WO2013157355A1 - 圧電振動素子ならびにそれを用いた圧電振動装置および携帯端末 - Google Patents

圧電振動素子ならびにそれを用いた圧電振動装置および携帯端末 Download PDF

Info

Publication number
WO2013157355A1
WO2013157355A1 PCT/JP2013/058589 JP2013058589W WO2013157355A1 WO 2013157355 A1 WO2013157355 A1 WO 2013157355A1 JP 2013058589 W JP2013058589 W JP 2013058589W WO 2013157355 A1 WO2013157355 A1 WO 2013157355A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric vibration
vibration element
piezoelectric
internal electrodes
average value
Prior art date
Application number
PCT/JP2013/058589
Other languages
English (en)
French (fr)
Inventor
悟 岩崎
靖人 藤井
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2013157355A1 publication Critical patent/WO2013157355A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/871Single-layered electrodes of multilayer piezoelectric or electrostrictive devices, e.g. internal electrodes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • H02N2/002Driving devices, e.g. vibrators using only longitudinal or radial modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/11Transducers incorporated or for use in hand-held devices, e.g. mobile phones, PDA's, camera's
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/15Transducers incorporated in visual displaying devices, e.g. televisions, computer displays, laptops

Definitions

  • the present invention relates to a piezoelectric vibration element, a piezoelectric vibration device using the same, and a portable terminal.
  • a plate-like piezoelectric bimorph element and a vibration plate are arranged with a space therebetween, and one end in the length direction of the piezoelectric bimorph element is fixed to the vibration plate via a fixing jig, thereby vibrating the piezoelectric bimorph element.
  • a piezoelectric vibration device that transmits a vibration to a diaphragm (see, for example, Patent Document 1).
  • the above-described conventional piezoelectric vibration device requires a sufficient space between the piezoelectric bimorph element and the diaphragm so that the piezoelectric bimorph element and the diaphragm do not contact even when an impact is applied. There is a problem that it is difficult to reduce the thickness. In addition, if one main surface of the diaphragm is joined to one main surface of the piezoelectric bimorph element in order to reduce the thickness, it may be difficult to transmit strong vibration to the diaphragm, or the piezoelectric bimorph element and the diaphragm The inventors have clarified that there is a problem that microcracks may occur at the joints.
  • the present invention has been devised in view of such problems.
  • the purpose of the present invention is to provide a piezoelectric device that is less susceptible to problems such as vibration attenuation and microcracking even when a diaphragm is bonded to the surface.
  • An object is to provide a vibration element, a piezoelectric vibration device using the vibration element, and a portable terminal.
  • the piezoelectric vibration element according to the present invention includes at least a plurality of internal electrodes and a plurality of piezoelectric layers that are alternately stacked along the first direction, and the adjacent internal electrodes include the piezoelectric layers.
  • the average value of S / D on one side of the first direction is the first direction, where S is the area of the portion facing each other and D is the distance between the adjacent internal electrodes It is characterized by being smaller than the average value of S / D in the other side.
  • the piezoelectric vibration device of the present invention includes at least the piezoelectric vibration element and a vibration plate having one main surface bonded to one surface of the piezoelectric vibration element in the first direction. is there.
  • a portable terminal according to the present invention includes at least a housing, the piezoelectric vibration device provided in the housing, and an electronic circuit that generates an electric signal input to the piezoelectric vibration element. To do.
  • the piezoelectric vibration element of the present invention it is possible to obtain a piezoelectric vibration element in which problems such as vibration attenuation and generation of microcracks are unlikely to occur even when a diaphragm is bonded to the surface.
  • a piezoelectric vibration device of the present invention a thin and high-performance piezoelectric vibration device can be obtained.
  • the portable terminal of the present invention a thin and high-performance portable terminal can be obtained.
  • FIG. 1 is a perspective view schematically showing a piezoelectric vibration element of a first example of an embodiment of the present invention.
  • (A)-(d) is a top view for demonstrating the basic structure of the piezoelectric vibration element shown in FIG. It is a figure for demonstrating the basic structure of the piezoelectric vibration element shown in FIG. It is a top view for demonstrating the part which adjacent internal electrodes oppose on both sides of a piezoelectric material layer.
  • (A)-(c) is a top view for demonstrating the detailed structure of an internal electrode. It is sectional drawing which shows typically the structure of the piezoelectric vibration element of the 2nd example of embodiment of this invention.
  • FIG. 12 is a sectional view taken along line A-A ′ in FIG. 11.
  • FIG. 12 is a sectional view taken along line B-B ′ in FIG. 11.
  • FIG. 1 is a perspective view schematically showing a piezoelectric vibration element which is a first example of an embodiment of the present invention.
  • 2A to 2D are plan views for explaining the basic structure of the piezoelectric vibration element shown in FIG.
  • FIG. 3 is a view for explaining the basic structure of the piezoelectric vibration element shown in FIG.
  • the z-axis direction in the figure is the first direction
  • the x-axis direction in the figure is the second direction
  • the + z direction in the figure is “one of the first directions”
  • the ⁇ z direction in the figure is “the other of the first directions”.
  • the + z direction side from the center in the z-axis direction of the piezoelectric vibration element is defined as “one side in the first direction”
  • the ⁇ z direction side from the center in the z-axis direction of the piezoelectric vibration element is defined as “the first direction. The other side ”.
  • the first direction (z-axis direction in the figure) is the thickness direction
  • the second direction perpendicular to the first direction (x-axis direction in the figure). Is a cuboid shape in which the y-axis direction in the drawing perpendicular to the first direction and the second direction is the width direction.
  • the piezoelectric vibration element includes the laminate 20, the surface electrodes 31, 32, 33, the first connection electrode 41, the second connection electrode 42, and a third connection electrode (not shown). is doing.
  • the multilayer body 20 includes a plurality of polarized piezoelectric layers 24 and a plurality of internal electrodes 21, 22, and 23 that are alternately stacked along the z-axis direction in the figure. Configured.
  • FIG. 2A surface electrodes 31, 32, and 33 are disposed on both main surfaces of the laminate 20 (both end surfaces in the z-axis direction in the figure).
  • a plurality of internal electrodes 21, internal electrodes 22, and internal electrodes 23 are arranged inside the laminate 20.
  • the internal electrode 21 is formed at one end in the length direction of a rectangular main body portion 21a formed at a distance from the side surface of the stacked body 20, and a rectangular lead portion 21b whose one end is exposed on the side surface of the stacked body 20. Are connected.
  • the internal electrode 22 is formed at one end in the length direction of a rectangular main body portion 22a formed at a distance from the side surface of the multilayer body 20, and the rectangular lead portion 22b having one end exposed on the side surface of the multilayer body 20. Are connected.
  • the internal electrode 23 has a rectangular shape, and only one end in the length direction is exposed on the side surface of the multilayer body 20. It should be noted that the lead portion 21b and the lead portion 22b are arranged with an interval in the y-axis direction in the figure so as not to overlap in the z-axis direction in the figure.
  • the third surface electrode 33 has a rectangular shape that is long in the x-axis direction in the figure, and only one end in the length direction is exposed on the side surface of the stacked body 20.
  • a first surface electrode 31 and a second surface electrode 32 are disposed between the other end of the third surface electrode 33 and the side surface of the stacked body 20.
  • the first surface electrode 31 and the second surface electrode 32 have a rectangular shape, and one end in the length direction is exposed on the side surface of the stacked body 20.
  • FIG. 3 shows the basic positional relationship between the internal electrodes 21, 22, 23 and the surface electrode 33 in the z-axis direction of the figure, and the piezoelectric layer 24 disposed between the internal electrodes 21, 22, 23 and the surface electrode 33. It is a figure which shows typically the direction of polarization. In FIG. 3, the illustration of the piezoelectric layer 24 is omitted.
  • the internal electrodes 21 or the internal electrodes 22 and the internal electrodes 23 are alternately arranged in the first direction (z-axis direction in the figure). Further, the internal electrodes 21 and the internal electrodes 23 are alternately arranged on one side in the first direction (+ z direction side in the figure), and on the other side in the first direction (on the ⁇ z direction side in the figure). The internal electrodes 22 and the internal electrodes 23 are alternately arranged.
  • the end portions of the lead portions 21 b exposed on the side surfaces of the multilayer body 20 are mutually connected by the first connection electrode 41 at one end portion in the second direction (end portion in the + x direction). It is connected. Further, the plurality of internal electrodes 21 are connected to the first surface electrodes 31 disposed on both main surfaces of the multilayer body 20 via the first connection electrodes 41.
  • the plurality of internal electrodes 22 are arranged such that the end portions of the lead portions 22b exposed on the side surfaces of the stacked body 20 are formed by the second connection electrodes 42 at one end portion in the second direction (end portion in the + x direction). Are connected to each other. Further, the plurality of internal electrodes 22 are connected to the second surface electrodes 32 disposed on both main surfaces of the multilayer body 20 via the second connection electrodes 42.
  • the plurality of internal electrodes 23 have end portions exposed on the side surfaces of the stacked body 20 at the other end portion in the second direction (end portion in the ⁇ x direction in the drawing). Are connected to each other. Furthermore, the plurality of internal electrodes 23 are connected to third surface electrodes 33 respectively disposed on both main surfaces of the multilayer body 20 via third connection electrodes (not shown). In this way, the surface electrodes 31, 32, and 33 function as terminal electrodes in the piezoelectric vibration element.
  • the piezoelectric layer 24 disposed between the internal electrodes 21, 22, 23 is polarized in the direction indicated by the arrow in FIG.
  • a DC voltage is applied to the surface electrodes 31, 32, and 33 so that the potential of the first surface electrode 31 is higher and the potential of the second surface electrode 32 is lower than the third surface electrode 33.
  • the piezoelectric vibration element When the piezoelectric vibration element is vibrated, the first surface electrode 31 and the second surface electrode 32 have the same potential, and a potential difference is generated between the third surface electrode 33 and the surface electrodes 31, 32, An AC voltage is applied to 33.
  • the piezoelectric vibration element is configured such that the direction of polarization with respect to the direction of the electric field applied at a certain moment is reversed between one side and the other side in the thickness direction of the piezoelectric vibration element (z-axis direction in the figure).
  • the piezoelectric vibration element is composed of a piezoelectric body (piezoelectric bimorph element) having a bimorph structure.
  • the first direction The average value of S / D on one side (the + z direction side in the figure) is made smaller than the average value of S / D on the other side in the first direction (the ⁇ z direction side in the figure).
  • FIG. 4 is a plan view for explaining “a portion where adjacent internal electrodes face each other with a piezoelectric layer in between”.
  • FIG. 4 shows a state in which the internal electrode 21 and the internal electrode 23 are arranged so as to sandwich both main surfaces of one piezoelectric layer 24.
  • the internal electrode 21 and the internal electrode 23 are not mesh-shaped, but are solid electrodes in which conductors exist without gaps in the respective regions.
  • the width of the internal electrode 23 is made smaller than the width of the internal electrode 21.
  • the portion P indicated by hatching in FIG. 4 which is the portion where the internal electrode 21 and the internal electrode 22 appear to overlap each other when viewed from the z-axis direction in FIG. It is a portion facing the body layer in between ”. Therefore, the area of the portion P is an area S of “a portion where adjacent internal electrodes face each other with the piezoelectric layer in between”.
  • the average value of S / D on one side in the first direction is the same as the S / D in each piezoelectric layer 24 for all the piezoelectric layers 24 existing on one side of the center in the first direction. It is average.
  • the average value of S / D on the other side in the first direction is the same as the S / D in each piezoelectric layer 24 for all the piezoelectric layers 24 existing on the other side of the center in the first direction. It is average.
  • the piezoelectric layer 24 When the piezoelectric layer 24 exists in the center of the piezoelectric vibration element in the first direction (when the center of the piezoelectric vibration element in the first direction is located in one piezoelectric layer 24), the piezoelectric layer 24 The body layer 24 (the piezoelectric layer 24 including the center in the first direction of the piezoelectric vibration element) is not included in either.
  • FIGS. 5A to 5C are plan views for explaining the detailed structure of the internal electrode 23 of the piezoelectric vibration element of this example.
  • a part of the internal electrode 23 of the piezoelectric vibration element of this example has a plurality of (many) through holes that penetrate the internal electrode 23 in the z-axis direction of the drawing. Shape.
  • the number of through holes 25 increases sequentially as shown in FIGS. 5A, 5B, and 5C, and the cross-sectional area of the through holes 25 increases. The total is designed to increase gradually.
  • the internal electrode 23 positioned closest to the + z direction has a shape as shown in FIG.
  • the internal electrode 23 has a shape as shown in FIG. 5B, and the internal electrode 23 that is thirdly located near the + z direction has a shape as shown in FIG. 5A.
  • the remaining four of the seven internal electrodes 23 shown in FIG. 3, the four internal electrodes 21, and the four internal electrodes 22 are all solid electrodes.
  • the interval D between adjacent internal electrodes is constant over the entire first direction (z-axis direction in the figure).
  • equal voltage is applied between adjacent internal electrodes.
  • the inside of the through hole 25 may be either a piezoelectric body or another, but it is preferable that a piezoelectric body exists.
  • the cross-sectional shape of the through hole 25 may be any shape, and the size of the through hole 25 may be non-uniform. By making the through hole 25 unevenly distributed at a specific position in the internal electrode 23, the expansion / contraction amount of the piezoelectric layer 24 can be partially changed. Also, a plurality of through holes 25 may be formed in the internal electrode 23 existing on the ⁇ z direction side in the drawing, or a configuration in which a plurality of through holes 25 are formed in the internal electrode 21 or the internal electrode 22 may be employed.
  • the piezoelectric vibration element of this example when the area of the portion where the adjacent internal electrodes face each other with the piezoelectric layer 24 interposed therebetween is S and the interval between the adjacent internal electrodes is D, The average value of S / D on one side in the first direction (+ z direction side in the figure) is made smaller than the average value of S / D on the other side in the first direction (on the ⁇ z direction side in the figure). Yes.
  • the main surface of the diaphragm is bonded to the surface on the + z direction side in the drawing to constitute a vibration device that transmits the vibration of the piezoelectric vibration element to the diaphragm, it is possible to transmit strong vibration to the diaphragm.
  • the cause of this effect can be estimated as follows. For example, when the piezoelectric vibration element is bent so that the ⁇ z direction side is convex, as described above, the + z direction half of the piezoelectric vibration element contracts in the x-axis direction. Then, the diaphragm bonded to the surface on the + z direction side of the piezoelectric vibration element tends to be deformed so that the + z direction side is convex. Therefore, the direction in which the piezoelectric vibration element attempts to bend is opposite to the direction in which the vibration plate attempts to bend, and the vibration of the piezoelectric vibration element is hindered.
  • the average value of S / D on one side in the first direction (+ z direction side in the figure) is S / D on the other side in the first direction (side in the ⁇ z direction in the figure). Therefore, when bending and vibrating, the amount of expansion / contraction on one side in the first direction is smaller than the amount of expansion / contraction on the other side in the first direction. As a result, the force for bending the vibration plate bonded to the surface on one side in the first direction of the piezoelectric vibration element is reduced in the opposite direction to the piezoelectric vibration element. Therefore, the obstruction of the vibration of the piezoelectric vibration element is reduced, and strong vibration can be transmitted to the diaphragm.
  • the piezoelectric vibration element since the deformation on one side in the first direction when the piezoelectric vibration element vibrates is smaller than the deformation on the other side in the first direction, the piezoelectric vibration element is bonded to the surface on the one side in the first direction. Even when the vibration of the vibrating plate is suppressed, the vibration of the piezoelectric vibrating element is not suppressed so much and strong vibration can be transmitted to the vibrating plate. In addition, since the stress generated in the joint portion between the piezoelectric vibration element and the vibration plate bonded to the surface on one side in the first direction of the piezoelectric vibration element can be reduced, the piezoelectric vibration element and the vibration plate Generation of microcracks at the joint can be reduced.
  • the piezoelectric vibration element is not limited to one that bends and vibrates, and may be a piezoelectric vibration element that expands and contracts when an electric signal is input. Even in such a case, it is possible to reduce the occurrence of microcracks at the joint between the piezoelectric vibration element and the vibration plate.
  • the area S of the portion where the adjacent internal electrodes face each other with the piezoelectric layer 24 therebetween is gradually reduced in the + z direction in the figure.
  • the expansion / contraction amount of each piezoelectric layer 24 when the piezoelectric vibration element undergoes flexural vibration gradually decreases as it goes in the + z direction in the figure, so that the expansion / contraction amount inside the piezoelectric vibration element changes. Stress to be reduced.
  • the piezoelectric vibration element of this example at least a part of the plurality of internal electrodes 21, 22, 23 has a shape having a plurality of through holes penetrating the internal electrodes in the first direction.
  • the total cross-sectional area of the formed through-holes increases stepwise as it goes in the + z direction in the figure.
  • the cross-sectional areas of the respective through holes 25 are all equal, and the number of the through holes 25 changes as it goes in the + z direction in the figure.
  • the present invention is not limited to this.
  • the number of through holes 25 may be constant, and the cross-sectional area of each through hole 25 may be changed. Further, both the cross-sectional area of each through-hole 25 and the number of through-holes 25 may be changed.
  • the laminate 20 can have a length of about 18 mm to 28 mm, a width of about 1 mm to 6 mm, and a thickness of about 0.2 mm to 1.0 mm.
  • the length of the main body portion 21a of the internal electrode 21 and the main body portion 22a of the internal electrode 22 is about 17 mm to 25 mm
  • the length of the internal electrode 23 is about 19 mm to 27 mm
  • the length of the third surface electrode 33 is
  • the width of the main body portion 21a of the internal electrode 21, the main body portion 22a of the internal electrode 22, the internal electrode 23 and the first surface electrode 31 is about 1 mm to 5 mm
  • the first surface electrode 31 and the second surface are about 17 mm to 23 mm.
  • the length of the electrode 32 can be about 1 mm to 3 mm, and the width of the first surface electrode 31 and the second surface electrode 32 can be about 0.5 mm to 1.5 mm.
  • the diameter of the through hole 25 can be set to about 0.05 mm to 0.5 mm, for example.
  • the piezoelectric layer 24 constituting the multilayer body 20 is preferably made of, for example, lead-free piezoelectric material such as lead zirconate (PZ), lead zirconate titanate (PZT), Bi layered compound, tungsten bronze structure compound, etc. However, other piezoelectric materials may be used.
  • the thickness of one layer of the piezoelectric layer 24 can be set to about 0.01 to 0.1 mm, for example.
  • the internal electrodes 21, 22, and 23 that constitute the piezoelectric vibration element are preferably formed using, for example, a material containing a ceramic component or a glass component in addition to a metal component such as silver or an alloy of silver and palladium. However, it may be formed using other known metal materials.
  • Such a piezoelectric vibration element can be manufactured, for example, by the following method. First, a binder, a dispersant, a plasticizer, and a solvent are added to the piezoelectric material powder, and the mixture is agitated to produce a slurry. The obtained slurry is formed into a sheet shape to produce a green sheet. Next, a conductive paste is printed on the green sheet to form electrode patterns to be the internal electrodes 21, 22, and 23. The green sheets on which the electrode patterns are formed are stacked and pressed using a press device to be stacked and formed. Create a body. Then, degreasing and baking are performed, and a laminated body is obtained by cutting to a predetermined dimension.
  • a conductor paste for forming the surface electrodes 31, 32, 33, the first connection electrode 41, the second connection electrode 42, and the third connection electrode (not shown) is printed at a predetermined temperature.
  • the piezoelectric layer 24 is polarized by applying a DC voltage through the surface electrodes 31, 32 and 33. In this way, a piezoelectric vibration element can be obtained.
  • FIG. 6 is a cross-sectional view schematically showing the structure of the piezoelectric vibration element of the second example of the embodiment of the present invention.
  • the piezoelectric layer, the first to third surface electrodes, and the first to third connection electrodes are not shown, and one internal electrode 21;
  • the same referential mark is attached
  • all of the internal electrodes 21, 22, and 23 are solid electrodes that do not have the through holes 25. Instead, in the piezoelectric vibration element of this example, of the three internal electrodes 23 (23a to 23c), the internal electrode 23a and the internal electrode 22 located closer to the ⁇ z direction in the figure sandwich the piezoelectric layer 24 therebetween.
  • the length in the second direction (the x-axis direction in the figure) of the facing portion is L1, and among the three internal electrodes 23 (23a to 23c), the internal electrode 23b and the internal electrode 22 located in the center are piezoelectric.
  • the length in the second direction of the portion facing with the layer 24 sandwiched therebetween is L2, and the length in the second direction of the portion facing the internal electrode 23b and the internal electrode 21 with the piezoelectric layer 24 sandwiched therebetween.
  • the length L3 is set, and among the three internal electrodes 23 (23a to 23c), the internal electrode 23c located closer to the + z direction in the drawing and the internal electrode 21 are the second portion of the portion facing each other with the piezoelectric layer 24 therebetween.
  • the length in the x-axis direction of the figure of the portion where the internal electrodes adjacent to each other in the z-axis direction of the figure are opposed to each other with the piezoelectric layer 24 interposed therebetween is in the + z direction of the figure. It gets shorter step by step.
  • the area S of the portion where the adjacent internal electrodes face each other with the piezoelectric layer 24 interposed therebetween is + z in the figure. It gets smaller step by step as it goes in the direction.
  • the amount of expansion / contraction of each piezoelectric layer 24 when the piezoelectric vibration element undergoes flexural vibration gradually decreases toward the + z direction in the figure, so that strong vibration can be transmitted to the diaphragm 12 and piezoelectric vibration can be transmitted. It is possible to reduce the stress generated in a portion where the expansion / contraction amount of the piezoelectric layer 24 changes in the element.
  • the distance D between adjacent internal electrodes is the entire in the first direction (z-axis direction in the figure). Is constant over time. In addition, equal voltage is applied between adjacent internal electrodes.
  • FIG. 7 is a cross-sectional view schematically showing the structure of the piezoelectric vibration element of the third example of the embodiment of the present invention.
  • the piezoelectric layer, the first to third surface electrodes, and the first to third connection electrodes are not shown in order to simplify the illustration.
  • one internal electrode 21, one internal electrode 22, and three internal electrodes 23 (23a to 23c) are provided.
  • the same referential mark is attached
  • the piezoelectric vibration element of the present example has a length in the x-axis direction of the portion where the internal electrode 23a and the internal electrode 22 face each other with the piezoelectric layer 24 interposed therebetween in the x-axis direction,
  • the length in the x-axis direction in the drawing of the portion where the electrode 23b and the internal electrode 22 face each other with the piezoelectric layer 24 in between is made equal to L2.
  • the length in the x-axis direction in the figure of the portion where the adjacent internal electrodes face each other with the piezoelectric layer 24 in between is constant.
  • the length in the x-axis direction of the part of the figure where the adjacent internal electrodes face each other with the piezoelectric layer 24 interposed therebetween is stepwise as it goes to one side in the first direction. It has become shorter.
  • the area of the portion where the adjacent internal electrodes face each other with the piezoelectric layer 24 in between is constant on the other side in the first direction, and on the one side in the first direction, the first side As it goes to one of the directions, it gets smaller step by step.
  • the piezoelectric vibration element of this example ensures a large amount of deformation on the ⁇ z direction side of the drawing as compared with the piezoelectric vibration element of the second example of the embodiment. Can do. Thereby, it has the same function as the piezoelectric vibration element of the second example of the embodiment, and can transmit strong vibration to the diaphragm 12.
  • all the internal electrodes are solid electrodes, and the interval D between adjacent internal electrodes is D Is constant throughout the first direction (z-axis direction in the figure). In addition, equal voltage is applied between adjacent internal electrodes.
  • FIG. 8 is a cross-sectional view schematically showing the structure of the piezoelectric vibration element of the fourth example of the embodiment of the present invention.
  • the piezoelectric layer, the first to third surface electrodes, and the first to third connection electrodes are not shown, and one internal electrode 21 (21c ), Two internal electrodes 22 (22c, 22d), and four internal electrodes 23 (23a, 23b, 23c, 23d).
  • the same referential mark is attached
  • the piezoelectric vibration element of this example all the internal electrodes are solid electrodes, and the area S of the portion where the adjacent internal electrodes face each other with the piezoelectric layer 24 in between is in the first direction (shown in the figure). (Z-axis direction) is constant throughout.
  • a voltage having the same magnitude is applied between adjacent internal electrodes.
  • the average value of the distance D between the adjacent internal electrodes on the + z direction side in the figure is the average value of D on the ⁇ z direction side in the figure.
  • the average value of S / D on the + z direction side in the figure is made smaller than the average value of S / D on the -z direction side in the figure.
  • the average value of D on one side in the first direction is the distance D between adjacent internal electrodes facing each other with the piezoelectric layer 24 interposed therebetween in each piezoelectric layer 24 in the first direction. This is an average of all the piezoelectric layers 24 existing on one side of the center.
  • the average value of D on the other side in the first direction is an average of D in each piezoelectric layer 24 for all the piezoelectric layers 24 existing on the other side of the center in the first direction. is there.
  • the piezoelectric layer 24 existing in the center in the first direction of the piezoelectric vibration element is not included in either.
  • the internal electrodes are arranged in the order of 23a, 22c, 23b, 22d, 23c, 21c, and 23d in the + z direction in the figure.
  • the average value of the distance D between adjacent internal electrodes on one side in the first direction is A2
  • the distance between the internal electrode 23c and the internal electrode 21c is D5
  • the internal electrode 21c is D6
  • A2 (D5 + D6) / 2.
  • the average value A2 of the distance between adjacent internal electrodes on one side in the first direction is equal to the average value of the distance between adjacent internal electrodes on the other side in the first direction. It is larger than the value A1.
  • the interval between adjacent internal electrodes can be considered to be substantially constant between the electrodes. Therefore, the distances D1, D2, D3, D4, D5, and D6 between the adjacent internal electrodes are somewhere, such as the center of the portion where the adjacent electrodes face each other, for example, as indicated by the arrows in FIG. You may represent by the measured value in a point.
  • FIG. 9 is a cross-sectional view schematically showing the structure of the piezoelectric vibration element of the fifth example of the embodiment of the present invention.
  • the piezoelectric layer, the first to third surface electrodes, and the first to third connection electrodes are not shown, and two internal electrodes 21 (21d) are omitted.
  • the same referential mark is attached
  • the internal electrodes are arranged in the order of 23e, 22e, 23f, 22f, 23g, 21d, 23h, and 21e in the + z direction in the figure.
  • the internal electrode 23g is located at the center in the z-axis direction in the figure.
  • the average value of the distance between adjacent internal electrodes on the other side in the first direction is A3
  • the average value of the distance between adjacent internal electrodes on one side in the first direction is A4
  • the distance between the internal electrode 23g and the internal electrode 21d is D11.
  • A4 (D11 + D12 + D13) / 3.
  • the average value A4 between the adjacent internal electrodes on the + z direction side in the figure is larger than the average value A3 between the adjacent internal electrodes on the ⁇ z direction side in the figure. ing.
  • the interval D between the adjacent internal electrodes is constant on the ⁇ z direction side in the figure, and increases stepwise on the + z direction side in the figure toward the + z direction in the figure.
  • the piezoelectric vibration element of this example can reduce the stress generated in the portion where the amount of expansion and contraction inside the piezoelectric vibration element changes, and the deformation on the ⁇ z direction side of the figure. Large amount can be secured. As a result, the occurrence of microcracks inside the piezoelectric vibration element can be reduced, and when a piezoelectric vibration device having the main surface of the vibration plate attached to the surface on the + z direction side in the figure is further vibrated. Can be transmitted to the diaphragm.
  • all internal electrodes are solid electrodes, and adjacent internal electrodes are piezoelectric layers 24.
  • the area S of the portion facing each other with the gap in between is constant over the entire first direction (z-axis direction in the figure). In addition, equal voltage is applied between adjacent internal electrodes.
  • FIG. 10 is a perspective view schematically showing a piezoelectric vibration device 15 according to a sixth example of the embodiment of the present invention.
  • the piezoelectric vibration device 15 of this example includes a piezoelectric vibration element 14 and a diaphragm 12.
  • the piezoelectric vibration element 14 is a piezoelectric vibration element as in the first to fifth examples of the above-described embodiment.
  • the vibration plate 12 has a rectangular thin plate shape, and one main surface (main surface on the ⁇ z direction side in the drawing) has an adhesive or the like on the surface of the piezoelectric vibration element 14 on the + z direction side in the drawing. Are joined together.
  • a diaphragm 12 can be configured using various known materials.
  • the diaphragm 12 can be formed by suitably using a material having high rigidity and elasticity such as acrylic resin or glass.
  • the thickness of the diaphragm 12 is set to about 0.4 mm to 1.5 mm, for example.
  • the piezoelectric vibration device 15 of this example having such a configuration functions as a piezoelectric vibration device that flexibly vibrates the piezoelectric vibration element 14 by applying an electric signal and transmits the vibration to the vibration plate 12.
  • one main surface of the vibration plate 12 is bonded to the surface of the piezoelectric vibration element 14 on the + z direction side in the drawing.
  • the piezoelectric vibration element 14 when the area of the portion where the adjacent internal electrodes are opposed to each other with the piezoelectric layer 24 interposed therebetween is S and the interval between the adjacent internal electrodes is D, the + z direction in FIG.
  • the average value of S / D on the side is smaller than the average value of S / D on the ⁇ z direction side in the figure.
  • FIG. 11 is a perspective view schematically showing a mobile terminal according to a seventh example of the embodiment of the present invention.
  • 12 is a cross-sectional view taken along line AA ′ in FIG. 13 is a cross-sectional view taken along the line BB ′ in FIG. 12 and 13, the detailed structure of the piezoelectric vibration element 14 is not shown.
  • the same referential mark is attached
  • the portable terminal of this example includes the piezoelectric vibration device 15 of the sixth example of the embodiment shown in FIG. 10, an electronic circuit 17, a display 18, and a housing 19.
  • the electronic circuit 17 generates an electrical signal input to the piezoelectric vibration element 14.
  • the electronic circuit 17 may include other circuits such as a circuit for processing image information to be displayed on the display 18 and a communication circuit.
  • the electronic circuit 17 and the piezoelectric vibration element 14 are connected via a wiring (not shown).
  • the display 18 is a display device having a function of displaying image information.
  • a known display such as a liquid crystal display, a plasma display, and an organic EL display can be suitably used.
  • the display 18 may have an input device such as a touch panel.
  • the housing 19 has a box shape with one surface opened.
  • the housing 19 can be formed using various known materials. For example, a material such as a synthetic resin having high rigidity and elasticity can be suitably used, but it may be formed using another material such as a metal.
  • the piezoelectric vibration device 15 is provided in the opening of the housing 19.
  • the diaphragm 12 is disposed outside the display 18 and integrated with the display 18, and functions as a cover for protecting the display 18. Further, only the periphery of one main surface (the main surface on the ⁇ z direction side in the drawing) of the diaphragm 12 is joined to the housing 19 and is attached to the housing 19 so as to vibrate.
  • casing 19 and the diaphragm 12 can be joined using various known joining members, such as an adhesive agent and a double-sided tape, for example.
  • the diaphragm 12 may have an input device such as a touch panel.
  • the portable terminal of this example having such a configuration can generate sound by vibrating the diaphragm 12 by vibrating the piezoelectric vibrating element 14. And the sound information can be transmitted to a person by this sound.
  • audio information may be transmitted by transmitting vibration by bringing the diaphragm 12 or the casing 19 into contact with a part of a human body such as an ear directly or via another object.
  • the portable terminal of this example can transmit strong vibration to the diaphragm 12 even when the diaphragm 12 can freely vibrate or when the vibration of the diaphragm 12 is suppressed.
  • a thin and high-performance piezoelectric vibration device in which the occurrence of microcracks in the joint with the diaphragm 12 is reduced is used. Therefore, according to the portable terminal of this example, even when the diaphragm 12 is brought into contact with a human body such as an ear, audio information can be satisfactorily transmitted by the vibration of the diaphragm 12, and the piezoelectric vibration element 14 and A thin and high-performance portable terminal in which the occurrence of microcracks at the joint with the diaphragm 12 is reduced can be obtained.
  • FIGS. 6 and 7 show an example having five internal electrodes
  • FIG. 8 shows an example having seven internal electrodes
  • FIG. 9 shows an example having eight internal electrodes. Although shown, it is not limited to these. For example, a configuration having fewer internal electrodes may be used, or a configuration having more internal electrodes may be used.
  • the area S of the portion where the adjacent internal electrodes face each other with the piezoelectric layer 24 in between, and the interval D between the adjacent internal electrodes is not limited to this example. Both S and D may be changed in the thickness direction of the piezoelectric vibration element.
  • the present invention is not limited to this.
  • the diaphragm 12 when a human finger touches the diaphragm 12, the diaphragm 12 is vibrated to transmit vibration to the finger and clearly communicate that the finger has touched the diaphragm 12. It doesn't matter.
  • the cover of the display 18 functions as the diaphragm 12
  • the present invention is not limited to this.
  • the display 18 itself may function as the diaphragm 12.
  • Piezoelectric vibration element 15 Piezoelectric vibration device 17: Electronic circuits 21 to 23, 21c to 21e, 22c to 22f, 23a to 23h: Internal electrode 24: Piezoelectric layer 25: Through hole

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)

Abstract

 【課題】 表面に振動板を接合した場合にも、振動の減衰やマイクロクラックの発生等の問題が発生し難い圧電振動素子ならびにそれを用いた圧電振動装置および携帯端末を提供する。 【解決手段】 第1の方向に沿って交互に積層された複数の内部電極21~23と複数の圧電体層24とを少なくとも有しており、隣り合う内部電極同士が圧電体層24を間に挟んで対向する部分の面積をSとし、隣り合う内部電極同士の間隔をDとしたときに、第1の方向の一方側におけるS/Dの平均値が、第1の方向の他方側におけるS/Dの平均値よりも小さい圧電振動素子ならびにそれを用いた圧電振動装置および携帯端末とする。表面に振動板を接合しても不具合が生じ難い圧電振動素子ならびにそれを用いた圧電振動装置および携帯端末を得ることができる。

Description

圧電振動素子ならびにそれを用いた圧電振動装置および携帯端末
 本発明は、圧電振動素子ならびにそれを用いた圧電振動装置および携帯端末に関するものである。
 従来、板状の圧電バイモルフ素子と振動板とを間隔を開けて配置するとともに、圧電バイモルフ素子の長さ方向における一端を、固定治具を介して振動板に固定して、圧電バイモルフ素子の振動を振動板に伝える圧電振動装置が知られている(例えば、特許文献1を参照。)。
特開2006-238072号公報
 しかしながら、上述した従来の圧電振動装置は、衝撃が加わったときにも圧電バイモルフ素子と振動板とが接触しないように、圧電バイモルフ素子と振動板との間に充分な間隔を開ける必要があるため、薄型化が困難であるという問題があった。また、薄型化するために、圧電バイモルフ素子の一方主面に振動板の一方主面を接合すると、振動板に強い振動を伝えることが難しい場合があるという問題や、圧電バイモルフ素子と振動板との接合部においてマイクロクラックが発生する場合があるという問題が生じることが発明者の検討により明らかになった。
 本発明はこのような問題点に鑑みて案出されたものであり、その目的は、表面に振動板を接合した場合にも、振動の減衰やマイクロクラックの発生等の問題が発生し難い圧電振動素子ならびにそれを用いた圧電振動装置および携帯端末を提供することにある。
 本発明の圧電振動素子は、第1の方向に沿って交互に積層された複数の内部電極と複数の圧電体層とを少なくとも有しており、隣り合う前記内部電極同士が前記圧電体層を間に挟んで対向する部分の面積をSとし、隣り合う前記内部電極同士の間隔をDとしたときに、前記第1の方向の一方側におけるS/Dの平均値が、前記第1の方向の他方側におけるS/Dの平均値よりも小さいことを特徴とするものである。
 本発明の圧電振動装置は、前記圧電振動素子と、該圧電振動素子の前記第1の方向における一方側の表面に一方主面が接合された振動板とを少なくとも有することを特徴とするものである。本発明の携帯端末は、筐体と、該筐体に設けられた前記圧電振動装置と、前記圧電振動素子に入力される電気信号を生成する電子回路とを少なくとも有していることを特徴とするものである。
 本発明の圧電振動素子によれば、表面に振動板を接合した場合にも、振動の減衰やマイクロクラックの発生等の問題が発生し難い圧電振動素子を得ることができる。本発明の圧電振動装置によれば、薄型で高性能な圧電振動装置を得ることができる。本発明の携帯端末によれば、薄型で高性能な携帯端末を得ることができる。
本発明の実施の形態の第1の例の圧電振動素子を模式的に示す斜視図である。 (a)~(d)は、図1に示す圧電振動素子の基本的な構造を説明するための平面図である。 図1に示す圧電振動素子の基本的な構造を説明するための図である。 隣り合う内部電極同士が圧電体層を間に挟んで対向する部分を説明するための平面図である。 (a)~(c)は、内部電極の詳細な構造を説明するための平面図である。 本発明の実施の形態の第2の例の圧電振動素子の構造を模式的に示す断面図である。 本発明の実施の形態の第3の例の圧電振動素子の構造を模式的に示す断面図である。 本発明の実施の形態の第4の例の圧電振動素子の構造を模式的に示す断面図である。 本発明の実施の形態の第5の例の圧電振動素子の構造を模式的に示す断面図である。 本発明の実施の形態の第6の例の圧電振動装置を模式的に示す斜視図である。 本発明の実施の形態の第7の例の携帯端末を模式的に示す斜視図である。 図11におけるA-A’線断面図である。 図11におけるB-B’線断面図である。
 以下、本発明の圧電振動素子ならびにそれを用いた圧電振動装置および携帯端末を添付の図面を参照しつつ詳細に説明する。
 (実施の形態の第1の例)
  図1は、本発明の実施の形態の第1の例である圧電振動素子を模式的に示す斜視図である。図2(a)~(d)は、図1に示す圧電振動素子の基本的な構造を説明するための平面図である。図3は、図1に示す圧電振動素子の基本的な構造を説明するための図である。
 なお、本明細書において、図のz軸方向を第1の方向とし、図のx軸方向を第2の方向としている。また、図の+z方向を「第1の方向の一方」とし、図の-z方向を「第1の方向の他方」としている。そして、圧電振動素子のz軸方向の中央よりも+z方向側を「第1の方向の一方側」とし、圧電振動素子のz軸方向の中央よりも-z方向側を「第1の方向の他方側」としている。
 本例の圧電振動素子は、図1に示すように、第1の方向(図のz軸方向)が厚み方向であり、第1の方向に垂直な第2の方向(図のx軸方向)が長さ方向であり、第1の方向および第2の方向に垂直な図のy軸方向が幅方向である直方体状の形状を有している。また、圧電振動素子は、積層体20と、表面電極31,32,33と、第1の接続電極41と、第2の接続電極42と、第3の接続電極(図示せず)とを有している。
 積層体20は、図2,3に示すように、分極された複数層の圧電体層24と、複数の内部電極21,22,23とが、図のz軸方向に沿って交互に積層されて構成されている。
 図2の(a)~(d)は、圧電振動素子が有する表面電極31,32,33および内部電極21,22,23の基本的な形状を模式的に示す平面図である。図2(a)に示すように、積層体20の両主面(図のz軸方向における両端面)の各々には、表面電極31,32,33が配置されている。また、積層体20の内部には、内部電極21と、内部電極22と、内部電極23とが、それぞれ複数配置されている。
 内部電極21は、積層体20の側面と間隔を開けて形成された矩形状の本体部21aの長さ方向の一方端に、一方端が積層体20の側面に露出した矩形状の引き出し部21bを接続した構造を有している。内部電極22は、積層体20の側面と間隔を開けて形成された矩形状の本体部22aの長さ方向の一方端に、一方端が積層体20の側面に露出した矩形状の引き出し部22bを接続した構造を有している。内部電極23は、矩形状の形状を有しており、長さ方向の一方端のみが積層体20の側面に露出している。なお、引き出し部21bと引き出し部22bとは、図のz軸方向において重ならないように、図のy軸方向に間隔を開けて配置されている。
 第3の表面電極33は、図のx軸方向に長い矩形状の形状を有しており、長さ方向の一方端のみが積層体20の側面に露出している。第3の表面電極33の他方端と積層体20の側面との間には、第1の表面電極31および第2の表面電極32が配置されている。第1の表面電極31および第2の表面電極32は、矩形状であり、長さ方向の一方端が積層体20の側面に露出している。
 図3は、図のz軸方向における内部電極21,22,23および表面電極33の基本的な位置関係と、内部電極21,22,23および表面電極33の間に配置された圧電体層24の分極方向とを模式的に示す図である。なお、図3においては、圧電体層24の図示を省略している。
 図3に示すように、内部電極21または内部電極22と、内部電極23とが、第1の方向(図のz軸方向)において交互に配置されている。また、第1の方向の一方側(図の+z方向側)では、内部電極21と内部電極23とが交互に配置されており、第1の方向の他方側(図の-z方向側)では、内部電極22と内部電極23とが交互に配置されている。
 複数の内部電極21は、第2の方向の一方端部(+x方向の端部)において、積層体20の側面に露出した引き出し部21bの端部同士が、第1の接続電極41によって相互に接続されている。さらに複数の内部電極21は、第1の接続電極41を介して、積層体20の両主面にそれぞれ配置された第1の表面電極31に接続されている。
 また、複数の内部電極22は、第2の方向の一方端部(+x方向の端部)において、積層体20の側面に露出した引き出し部22bの端部同士が、第2の接続電極42によって相互に接続されている。さらに複数の内部電極22は、第2の接続電極42を介して、積層体20の両主面にそれぞれ配置された第2の表面電極32に接続されている。
 そして、複数の内部電極23は、第2の方向の他方端部(図の-x方向の端部)において、積層体20の側面に露出した端部同士が、第3の接続電極(図示せず)によって相互に接続されている。さらに、複数の内部電極23は、第3の接続電極(図示せず)を介して、積層体20の両主面にそれぞれ配置された第3の表面電極33に接続されている。このようにして、表面電極31,32,33は、圧電振動素子における端子電極として機能している。
 また、内部電極21,22,23の間に配置された圧電体層24は、図3の矢印で示す向きに分極されている。例えば、第3の表面電極33に対して、第1の表面電極31の電位が高く、第2の表面電極32の電位が低くなるように、表面電極31,32,33に直流電圧を加えることによって、このように分極することができる。そして、圧電振動素子を振動させるときには、第1の表面電極31および第2の表面電極32が同電位となり、第3の表面電極33との間に電位差が生じるように、表面電極31,32,33に交流電圧を加える。これにより、圧電振動素子は、ある瞬間に加えられる電界の向きに対する分極の向きが、圧電振動素子の厚み方向(図のz軸方向)における一方側と他方側とで逆転するようにされている。
 よって、電気信号が加えられて、ある瞬間に、圧電振動素子の厚み方向(図のz軸方向)における一方側が、圧電振動素子の長さ方向(図のx軸方向)において伸びるときには、圧電振動素子の厚み方向における他方側が、圧電振動素子の長さ方向において縮むようにされている。これにより、圧電振動素子は、電気信号が加えられることによって、図のx軸方向に振幅が変化するように図のz軸方向に屈曲振動する。このように、圧電振動素子は、バイモルフ構造を有する圧電体(圧電バイモルフ素子)で構成されている。
 本例の圧電振動素子は、隣り合う内部電極同士が圧電体層24を間に挟んで対向する部分の面積をSとし、隣り合う内部電極同士の間隔をDとしたときに、第1の方向の一方側(図の+z方向側)におけるS/Dの平均値が、第1の方向の他方側(図の-z方向側)におけるS/Dの平均値よりも小さくされている。
 図4は、『隣り合う内部電極同士が圧電体層を間に挟んで対向する部分』を説明するための平面図である。図4は、1つの圧電体層24の両主面を挟むように内部電極21と内部電極23とが配置された状態を示している。なお、この内部電極21および内部電極23は、メッシュ状ではなく、それぞれの領域内に隙間無く導体が存在する、べた状の電極である。また、わかりやすくするために、内部電極23の幅を内部電極21の幅よりも小さくしている。このような場合、図のz軸方向から俯瞰したときに内部電極21と内部電極22とが重なって見える部分である、図4においてハッチングで示した部分Pが、『隣り合う内部電極同士が圧電体層を間に挟んで対向する部分』である。よって、部分Pの面積が、『隣り合う内部電極同士が圧電体層を間に挟んで対向する部分』の面積Sである。
 このような『隣り合う内部電極同士が圧電体層を間に挟んで対向する部分』は、内部電極21,22,23に挟まれた全ての圧電体層24に各々存在する。よって、第1の方向の一方側におけるS/Dの平均値は、各々の圧電体層24におけるS/Dを、第1の方向の中央よりも一方側に存在する全ての圧電体層24について平均したものである。また、第1の方向の他方側におけるS/Dの平均値は、各々の圧電体層24におけるS/Dを、第1の方向の中央よりも他方側に存在する全ての圧電体層24について平均したものである。なお、圧電振動素子の第1の方向における中央に圧電体層24が存在する場合(圧電振動素子の第1の方向における中央が1つの圧電体層24中に位置する場合)には、その圧電体層24(圧電振動素子の第1の方向における中央を含む圧電体層24)は、どちらにも含めない。
 図5(a)~(c)は、本例の圧電振動素子の内部電極23の詳細な構造を説明するための平面図である。本例の圧電振動素子の内部電極23の一部は、図5(a)~(c)に示すように、内部電極23を図のz軸方向に貫通する複数(多数)の貫通孔を有する形状である。また、図の+z方向へ向かうにつれて、図5(a),図5(b),図5(c)に順次示すように、貫通孔25の数が順次増加し、貫通孔25の断面積の合計が段階的に大きくなるようにされている。詳細には、図3に示した7つの内部電極23のうち、最も+z方向寄りに位置する内部電極23が図5(c)に示すような形状であり、2番目に+z方向寄りに位置する内部電極23が図5(b)に示すような形状であり、3番目に+z方向寄りに位置する内部電極23が図5(a)に示すような形状であるようにされている。なお、図3に示した7つの内部電極23のうちの残りの4つと、4つの内部電極21と、4つの内部電極22とは、全てべた状の電極とされている。
 このような構造を有していることにより、本例の圧電振動素子は、第1の方向の一方側(図の+z方向側)における、隣り合う内部電極同士が圧電体層24を間に挟んで対向する部分の面積Sの平均値が、第1の方向の他方側(図の-z方向側)におけるSの平均値よりも小くなっている。そして、これにより、図の+z方向側におけるS/Dの平均値が、図の-z方向側におけるS/Dの平均値よりも小さくなっている。また、図の+z方向へ向かうにつれて、隣り合う内部電極同士が圧電体層24を間に挟んで対向する部分の面積Sが段階的に小さくなっている。
 なお、本例の圧電振動素子においては、隣り合う内部電極同士の間隔Dは、第1の方向(図のz軸方向)の全体に渡って一定である。また、隣り合う内部電極間には、全て等しい大きさの電圧が与えられる。
 また、貫通孔25の内部は、圧電体が存在しても他のものが存在しても、どちらでも構わないが、圧電体が存在する方が望ましい。貫通孔25の断面形状は任意の形状でよく、貫通孔25の大きさが不均一であっても構わない。内部電極23中の特定の位置に貫通孔25を偏在させることにより、圧電体層24の伸縮量を部分的に変えることもできる。また、図の-z方向側に存在する内部電極23に複数の貫通孔25が形成されていても良く、内部電極21や内部電極22に複数の貫通孔25が形成された構成でも良い。
 このように、本例の圧電振動素子は、隣り合う内部電極同士が圧電体層24を間に挟んで対向する部分の面積をSとし、隣り合う内部電極同士の間隔をDとしたときに、第1の方向の一方側(図の+z方向側)におけるS/Dの平均値が、第1の方向の他方側(図の-z方向側)におけるS/Dの平均値よりも小さくされている。これにより、図の+z方向側の表面に振動板の主面を接合して、圧電振動素子の振動を振動板に伝える振動装置を構成したときに、振動板を強い振動を伝えることができる。
 この効果が得られる原因は次のように推測できる。例えば、圧電振動素子が-z方向側が凸になるように屈曲する場合、前述したように圧電振動素子の+z方向側半分はx軸方向において収縮する。すると、圧電振動素子の+z方向側の表面に接合された振動板は+z方向側が凸になるように変形しようとする。よって、圧電振動素子が曲がろうとする方向と振動板が曲がろうとする方向とが逆になり、圧電振動素子の振動が妨げられてしまう。
 本例の圧電振動素子は、第1の方向の一方側(図の+z方向側)におけるS/Dの平均値が、第1の方向の他方側(図の-z方向側)におけるS/Dの平均値よりも小さくされていることから、屈曲振動するときに、第1の方向の一方側の伸縮量が、第1の方向の他方側の伸縮量よりも小さくなる。これにより、圧電振動素子の第1の方向の一方側の表面に接合された振動板を圧電振動素子と逆向きに曲げようとする力が小さくなる。よって、圧電振動素子の振動の妨げが低減され、振動板に強い振動を伝えることが可能になる。また、圧電振動素子が屈曲振動するときの、第1の方向の一方側における変形が、第1の方向の他方側における変形よりも小さいことから、第1の方向の一方側の表面に接合された振動板の振動が抑制された場合においても、圧電振動素子の振動があまり抑制されず、振動板に強い振動を伝えることができる。また、圧電振動素子と、圧電振動素子の第1の方向の一方側の表面に接合された振動板との接合部に発生する応力を低減することができるので、圧電振動素子と振動板との接合部におけるマイクロクラックの発生を低減することができる。
 なお、圧電振動素子は、屈曲振動するものに限定されるものではなく、電気信号が入力されて伸縮振動する圧電振動素子であっても構わない。このような場合においても、圧電振動素子と振動板との接合部におけるマイクロクラックの発生を低減することができる。
 また、本例の圧電振動素子は、図の+z方向へ向かうにつれて、隣り合う内部電極同士が圧電体層24を間に挟んで対向する部分の面積Sが段階的に小さくなっている。これにより、圧電振動素子が屈曲振動するときの各々の圧電体層24の伸縮量が、図の+z方向へ向かうにつれて徐々に小さくなるので、圧電振動素子の内部における伸縮量が変化する部分に発生する応力を低減することができる。
 また、本例の圧電振動素子は、複数の内部電極21,22,23の少なくとも一部が、内部電極を第1の方向に貫通する複数の貫通孔を有する形状であり、1つの内部電極に形成された貫通孔の断面積の合計が、前記図の+z方向へ向かうにつれて段階的に大きくなっている。これにより、貫通孔25の配置の変更によって、圧電振動素子のマクロ的な変形を容易に変更することができる。
 なお、図5においては、各々の貫通孔25の断面積は全て等しく、図の+z方向へ向かうにつれて貫通孔25の個数が変化する場合を示したが、これに限定されるものではない。例えば、貫通孔25の個数は一定で、各々の貫通孔25の断面積が変化するようにしても良い。また、各々の貫通孔25の断面積と、貫通孔25の個数との、両方が変化するようにしても構わない。
 本例の圧電振動素子において、積層体20は、例えば、長さ18mm~28mm程度、幅1mm~6mm程度、厚み0.2mm~1.0mm程度とすることができる。また、例えば、内部電極21の本体部21aおよび内部電極22の本体部22aの長さは17mm~25mm程度、内部電極23の長さは19mm~27mm程度、第3の表面電極33の長さは17mm~23mm程度、内部電極21の本体部21a,内部電極22の本体部22a,内部電極23および第1の表面電極31の幅は1mm~5mm程度、第1の表面電極31および第2の表面電極32の長さは1mm~3mm程度、第1の表面電極31および第2の表面電極32の幅は0.5mm~1.5mm程度とすることができる。貫通孔25の直径は、例えば、0.05mm~0.5mm程度とすることができる。
 積層体20を構成する圧電体層24は、例えば、ジルコン酸鉛(PZ)、チタン酸ジルコン酸鉛(PZT)、Bi層状化合物、タングステンブロンズ構造化合物等の非鉛系圧電体材料等を好適に用いて形成することができるが、他の圧電材料を用いても構わない。圧電体層24の1層の厚みは、例えば0.01~0.1mm程度に設定することができる。圧電振動素子を構成する内部電極21,22,23は、例えば、銀や銀とパラジウムとの合金等の金属成分に加えて、セラミック成分やガラス成分を含有させたものを好適に用いて形成することができるが、他の既知の金属材料を用いて形成しても構わない。
