WO2013157310A1 - 発光装置及びその製造方法 - Google Patents

発光装置及びその製造方法 Download PDF

Info

Publication number
WO2013157310A1
WO2013157310A1 PCT/JP2013/055782 JP2013055782W WO2013157310A1 WO 2013157310 A1 WO2013157310 A1 WO 2013157310A1 JP 2013055782 W JP2013055782 W JP 2013055782W WO 2013157310 A1 WO2013157310 A1 WO 2013157310A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting device
light
sealing resin
convex
Prior art date
Application number
PCT/JP2013/055782
Other languages
English (en)
French (fr)
Inventor
聡 駒田
勝次 井口
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013157310A1 publication Critical patent/WO2013157310A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Definitions

  • the present invention relates to a light emitting device and a manufacturing method thereof.
  • a light emitting device using a light emitting element such as an LED (Light Emitting Diode) chip
  • a light emitting device using an LED chip protects the LED chip itself and the wires electrically connected to the LED chip, improves the extraction efficiency of light emitted from the LED chip, and disperses the phosphor. Is covered with sealing resin. The light emitted from the LED chip passes through the inside of the sealing resin and is emitted from the surface (light extraction surface) of the sealing resin toward the outside.
  • Such conventional light emitting devices are described in Patent Documents 1 to 3.
  • the present invention has been made in view of the above points, and has a configuration that can be applied flexibly, simply, and inexpensively to various light emitting devices by suppressing an increase in the cost of the light emitting device.
  • An object of the present invention is to provide a light emitting device and a method for manufacturing the same.
  • a light-emitting device of the present invention includes a light-emitting element that emits light, a sealing resin that covers the periphery of the light-emitting element, and a concavo-convex structure that is attached to the light extraction surface of the sealing resin.
  • the concavo-convex structure is formed in layers so as to be concave with respect to the top of the convex body on the surface of the light extraction surface, and a plurality of convex bodies made of oxide or nitride.
  • a coating agent made of a polymer.
  • the light extraction surface of the sealing resin of the light emitting device is provided with a concavo-convex structure including a plurality of convex bodies and a coating agent.
  • This concavo-convex structure is formed by adhering to the light extraction surface. Therefore, for example, a mold or a mold frame is not required to provide unevenness on the light extraction surface of the sealing resin.
  • the convex body is preferably made of an oxide or nitride having a relatively high transparency.
  • the coating agent is preferably a polymer that can be heat-cured and light-cured and whose thickness can be adjusted by changing the concentration.
  • the “polymer” mentioned here is a compound formed by polymerizing a plurality of monomers, and is also called a high molecular organic compound.
  • the convex body is formed of spherical particles.
  • the sizes of the particles can be easily aligned and easily aligned. Therefore, a high effect of scattering and diffraction of light having a desired wavelength as the light emitting device can be obtained.
  • the convex body is embedded in the coating agent. According to this configuration, it is possible to obtain a concavo-convex structure that can effectively increase the light extraction efficiency.
  • the size of the convex body is 100 nm to 2 ⁇ m.
  • the size of the convex body is 300 nm to 1 ⁇ m.
  • the emission wavelength of the LED chip is sufficiently smaller at 100 nm or less, and sufficiently larger than the emission wavelength of the LED chip at 2 ⁇ m or more. Therefore, according to these structures, the effect of light scattering and diffraction by the concavo-convex structure can be obtained.
  • the size of the convex body is 300 nm to 1 ⁇ m, the light emission wavelength of the LED chip is further approached, so that high effects of light scattering and diffraction by the concave-convex structure can be obtained.
  • the “size” of the convex body described here includes the size in the direction parallel to the light extraction surface. According to this configuration, the effect of light scattering and diffraction by the concavo-convex structure can be obtained as described above. Further, the “size” of the convex body described here includes the size in the normal direction relative to the light extraction surface. According to this configuration, when the convex body has a shape other than a spherical shape and the normal direction is large with respect to the direction parallel to the light extraction surface, the refractive index gradually changes as the light goes outside the light emitting device. Therefore, it is even more preferable.
  • the coating agent has a thickness of 50 nm to 1 ⁇ m.
  • the thickness of the coating agent is 50 nm to 500 nm.
  • the contact area between the sealing resin and the air is further reduced while fully utilizing the shape of the convex body. Therefore, the light extraction efficiency of the light emitting device is improved.
  • the sealing resin is made of an epoxy resin or a silicone resin. According to this configuration, the reliability and transparency of the sealing resin are improved, and the light extraction efficiency of the light emitting device is improved.
  • the convex body is made of silica. According to this configuration, the particle diameter of the convex body can be easily adjusted, the refractive index of the convex body approaches the refractive index of the sealing resin, and the light extraction efficiency of the light emitting device is improved.
  • the coating agent is made of a fluorine-based polymer. According to this configuration, it is easy to adjust the thickness of the coating agent, the transparency is increased, and the refractive index of the coating agent approaches the refractive index of the sealing resin, so that the light extraction efficiency of the light emitting device is improved.
  • the coating agent can be a polymer such as a silicon-based polymer or polystyrene.
  • the light-emitting device having the above-described structure includes a base having a recess having a bathtub shape, and the light-emitting element is disposed at the bottom of the recess and the sealing resin is injected into the recess to surround the light-emitting element. And the concavo-convex structure is provided on the surface of the sealing resin exposed from the depression.
  • the sealing resin for example, the light extraction surface of the sealing resin without using a mold or a mold frame Unevenness is formed on the surface.
  • the light-emitting device having the above-described configuration includes a flat base, the light-emitting element is disposed on the surface of the base, and the sealing resin covers the periphery of the light-emitting element to form a dome shape.
  • the concavo-convex structure is provided on the surface of the sealing resin formed and having the dome shape.
  • the light extraction of the sealing resin is performed without using a mold or a mold frame. Unevenness is formed on the surface.
  • the base is made of a ceramic made of aluminum oxide. Since aluminum oxide is a material having a relatively high reflectance, this configuration improves the light extraction efficiency of the light-emitting device.
  • the present invention provides a method for manufacturing a light emitting device in which a periphery of a light emitting element is covered with a sealing resin, and a coating agent and a plurality of protrusions are formed on a light extraction surface of the sealing resin. And a concavo-convex structure forming step of providing a concavo-convex structure formed of a state body.
  • the concavo-convex structure forming step includes a convex body attaching step of dispersing the plurality of convex bodies on the light extraction surface of the sealing resin, and the convex body. And a coating layer forming step of spraying or dripping the coating agent on the light extraction surface on which is dispersed.
  • the uneven structure forming step includes an uneven agent generating step of generating an uneven agent in which the coating agent and the plurality of protruded bodies are mixed, and the uneven agent is And a step of applying a concavo-convex agent to be sprayed or dropped onto the light extraction surface of the sealing resin.
  • the light extraction surface of the sealing resin of the light emitting device is provided with a concavo-convex structure including a plurality of convex bodies and a coating agent.
  • This concavo-convex structure is formed by adhering to the light extraction surface. Therefore, for example, a mold or a mold frame is not required to provide unevenness on the light extraction surface of the sealing resin.
  • a concavo-convex structure including a plurality of convex bodies and a coating agent can be attached to the light extraction surface of the sealing resin of the light emitting device. That is, for example, a mold or a mold frame is not required to provide unevenness on the light extraction surface of the sealing resin. Accordingly, a light-emitting device and a method for manufacturing the same, in which the light extraction efficiency is suppressed, and the light extraction efficiency can be flexibly, easily and inexpensively applied to various light-emitting devices. Can be provided.
  • FIG. 1 is a cross-sectional view of a light emitting device.
  • the light emitting device 1 includes a light emitting element 2 mounted on a base 10 as shown in FIG.
  • the light emitting element 2 is, for example, an LED chip formed using a semiconductor.
  • the type of semiconductor constituting the LED chip is appropriately determined based on, for example, the desired wavelength of emitted light from the LED chip.
  • an LED chip having an arbitrary wavelength of ultraviolet, blue, green, red, or infrared may be used.
  • the base 10 has a substantially rectangular parallelepiped shape and includes a recess 11 having a bathtub shape (inverted truncated pyramid shape).
  • the recess 11 has a side surface that is inclined from the inside of the base 10 toward the top surface of the base 10 in FIG. 1 so as to have a wide opening, and is open on the top surface of the base 10.
  • the light emitting element 2 is disposed at the inner bottom of the recess 11.
  • the base 10 is preferably made of a material having higher reflectivity.
  • a ceramic made of a sintered body of aluminum oxide (Al 2 O 3 ) may be used. .
  • the base 10 is provided with electrodes 3a and 3b.
  • the electrodes 3a and 3b are configured in pairs so as to function as positive and negative electrodes.
  • Each of the pair of electrodes 3 a and 3 b is provided such that one end thereof is located on the inner bottom surface of the recess 11.
  • the electrodes 3a and 3b may be formed integrally with the base 10.
  • the light emitting element 2 is mounted on the upper surface in FIG. 1 of one of the pair of electrodes 3a and 3b (in this embodiment, the electrode 3a).
  • the light emitting element 2 is electrically connected to the electrodes 3a and 3b through bonding wires 4a and 4b.
  • the periphery of the light emitting element 2 and the bonding wires 4 a and 4 b is covered with the sealing resin 5.
  • the sealing resin 5 is injected into the recess 11 so as to fill the recess 11 of the base 10.
  • the sealing resin 5 is made of, for example, a thermosetting epoxy resin or a silicone resin. Thereby, the reliability and transparency of the sealing resin 5 are improved, and the light extraction efficiency of the light emitting device 1 can be improved. Further, the sealing resin 5 may be mixed with additives such as a phosphor and a dispersant.
  • the concavo-convex structure 20 includes a plurality of convex bodies 21 and a coating agent 22.
  • the convex body 21 is made of, for example, spherical particles. If the convex bodies 21 are spherical particles, the sizes of the particles can be easily aligned and easily aligned. Therefore, it is possible to obtain an effect of high scattering and diffraction of light having a desired wavelength as the light emitting device 1. Further, the convex body 21 is preferably made of, for example, an oxide or nitride having a relatively high transparency.
  • the convex body 21 is preferably a material having a refractive index close to that of the sealing resin 5, for example. Since the refractive index of the epoxy resin or silicone resin constituting the sealing resin 5 is about 1.4 to 1.55, the convex body 21 is, for example, silica having a refractive index of about 1.4 to 1.5. It is preferable. Thus, since the refractive index of the convex body 21 is close to the refractive index of the sealing resin 5, total reflection of light at the interface between the convex body 21 and the sealing resin 5 can be suppressed. As a result, the light extraction efficiency is improved. Furthermore, if the convex body 21 is silica, the particle diameter of the convex body 21 can be easily adjusted, so that a high effect in light scattering and diffraction can be obtained.
  • the size of the convex body 21 which is a particle is preferably 100 nm to 2 ⁇ m. If it is 100 nm or less, it is sufficiently smaller than the light emission wavelength of the LED chip, and if it is 2 ⁇ m or more, it is sufficiently larger than the light emission wavelength of the LED chip. it can. Further, if the size of the convex body 21 is 300 nm to 1 ⁇ m, it is closer to the emission wavelength of the LED chip, so that the effect of high light scattering and diffraction by the concave-convex structure 20 can be obtained.
  • the convex-shaped body 21 will have a shape other than spherical shape and it is normal to the direction parallel to the light extraction surface 5a When the direction is large, the refractive index gradually changes as the light goes to the outside of the light emitting device 1, which is more preferable.
  • the coating agent 22 is formed in a layer on the surface of the light extraction surface 5 a of the sealing resin 5 so as to be concave with respect to the top of the convex body 21. A part of the convex body 21 on the side close to the light extraction surface 5 a is buried in the coating agent 22. Thereby, the concavo-convex structure 20 that can effectively increase the light extraction efficiency is obtained.
  • the contact area between the sealing resin 5 and the convex body 21 is relatively narrow, The contact area between the sealing resin 5 and air is relatively wide. Thereby, the effect that the light extraction efficiency is enhanced by the concavo-convex structure 20 is reduced.
  • the coating agent 22 is preferably a polymer (polymer organic compound) that can be cured by heat or light, for example, and its thickness can be adjusted by changing the concentration. Furthermore, the coating agent 22 is preferably a fluorine-based polymer, for example. As a result, the coating agent 22 has high transparency and can suppress light absorption, has a refractive index of 1.4 and is close to the refractive index of the sealing resin 5, and light at the interface between the convex body 21 and the sealing resin 5. Total reflection can be suppressed. Furthermore, if the coating agent 22 is a fluoropolymer, the thickness of the coating agent 22 can be easily adjusted. In addition, the coating agent 22 can be a polymer such as a silicon-based polymer or polystyrene.
  • the layer thickness of the coating agent 22 is preferably less than or equal to half the size of the convex body 21 (the height from the light extraction surface 5a). That is, the thickness of the layer of the coating agent 22 is preferably 50 nm to 1 ⁇ m, for example. Further, the thickness of the layer of the coating agent 22 is particularly preferably 50 nm to 500 nm, for example. If the thickness of the coating agent 22 is within these ranges, the contact area between the sealing resin 5 and the air can be further reduced while fully utilizing the shape of the convex body 21. Therefore, the light extraction efficiency of the light emitting device 1 can be improved.
  • the light emitting element 2 is first mounted on the inner bottom portion of the recess 11 of the base 10.
  • the base 10 is formed integrally with the electrodes 3a and 3b by, for example, insert molding.
  • a die bond material is supplied to the surface of one of the electrodes 3a and 3b exposed from the recess 11 of the base 10 (electrode 3a), and the light emitting element 2 is mounted thereon. Thereby, the light emitting element 2 is fixed to the surface of one end of the electrode 3a.
  • a wire bonding step is performed on the bonding wires 4a and 4b. Thereby, the light emitting element 2 and the pair of electrodes 3a and 3b are electrically connected through the bonding wires 4a and 4b.
  • the sealing resin 5 is injected into the recess 11. A predetermined amount of the sealing resin 5 is dropped toward the light emitting element 2 by using, for example, a dispenser.
  • a concavo-convex structure forming step is performed in which the concavo-convex structure 20 composed of the plurality of convex bodies 21 and the coating agent 22 is attached to the light extraction surface 5 a of the sealing resin 5.
  • the concavo-convex structure forming step includes a convex body attaching step and a coating layer forming step.
  • the convex body attaching step a plurality of convex bodies 21 are dispersed on the light extraction surface 5a of the sealing resin 5. Thereafter, in the coating layer forming step, the coating agent 22 is sprayed or dropped onto the light extraction surface 5a on which the convex bodies 21 are dispersed.
  • the concavo-convex structure forming step may include a concavo-convex agent generating step and a concavo-convex agent attaching step in place of the convex body attaching step and the coating layer forming step.
  • a concavo-convex agent in which a plurality of convex bodies 21 and the coating agent 22 are mixed is generated. Thereafter, in the unevenness agent attaching step, the unevenness agent is applied, sprayed or dropped onto the light extraction surface 5a.
  • the layer thickness of the coating agent 22 can be adjusted by diluting the polymer concentration with, for example, ethyl nonafluoroisobutyl ether.
  • the thickness can be adjusted by evaporating by thermal annealing.
  • the sealing resin 5 As described above, in the light emitting device 1 in which the periphery of the light emitting element 2 mounted on the inner bottom portion of the recess 11 of the base 10 is covered with the sealing resin 5, a plurality of convex shapes are formed on the light extraction surface 5 a of the sealing resin 5.
  • the uneven structure 20 including the body 21 and the coating agent 22 was provided.
  • the uneven structure 20 is formed by adhering to the light extraction surface 5a. Therefore, for example, a mold or a mold-taking frame is not required to provide unevenness on the light extraction surface 5a of the sealing resin 5.
  • the light having a configuration that can be applied flexibly, simply, and inexpensively to various light-emitting devices while suppressing the cost increase of the light-emitting device 1. It is possible to provide a light-emitting device 1 and a method for manufacturing the same that improve the extraction efficiency of the light-emitting device.
  • FIG. 2 is a cross-sectional view of the light emitting device. Since the basic configuration of this embodiment is the same as that of the first embodiment described with reference to FIG. 1, the same components as those of the first embodiment are denoted by the same reference numerals as before, and the details thereof are described. Such explanation will be omitted.
  • the light emitting device 1 includes a base 10 having a flat plate shape and a sealing resin 5 having a dome shape as shown in FIG.
  • the light emitting element 2 is placed on the upper surface in FIG.
  • the sealing resin 5 has a dome shape that covers the light emitting element 2 and has an outer surface formed into a substantially hemispherical surface.
  • the surface of the sealing resin 5 having a dome shape formed in a substantially hemispherical surface is a light extraction surface 5a.
  • An uneven structure 20 including a plurality of convex bodies 21 and a coating agent 22 is provided on the light extraction surface 5 a having a dome shape.
  • this light emitting device 1 After a light emitting element 2 mounted on a base 10 and a pair of electrodes 3a, 3b are electrically connected via bonding wires 4a, 4b, a predetermined amount of sealing resin 5 is provided, for example, It is dropped toward the light emitting element 2 using a dispenser or the like.
  • the dropped sealing resin 5 is heated and cured immediately after the dropping. Since heat generated by light emission of the light emitting element 2 is conducted radially around the light emitting element 2, the sealing resin 5 dropped toward the light emitting element 2 has a substantially hemispherical dome shape having a substantially semicircular cross section shown in FIG. It is formed.
  • the sealing resin 5 having a dome shape
  • a plurality of convex bodies are provided on the light extraction surface 5a of the sealing resin 5.
  • the concavo-convex structure 20 including 21 and the coating agent 22 was provided.
  • the uneven structure 20 is formed by adhering to the light extraction surface 5a. Therefore, for example, a mold or a mold-taking frame is not required to provide unevenness on the light extraction surface 5a of the sealing resin 5.
  • a blue LED having an emission wavelength of 450 nm was used as the light-emitting element 2.
  • a silicone resin was used as a material.
  • the base 10 was made of ceramic made of a sintered body of aluminum oxide (Al 2 O 3 ).
  • the light emitting element 2 was fixed to the base 10 with a die bond material, and the light emitting element 2 was covered with the sealing resin 5. After the sealing resin 5 was cured, a plurality of particulate convex bodies 21 made of silica having a size of 500 nm were dispersed on the light extraction surface 5 a of the sealing resin 5.
  • a coating agent 22 containing a fluoropolymer was dropped onto the light extraction surface 5a on which the convex bodies 21 were dispersed.
  • the thickness of the layer of the coating agent 22 was adjusted to about 100 nm by adjusting the content of the fluoropolymer with respect to ethyl nonafluoroisobutyl ether.
  • the light emitting device 1 includes the base 10 including the recess 11 having a bathtub shape (inverted truncated pyramid shape), and the light emitting element 2 is placed on the bottom of the recess 11 and covered with the sealing resin 5.
  • the light-emitting element 2 placed on the base 10 having a flat shape is covered with a sealing resin 5 having a dome shape.
  • the base 10 and the sealing resin 5 have been described.
  • the configuration is not limited to these.
  • the concavo-convex structure 20 of the present invention can also be applied to the light extraction surface 5 a of the light emitting device 1 having another configuration in which the periphery of the light emitting element 2 is covered with the sealing resin 5.
  • the present invention can be used in a light emitting device having a configuration in which the periphery of a light emitting element is covered with a sealing resin and a method for manufacturing the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

 発光装置1は、光を照射する発光素子2と、発光素子2の周囲を覆う封止樹脂5と、封止樹脂5の光取り出し面5aに付着させた凹凸構造体20と、を備える。凹凸構造体20は、酸化物若しくは窒化物からなる複数の凸状体21と、光取り出し面5aの表面に凸状体21の頂部に対して凹となるように層状に形成したポリマーからなるコーティング剤22と、を含む。

Description

発光装置及びその製造方法
 本発明は、発光装置及びその製造方法に関する。
 従来、例えばLED(Light Emitting Diode)チップなどの発光素子を用いた発光装置が知られている。LEDチップを用いた発光装置はLEDチップ自体やLEDチップに電気的に接続されたワイヤを保護するため、LEDチップが照射する光の取り出し効率を向上させるため及び蛍光体を分散させるためにLEDチップが封止樹脂で覆われている。LEDチップが照射する光は封止樹脂の内部を透過して封止樹脂の表面(光取り出し面)から外部に向かって放出される。このような従来の発光装置が特許文献1~3に記載されている。
 ここで、封止樹脂の内部を透過する光は封止樹脂と空気との屈折率の違いから一部が封止樹脂と空気との界面で反射されて外へ放出されないことが分かっている。そこで、特許文献1~3に記載された発光装置は封止樹脂の光取り出し面に凹凸を設けている。これにより、封止樹脂と空気との界面における光の透過率を向上させ、光の取り出し効率を向上させている。
特開2003-234509号公報 特開2008-227456号公報 特開2011-129790号公報
 しかしながら、特許文献1~3に記載された従来の発光装置は封止樹脂の光取り出し面に凹凸を設けるために金型や型取り枠を使用しているので、それら型の製作に係るコストアップが課題となっていた。また、発光装置の形状等を設計変更するたびに型も変更しなければならないので、さらにコストが増加するという問題もあった。特に光の取り出し効率を向上させるためのミクロンオーダー、サブミクロンオーダーの金型のインプリント技術は設計変更ごとにレイアウトを変更する必要があり、より一層高コスト化することが懸念されている。
 本発明は、上記の点に鑑みなされたものであり、発光装置のコストアップを抑制して様々な発光装置にも柔軟に、簡便に且つ安価に適用することができる構成の、光の取り出し効率の向上が図られた発光装置及びその製造方法を提供することを目的とする。
 上記の課題を解決するため、本発明の発光装置は、光を照射する発光素子と、前記発光素子の周囲を覆う封止樹脂と、前記封止樹脂の光取り出し面に付着させた凹凸構造体と、を備え、前記凹凸構造体が、酸化物若しくは窒化物からなる複数の凸状体と、前記光取り出し面の表面に前記凸状体の頂部に対して凹となるように層状に形成したポリマーからなるコーティング剤と、を含むことを特徴としている。
 この構成によれば、発光装置の封止樹脂の光取り出し面には複数の凸状体と、コーティング剤とを含む凹凸構造体が設けられる。この凹凸構造体は光取り出し面に付着させて形成される。したがって、封止樹脂の光取り出し面に凹凸を設けるために例えば金型や型取り枠を必要としない。
 なお、発光装置の光の取り出し効率を向上させるために、凸状体は透明度が比較的高い酸化物若しくは窒化物からなることが好ましい。同様に、発光装置の光の取り出し効率を向上させるために、コーティング剤は熱硬化、光硬化させることができるとともに濃度を変更することによって厚さを調整できるポリマーであることが好ましい。なお、ここで述べた「ポリマー」とは、複数のモノマー(単量体)が重合することによって生成された化合物のことであって、高分子の有機化合物とも言う。
 また、上記構成の発光装置において、前記凸状体が球状の粒子からなることを特徴としている。
 この構成によれば、粒子の大きさを揃え易く、均一に並べ易くなる。したがって、発光装置として所望する波長の光の散乱、回折の高い効果が得られる。
 また、上記構成の発光装置において、前記凸状体の一部が前記コーティング剤に埋まっていることを特徴としている。この構成によれば、光の取り出し効率を効果的に高めることができる凹凸構造体が得られる。
 また、上記構成の発光装置において、前記凸状体の大きさが100nm~2μmであることを特徴としている。
 また、上記構成の発光装置において、前記凸状体の大きさが300nm~1μmであることを特徴としている。
 例えば、発光素子としてLEDチップを用いた場合、100nm以下ではLEDチップの発光波長より十分小さく、2μm以上ではLEDチップの発光波長より十分に大きい。したがって、これらの構成によれば、凹凸構造体による光の散乱、回折の効果が得られる。特に、凸状体の大きさが300nm~1μmであればLEDチップの発光波長に一層近づくので、凹凸構造体による光の散乱、回折の高い効果が得られる。
 なお、ここで述べた凸状体の「大きさ」には光取り出し面に平行な方向の大きさを含む。この構成によれば、上記のように凹凸構造体による光の散乱、回折の効果が得られる。さらに、ここで述べた凸状体の「大きさ」には光取り出し面に対する法線方向の大きさを含む。この構成によれば、凸状体が球状以外の形状をなし、光取り出し面に平行な方向に対して法線方向が大きい場合、光が発光装置の外側に向かうに従って徐々に屈折率が変化するのでより一層好ましい。
 また、上記構成の発光装置において、前記コーティング剤の厚さが50nm~1μmであることを特徴としている。
 また、上記構成の発光装置において、前記コーティング剤の厚さが50nm~500nmであることを特徴としている。
 これらの構成よれば、凸状体の形状を十分生かしつつ、封止樹脂と空気との接触面積が一層少なくなる。したがって、発光装置の光の取り出し効率が向上する。
 また、上記構成の発光装置において、前記封止樹脂がエポキシ樹脂若しくはシリコーン樹脂からなることを特徴としている。この構成によれば、封止樹脂の信頼性及び透明性が高まり、発光装置の光の取り出し効率が向上する。
 また、上記構成の発光装置において、前記凸状体がシリカからなることを特徴としている。この構成によれば、凸状体の粒子径が調整し易くなるとともに凸状体の屈折率が封止樹脂の屈折率に近づき、発光装置の光の取り出し効率が向上する。
 また、上記構成の発光装置において、前記コーティング剤がフッ素系ポリマーからなることを特徴としている。この構成によれば、コーティング剤の厚さが調整し易く、透明性が高まるとともにコーティング剤の屈折率が封止樹脂の屈折率に近づき、発光装置の光の取り出し効率が向上する。その他、コーティング剤を珪素系ポリマーやポリスチレン等のポリマーにすることもできる。
 また、上記構成の発光装置において、バスタブ形状をなす窪みを有する基台を備え、前記発光素子が前記窪みの底部に配置されるとともに前記封止樹脂が前記窪みに注入されて前記発光素子の周囲を覆い、前記窪みから露出する前記封止樹脂の表面に前記凹凸構造体を設けたことを特徴としている。
 この構成によれば、基台の窪みの底部に搭載された発光素子の周囲を封止樹脂で覆った発光装置において、例えば金型や型取り枠を使用することなく封止樹脂の光取り出し面に凹凸が形成される。
 また、上記構成の発光装置において、平板状をなす基台を備え、前記発光素子が前記基台の表面に配置されるとともに前記封止樹脂が前記発光素子の周囲を覆いドーム形状をなすように形成され、前記ドーム形状をなす前記封止樹脂の表面に前記凹凸構造体を設けたことを特徴としている。
 この構成によれば、基台に載置された発光素子の周囲をドーム形状をなす封止樹脂で覆った発光装置において、例えば金型や型取り枠を使用することなく封止樹脂の光取り出し面に凹凸が形成される。
 また、上記構成の発光装置において、前記基台が酸化アルミニウムからなるセラミックからなることを特徴としている。酸化アルミニウムは反射率が比較的高い材料であるので、この構成によれば、発光装置の光の取り出し効率が向上する。
 また、上記の課題を解決するため、本発明は、発光素子の周囲を封止樹脂で覆った発光装置の製造方法であって、前記封止樹脂の光取り出し面に、コーティング剤と複数の凸状体とからなる凹凸構造体を設ける凹凸構造体形成工程を含むことを特徴としている。
 また、上記構成の発光装置の製造方法において、前記凹凸構造体形成工程が、前記封止樹脂の前記光取り出し面に前記複数の凸状体を散布する凸状体付着工程と、前記凸状体が散布された前記光取り出し面に前記コーティング剤を吹き付ける若しくは滴下するコーティング層形成工程と、を含むことを特徴としている。
 また、上記構成の発光装置の製造方法において、前記凹凸構造体形成工程が、前記コーティング剤と前記複数の凸状体とを混合した凹凸剤を生成する凹凸剤生成工程と、前記凹凸剤を前記封止樹脂の前記光取り出し面に塗布する、吹き付ける若しくは滴下する凹凸剤付着工程と、を含むことを特徴としている。
 これらの方法によれば、発光装置の封止樹脂の光取り出し面には複数の凸状体と、コーティング剤とを含む凹凸構造体が設けられる。この凹凸構造体は光取り出し面に付着させて形成される。したがって、封止樹脂の光取り出し面に凹凸を設けるために例えば金型や型取り枠を必要としない。
 本発明の構成によれば、発光装置の封止樹脂の光取り出し面に複数の凸状体と、コーティング剤とを含む凹凸構造体を付着させることができる。すなわち、封止樹脂の光取り出し面に凹凸を設けるために例えば金型や型取り枠を必要としない。したがって、発光装置のコストアップを抑制して様々な発光装置にも柔軟に、簡便に且つ安価に適用することができる構成の、光の取り出し効率の向上が図られた発光装置及びその製造方法を提供することができる。
本発明の第1実施形態に係る発光装置の断面図である。 本発明の第2実施形態に係る発光装置の断面図である。
 以下、本発明の実施形態を図1及び図2に基づき説明する。
<第1実施形態>
 最初に、本発明の第1実施形態に係る発光装置について、図1を用いてその構成を説明する。図1は発光装置の断面図である。
 発光装置1は、図1に示すように基台10に搭載される発光素子2を備える。発光素子2は例えば半導体を用いて形成されたLEDチップである。LEDチップを構成する半導体の種類は例えば所望するLEDチップの出射光の波長等に基づいて適宜決定される。例えば、LEDチップは紫外、青、緑、赤、赤外の任意の波長のものを用いて良い。
 基台10は外形が略直方体形状をなし、バスタブ形状(逆四角錐台形状)をなす窪み11を備える。窪み11は基台10の内部から図1における基台10の上面方向に向かって広口となるように傾斜した側面を有し、基台10の上面において開口となっている。発光素子2はこの窪み11の内底部に配置される。
 発光素子2が照射する光の一部は窪み11の傾斜した側面で反射される。発光装置1の光の取り出し効率を向上させるため、基台10は反射率がより高い材料であることが望ましく、例えば酸化アルミニウム(Al)の焼結体からなるセラミックを用いても良い。
 基台10には電極3a、3bが敷設されている。電極3a、3bは、詳細には正負の電極として機能するように対をなして構成されている。一対の電極3a、3bはいずれもそれらの一端部が窪み11の内底面に位置するように設けられている。なお、電極3a、3bは基台10と一体的に形成されるものであっても良い。
 発光素子2は一対の電極3a、3bのうちの一方(本実施形態では電極3a)の図1における上面に載置されている。発光素子2はボンディングワイヤ4a、4bを介して電極3a、3bと電気的に接続されている。
 発光素子2及びボンディングワイヤ4a、4bはそれらの周囲が封止樹脂5によって覆われている。封止樹脂5は基台10の窪み11を満たすように窪み11に注入されている。封止樹脂5は例えば熱硬化性のエポキシ樹脂若しくはシリコーン樹脂からなる。これにより、封止樹脂5の信頼性及び透明性が高まり、発光装置1の光の取り出し効率を向上させることができる。また、封止樹脂5には例えば蛍光体や分散剤等の添加物が混入されていても良い。
 窪み11から外部に露出する封止樹脂5の表面であって図1における上面である光取り出し面5aには凹凸構造体20が設けられている。凹凸構造体20は複数の凸状体21と、コーティング剤22とを含む。
 凸状体21は例えば球状の粒子からなる。凸状体21が球状の粒子であれば、粒子の大きさを揃え易く、均一に並べ易くなる。したがって、発光装置1として所望する波長の光の散乱、回折の高い効果を得ることができる。また、凸状体21は例えば透明度が比較的高い酸化物、窒化物からなることが好ましい。
 さらに、凸状体21は例えば封止樹脂5の屈折率に近い屈折率を有する材料であることが好ましい。封止樹脂5を構成するエポキシ樹脂、シリコーン樹脂の屈折率は1.4~1.55程度であるので、凸状体21は例えば屈折率が1.4~1.5程度であるシリカであることが好ましい。このように、凸状体21の屈折率が封止樹脂5の屈折率に近いので、凸状体21と封止樹脂5との界面における光の全反射を抑制することができる。その結果、光の取り出し効率が向上する。さらに、凸状体21がシリカであれば凸状体21の粒子径が調整し易くなるので、光の散乱、回折において高い効果を得ることができる。
 粒子である凸状体21の大きさは100nm~2μmであることが好ましい。100nm以下ではLEDチップの発光波長より十分小さく、2μm以上ではLEDチップの発光波長より十分に大きいので、100nm~2μmの範囲であれば凹凸構造体20によって光の散乱、回折の効果を得ることができる。さらに、凸状体21の大きさは300nm~1μmであればLEDチップの発光波長に一層近づくので、凹凸構造体20による光の散乱、回折の高い効果を得ることができる。
 なお、凸状体21の光取り出し面5aに平行な方向の大きさが上記範囲であれば、上記のように凹凸構造体20による光の散乱、回折の効果を得ることができる。さらに、凸状体21の光取り出し面5aに対する法線方向の大きさが上記範囲であれば、凸状体21が球状以外の形状をなし、光取り出し面5aに平行な方向に対して法線方向が大きい場合、光が発光装置1の外側に向かうに従って徐々に屈折率が変化するのでより一層好ましい。
 コーティング剤22は封止樹脂5の光取り出し面5aの表面に凸状体21の頂部に対して凹となるように層状に形成されている。凸状体21の光取り出し面5aに近い側の一部はコーティング剤22に埋まっている。これにより、光の取り出し効率を効果的に高めることができる凹凸構造体20が得られる。
 なお、粒子である凸状体21が単に封止樹脂5の光取り出し面5aの表面に載っているだけであれば、封止樹脂5と凸状体21との接触面積が比較的狭くなり、封止樹脂5と空気との接触面積が比較的広くなる。これにより、凹凸構造体20によって光の取り出し効率が高められる効果が低減する。
 コーティング剤22は例えば熱硬化、光硬化させることができるとともに濃度を変更することによって厚さを調整できるポリマー(高分子有機化合物)であることが好ましい。さらに、コーティング剤22は例えばフッ素系ポリマーであることが好ましい。これにより、コーティング剤22は透明度が高く光吸収が抑制できるとともに、屈折率が1.4であって封止樹脂5の屈折率に近く、凸状体21、封止樹脂5との界面における光の全反射を抑制することができる。さらに、コーティング剤22がフッ素系ポリマーであれば、コーティング剤22の厚さが調整し易くなる。その他、コーティング剤22を珪素系ポリマーやポリスチレン等のポリマーにすることもできる。
 コーティング剤22の層の厚さは粒子である凸状体21の大きさ(光取り出し面5aからの高さ)の半分以下であることが好ましい。すなわち、コーティング剤22の層の厚さは例えば50nm~1μmであることが好ましい。さらに、コーティング剤22の層の厚さは例えば50nm~500nmであることが特に好ましい。コーティング剤22の厚さがそれらの範囲であれば、凸状体21の形状を十分生かしつつ、封止樹脂5と空気との接触面積を一層少なくすることができる。したがって、発光装置1の光の取り出し効率を向上させることが可能である。
 次に、上記構成の発光装置1の製造方法について説明する。
 発光装置1を製造するにあたって、まず基台10の窪み11の内底部に発光素子2が搭載される。なお、基台10は例えばインサート成形により電極3a、3bと一体的に形成される。
 基台10の窪み11から露出する電極3a、3bのうち一方(電極3a)の表面にダイボンド材料が供給され、その上に発光素子2が搭載される。これにより、発光素子2は電極3aの一端部表面に固着される。
 その後、ボンディングワイヤ4a、4bに関してワイヤボンディング工程が実施される。これにより、発光素子2と一対の電極3a、3bとがボンディングワイヤ4a、4bを介して電気的に接続される。
 発光素子2が基台10に搭載されると、封止樹脂5が窪み11に注入される。封止樹脂5は例えばディスペンサ等を利用して所定量が発光素子2に向けて滴下される。
 封止樹脂5が硬化すると、封止樹脂5の光取り出し面5aに複数の凸状体21とコーティング剤22とからなる凹凸構造体20を付着させる凹凸構造体形成工程が実施される。凹凸構造体形成工程は凸状体付着工程と、コーティング層形成工程とを含む。
 凸状体付着工程では封止樹脂5の光取り出し面5aに複数の凸状体21が散布される。その後、コーティング層形成工程において、凸状体21が散布された光取り出し面5aにコーティング剤22が吹き付けられる若しくは滴下される。
 なお、凹凸構造体形成工程が凸状体付着工程及びコーティング層形成工程に替えて、凹凸剤生成工程と、凹凸剤付着工程とを含んでも良い。
 凹凸剤生成工程では複数の凸状体21とコーティング剤22とを混合した凹凸剤が生成される。その後、凹凸剤付着工程において、凹凸剤が光取り出し面5aに塗布される、吹き付けられる若しくは滴下される。
 コーティング剤22の層の厚さはポリマー濃度を例えばエチルノナフルオロイソブチルエーテルで希釈することにより調整することが可能である。また、コーティング剤22がポリスチレンの場合、熱アニールにより蒸発させて厚さを調節することができる。
 上記のように、基台10の窪み11の内底部に搭載された発光素子2の周囲を封止樹脂5で覆った発光装置1において、封止樹脂5の光取り出し面5aに複数の凸状体21と、コーティング剤22とを含む凹凸構造体20を設けた。この凹凸構造体20は光取り出し面5aに付着させて形成する。したがって、封止樹脂5の光取り出し面5aに凹凸を設けるために例えば金型や型取り枠を必要としない。
 このようにして、本発明の上記実施形態の構成によれば、発光装置1のコストアップを抑制して様々な発光装置にも柔軟に、簡便に且つ安価に適用することができる構成の、光の取り出し効率の向上が図られた発光装置1及びその製造方法を提供することができる。
<第2実施形態>
 次に、本発明の第2実施形態に係る発光装置について、図2を用いて説明する。図2は発光装置の断面図である。なお、この実施形態の基本的な構成は図1を用いて説明した前記第1実施形態と同じであるので、第1実施形態と共通する構成要素には前と同じ符号を付し、その詳細な説明を省略するものとする。
 第2実施形態に係る発光装置1は、図2に示すように平板状をなす基台10と、ドーム形状をなす封止樹脂5とを備えている。発光素子2は基台10の表面であって図2における上面に載置されている。封止樹脂5は発光素子2を覆い外面が略半球面に形成されたドーム形状をなしている。
 略半球面に形成されたドーム形状をなす封止樹脂5の表面が光取り出し面5aである。このドーム形状をなす光取り出し面5aに複数の凸状体21と、コーティング剤22とを含む凹凸構造体20が設けられている。
 次に、上記構成の発光装置1の製造方法について説明する。
 この発光装置1は、基台10に搭載された発光素子2と一対の電極3a、3bとがボンディングワイヤ4a、4bを介して電気的に接続された後、所定量の封止樹脂5が例えばディスペンサ等を利用して発光素子2に向けて滴下される。
 例えば発光素子2を点灯することなどによって、滴下された封止樹脂5は滴下後直ちに加熱硬化される。発光素子2の発光による熱がその周囲に放射状に伝導するので、発光素子2に向けて滴下された封止樹脂5は図2に示す断面が略半円状をなす略半球状のドーム形状に形成される。
 封止樹脂5が硬化すると、ドーム形状をなす封止樹脂5の表面である光取り出し面5aに複数の凸状体21とコーティング剤22とからなる凹凸構造体20を付着させる凹凸構造体形成工程が実施される。
 上記のように、基台10に載置された発光素子2の周囲をドーム形状をなす封止樹脂5で覆った発光装置1において、封止樹脂5の光取り出し面5aに複数の凸状体21と、コーティング剤22とを含む凹凸構造体20を設けた。この凹凸構造体20は光取り出し面5aに付着させて形成する。したがって、封止樹脂5の光取り出し面5aに凹凸を設けるために例えば金型や型取り枠を必要としない。
 続いて、発光装置1の実施例について説明する。
 実施例の発光装置1は発光素子2として発光波長450nmの青色LEDを使用した。封止樹脂5は材料としてシリコーン樹脂を使用した。基台10は酸化アルミニウム(Al)の焼結体からなるセラミックを使用した。
 発光装置1の製造においては、基台10に対して発光素子2をダイボンド材料によって固着させ、その発光素子2を封止樹脂5によって覆った。封止樹脂5の硬化後、500nmの大きさのシリカからなる複数の粒子状の凸状体21を封止樹脂5の光取り出し面5aに散布した。
 その後、フッ素系ポリマーを含むコーティング剤22を凸状体21が散布された光取り出し面5aに滴下した。コーティング剤22の層の厚さはエチルノナフルオロイソブチルエーテルに対するフッ素系ポリマーの含有量を調整することにより約100nmとした。
 そして、このようにして製造した本発明の実施例の発光装置1と、複数の凸状体21とコーティング剤22とを含む凹凸構造体20を備えていない比較例の発光装置とにおける光出力の差異を比較した。これによれば、本実施例の発光装置1は比較例の発光装置に対して約2%光出力が向上したことが確認できた。
 以上、本発明の実施形態につき説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。
 例えば、上記実施形態では、発光装置1が基台10にバスタブ形状(逆四角錐台形状)をなす窪み11を備えこの窪み11の底部に発光素子2を載置して封止樹脂5で覆った構成を有する、または平板状をなす基台10上に載置された発光素子2をドーム形状をなす封止樹脂5で覆った構成を有するとして説明したが、基台10や封止樹脂5などの構成はこれらに限定されるわけではない。発光素子2の周囲を封止樹脂5で覆った他の構成をなす発光装置1の光取り出し面5aに対しても、本発明の凹凸構造体20を適用することが可能である。
 本発明は、発光素子の周囲を封止樹脂で覆った構成をなす発光装置及びその製造方法において利用可能である。
   1  発光装置
   2  発光素子
   3a、3b  電極
   4a、4b  ボンディングワイヤ
   5  封止樹脂
   5a  光取り出し面
   10  基台
   11  窪み
   20  凹凸構造体
   21  凸状体
   22  コーティング剤

Claims (16)

  1.  光を照射する発光素子と、
     前記発光素子の周囲を覆う封止樹脂と、
     前記封止樹脂の光取り出し面に付着させた凹凸構造体と、を備え、
     前記凹凸構造体が、酸化物若しくは窒化物からなる複数の凸状体と、前記光取り出し面の表面に前記凸状体の頂部に対して凹となるように層状に形成したポリマーからなるコーティング剤と、を含むことを特徴とする発光装置。
  2.  前記凸状体が球状の粒子からなることを特徴とする請求項1に記載の発光装置。
  3.  前記凸状体の一部が前記コーティング剤に埋まっていることを特徴とする請求項1または請求項2に記載の発光装置。
  4.  前記凸状体の大きさが100nm~2μmであることを特徴とする請求項1~請求項3のいずれか1項に記載の発光装置。
  5.  前記凸状体の大きさが300nm~1μmであることを特徴とする請求項1~請求項3のいずれか1項に記載の発光装置。
  6.  前記コーティング剤の厚さが50nm~1μmであることを特徴とする請求項4または請求項5に記載の発光装置。
  7.  前記コーティング剤の厚さが50nm~500nmであることを特徴とする請求項4または請求項5に記載の発光装置。
  8.  前記封止樹脂がエポキシ樹脂若しくはシリコーン樹脂からなることを特徴とする請求項1~請求項7のいずれか1項に記載の発光装置。
  9.  前記凸状体がシリカからなることを特徴とする請求項1~請求項8のいずれか1項に記載の発光装置。
  10.  前記コーティング剤がフッ素系ポリマーからなることを特徴とする請求項1~請求項9のいずれか1項に記載の発光装置。
  11.  バスタブ形状をなす窪みを有する基台を備え、
     前記発光素子が前記窪みの底部に配置されるとともに前記封止樹脂が前記窪みに注入されて前記発光素子の周囲を覆い、前記窪みから露出する前記封止樹脂の表面に前記凹凸構造体を設けたことを特徴とする請求項1~請求項10のいずれか1項に記載の発光装置。
  12.  平板状をなす基台を備え、
     前記発光素子が前記基台の表面に配置されるとともに前記封止樹脂が前記発光素子の周囲を覆いドーム形状をなすように形成され、前記ドーム形状をなす前記封止樹脂の表面に前記凹凸構造体を設けたことを特徴とする請求項1~請求項10のいずれか1項に記載の発光装置。
  13.  前記基台が酸化アルミニウムからなるセラミックからなることを特徴とする請求項11または請求項12に記載の発光装置。
  14.  発光素子の周囲を封止樹脂で覆った発光装置の製造方法であって、
     前記封止樹脂の光取り出し面に、コーティング剤と複数の凸状体とからなる凹凸構造体を設ける凹凸構造体形成工程を含むことを特徴とする発光装置の製造方法。
  15.  前記凹凸構造体形成工程が、
     前記封止樹脂の前記光取り出し面に前記複数の凸状体を散布する凸状体付着工程と、
     前記凸状体が散布された前記光取り出し面に前記コーティング剤を吹き付ける若しくは滴下するコーティング層形成工程と、
    を含むことを特徴とする請求項14に記載の発光装置の製造方法。
  16.  前記凹凸構造体形成工程が、
     前記コーティング剤と前記複数の凸状体とを混合した凹凸剤を生成する凹凸剤生成工程と、
     前記凹凸剤を前記封止樹脂の前記光取り出し面に塗布する、吹き付ける若しくは滴下する凹凸剤付着工程と、
    を含むことを特徴とする請求項14に記載の発光装置の製造方法。
PCT/JP2013/055782 2012-04-17 2013-03-04 発光装置及びその製造方法 WO2013157310A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-093679 2012-04-17
JP2012093679 2012-04-17

Publications (1)

Publication Number Publication Date
WO2013157310A1 true WO2013157310A1 (ja) 2013-10-24

Family

ID=49383278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055782 WO2013157310A1 (ja) 2012-04-17 2013-03-04 発光装置及びその製造方法

Country Status (1)

Country Link
WO (1) WO2013157310A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015158995A (ja) * 2014-02-21 2015-09-03 スタンレー電気株式会社 フィラメント、光源、および、ヒーター
US10276757B2 (en) 2016-12-27 2019-04-30 Nichia Corporation Light emitting device and method for manufacturing the same
US10418533B2 (en) 2016-05-31 2019-09-17 Nichia Corporation Light-emitting device having a light-transmissive member including particles of at least one first filler and method for manufacturing the same
US10454007B2 (en) 2017-06-12 2019-10-22 Nichia Corporation Light-emitting device and method for manufacturing same
US10490717B2 (en) 2016-07-13 2019-11-26 Nichia Corporation Light emitting device and method of manufacturing the same, and display device
CN114420829A (zh) * 2022-04-02 2022-04-29 惠科股份有限公司 显示面板、显示面板的制作方法及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1131845A (ja) * 1997-07-14 1999-02-02 Nichia Chem Ind Ltd 発光ダイオードの形成方法
JP2003234509A (ja) * 2002-02-08 2003-08-22 Citizen Electronics Co Ltd 発光ダイオード
JP2007096305A (ja) * 2005-09-28 2007-04-12 Osram Opto Semiconductors Gmbh オプトエレクトロニクス半導体チップ、オプトエレクトロニクス半導体チップの製造方法およびオプトエレクトロニクスデバイス
JP2009260244A (ja) * 2008-03-25 2009-11-05 Toshiba Corp 発光装置及びその製造方法、並びに発光装置の製造装置
JP2011129790A (ja) * 2009-12-19 2011-06-30 Toyoda Gosei Co Ltd Led発光装置の製造方法
JP2011526079A (ja) * 2008-06-26 2011-09-29 スリーエム イノベイティブ プロパティズ カンパニー 半導体光変換構成体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1131845A (ja) * 1997-07-14 1999-02-02 Nichia Chem Ind Ltd 発光ダイオードの形成方法
JP2003234509A (ja) * 2002-02-08 2003-08-22 Citizen Electronics Co Ltd 発光ダイオード
JP2007096305A (ja) * 2005-09-28 2007-04-12 Osram Opto Semiconductors Gmbh オプトエレクトロニクス半導体チップ、オプトエレクトロニクス半導体チップの製造方法およびオプトエレクトロニクスデバイス
JP2009260244A (ja) * 2008-03-25 2009-11-05 Toshiba Corp 発光装置及びその製造方法、並びに発光装置の製造装置
JP2011526079A (ja) * 2008-06-26 2011-09-29 スリーエム イノベイティブ プロパティズ カンパニー 半導体光変換構成体
JP2011129790A (ja) * 2009-12-19 2011-06-30 Toyoda Gosei Co Ltd Led発光装置の製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015158995A (ja) * 2014-02-21 2015-09-03 スタンレー電気株式会社 フィラメント、光源、および、ヒーター
US10418533B2 (en) 2016-05-31 2019-09-17 Nichia Corporation Light-emitting device having a light-transmissive member including particles of at least one first filler and method for manufacturing the same
US11430928B2 (en) 2016-05-31 2022-08-30 Nichia Corporation Light-emitting device with exposed filter particles
US10490717B2 (en) 2016-07-13 2019-11-26 Nichia Corporation Light emitting device and method of manufacturing the same, and display device
US10957831B2 (en) 2016-07-13 2021-03-23 Nichia Corporation Light emitting device and method of manufacturing the same, and display device
US10276757B2 (en) 2016-12-27 2019-04-30 Nichia Corporation Light emitting device and method for manufacturing the same
US10741733B2 (en) 2016-12-27 2020-08-11 Nichia Corporation Light emitting device
US10454007B2 (en) 2017-06-12 2019-10-22 Nichia Corporation Light-emitting device and method for manufacturing same
CN114420829A (zh) * 2022-04-02 2022-04-29 惠科股份有限公司 显示面板、显示面板的制作方法及显示装置

Similar Documents

Publication Publication Date Title
WO2013157310A1 (ja) 発光装置及びその製造方法
US8921884B2 (en) Batwing LED with remote phosphor configuration
US8421336B2 (en) Light emitting diode device
US8164244B2 (en) Light emitting device
JP5572013B2 (ja) 発光装置およびその製造方法
TWI528602B (zh) 具有遠端磷光層及反射子基板的發光二極體
JP5757993B2 (ja) オプトエレクトロニクスデバイス及び該オプトエレクトロニクスデバイスの製造方法
TWI531091B (zh) 發光二極體封裝結構及其封裝方法
US9680075B2 (en) Light-emitting device
TWI577055B (zh) 波長轉換膜及其製作方法
JP2010500739A5 (ja)
TWI481083B (zh) 發光二極體結構
JP2013016868A (ja) Ledパッケージにおけるテクスチャード加工された封止体表面
JP6622735B2 (ja) ビーム成形構造体を備えた発光素子およびその製造方法
CN104521015A (zh) 光电子半导体构件、转换介质小板和用于制造转换介质小板的方法
JP2017168819A (ja) 非対称放射パターンを有する発光素子およびその製造方法
JP2012533904A5 (ja) 発光ダイオードパッケージ及びその製造方法
TW201624774A (zh) 發光元件以及其製造方法
JP6079544B2 (ja) 発光装置および発光装置の製造方法
JP2023009160A (ja) 高い近接場コントラスト比を有するledモジュール
TW201351710A (zh) Led封裝件及其製法
JP2008270390A (ja) フロントカバー、発光装置およびフロントカバーの製造方法
JP2015111626A (ja) 発光装置およびその製造方法
TW201340407A (zh) 發光二極體之封裝結構與其製法
TWI556473B (zh) 發光二極體封裝及製作發光二極體封裝之方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13778600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13778600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP