた振動検知センサ
JP2006098175A (ja) * 2004-09-29 2006-04-13 Oki Electric Cable Co Ltd 感圧位置特定センサケーブル
JP2007501160A (ja) * 2003-05-12 2007-01-25 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 衝突識別装置
JP2009505063A (ja) * 2005-08-22 2009-02-05 キー セーフティー システムズ、 インコーポレイテッド 車両衝撃検出システム
JP2009228554A (ja) 2008-03-21 2009-10-08 Tokyo Electric Power Co Inc:The 飛来物検知装置、飛来物検知方法およびコンピュータプログラム
JP2010220542A (ja) * 2009-03-24 2010-10-07 Tokyo Electric Power Co Inc:The 鳥類退避装置および風力発電装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2336704A (en) * 1998-04-24 1999-10-27 Jaguar Cars Pedestrian impact sensor system
IL137206A0 (en) * 1999-10-31 2001-07-24 Nanomotion Ltd Piezoelectric motors and motor driving configurations
ATE523839T1 (de) * 2008-05-07 2011-09-15 Tyco Electronics Services Gmbh Verfahren zur bestimmung der position eines aufpralls auf der oberfläche eines objekts
WO2010023253A1 (en) * 2008-08-28 2010-03-04 Sa Speir Aviation Limited A bird collision avoidance system
FR2937094B1 (fr) * 2008-10-10 2010-12-17 Enria Systeme et procede de comptage et d'analyse d'impacts d'animaux sur une pale d'eolienne.
US8102072B2 (en) * 2008-12-31 2012-01-24 Kuei-Sheng Tsou Aerodynamic vibration power-generation device
DE102010019666A1 (de) * 2010-04-28 2011-11-03 Technische Universität Dresden Aktorisches, sensorisches und/oder generatorisches Faserverbundbauteil und Verfahren zu seiner Herstellung
KR101157811B1 (ko) * 2010-08-17 2012-06-22 한국표준과학연구원 대형 복합재 구조물에서의 손상위치 표정 방법
CN202153128U (zh) * 2011-08-03 2012-02-29 吉林大学 一种基于力传感的碰撞位置检测装置
RU2615470C2 (ru) * 2012-03-26 2017-04-04 Волаком Ад Система предотвращения столкновения животных
US20140034848A1 (en) * 2012-08-03 2014-02-06 Brian Campbell Photon turbine generator for power generation
US9115692B2 (en) * 2013-09-24 2015-08-25 Vinod Shekher Piezoelectric-based vertical axis wind turbine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201102A (ja) * 1987-11-04 1989-08-14 Alan Laborderie 動体による1限界の通過点を位置づけるための装置
JP2000230872A (ja) 1999-02-12 2000-08-22 Matsushita Electric Ind Co Ltd ケーブル状圧力センサおよび圧力検出装置
JP2003532835A (ja) * 2000-05-06 2003-11-05 アロイス・ヴォベン 風力装置を運転する方法及び該方法を実施するための風力装置
US6534999B2 (en) 2000-11-16 2003-03-18 Measurement Specialties, Inc. Cable sensor
JP2007501160A (ja) * 2003-05-12 2007-01-25 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 衝突識別装置
JP2006078393A (ja) 2004-09-10 2006-03-23 Matsushita Electric Ind Co Ltd ケーブル状圧電素子を用いた振動検知センサ
JP2006098175A (ja) * 2004-09-29 2006-04-13 Oki Electric Cable Co Ltd 感圧位置特定センサケーブル
JP2009505063A (ja) * 2005-08-22 2009-02-05 キー セーフティー システムズ、 インコーポレイテッド 車両衝撃検出システム
JP2009228554A (ja) 2008-03-21 2009-10-08 Tokyo Electric Power Co Inc:The 飛来物検知装置、飛来物検知方法およびコンピュータプログラム
JP2010220542A (ja) * 2009-03-24 2010-10-07 Tokyo Electric Power Co Inc:The 鳥類退避装置および風力発電装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2846127A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116857A1 (ja) 2016-12-21 2018-06-28 帝人株式会社 圧電センサ及び衝突検知方法
JP2020197463A (ja) * 2019-06-04 2020-12-10 国立大学法人福島大学 位置検出システム
JP7233091B2 (ja) 2019-06-04 2023-03-06 国立大学法人福島大学 位置検出システム
CN113358318A (zh) * 2021-07-02 2021-09-07 中国空气动力研究与发展中心低速空气动力研究所 一种线缆碰撞检测方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN104303008A (zh) 2015-01-21
JPWO2013165011A1 (ja) 2015-12-24
EP2846127A4 (en) 2016-01-06
US20150135858A1 (en) 2015-05-21
EP2846127A1 (en) 2015-03-11

Similar Documents

Publication Publication Date Title
WO2013165011A1 (ja) 衝突位置検出装置、風力発電装置および風力発電システム
US10401513B2 (en) Systems and methods for acquiring and characterizing time varying signals of interest
US8483262B2 (en) Piezoelectric cable perimeter monitoring system
US20200226480A1 (en) Apparatus and amendment of wind turbine blade impact detection and analysis
JP5614765B2 (ja) 風力発電装置の状態監視システム及び状態監視方法
KR100997817B1 (ko) 초대역폭 음향 신호의 도움으로 이동 물체를 검출하기 위한센서
US8415962B2 (en) Transmission line based electric fence with intrusion location ability
CN205489768U (zh) 电力设备用感应式在线视频监控智能驱鸟装置
KR101717045B1 (ko) 야생동물 퇴치기
US20170336532A1 (en) Locating a lightning strike at a wind turbine
US20120133143A1 (en) Lightning strike detector for hollow structure, wind turbine rotor blade, and wind turbine generator equipped with the same
Hu et al. Wind turbine sensor array for monitoring avian and bat collisions
CN105160791A (zh) 一种智能移动安防器
US8810265B2 (en) Transmission line based electric fence with intrusion location ability
CN107183001A (zh) 一种干式空心电抗器驱鸟系统
CN103461317A (zh) 次声波驱鸟方法
RU2375755C1 (ru) Устройство для охраны водных рубежей
RU79678U1 (ru) Береговая охранная сигнализация
KR101634690B1 (ko) 풍력 터빈용 동물 충돌 대응 시스템 및 충돌 대응 제어 방법
KR20220013805A (ko) 초음파 발생 장치와 이를 제어하는 차량 및 제어 방법
RU2364883C1 (ru) Способ охраны водных рубежей
Fastykovsky et al. Remote compact seismic sensor for the moving person detection
CN105030494A (zh) 一种盲人避障装置及其避障提示方法
RU2414002C1 (ru) Устройство охранной сигнализации
RU137921U1 (ru) Устройство для охраны водных рубежей

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13784512

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014513406

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013784512

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14398033

Country of ref document: US

Ref document number: 2013784512

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE