WO2013159728A1 - 一种可放氧快速固化修补材料及其制备方法与应用 - Google Patents

一种可放氧快速固化修补材料及其制备方法与应用 Download PDF

Info

Publication number
WO2013159728A1
WO2013159728A1 PCT/CN2013/074750 CN2013074750W WO2013159728A1 WO 2013159728 A1 WO2013159728 A1 WO 2013159728A1 CN 2013074750 W CN2013074750 W CN 2013074750W WO 2013159728 A1 WO2013159728 A1 WO 2013159728A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
curing
parts
repair material
repair
Prior art date
Application number
PCT/CN2013/074750
Other languages
English (en)
French (fr)
Inventor
秦升益
王振邦
汪卫坤
Original Assignee
北京仁创科技集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201210123603.1A external-priority patent/CN103086648B/zh
Priority claimed from CN201210123605.0A external-priority patent/CN103086642B/zh
Application filed by 北京仁创科技集团有限公司 filed Critical 北京仁创科技集团有限公司
Publication of WO2013159728A1 publication Critical patent/WO2013159728A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/10Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/26Bituminous materials, e.g. tar, pitch
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C11/00Details of pavings
    • E01C11/005Methods or materials for repairing pavings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/26Corrosion of reinforcement resistance

Definitions

  • the present invention relates to the field of casting materials, and particularly relates to a heat-dissipable and oxygen-curable repair material and a preparation method thereof, and a rapid repair road surface.
  • the application and in particular, relates to a method for rapidly repairing damaged road surface by using a heating material that is heated by a cocoa oxygen release combined with a combustion method. Background technique
  • the repairing material is convenient in construction, short in construction period (3 days strength can reach 60-70 MPa), no need to close the road surface, and the early strength is high, and the late strength is moderate. However, the material is still used for natural maintenance after grouting, and it needs to be maintained for 3 days to reach 60-70 MPa. It is necessary to close the repair in a short period of time, and the lightweight sand and gravel such as sand and gravel is used as the aggregate. The self-compacting performance of the whole repairing material is poor. It is also required to be filled in when repairing the road surface. It needs to be quickly repaired for similar airport pavements. The pavement repair does not apply.
  • the repairing materials are poured on the damaged pavement, and vibrated, smoothed and naturally maintained for 8 hours. This avoids the need for ordinary repair materials to be maintained for 3-7 days, the road closure period is longer, and the traffic is affected. .
  • this method uses natural curing. Although the curing performance of the repairing material is good, it still requires an 8-hour curing period, which is not suitable for roads such as airports that are in urgent need of rapid repair. SUMMARY OF THE INVENTION Therefore, the technical problem to be solved by the present invention is that the material used for road surface repair in the prior art is not suitable for the method of rapid curing, thereby causing the problem of long repair time, thereby providing an oxygen release and rapid Cured repair material.
  • the second technical problem to be solved by the present invention is to provide an application of an oxygen-releasing fast-curing repairing material in the field of road repair engineering.
  • the third technical problem to be solved by the present invention is that in the prior art, the road repairing time is long, and the problem of long-term road closure affecting traffic is provided, thereby providing a method for quickly repairing the road surface with a short curing time.
  • the oxygen-storing fast curing repairing material of the present invention is Prepared by the following parts by weight:
  • thermoplastic resin binder 1-10 parts of a thermally induced latent curing agent capable of inducing rapid curing of the thermoplastic resin binder in a heated state;
  • a solid oxidant that releases oxygen by heating 0.5-1 part.
  • the oxygen-storing fast-curing repairing material is prepared from the following components by weight:
  • Solid oxidant 0.6-0.8 parts.
  • the solid oxidant includes permanganate, chlorate, and an alkali metal nitrate or an alkaline earth metal nitrate.
  • the thermoplastic resin binder includes one or more of a thermoplastic phenol resin, a boron phenol resin, a silicone-modified epoxy resin, a phenol-modified epoxy resin, or a urethane resin.
  • the thermally initiated latent curing agent comprises urotropine (formal name: 1,3,5,7-tetraazabicyclo[3.3.1.1]decane), dicyandiamide, hydrazide, ammonium chloride or One or more of special modified curing agents.
  • the dense aggregate includes silica sand particles, ceramic sand, ceramsite, small steel balls or small iron balls.
  • the dense aggregate has a specific gravity of 1.7 to 8.9.
  • the dense aggregate has a particle size of from 20 to 200 mesh.
  • the invention also discloses a method for preparing the oxygen-storing fast curing repairing material, which comprises the following steps: (1) heating the selected part by weight of the dense aggregate;
  • step (1) (2) heating and melting the selected part by weight of the thermoplastic resin binder, and adding the dense aggregate after heating in step (1) to obtain a stable coating material;
  • the amount of water added is 2.5 to 5% by weight of the dense aggregate.
  • the dense aggregate is first heated to 160 ° C or higher to 1000 ° C, and then cooled to 90-160 ° C.
  • the invention also discloses an application of the oxygen release fast curing repairing material in the road surface repair engineering.
  • the invention also discloses a method for quickly repairing damaged road surface by using the combustion method, comprising the following steps:
  • step (1) after the step of filling the oxygen-dissipating fast-curing repairing material into the damaged pavement depression, further comprising the step of filling the upper layer with the self-compacting fast-curing repairing material; the self-compacting
  • the fast curing repairing material is prepared from the following components by weight: 60-95 parts of compact aggregate; 4 to 30 parts of a thermoplastic resin binder; 1-10 parts of a thermally-initiated latent curing agent which can induce rapid curing of the thermoplastic resin binder in a heated state.
  • the self-compacting fast curing repairing material is prepared from the following components by weight: 85-94 parts of compact aggregate; 5-10 parts of thermoplastic resin binder; thermally induced latent curing agent 1-5 Share.
  • the optional components of the compact aggregate, the thermoplastic resin binder, and the thermally induced latent curing agent used in the self-compacting fast curing repairing material are the same as those used in the foregoing oxygen-storing fast-curing repairing material, and each The component properties and characteristics are also the same as the oxygen-storing fast-curing repair material.
  • the thermoplastic resin binder includes one or more of a thermoplastic phenol resin, a boron phenol resin, a silicone-modified epoxy resin, a phenol-modified epoxy resin, or a urea-formaldehyde resin.
  • the thermally initiated latent curing agent comprises urotropine (formal name: 1,3,5,7-tetraazatricyclo[3.3 ⁇ 1]decane), dicyandiamide, hydrazide, ammonium chloride or One or more of special modified curing agents.
  • the dense aggregate includes silica sand particles, ceramic sand, ceramsite, small steel balls or small iron balls.
  • the dense aggregate has a specific gravity of 1.7-8.9.
  • the dense aggregate has a particle size of 20-200 mesh.
  • the invention also provides a method for preparing the above self-compacting fast curing pavement repairing material, comprising the following steps:
  • thermoplastic resin binder (2) adding a selected part by weight of the thermoplastic resin binder to the dense aggregate, and stirring uniformly;
  • step (3) adding heat to the latent curing agent to the reactant obtained in the step (2), and stirring and then cooling the mixture; (4) The reactant obtained in the step (3) is cooled, crushed and sieved to obtain.
  • step (1) the step of backfilling the damaged concrete to the damaged position and finishing the flattening is further included.
  • the oxygen-releasing fast curing repairing material mainly comprises thermosetting phenolic resin, boron phenolic resin, silicone modified epoxy resin, phenolic modified epoxy resin, urethane resin, etc., high temperature resistance and strength
  • the high specific polymer resin is used as the main coating reactant to prepare the coated silica sand composite materials with different particle sizes, and the heat-induced latent curing agent is added on the basis of the coating material and the oxygen can be released under the heated state.
  • An oxidant additive material that releases oxygen upon heating to support the combustion exotherm of the combustible material to provide the heat required to cure the repair material;
  • the latent curing agent wrapped on the surface of the dense aggregate will decompose the active intermediate, and the thermoplastic resin wrapped on the surface of the dense aggregate is also softened and flowed by heat, and finally latent curing
  • the active substance released by the agent will chemically react with the resin, cross-linking and solidifying, and the film-forming resin will change from the original thermoplastic linear structure to the thermosetting body structure, and the final coated silica sand will be heated and formed within 50-70 minutes after heating.
  • the high-strength pavement substrate greatly shortens the time for rushing and curing;
  • the dense aggregate is silica sand particles, ceramic sand, ceramsite, small steel ball, or small iron ball with a certain weight and particle size, which can meet the requirements of self-compacting performance of the repairing material during road repair. Large particulate materials also help to increase the cure strength while saving material;
  • the ratio of the thermoplastic resin binder to the thermally induced latent curing agent is 4-30: 1-10, more preferably 5-10: 1-5, which can ensure The better ratio of mixing and at the same time triggering the curing effect is better, ensuring the curing strength and shortening the curing time, and meeting the requirements for the repair time and the repairing strength in the road repairing project;
  • the dense aggregate is an inert material and has poor adhesion to the polymer material.
  • the process of the present invention first mixes the thermoplastic resin binder with the dense aggregate, and is similar to The principle of film coating makes the overall bonding performance of the repairing material better, and then the heat is combined with the heat-initiated latent curing agent to help strengthen the strength of the repairing material;
  • the repairing material obtained by the invention has good acid and alkali resistance performance, and can achieve high resistance strength in a short time after testing;
  • the method of dissolving the solid oxidant in water and then laminating the film with the film substrate is adopted, and the temperature of the liquid is lowered and the temperature of the whole production system is maintained and stabilized.
  • the solid oxidant does not undergo an oxygen evolution reaction until the water vapor is completely evaporated, thereby avoiding the risk of decomposition of the solid oxidant during the preparation process;
  • the repairing method uses a flammable liquid as a heating medium, on the one hand, saves the transportation link of the heating device, and at the same time, the burning of the flammable liquid can heat-harden the repairing material to the maximum area and the maximum extent, and the The oxygen released by the oxygen repairing material during the heating process can also support the long-time combustion of the flammable liquid, further improving the time and curing strength of the road repair;
  • Laminating a layer of self-compacting fast curing repair material over the oxygen-releasing repair material can further save costs, and the oxygen-removable repair material located in the lower layer can release oxygen support infiltration under initial heat.
  • the combustion of the underlying flammable liquid completes the curing process.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The phenolic resin, the boron phenolic resin, and the urea-formaldehyde resin described in the embodiments of the present invention can be selected from commercially available products in the prior market to achieve the effect of the present invention; There is a commercially available type 665 silicone epoxy resin; the phenolic modified epoxy resin is selected from Taiwan South Asia NOON-638 type resin to illustrate the effects of the various embodiments.
  • Heat 60 ceramic aggregates with a particle size of 70-140 mesh and a specific gravity of 1.8-2.0 to 150-160
  • thermoplastic phenolic resin 30 parts is heated and melted, and added to the ceramic sand aggregate while stirring, and uniformly stirred to obtain a stable coating material
  • the reactant obtained in the step (4) is cooled to room temperature, and crushed to a particle size of 70-140 mesh, and sieved to obtain a desired oxygen-curable rapid-curing pavement repairing material.
  • the repairing material prepared in this embodiment is detected by the instrument, and a small amount of oxygen is released under the heated state, and the amount of released oxygen can support the re-ignition of the extinguished charcoal.
  • the method for quickly repairing damaged road surface by the combustion method described in this embodiment includes the following steps:
  • Example 2 The oxygen-storing fast-curing pavement repairing material described in this example was prepared from the following parts by weight according to the following method:
  • the reactant obtained in the step (4) is cooled to room temperature, and crushed to a particle size of 70-140 mesh, and sieved to obtain a desired repairing material.
  • the repairing material prepared in this embodiment is detected by the instrument, and a small amount of oxygen is released under the heated state, and the amount of released oxygen can support the re-ignition of the extinguished charcoal.
  • the method for quickly repairing damaged road surface by the combustion method described in this embodiment includes the following steps:
  • Example 3 The oxygen-storing fast-curing pavement repairing material described in this example was prepared from the following parts by weight according to the following method:
  • thermoplastic silicone modified epoxy resin 10 parts is heated and melted, and uniformly added to the small steel ball aggregate to be uniformly mixed to obtain a stable coating material
  • the reactant obtained in the step (4) is cooled to room temperature, and crushed to a particle size of 20-40 mesh, and sieved to obtain a desired oxygen-releasing fast-curing pavement repairing material.
  • the repairing material prepared in this embodiment is detected by the instrument, and a small amount of oxygen is released under the heated state, and the amount of released oxygen can support the re-ignition of the extinguished charcoal.
  • This embodiment also provides a self-compacting quick repair material which is prepared from the following components by weight:
  • thermoplastic phenolic resin (2) adding 7 parts of a mixture of a phenol-modified epoxy resin and a thermoplastic phenolic resin to the silica sand particle aggregate and stirring to obtain a stable mixture, the phenol-modified epoxy resin and
  • the mixing ratio of the thermoplastic phenolic resin is not limited;
  • the reactant obtained in the step (3) is cooled to room temperature, crushed to a particle size of 100-200 mesh, and sieved to obtain a desired self-compacting fast-curing repair material.
  • the self-compacting fast curing repairing material has been tested and only needs to be heated for 50 minutes, and its strength can reach 55 MPa, which can fully meet the strength requirements of the airport or highway road surface.
  • the method for quickly repairing damaged road surface by the combustion method described in this embodiment includes the following steps:
  • Embodiment 4 The oxygen-releasing and rapid-curing pavement repairing material described in this embodiment is composed of the following components by weight Prepared as follows:
  • thermoplastic urethane resin (2) heating and melting 5 parts of the thermoplastic urethane resin, and adding the heat to the small iron ball aggregate and stirring uniformly to obtain a stable film material;
  • the reactant obtained in the step (4) is cooled to room temperature, and is crushed to a particle size of 20-40 mesh, and sieved to obtain a desired oxygen-releasing fast-curing pavement repairing material.
  • the repairing material prepared in this embodiment is detected by the instrument, and a small amount of oxygen is released under the heated state, and the amount of released oxygen can support the re-ignition of the extinguished charcoal.
  • the embodiment also provides the above-mentioned application of the oxygen-dissipating fast-curing repairing material in quickly repairing damaged road surface, that is, providing a method for quickly repairing damaged road surface by the burning method, comprising the following steps:
  • the reactant obtained in the step (4) is cooled to room temperature, and crushed to a particle size of 100-200 mesh, and sieved to obtain a desired oxygen-releasing fast-curing pavement repairing material.
  • the repair material prepared in this embodiment is tested by the instrument, and a small amount of oxygen is released under the heated state, and the amount of released oxygen can support the re-ignition of the extinguished charcoal.
  • the embodiment also provides the above-mentioned application of the oxygen-dissipating fast-curing repairing material in quickly repairing damaged road surface, that is, providing a method for quickly repairing damaged road surface by the burning method, comprising the following steps:
  • thermoplastic urethane resin (2) heating and melting 5 parts of the thermoplastic urethane resin, and adding the heat to the small iron ore aggregate and stirring uniformly to obtain a stable coating material; (3) mixing 5 parts of special modified curing agent and 0.8 parts of solid magnesium nitrate particles uniformly, and uniformly dispersing 4.7 parts of water;
  • the reactant obtained in the step (4) is cooled to room temperature, and crushed to a particle size of 20-40 mesh, and sieved to obtain a desired oxygen-releasing fast-curing pavement repairing material.
  • the repair material prepared in this example was tested to have a small amount of oxygen released under heat, and the amount of oxygen released can support the re-ignition of the extinguished charcoal.
  • thermoplastic urethane resin (2) adding 5 parts of thermoplastic urethane resin to the small iron ore aggregate and stirring uniformly to obtain a stable mixture
  • the reactant obtained in the step (3) is cooled to room temperature, and crushed to a particle size of 20 to 40 mesh, and sieved to obtain a desired repairing material.
  • the self-compacting fast curing repairing material is tested and only needs to be heated for 60 minutes, and its strength can reach 50 MPa, which can fully meet the strength requirements of the airport or highway road surface.
  • the method for quickly repairing damaged road surface by the combustion method described in this embodiment includes the following steps:
  • the repairing material is cured by heat. It has been tested that the repairing material only needs to be heated for 65 minutes, and its strength can reach 50MPa. The strength of the underlying repairing material is similar to that of the upper layer, and it can fully meet the strength requirements of the airport or highway road surface, and the damage can be achieved. Repair of the road surface.
  • the mixing ratio of the epoxy resin and the thermoplastic phenolic resin is not limited;
  • the reactant obtained in the step (4) is cooled to room temperature, and crushed to a particle size of 100-200 mesh, and sieved to obtain a desired oxygen-releasing fast-curing pavement repairing material.
  • the repair material prepared in this example was tested to have a small amount of oxygen released under heat, and the amount of oxygen released can support the re-ignition of the extinguished charcoal.
  • the method for quickly repairing damaged road surface by the combustion method described in this embodiment includes the following steps:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Road Repair (AREA)

Abstract

一种受热可放氧且可快速固化的修补材料及其制备方法,以及其在快速修补路面领域中的应用。所述材料在受热状态下可以释放出少量氧气,可以支持燃物的燃烧放热,以提供修补材料固化所需要的热量,实现快速固化抢修目的。还提供一种利用所述材料结合燃烧法加热的快速抢修受损路面的方法,该方法50-70min内即可实现修补材料的固化,缩短了抢修固化的时间。

Description

一种可放氧快速固化修补材料及其制备方法与应用 技术领域 本发明属于铸造材料领域,具体涉及一种受热可放氧且可快速固化的 修补材料及其制备方法, 以及在快速抢修路面领域中的应用, 并具体涉及 一种利用受热可可放氧的修补材料结合燃烧法加热的快速抢修受损路面 的方法。 背景技术
随着我国经济的迅速发展,机场跑道数量迅速增加, 高等级高速公路 大量建设,城市广场及市政公路等混凝土工程的实施, 改善了人类的生存 质量,促进了国民经济的健康发展。现有的道路中采用混凝土施工路面的 较多, 不仅质量好而且使用寿命长。但是混凝土路面在使用中其路面损坏 后维修比较复杂, 需要封闭停用修复, 需要动用较大的机械才能将路面刨 开重新修筑, 同时养护期较长。 目前混凝土路面修补常用的修复材料有快 速水泥或沥青混凝土或高分子材料等,但都存在着需要长时间封闭路面修 整、 养护时间长等问题, 为道路抢修带来严重影响, 尤其是机场路面的抢 修就存在更大的问题。 中国专利 CN101121812A公开了一种环氧树脂基快速修补材料, 该修 补材料由砂石、 滑石粉、 环氧树脂、 聚酰胺和稀释剂组成。 该快速修补材 料可用于桥梁、 隧道、 道路和房屋等混凝土建筑的修补, 施工时仅需要对 混凝土表面进行处理,并对带裂缝构件则要作环氧树脂高压灌浆封缝处理 即可。 该修补材料施工方便、 工期较短(3天强度可达 60-70MPa )、 无需 封闭路面且早期强度较高、后期强度适中。但该材料用于修补路面时灌浆 后依然依靠自然养护, 而且需要养护 3天的强度才能达到 60-70MPa, 还 是需要短期封闭抢修, 而且以砂石等轻质砂石为骨料, 整个修补材料的自 密实性能较差, 在用于抢修路面时还需要进行填平处理, 对于类似机场路 面等需要快速抢修的路面修补并不适用。 现有技术中也有一些在路面抢修时通过外设的加热装置对快速修补 材料进行加热处理使得抢修时间缩短的手段,但通过外在设备加热的方法 一方面需要运输加热设备, 同时对于修补材料的全面加热范围也受到限 制。因此开发出一种可采用筒易方法加热固化的可用于快速修补路面的修 补材料及快速固化的修补方法成为该领域亟待解决的问题。 中国专利 CN101817663A公开了一种混凝土路面快速修补方法, 该方 法所使用的路面修补材料由偏高岭土、矿渣、水泥等粉料,砂、石等集料, 以及水玻璃制备而成的。道路修补时将修补材料浇注于清理过得破损路面 处, 并震动、 抹平、 自然养护 8小时即可, 避免了普通修补材料需要养护 3-7天、封路期限较长、 影响交通的问题。 但是该方法采用的是自然养护, 虽然修补材料的固化性能较好,但仍需要 8小时的养护期, 对于机场等急 需快速抢修的道路并不适用。 发明内容 为此,本发明所要解决的技术问题在于现有技术中用于路面抢修的材 料不适用于快速固化的方法, 进而导致抢修时间较长的问题, 进而提供一 种可放氧且可快速固化的修补材料。
本发明所要解决的第二个技术问题是提供一种可放氧快速固化修补 材料在抢修路面工程领域中的应用。
本发明所要解决的第三个技术问题在于现有技术中路面抢修时间较 长、导致长时间封路影响交通的问题, 进而提供一种固化时间较短的快速 抢修路面的方法。
为解决上述技术问题, 本发明所述的可放氧快速固化修补材料, 是由 如下重量份的组分制备而成的:
致密骨料 60-95份;
热塑性树脂粘结剂 4-30份;
在加热状态下可以诱发所述热塑性树脂粘结剂快速固化的热引发潜伏 固 4匕剂 1-10份;
受热可释放氧气的固体氧化剂 0.5-1份。
优选的, 所述的可放氧快速固化修补材料, 是由如下重量份的组分制 备而成的:
致密骨料 85-94份;
热塑性树脂粘结剂 5- 10份; 热引发潜伏固化剂 1-5份;
固体氧化剂 0.6-0.8份。 所述固体氧化剂包括高锰酸盐、 氯酸盐、 以及碱金属硝酸盐或碱土金 属的硝酸盐。
所述热塑性树脂粘结剂包括热塑性的酚醛树脂、 硼酚醛树脂、 有机硅 改性环氧树脂、 酚醛改性环氧树脂或脲酸树脂中的一种或几种。 所述热引发潜伏固化剂包括乌洛托品 (正规名称是: 1,3,5,7-四氮杂三 环 [3.3.1.1]癸烷)、 双氰胺、 酰肼、 氯化铵或特种改性固化剂中的一种或几 种。
所述致密骨料包括硅砂颗粒、 陶砂、 陶粒、 小钢球或小铁球。
所述致密骨料的比重为 1.7-8.9。
所述致密骨料的粒径为 20-200目。
本发明还公开了一种制备所述的可放氧快速固化修补材料的方法, 包 括如下步骤: ( 1 )将选定重量份数的所述致密骨料加热;
(2)将选定重量份数的所述热塑性树脂粘结剂加热融化, 并趁热加入 步骤(1) 中加热后的致密骨料混合均勾, 得到稳定的覆膜材料;
( 3 )将选定重量份数的所述热引发潜伏固化剂和所述固体氧化剂混合 并加水分散均匀;
(4)将步骤(3) 中得到的分散液与步骤(2) 中得到得覆膜材料相混 合, 并搅拌均匀, 加热将其中的水份全部蒸发;
(5)将步骤(4) 中得到得反应物冷却、 破碎并过筛, 即得。
所述步骤(3) 中, 添加的水份的量为所述致密骨料重量份的 2.5-5%。 所述步骤(1) 中, 先将所述致密骨料加热至 160°C以上至 1000°C, 然 后再降温至 90-160 °C。 本发明还公开了一种所述的可放氧快速固化修补材料在路面抢修工程 领 i或的应用。 本发明还公开了一种利用燃烧法快速抢修受损路面的方法, 包括如下 步骤:
( 1 )将前述可放氧快速固化修补材料填充至破损路面凹陷内整理平
(2)向整理平整的路面处喷洒易燃液体并点燃, 以使所述可放氧快速 固化修补材料受热固化, 即可实现破损路面的修补。 进一步的, 所述步骤(1) 中, 将所述可放氧快速固化修补材料填充至 破损路面凹陷内的步骤后, 还包括在其上层填充自密实快速固化修补材料 的步骤; 所述自密实快速固化修补材料是由如下重量份的组份制备而成的: 致密骨料 60-95份; 热塑性树脂粘结剂 4-30份; 在加热状态下可以诱发所述热塑性树脂粘结剂快速固化的热引发潜伏 固化剂 1-10份。 优选的, 所述自密实快速固化修补材料是由如下重量份的组分制备而 成的: 致密骨料 85-94份; 热塑性树脂粘结剂 5-10份; 热引发潜伏固化剂 1-5份。 所述自密实快速固化修补材料中所使用的致密骨料、 热塑性树脂粘结 剂、 热引发潜伏固化剂的可选组分均与前述可放氧快速固化修补材料中所 使用的成分相同且各组分性能及特征也与所述可放氧快速固化修补材料相 同。 即所述热塑性树脂粘结剂包括热塑性的酚醛树脂、 硼酚醛树脂、 有机 硅改性环氧树脂、 酚醛改性环氧树脂或脲醛树脂中的一种或几种。 所述热 引发潜伏固化剂包括乌洛托品(正规名称是: 1,3,5,7-四氮杂三环 [3.3丄 1]癸 烷)、 双氰胺、 酰肼、 氯化铵或特种改性固化剂中的一种或几种。 所述致密 骨料包括硅砂颗粒、 陶砂、 陶粒、 小钢球或小铁球。 所述致密骨料的比重 为 1.7-8.9。 所述致密骨料的粒径为 20-200目。 本发明还提供了一种制备上述自密实快速固化路面修补材料的方法, 包括以下步骤:
( 1 )将选定重量份数的致密骨料加热至 160°C以上至 1000°C , 然后再 降温至 90-160°C ;
( 2 )将选定重量份数的热塑性树脂粘结剂趁热加入所述致密骨料中, 并搅拌均匀;
( 3 )趁热将热引发潜伏固化剂加入步骤(2 ) 中得到的反应物中, 并 搅拌均勾后进行降温处理; ( 4 )将步骤(3 ) 中得到的反应物冷却、 破碎并过筛, 即得。
进一步的, 所述步骤(1 )之前还包括将破损的混凝土回填至破损位置 处并整修平整的步骤。
本发明所述的上述技术方案相比现有技术具有以下优点:
1、 本发明所述的可放氧快速固化修补材料选用主要包括热固性的酚 醛树脂、 硼酚酸树脂、 有机硅改性环氧树脂、 酚醛改性环氧树脂、 脲酸树 脂等耐高温、 强度高的特种高分子树脂作为主要覆膜反应物, 制备出的不 同粒度的覆膜硅砂复合材料,并在覆膜材料的基础上添加热引发的潜伏性 固化剂和受热状态下可释放出氧气的氧化剂添加剂材料,所述修补材料在 受热状态下会释放出氧气, 可以支持可燃物的燃烧放热, 以提供修补材料 固化所需要的热量;
2、 所述修补材料在受热条件下, 包裹在致密骨料表面的潜伏性固化 剂会分解出活性中间体,同时包裹在致密骨料表面的热塑性树脂也受热变 软、 流动, 最后潜伏性固化剂释放出得活性物质与树脂会发生化学反应, 交联固化, 覆膜树脂由原来热塑性线性结构转变为热固性的体型结构,最 终覆膜硅砂之间会受热成型,加热 50-70min内即可形成高强度路面基材, 大大缩短了抢爹固化的时间;
3、 所述致密骨料为具有一定自重及粒径的硅砂颗粒、 陶砂、 陶粒、 小钢球、 或小铁球, 可以满足在道路抢修时, 对于修复材料自密实性能的 要求, 同时大颗粒材料也有助于提升固化强度同时节省材料;
4、 经过分析筛选, 所述热塑性树脂粘结剂与所述热引发潜伏固化剂 选用的比例为 4-30:1-10, 更优的为 5-10:1-5 , 能够保证二者以较佳的比例 混合同时引发固化的效果较好,保证固化强度及缩短固化时间, 满足路面 抢修工程中对抢修时间和抢修强度的要求;
5、 致密骨料为惰性材料, 与高分子材料的粘结性能较差, 本发明所 述的工艺先将所述热塑性树脂粘结剂趁热与致密骨料相混合,采用类似于 覆膜原理,使得所述修补材料的整体粘结性能较好,再趁热与所述热引发 潜伏固化剂混合均勾, 也有助于增强所述修补材料的强度;
6、 本发明所得的修补材料耐酸碱性能较好, 经测试短时间内即可达 到较高的抗性强度;
7、 所述修补材料加工时, 选用先将所述固体氧化剂溶于水分散后再 与覆膜基材相混合覆膜的方式,利用液体的降温隔热性能使得整个生产体 系温度维持稳定,保证在水分蒸发完全之前, 所述固体氧化剂不会发生放 氧反应, 避免了在制备过程中固体氧化剂分解的危险;
8、所述抢修方法以易燃液体作为加热介质,一方面节省了加热装置的 运输环节, 同时易燃液体的燃烧可以最大面积、 最大程度的使所述修补材 料受热固化, 而且所述可放氧修补材料在加热过程中释放出的氧气也可以 支持易燃液体的长时间燃烧, 进一步提高了道路抢修的时间及固化强度;
9、 在所述可放氧修补材料上方再铺设一层自密实的快速固化修补材 料, 可以进一步节约成本, 而位于下层的可放氧修补材料在初步受热的情 况下即可释放出氧气支持渗入下层的易燃液体的燃烧, 完成固化过程。 具体实施方式 本发明实施例中所述的酚醛树脂、 硼酚醛树脂、 及脲醛树脂均可选用 现有市场市售的产品即可实现本发明的作用; 所述的有机硅改性环氧树脂 选用现有市售的 665型有机硅环氧树脂; 所述酚醛改性环氧树脂选用台湾 南亚 NOON-638型号树脂, 以说明各个实施例的效果。
实施例 1
本实施例所述的可放氧快速固化路面修补材料由如下重量份的组份按 照以下方法制备得到的:
( 1 )将 60份粒径为 70-140目、比重为 1.8-2.0的陶砂骨料加热至 150-160
°C ; ( 2 )将 30份的热塑性酚醛树脂加热融化, 并趁热加入所述陶砂骨料 中搅拌均匀 , 得到稳定的覆膜材料;
( 3 )将 1份乌洛托品和 0.5份固体高锰酸钾颗粒混合均匀, 并添加 1.5 份水将其分散均匀;
( 4 )将步骤(3 ) 中得到的均匀分散液趁热与步骤(2 ) 中得到得覆膜 材料相混合, 并搅拌均匀, 加热将其中的水份全部蒸发;
( 5 )将步骤(4 )中得到的反应物冷却至室温、 并破碎至粒径为 70-140 目, 并过筛, 即得所需的可放氧快速固化路面修补材料。 本实施例所制备得到的修补材料经仪器检测, 在受热状态下有微量氧 气释放, 而释放的氧气量可以支持熄灭的木炭复燃。 本实施例所述的燃烧法快速抢修受损路面的方法, 包括如下步骤:
( 1 )将破损的混凝土回填至破损位置处并整修平整, 然后将上述可放 氧修补材料填充至破损路面凹陷内整理平整;
( 2 )向上述整理平整的路面处喷洒酒精并点燃放热, 以使所述可放氧 修补材料受热固化, 同时经测试表明, 所述修补材料只需加热 60min, 其强 度即可达到 45MPa, 下层修补材料的强度与上层近似, 完全可达到机场或 高速路路面的强度要求, 即可实现破损路面的修补。 实施例 2 本实施例所述的可放氧快速固化路面修补材料由如下重量份的组份按 照以下方法制备得到的:
( 1 ) 将 95份粒径为 70-140 目、 比重为 1.7-2.5的陶粒骨料加热至 700-800 °C , 并随后自然冷却至 90-100 °C ;
( 2 )将 4份的热塑性硼酚醛树脂加热融化, 并趁热加入所述陶粒骨料 中并搅拌均匀 , 得到稳定的覆膜材料;
( 3 )将 10份乌洛托品和 1份固体氯酸钾颗粒混合均匀 , 并添加 4份 水将其分散均匀; ( 4 )将步骤( 3 ) 中得到的均匀分散液趁热与步骤( 2 ) 中得到得覆膜 材料相混合, 并搅拌均匀, 加热将其中的水份全部蒸发;
( 5 )将步骤(4 )中得到的反应物冷却至室温、 并破碎至粒径为 70-140 目, 并过筛, 即得所需的修补材料。 本实施例所制备得到的修补材料经仪器检测, 在受热状态下有微量氧 气释放, 而释放的氧气量可以支持熄灭的木炭复燃。 本实施例所述的燃烧法快速抢修受损路面的方法, 包括如下步骤:
( 1 )将破损的混凝土回填至破损位置处并整修平整, 然后将上述可放 氧修补材料填充至破损路面凹陷内整理平整;
( 2 )向上述整理平整的路面处喷洒酒精并点燃放热, 以使所述可放氧 修补材料受热固化, 经测试表明, 所述修补材料只需加热 65min, 其强度即 可达到 48MPa, 下层修补材料的强度与上层近似, 完全可达到机场或高速 路路面的强度要求, 即可实现破损路面的修补。 实施例 3 本实施例所述的可放氧快速固化路面修补材料由如下重量份的组份按 照以下方法制备得到的:
( 1 ) 将 85份粒径为 20-40 目、 比重为 7.9的小钢球骨料加热至 160-200 °C , 并随后自然冷却至 90-100 °C ;
( 2 )将 10份的热塑性有机硅改性环氧树脂加热融化, 并趁热加入所 述小钢球骨料中混合均匀 , 得到稳定的覆膜材料;
( 3 )将 2份氯化铵和 0.6份固体硝酸钠颗粒混合均匀 , 并添加 2.5份 水将其分散均匀;
( 4 )将步骤(3 ) 中得到的均匀分散液趁热与步骤(2 ) 中得到得覆膜 材料相混合, 并搅拌均匀, 加热将其中的水份全部蒸发;
( 5 )将步骤(4 ) 中得到的反应物冷却至室温、 并破碎至粒径为 20-40 目, 并过筛, 即得所需的可放氧快速固化路面修补材料。 本实施例所制备得到的修补材料经仪器检测, 在受热状态下有微量氧 气释放, 而释放的氧气量可以支持熄灭的木炭复燃。 本实施例还提供了一种自密实快速修补材料, 其是由如下重量份的组 分制备而成的:
( 1 )将 90份粒径为 100-200目、 比重为 1.7的硅砂颗粒骨料加热至 300-500 °C , 并随后自然冷却至 120-140 °C ;
( 2 )趁热将 7份的酚醛改性环氧树脂和热塑性酚酸树脂的混合物加入 所述硅砂颗粒骨料中并搅拌均勾, 得到稳定的混合物,, 所述酚醛改性环氧 树脂和热塑性酚酸树脂的混合比例不限;
( 3 )趁热将 3份乌洛托品和双氰胺的混合物 (二者以质量比 3:1的比 例混合)加入步骤(2 ) 中得到的反应物中, 并搅拌均匀后自然降温;
( 4 )将步骤( 3 )中得到的反应物冷却至室温、并破碎至粒径为 100-200 目, 并过筛, 即得所需的自密实快速固化修补材料。 所述自密实快速固化修补材料经测试, 只需加热 50min, 其强度即可达 到 55MPa, 完全可达到机场或高速路路面的强度要求。 本实施例所述的燃烧法快速抢修受损路面的方法, 包括如下步骤:
( 1 )将破损的混凝土回填至破损位置处并整修平整, 然后将上述可放 氧修补材料填充至破损路面 陷内, 并在其上层填充所述的自密实快速固 化修补材料并整理平整;
( 2 )向上述整理平整的路面处喷洒酒精并点燃放热, 以使所述可放氧 修补材料受热固化, 经测试表明, 所述修补材料只需加热 60min, 其强度即 可达到 60MPa, 下层修补材料的强度与上层近似, 完全可达到机场或高速 路路面的强度要求, 即可实现破损路面的修补。 实施例 4 本实施例所述的可放氧快速固化路面修补材料由如下重量份的组份按 照以下方法制备得到的:
( 1 ) 将 94份粒径为 20-40目、 比重为 7.8-8.9的小铁球骨料加热至 500-600 °C , 并随后自然冷却至 100-120 °C ;
( 2 )将 5份的热塑性脲酸树脂加热融化, 并趁热加入所述小铁球骨料 中并搅拌均匀 , 得到稳定的覆膜材料;
( 3 )将 5份特种改性固化剂和 0.8份固体硝酸镁颗粒混合均匀, 并添 加 4.7份水将其分散均匀;
( 4 )将步骤(3 ) 中得到的均匀分散液趁热与步骤(2 ) 中得到得覆膜 材料相混合, 并搅拌均匀, 加热将其中的水份全部蒸发;
( 5 )将步骤(4 ) 中得到的反应物冷却至室温、 并破碎至粒径为 20-40 目, 并过筛, 即得所需的可放氧快速固化路面修补材料。
本实施例所制备得到的修补材料经仪器检测, 在受热状态下有微量氧 气释放, 而释放的氧气量可以支持熄灭的木炭复燃。
本实施例还提供了上述可放氧快速固化修补材料在快速抢修受损路面 中的应用, 即提供了一种燃烧法快速抢修受损路面的方法, 包括如下步骤:
( 1 )将破损的混凝土回填至破损位置处并整修平整, 然后将上述可放 氧修补材料填充至破损路面凹陷内整理平整;
( 2 )向上述整理平整的路面处喷洒酒精并点燃放热, 以使所述可放氧 修补材料受热固化, 经测试表明, 所述修补材料只需加热 60min, 其强度即 可达到 50MPa, 完全可达到机场或高速路路面的强度要求, 即可实现破损 路面的修补。
实施例 5
本实施例所述的可放氧快速固化路面修补材料由如下重量份的组份按 照以下方法制备得到的:
( 1 )将 90份粒径为 100-200目、 比重为 1.7的硅砂颗粒骨料加热至 300-500 °C , 并随后自然冷却至 120-140 °C; ( 2 )将 7份的酚醛改性环氧树脂和热塑性酚酸树脂的混合物加热融化, 并趁热加入所述硅砂颗粒骨料中并搅拌均勾, 得到稳定的覆膜材料, 所述 酚醛改性环氧树脂和热塑性酚酸树脂的混合比例不限;
( 3 )将 3份双氰胺与丁二酸二酰肼的混合物 (二者以质量比 3:1的比 例混合 )和 0.7份固体硝酸 4丐颗粒混合均匀,并添加 2.7份水将其分散均匀;
( 4 )将步骤(3 ) 中得到的均匀分散液趁热与步骤(2 ) 中得到得覆膜 材料相混合, 并搅拌均匀, 加热将其中的水份全部蒸发;
( 5 )将步骤(4 )中得到的反应物冷却至室温、并破碎至粒径为 100-200 目, 并过筛, 即得所需的可放氧快速固化路面修补材料。
本实施例所制备得到的修补材料经仪器测试, 在受热状态下有微量氧 气释放, 而释放的氧气量可以支持熄灭的木炭复燃。 本实施例还提供了上述可放氧快速固化修补材料在快速抢修受损路面 中的应用, 即提供了一种燃烧法快速抢修受损路面的方法, 包括如下步骤:
( 1 )将破损的混凝土回填至破损位置处并整修平整, 然后将上述可放 氧修补材料填充至破损路面凹陷内整理平整;
( 2 )向上述整理平整的路面处喷洒酒精等易燃液体并点燃放热, 以使 所述可放氧修补材料受热固化,经测试表明,所述修补材料只需加热 50min, 其强度即可达到 55MPa, 完全可达到机场或高速路路面的强度要求, 即可 实现破损路面的修补。
实施例 6
本实施例所述的可放氧快速固化路面修补材料由如下重量份的组份按 照以下方法制备得到的:
( 1 ) 将 94份粒径为 20-40目、 比重为 7.8-8.9的小铁球骨料加热至 500-600 °C , 并随后自然冷却至 100-120 °C;
( 2 )将 5份的热塑性脲酸树脂加热融化, 并趁热加入所述小铁球骨料 中并搅拌均匀 , 得到稳定的覆膜材料; ( 3 )将 5份特种改性固化剂和 0.8份固体硝酸镁颗粒混合均匀, 并添 加 4.7份水将其分散均匀;
(4)将步骤(3) 中得到的均匀分散液趁热与步骤(2) 中得到得覆膜 材料相混合, 并搅拌均匀, 加热将其中的水份全部蒸发;
(5)将步骤(4) 中得到的反应物冷却至室温、 并破碎至粒径为 20-40 目, 并过筛, 即得所需的可放氧快速固化路面修补材料。
本实施例所制备得到的修补材料经测试, 在受热状态下有微量氧气释 放, 而释放的氧气量可以支持熄灭的木炭复燃。
本实施例还提供了一种自密实快速修补材料, 其是由如下重量份的组 分制备而成的:
( 1 ) 将 94份粒径为 20-40目、 比重为 7.8-8.9的小铁球骨料加热至 500-600 °C, 并随后自然冷却至 100-120 °C;
( 2 )趁热将 5份的热塑性脲酸树脂加入所述小铁球骨料中并搅拌均匀, 得到稳定的混合物;
( 3 )趁热将 5份双氰胺加入步骤( 2 ) 中得到的反应物中 , 并搅拌均 匀后自然降温;
(4)将步骤(3) 中得到的反应物冷却至室温、 并破碎至粒径为 20-40 目, 并过筛, 即得所需的修补材料。
所述的自密实快速固化修补材料经测试, 只需加热 60min, 其强度即可 达到 50MPa, 完全可达到机场或高速路路面的强度要求。 本实施例所述的燃烧法快速抢修受损路面的方法, 包括如下步骤:
(1)将破损的混凝土回填至破损位置处并整修平整, 然后将上述可放 氧修补材料填充至破损路面 陷内, 并在其上层填充所述的自密实快速固 化修补材料并整理平整;
(2)向上述整理平整的路面处喷洒酒精并点燃放热, 以使所述可放氧 修补材料受热固化, 经测试表明, 所述修补材料只需加热 65min, 其强度即 可达到 50MPa, 下层修补材料的强度与上层近似, 完全可达到机场或高速 路路面的强度要求, 即可实现破损路面的修补。
实施例 7
本实施例所述的可放氧快速固化路面修补材料由如下重量份的组份按 照以下方法制备得到的:
( 1 )将 90份粒径为 100-200目、 比重为 1.7的硅砂颗粒骨料加热至 300-500 °C , 并随后自然冷却至 120-140 °C;
( 2 )将 7份的酚醛改性环氧树脂和热塑性酚酸树脂的混合物加热融化, 并趁热加入所述硅砂颗粒骨料中并搅拌均勾, 得到稳定的覆膜材料, 所述 酚醛改性环氧树脂和热塑性酚酸树脂的混合比例不限;
( 3 )将 3份双氰胺与丁二酸二酰肼的混合物 (二者以质量比 3: 1的比 例混合 )和 0.7份固体硝酸 4丐颗粒混合均匀,并添加 2.7份水将其分散均匀;
( 4 )将步骤( 3 ) 中得到的均匀分散液趁热与步骤( 2 ) 中得到得覆膜 材料相混合, 并搅拌均匀, 加热将其中的水份全部蒸发;
( 5 )将步骤( 4 )中得到的反应物冷却至室温、并破碎至粒径为 100-200 目, 并过筛, 即得所需的可放氧快速固化路面修补材料。
本实施例所制备得到的修补材料经测试, 在受热状态下有微量氧气释 放, 而释放的氧气量可以支持熄灭的木炭复燃。 本实施例所述的燃烧法快速抢修受损路面的方法, 包括如下步骤:
( 1 )将破损的混凝土回填至破损位置处并整修平整, 然后将上述可放 氧修补材料填充至破损路面凹陷内整理平整;
( 2 )向上述整理平整的路面处喷洒酒精并点燃放热, 以使所述可放氧 修补材料受热固化, 经测试表明, 所述修补材料只需加热 50min, 其强度即 可达到 55MPa, 完全可达到机场或高速路路面的强度要求, 即可实现破损 路面的修补。 显然, 上述实施例仅仅是为清楚地说明所作的举例, 而并非对实施方 式的限定。对于所属领域的普通技术人员来说, 在上述说明的基础上还可 以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予 以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保 护范围之中。

Claims

权 利 要 求 书
1、 一种可放氧快速固化修补材料, 其特征在于, 是由如下重量 份的组分制备而成的: 致密骨料 60-95份;
热塑性树脂粘结剂 4-30份; 在加热状态下可以诱发所述热塑性树脂粘结剂快速固化的热引 发潜伏固化剂 1-10份;
受热可释放氧气的固体氧化剂 0.5-1份。
2、 根据权利要求 1所述的可放氧快速固化修补材料, 其特征在 于, 是由如下重量份的组分制备而成的:
致密骨料 85-94份;
热塑性树脂粘结剂 5-10份; 热引发潜伏固化剂 1-5份;
固体氧化剂 0.6-0.8份。
3、 根据权利要求 1或 2所述的可放氧快速固化修补材料, 其特 征在于: 所述固体氧化剂包括高锰酸盐、 氯酸盐、 以及碱金属硝酸盐或碱 土金属的硝酸盐。
4、 根据权利要求 1或 2所述的可放氧快速固化修补材料, 其特 征在于:
所述热塑性树脂粘结剂包括热塑性的酚酸树脂、 硼酚醛树脂、有 机硅改性环氧树脂、 酚醛改性环氧树脂或脲酸树脂中的一种或几种。
5、 根据权利要求 1或 2所述的可放氧快速固化修补材料, 其特 征在于:
所述热引发潜伏固化剂包括乌洛托品、 双氰胺、 酰肼、 氯化铵或 特种改性固化剂中的一种或几种。
6、 根据权利要求 1或 2所述的可放氧快速固化修补材料, 其特 征在于:
所述致密骨料包括硅砂颗粒、 陶砂、 陶粒、 小钢球或小铁球。
7、 根据权利要求 6所述的可放氧快速固化修补材料, 其特征在 于:
所述致密骨料的比重为 1.7-8.9。
8、 根据权利要求 7所述的可放氧快速固化修补材料, 其特征在 于:
所述致密骨料的粒径为 20-200目。
9、 一种制备权利要求 1-8任一所述的可放氧快速固化修补材料 的方法, 其特征在于, 包括如下步骤:
( 1 )将选定重量份数的所述致密骨料加热;
( 2 )将选定重量份数的所述热塑性树脂粘结剂加热融化, 并趁 热加入步骤(1 ) 中加热后的致密骨料混合均勾, 得到稳定的覆膜材 料;
( 3 )将选定重量份数的所述热引发潜伏固化剂和所述固体氧化 剂混合并加水分散均匀;
( 4 )将步骤(3 ) 中得到的分散液与步骤(2 ) 中得到得覆膜材 料相混合, 并搅拌均匀, 加热将其中的水份全部蒸发;
( 5 )将步骤(4 ) 中得到得反应物冷却、 破碎并过筛, 即得。
10、 根据权利要求 9所述的制备可放氧快速固化修补材料的方 法, 其特征在于: 所述步骤 (3 ) 中, 添加的水份的量为所述致密骨料重量份的
2.5-5%。
11、 根据权利要求 9或 10所述的制备可放氧快速固化修补材料 的方法, 其特征在于:
所述步骤( 1 )中,先将所述致密骨料加热至 160°C以上至 1000°C , 然后再降温至 90-160 °C。
12、一种权利要求 1-8任一所述的可放氧快速固化修补材料在路 面抢爹工程领域的应用。
13、 一种燃烧法快速抢修受损路面的方法, 其特征在于, 包括如 下步骤:
( 1 )将权利要求 1-8任一所述的可放氧快速固化修补材料填充 至破损路面 陷内整理平整;
( 2 ) 向整理平整的路面处喷洒易燃液体并点燃, 以使所述可放 氧快速固化修补材料受热固化, 即可实现破损路面的修补。
14、 根据权利要求 13所述的燃烧法快速抢修受损路面的方法, 其特征在于: 所述步骤(1 ) 中, 将所述可放氧快速固化修补材料填充至破损 路面凹陷内的步骤后,还包括在其上层填充自密实快速固化修补材料 的步骤; 所述自密实快速固化修补材料是由如下重量份的组份制备而成 的: 致密骨料 60-95份;
热塑性树脂粘结剂 4-30份; 在加热状态下可以诱发所述热塑性树脂粘结剂快速固化的热引 发潜伏固化剂 1-10份。
15、 根据权利要求 14所述的燃烧法快速抢修受损路面的方法, 其特征在于: 所述自密实快速固化修补材料是由如下重量份的组分制备而成 的:
致密骨料 85-94份;
热塑性树脂粘结剂 5-10份; 热引发潜伏固化剂 1-5份。
16、根据权利要求 13-15任一所述的燃烧法快速抢修受损路面的 方法, 其特征在于:
所述步骤( 1 )之前还包括将破损的混凝土回填至破损位置处并整修 平整的步骤。
PCT/CN2013/074750 2012-04-25 2013-04-25 一种可放氧快速固化修补材料及其制备方法与应用 WO2013159728A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210123603.1 2012-04-25
CN201210123603.1A CN103086648B (zh) 2012-04-25 2012-04-25 一种燃烧法快速抢修受损路面的方法
CN201210123605.0A CN103086642B (zh) 2012-04-25 2012-04-25 一种可放氧快速固化修补材料及其制备方法与应用
CN201210123605.0 2012-04-25

Publications (1)

Publication Number Publication Date
WO2013159728A1 true WO2013159728A1 (zh) 2013-10-31

Family

ID=49482204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/074750 WO2013159728A1 (zh) 2012-04-25 2013-04-25 一种可放氧快速固化修补材料及其制备方法与应用

Country Status (1)

Country Link
WO (1) WO2013159728A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1083752A (zh) * 1993-08-31 1994-03-16 秦升益 一种覆膜砂配制工艺
JPH11239841A (ja) * 1998-02-25 1999-09-07 Lignyte Co Ltd 鋳型用レジンコーテッドサンド
CN1758968A (zh) * 2003-12-05 2006-04-12 明和化学工业株式会社 铸件用发热体成形材料、铸件用发热体及它们的制造方法
CN101941042A (zh) * 2010-09-03 2011-01-12 吴江市液铸液压件铸造有限公司 一种易溃型覆膜砂
CN102260053A (zh) * 2010-05-31 2011-11-30 北京仁创科技集团有限公司 一种彩色硅砂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1083752A (zh) * 1993-08-31 1994-03-16 秦升益 一种覆膜砂配制工艺
JPH11239841A (ja) * 1998-02-25 1999-09-07 Lignyte Co Ltd 鋳型用レジンコーテッドサンド
CN1758968A (zh) * 2003-12-05 2006-04-12 明和化学工业株式会社 铸件用发热体成形材料、铸件用发热体及它们的制造方法
CN102260053A (zh) * 2010-05-31 2011-11-30 北京仁创科技集团有限公司 一种彩色硅砂及其制备方法
CN101941042A (zh) * 2010-09-03 2011-01-12 吴江市液铸液压件铸造有限公司 一种易溃型覆膜砂

Similar Documents

Publication Publication Date Title
JP3719600B2 (ja) 道路補修用材料
CN102505601B (zh) 一种沥青混凝土路面快速修复方法
Liu et al. Preparation and characterization of self-healing microcapsules embedding waterborne epoxy resin and curing agent for asphalt materials
Dulaimi et al. Performance analysis of a cold asphalt concrete binder course containing high-calcium fly ash utilizing waste material
CN102249610B (zh) 界面混凝土及施工方法
CN103086642B (zh) 一种可放氧快速固化修补材料及其制备方法与应用
CN105271941A (zh) 一种破损路面快速修复材料及其制备方法和施工方法
CN103086643B (zh) 一种自密实快速固化路面修补材料及其制备方法与应用
WO2013159728A1 (zh) 一种可放氧快速固化修补材料及其制备方法与应用
CN106675056B (zh) 一种伸缩缝更换用硅藻土环氧沥青及其制备方法和应用
CN103086648B (zh) 一种燃烧法快速抢修受损路面的方法
RU2665541C1 (ru) Радиопоглощающий асфальтобетонный дорожный ремонтный состав, способ его изготовления и нанесения
CN103088747B (zh) 一种燃烧法快速抢修受损路面的方法
CN105330552A (zh) 一种新型阳离子沥青乳化剂的制备方法及其应用
CN107964206A (zh) 一种沥青混凝土用骨料界面增强剂及其制备方法
WO2013159729A1 (zh) 一种自密实快速固化路面修补材料及其制备方法与应用
CN103086649B (zh) 一种快速抢修受损路面的方法
CN106336472B (zh) 一种环保沥青改性剂的制备工艺
CN102285779B (zh) 水溶性丙烯酸树脂混凝土及其施工方法
JP2001323404A (ja) 排水性舗装用アスファルト混合物および舗装体
CN108504114B (zh) 一种市政施工路面材料及其制备方法
JP3550031B2 (ja) 超速硬・高耐久性セメントアスファルト乳剤混合物とその製造方法
RU2722577C1 (ru) Композиционная смесь для зимнего ремонта покрытий автомобильных дорог на основе золошлаковой смеси
Yan et al. Development of asphalt emulsion cold in-place recycling specifications
CN108298870B (zh) 一种热固性树脂干法改性沥青混凝土路面的施工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13781017

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13781017

Country of ref document: EP

Kind code of ref document: A1