 このような圧電振動素子は、例えば次のような方法によって作製することができる。まず、圧電材料の粉末にバインダー、分散剤、可塑剤、溶剤を添加して掻き混ぜて、スラリーを作製し、得られたスラリーをシート状に成形し、グリーンシートを作製する。次に、グリーンシートに導体ペーストを印刷して内部電極21,22,23となる電極パターンを形成し、この電極パターンが形成されたグリーンシートを積層し、プレス装置を用いてプレスして積層成形体を作製する。その後、脱脂および焼成し、所定寸法にカットすることにより積層体を得る。次に、表面電極31,32,33ならびに第1の接続電極41,第2の接続電極42および第3の接続電極(図示せず)を形成するための導体ペーストを印刷し、所定の温度で焼付けた後に、表面電極31,32,33を通じて直流電圧を印加して圧電体層24の分極を行う。このようにして、圧電振動素子を得ることができる。
 (実施の形態の第2の例)
  図6は、本発明の実施の形態の第2の例の圧電振動素子の構造を模式的に示す断面図である。なお、図6においては、図示を簡略化するために、圧電体層,第1~第3の表面電極および第1~第3の接続電極の図示を省略するとともに、1つの内部電極21と、1つの内部電極22と、3つの内部電極23(23a~23c)とを備える場合を示している。また、本例においては、前述した実施の形態の第1の例と異なる点について説明し、同様の構成要素には同一の参照符号を付して重複する説明を省略する。
 本例の圧電振動素子は、内部電極21,22,23の全てが、貫通孔25を有さないベタ状の電極とされている。その代わりに、本例の圧電振動素子は、3つの内部電極23(23a~23c)のうち図の-z方向寄りに位置する内部電極23aと内部電極22とが圧電体層24を間に挟んで対向する部分の第2の方向(図のx軸方向)における長さをL1とし、3つの内部電極23(23a~23c)のうち中央に位置する内部電極23bと内部電極22とが圧電体層24を間に挟んで対向する部分の第2の方向における長さをL2とし、内部電極23bと内部電極21とが圧電体層24を間に挟んで対向する部分の第2の方向における長さをL3とし、3つの内部電極23(23a~23c)のうち図の+z方向寄りに位置する内部電極23cと内部電極21とが圧電体層24を間に挟んで対向する部分の第2の方向における長さをL4としたときに、L1>L2>L3>L4となっている。
 すなわち、本例の圧電振動素子は、図のz軸方向において隣り合う内部電極同士が圧電体層24を間に挟んで対向する部分の図のx軸方向における長さが、図の+z方向へ向かうにつれて段階的に短くなっている。そして、これにより、前述した実施の形態の第1の例の圧電振動素子14と同様に、隣り合う内部電極同士が圧電体層24を間に挟んで対向する部分の面積Sが、図の+z方向へ向かうにつれて段階的に小さくなっている。よって、圧電振動素子が屈曲振動するときの各々の圧電体層24の伸縮量が、図の+z方向へ向かうにつれて徐々に小さくなるので、振動板12に強い振動を伝えることができるとともに、圧電振動素子内で圧電体層24の伸縮量が変化する部分に発生する応力を低減することができる。
 なお、本例の圧電振動素子は、前述した実施の形態の第1の例の圧電振動素子と同様に、隣り合う内部電極同士の間隔Dが第1の方向(図のz軸方向)の全体に渡って一定である。また、隣り合う内部電極間には、全て等しい大きさの電圧が与えられる。
 (実施の形態の第3の例)
  図7は、本発明の実施の形態の第3の例の圧電振動素子の構造を模式的に示す断面図である。なお、図7においては、図6と同様に、図示を簡略化するために、圧電体層,第1~第3の表面電極および第1~第3の接続電極の図示を省略するとともに、1つの内部電極21と、1つの内部電極22と、3つの内部電極23(23a~23c)とを備える場合を示している。また、本例においては、前述した実施の形態の第2の例と異なる点について説明し、同様の構成要素には同一の参照符号を付して重複する説明を省略する。
 本例の圧電振動素子は、図7に示すように、内部電極23aと内部電極22とが圧電体層24を間に挟んで対向する部分の図のx軸方向における長さをL1と、内部電極23bと内部電極22とが圧電体層24を間に挟んで対向する部分の図のx軸方向における長さをL2とが等しくされている。
 すなわち、本例の圧電振動素子は、図の-z方向側においては、隣り合う内部電極同士が圧電体層24を間に挟んで対向する部分の図のx軸方向における長さが一定である。また、図の+z方向側においては、隣り合う内部電極同士が圧電体層24を間に挟んで対向する部分の図のx軸方向における長さが、第1の方向の一方へ向かうにつれて段階的に短くなっている。そして、これにより、隣り合う内部電極同士が圧電体層24を間に挟んで対向する部分の面積が、第1の方向の他方側では一定であり、第1の方向の一方側では、第1の方向の一方へ向かうにつれて段階的に小さくなっている。
 このような構成を備えていることから、本例の圧電振動素子は、実施の形態の第2の例の圧電振動素子と比較して、図の-z方向側における変形量を大きく確保することができる。これにより、実施の形態の第2の例の圧電振動素子と同様の機能を有しているとともに、振動板12により強い振動を伝えることができる。
 なお、本例の圧電振動素子は、前述した実施の形態の第2の例の圧電振動素子と同様に、全ての内部電極はべた状の電極であり、また、隣り合う内部電極同士の間隔Dは第1の方向(図のz軸方向)の全体に渡って一定である。また、隣り合う内部電極間には、全て等しい大きさの電圧が与えられる。
 (実施の形態の第4の例)
  図8は、本発明の実施の形態の第4の例の圧電振動素子の構造を模式的に示す断面図である。なお、図8においては、図示を簡略化するために、圧電体層,第1~第3の表面電極および第1~第3の接続電極の図示を省略するとともに、1つの内部電極21(21c)と、2つの内部電極22(22c,22d)と、4つの内部電極23(23a,23b,23c,23d)とを有する場合を示している。また、本例においては、前述した実施の形態の第3の例と異なる点について説明し、同様の構成要素には同一の参照符号を付して重複する説明を省略する。
 本例の圧電振動素子は、全ての内部電極がべた状の電極であり、隣り合う内部電極同士が圧電体層24を間に挟んで対向する部分の面積Sが、第1の方向(図のz軸方向)の全体に渡って一定である。また、隣り合う内部電極間に全て等しい大きさの電圧が与えられる。その代わりに、本例の圧電振動素子は、図8に示すように、図の+z方向側における、隣り合う内部電極同士の間隔Dの平均値が、図の-z方向側におけるDの平均値よりも大きくされている。そして、これにより、図の+z方向側におけるS/Dの平均値が、図の-z方向側におけるS/Dの平均値よりも小さくなるようにされている。
 なお、第1の方向の一方側におけるDの平均値は、各々の圧電体層24における、その圧電体層24を間に挟んで対向する隣り合う内部電極同士の間隔Dを、第1の方向の中央よりも一方側に存在する全ての圧電体層24について平均したものである。また、第1の方向の他方側におけるDの平均値は、各々の圧電体層24におけるDを、第1の方向の中央よりも他方側に存在する全ての圧電体層24について平均したものである。そして、圧電振動素子の第1の方向における中央に存在する圧電体層24は、どちらにも含めない。
 図8に示す本例の圧電振動素子では、内部電極は、図の+z方向へ向けて、23a,22c,23b,22d,23c,21c,23dの順に配置されている。そして、圧電振動素子の図のz軸方向の中央は、内部電極22dと内部電極23cとの間の圧電体層中に位置している。よって、図8に示す場合では、第1の方向の他方側(図の-z方向側)における隣り合う内部電極同士の間隔Dの平均値をA1とし、内部電極23aと内部電極22cとの間隔をD1とし、内部電極22cと内部電極23bとの間隔をD2とし、内部電極23bと内部電極22dとの間隔をD3とすると、A1=(D1+D2+D3)/3となる。
 また、第1の方向の一方側(図の+z方向側)における隣り合う内部電極同士の間隔Dの平均値をA2とし、内部電極23cと内部電極21cとの間隔をD5とし、内部電極21cと内部電極23dとの間隔をD6とすると、A2=(D5+D6)/2となる。
 そして、本例の圧電振動素子は、第1の方向の一方側における、隣り合う内部電極同士の間隔の平均値A2が、第1の方向の他方側における、隣り合う内部電極同士の間隔の平均値A1よりも大きなっている。これにより、圧電振動素子における図の+z方向側の表面に振動板の主面を接合して、圧電振動素子の振動を振動板に伝える振動装置を構成したときに、振動板に強い振動を伝えることができる。また、圧電振動素子と、圧電振動素子の第1の方向の一方側(図の+z方向側)の表面に接合された振動板との接合部に発生する応力を低減することができるので、圧電振動素子と振動板との接合部におけるマイクロクラックの発生を低減することができる。
 また、図8において、内部電極22dと内部電極23cとの間隔をD4とすると、図の+z方向へ向けて、隣り合う内部電極同士の間隔を順次記載すると、D1,D2,D3,D4,D5,D6となるが、これらの大きさの関係が、D1<D2<D3<D4<D5<D6となっている。すなわち、本例の圧電振動素子は、隣り合う内部電極同士の間隔Dが、図の+z方向へ向かうにつれて段階的に大きくなっている。これにより、圧電振動素子が屈曲振動するときの各々の圧電体層24の伸縮量が、第1の方向の一方へ向かうにつれて徐々に小さくなるので、圧電振動素子内において、圧電体層24の伸縮量が変化する部分に発生する応力を小さくすることができる。これにより、マイクロクラックの発生等の不具合を低減することができる。
 なお、隣り合う内部電極同士の間隔は、各々の電極間で略一定と考えても殆ど差し支えない。よって、隣り合う内部電極同士の間隔D1,D2,D3,D4,D5,D6は、例えば図8に矢印で示した位置のように、隣り合う電極同士が対向する部分の中央など、どこか1点における測定値で代表させても構わない。
 (実施の形態の第5の例)
  図9は、本発明の実施の形態の第5の例の圧電振動素子の構造を模式的に示す断面図である。なお、図9においては、図示を簡略化するために、圧電体層,第1~第3の表面電極および第1~第3の接続電極の図示を省略するとともに、2つの内部電極21(21d,21e)と、2つの内部電極22(22e,22f)と、4つの内部電極23(23e,23f,23g,23h)とを有する場合を示している。また、本例においては、前述した実施の形態の第4の例と異なる点について説明し、同様の構成要素には同一の参照符号を付して重複する説明を省略する。
 本例の圧電振動素子では、図9に示すように、内部電極は、図の+z方向へ向けて、23e,22e,23f,22f,23g,21d,23h,21eの順に配置されている。そして、図のz軸方向における中央に内部電極23gが位置している。
 よって、図9に示す場合では、第1の方向の他方側(図の-z方向側)における隣り合う内部電極同士の間隔の平均値をA3とし、内部電極23eと内部電極22eとの間隔をD7とし、内部電極22eと内部電極23fとの間隔をD8とし、内部電極23fと内部電極22fとの間隔をD9とし、内部電極22fと内部電極23gとの間隔をD10とすると、A3=(D7+D8+D9+D10)/4となる。
 また、図9に示す場合では、第1の方向の一方側(図の+z方向側)における隣り合う内部電極同士の間隔の平均値をA4とし、内部電極23gと内部電極21dとの間隔をD11とし、内部電極21dと内部電極23hとの間隔をD12とし、内部電極23hと内部電極21eとの間隔をD13とすると、A4=(D11+D12+D13)/3となる。
 そして、本例の圧電振動素子は、図の+z方向側における隣り合う内部電極同士の間隔の平均値A4が、図の-z方向側における隣り合う内部電極同士の間隔の平均値A3よりも大きなっている。これにより、図の+z方向側の表面に振動板の主面を接合して、圧電振動素子の振動を振動板に伝える振動装置を構成したときに、振動板に強い振動を伝えることができる。また、その振動板の振動が抑制されたときにも、その振動板に強い振動を伝えることができる。また、圧電振動素子と振動板との接合部に発生する応力を低減することができるので、圧電振動素子と振動板との接合部におけるマイクロクラックの発生を低減することができる。
 また、本例の圧電振動素子は、隣り合う内部電極同士の間隔D7,D8,D9,D10,D11,D12,D13において、D7=D8=D9=D10<D11<D12<D13の関係が成り立っている。すなわち、隣り合う内部電極同士の間隔Dが、図の-z方向側では一定であり、図の+z方向側では、図の+z方向へ向かうにつれて段階的に大きくなっている。
 このような構成を備えていることから、本例の圧電振動素子は、圧電振動素子内部の伸縮量が変化する部分に発生する応力を小さくすることができるとともに、図の-z方向側における変形量を大きく確保することができる。これにより、圧電振動素子の内部におけるマイクロクラックの発生を低減することができるとともに、図の+z方向側の表面に振動板の主面を取り付けた圧電振動装置を構成したときに、さらに強い振動を振動板に伝えることができる。
 なお、本例の圧電振動素子は、前述した実施の形態の第4の例の圧電振動素子と同様に、全ての内部電極はべた状の電極であり、隣り合う内部電極同士が圧電体層24を間に挟んで対向する部分の面積Sが、第1の方向(図のz軸方向)の全体に渡って一定である。また、隣り合う内部電極間には、全て等しい大きさの電圧が与えられる。
 (実施の形態の第6の例)
  図10は、本発明の実施の形態の第6の例の圧電振動装置15を模式的に示す斜視図である。なお、図10においては、作図を容易にするために、圧電振動素子の詳細な構造の図示を省略している。また、本例においては、前述した実施の形態の第1~第5の例と異なる点について説明し、同様の構成要素には同一の参照符号を付して重複する説明を省略する。本例の圧電振動装置15は、圧電振動素子14と、振動板12とを有している。なお、圧電振動素子14は、前述した実施の形態の第1~第5の例のような圧電振動素子である。
 振動板12は、矩形の薄板状の形状を有しており、圧電振動素子14の図の+z方向側の表面に、一方主面(図の-z方向側の主面)が接着剤等を用いて接合されている。このような振動板12は、種々の既知の材料を用いて構成することができる。例えば、アクリル樹脂やガラス等の剛性および弾性が大きい材料を好適に用いて振動板12を形成することができる。また、振動板12の厚みは、例えば、0.4mm~1.5mm程度に設定される。このような構成を有する本例の圧電振動装置15は、電気信号を加えることによって圧電振動素子14を屈曲振動させ、その振動を振動板12に伝える圧電振動装置として機能する。
 本例の圧電振動装置15は、圧電振動素子14の図の+z方向側の表面に振動板12の一方主面が接合されている。また、圧電振動素子14は、隣り合う内部電極同士が圧電体層24を間に挟んで対向する部分の面積をSとし、隣り合う内部電極同士の間隔をDとしたときに、図の+z方向側におけるS/Dの平均値が、図の-z方向側におけるS/Dの平均値よりも小さい。これにより、振動板12が自由に振動できる場合においても、振動板12の振動が抑制された場合においても、振動板12に強い振動を伝えることができる。また、圧電振動素子14と振動板12との接合部におけるマイクロクラックの発生を低減することができる。よって、薄型で高性能な圧電振動装置を得ることができる。
 (実施の形態の第7の例)
  図11は、本発明の実施の形態の第7の例の携帯端末を模式的に示す斜視図である。図12は、図11におけるA-A’線断面図である。図13は、図11におけるB-B’線断面図である。なお、図12および図13においては、圧電振動素子14の詳細な構造の図示を省略している。また、本例においては、前述した実施の形態の第6の例と異なる点について説明し、同様の構成要素には同一の参照符号を付して重複する説明を省略する。本例の携帯端末は、図10に示した実施の形態の第6の例の圧電振動装置15と、電子回路17と、ディスプレー18と、筐体19とを有している。
 電子回路17は、圧電振動素子14に入力される電気信号を生成する。また、電子回路17には、ディスプレー18に表示させる画像情報を処理する回路や、通信回路等の他の回路が含まれていても良い。なお、電子回路17と圧電振動素子14とは図示せぬ配線を介して接続されている。
 ディスプレー18は、画像情報を表示する機能を有する表示装置であり、例えば、液晶ディスプレー,プラズマディスプレー,および有機ELディスプレー等の既知のディスプレーを好適に用いることができる。また、ディスプレー18は、タッチパネルのような入力装置を有するものであっても良い。
 筐体19は、1つの面が開口した箱状の形状を有している。筐体19は、既知の種々の材料を用いて形成することができる。例えば、剛性および弾性が大きい合成樹脂等の材料を好適に用いて形成することができるが、金属等の他の材料を用いて形成しても構わない。
 本例の携帯端末において、圧電振動装置15は、筐体19の開口部に設けられている。振動板12は、ディスプレー18よりも外側に配置されてディスプレー18と一体化されており、ディスプレー18を保護するカバーとして機能している。また、振動板12は、一方主面(図の-z方向側の主面)の周囲のみが、筐体19に接合されており、筐体19に振動可能に取り付けられている。なお、筐体19と振動板12とは、例えば、接着剤や両面テープ等の、既知の種々の接合部材を用いて接合することができる。また、振動板12は、タッチパネルのような入力装置を有するものであっても構わない。
 このような構成を有する本例の携帯端末は、圧電振動素子14を振動させることによって、振動板12を振動させて音響を発生させることができる。そして、この音響によって音声情報を人に伝達することができる。また、振動板12または筐体19を直接または他の物を介して耳などの人体の一部に接触させて振動を伝えることによって音声情報を伝達してもよい。
 本例の携帯端末は、振動板12が自由に振動できる場合においても、振動板12の振動が抑制された場合においても、振動板12に強い振動を伝えることができるとともに、圧電振動素子14と振動板12との接合部におけるマイクロクラックの発生が低減された、薄型で高性能な圧電振動装置を用いている。よって、本例の携帯端末によれば、振動板12を耳等の人体に接触させた場合においても、振動板12の振動によって音声情報を良好に伝達することができるとともに、圧電振動素子14と振動板12との接合部におけるマイクロクラックの発生が低減された、薄型で高性能な携帯端末を得ることができる。
 (変形例)
  本発明は上述した実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更,改良が可能である。
 例えば、図示を簡略化するために、図6,図7では5つの内部電極を有する例を示し、図8では7つの内部電極を有する例を示し、図9では8つの内部電極を有する例を示したが、これらに限定されるものではない。例えば、より少ない内部電極を有する構成であっても良く、より多くの内部電極を有する構成であっても構わない。
 また、前述した実施の形態の例においては、わかりやすくするために、隣り合う内部電極同士が圧電体層24を間に挟んで対向する部分の面積Sと、隣り合う内部電極同士の間隔Dとにおいて、一方が一定であり、他方のみが変化する例を示したが、これに限定されるものではない。圧電振動素子の厚み方向において、SおよびDの両方が変化するようにしても構わない。
 また、前述した実施の形態の第7の例においては、振動板12の振動によって音情報を伝達する携帯端末の例を示したが、これに限定されるものではない。例えば、人間の指が振動板12に接触したときに、振動板12を振動させて指に振動を伝達して、指が振動板12に接触したことを明確に伝えるような携帯端末であっても構わない。
 また、前述した実施の形態の第7の例においては、ディスプレー18のカバーが振動板12として機能する例を示したが、これに限定されるものではない。例えば、ディスプレー18そのものが振動板12として機能するものであっても構わない。
12:振動板
14:圧電振動素子
15:圧電振動装置
17:電子回路
21~23,21c~21e,22c~22f、23a~23h:内部電極
24:圧電体層
25:貫通孔

Claims (10)

  1.  第1の方向に沿って交互に積層された複数の内部電極と複数の圧電体層とを少なくとも有しており、
    隣り合う前記内部電極同士が前記圧電体層を間に挟んで対向する部分の面積をSとし、隣り合う前記内部電極同士の間隔をDとしたときに、
    前記第1の方向の一方側におけるS/Dの平均値が、前記第1の方向の他方側におけるS/Dの平均値よりも小さいことを特徴とする圧電振動素子。
  2.  前記第1の方向の前記一方側におけるSの平均値が、前記第1の方向の前記他方側におけるSの平均値よりも小さいことを特徴とする請求項1に記載の圧電振動素子。
  3.  前記第1の方向の前記一方へ向かうにつれてSが段階的に小さくなっていることを特徴とする請求項2に記載の圧電振動素子。
  4.  前記第1の方向に垂直な第2の方向に長い形状を有しており、隣り合う前記内部電極同士が前記圧電体層を間に挟んで対向する部分の前記第2の方向における長さが、前記第1の方向の前記一方へ向かうにつれて段階的に短くなっていることを特徴とする請求項3に記載の圧電振動素子。
  5.  複数の前記内部電極の少なくとも一部が、該内部電極を前記第1の方向に貫通する複数の貫通孔を有しており、1つの前記内部電極に形成された前記貫通孔の断面積の合計が、前記第1の方向の前記一方へ向かうにつれて段階的に大きくなっていることを特徴とする請求項3に記載の圧電振動素子。
  6.  前記第1の方向の前記一方側におけるDの平均値が、前記第1の方向の前記他方側におけるDの平均値よりも大きいことを特徴とする請求項1に記載の圧電振動素子。
  7.  前記第1の方向の前記一方へ向かうにつれてDが段階的に大きくなっていることを特徴とする請求項6に記載の圧電振動素子。
  8.  Dが、前記第1の方向の前記他方側では一定であり、前記第1の方向の前記一方側では、前記第1の方向の前記一方へ向かうにつれて段階的に大きくなっていることを特徴とする請求項7に記載の圧電振動素子。
  9.  請求項1乃至請求項8のいずれかに記載の圧電振動素子と、該圧電振動素子の前記第1の方向における前記一方側の表面に接合された振動板とを少なくとも有することを特徴とする圧電振動装置。
  10.  筐体と、該筐体に設けられた請求項9に記載の圧電振動装置と、前記圧電振動素子に入力される電気信号を生成する電子回路とを少なくとも有していることを特徴とする携帯端末。
PCT/JP2013/058589 2012-04-16 2013-03-25 圧電振動素子ならびにそれを用いた圧電振動装置および携帯端末 WO2013157355A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012093024 2012-04-16
JP2012-093024 2012-04-16
JP2012095727 2012-04-19
JP2012-095727 2012-04-19

Publications (1)

Publication Number Publication Date
WO2013157355A1 true WO2013157355A1 (ja) 2013-10-24

Family

ID=49383320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058589 WO2013157355A1 (ja) 2012-04-16 2013-03-25 圧電振動素子ならびにそれを用いた圧電振動装置および携帯端末

Country Status (1)

Country Link
WO (1) WO2013157355A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015186232A (ja) * 2014-03-26 2015-10-22 京セラ株式会社 音響発生器およびこれを備えた音響発生装置、電子機器、携帯端末
CN105027581A (zh) * 2014-02-27 2015-11-04 京瓷株式会社 压电致动器及具备其的压电振动装置、便携式终端、声音发生器、声音发生装置、电子设备
CN111033775A (zh) * 2017-09-25 2020-04-17 Tdk株式会社 振动组件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02150082A (ja) * 1988-11-30 1990-06-08 Fuji Electric Co Ltd 積層型圧電素子
JP2006287725A (ja) * 2005-04-01 2006-10-19 Ngk Insulators Ltd 圧電音響素子及び圧電音響発生装置
WO2009082007A1 (ja) * 2007-12-26 2009-07-02 Kyocera Corporation 積層型圧電素子、これを備えた噴射装置及び燃料噴射システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02150082A (ja) * 1988-11-30 1990-06-08 Fuji Electric Co Ltd 積層型圧電素子
JP2006287725A (ja) * 2005-04-01 2006-10-19 Ngk Insulators Ltd 圧電音響素子及び圧電音響発生装置
WO2009082007A1 (ja) * 2007-12-26 2009-07-02 Kyocera Corporation 積層型圧電素子、これを備えた噴射装置及び燃料噴射システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105027581A (zh) * 2014-02-27 2015-11-04 京瓷株式会社 压电致动器及具备其的压电振动装置、便携式终端、声音发生器、声音发生装置、电子设备
CN105027581B (zh) * 2014-02-27 2018-01-05 京瓷株式会社 压电致动器及具备其的压电振动装置、便携式终端、声音发生器、声音发生装置、电子设备
JP2015186232A (ja) * 2014-03-26 2015-10-22 京セラ株式会社 音響発生器およびこれを備えた音響発生装置、電子機器、携帯端末
CN111033775A (zh) * 2017-09-25 2020-04-17 Tdk株式会社 振动组件

Similar Documents

Publication Publication Date Title
JP6059300B2 (ja) 圧電振動素子,圧電振動装置および携帯端末
KR101601748B1 (ko) 압전 액추에이터, 압전 진동 장치 및 휴대 단말
JP5404970B1 (ja) 圧電振動部品および携帯端末
WO2013157355A1 (ja) 圧電振動素子ならびにそれを用いた圧電振動装置および携帯端末
WO2013168478A1 (ja) 圧電振動素子ならびにそれを用いた圧電振動装置および携帯端末
KR101579121B1 (ko) 압전 액추에이터, 압전 진동 장치 및 휴대 단말
JP5225518B1 (ja) 圧電振動素子,圧電振動装置および携帯端末
JP6189648B2 (ja) 圧電振動素子ならびにそれを用いた圧電振動装置および携帯端末
JP5932458B2 (ja) 圧電振動素子ならびにそれを用いた圧電振動装置および携帯端末
JP5940947B2 (ja) 圧電振動素子ならびにそれを用いた圧電振動装置および携帯端末
JP6258667B2 (ja) 電子機器
JP6258666B2 (ja) 電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13778868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13778868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP