WO2013155844A1 - 一种三相交流电相序检测方法及装置 - Google Patents

一种三相交流电相序检测方法及装置 Download PDF

Info

Publication number
WO2013155844A1
WO2013155844A1 PCT/CN2012/085962 CN2012085962W WO2013155844A1 WO 2013155844 A1 WO2013155844 A1 WO 2013155844A1 CN 2012085962 W CN2012085962 W CN 2012085962W WO 2013155844 A1 WO2013155844 A1 WO 2013155844A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
alternating current
phase alternating
value
module
Prior art date
Application number
PCT/CN2012/085962
Other languages
English (en)
French (fr)
Inventor
郑平
Original Assignee
京东方科技集团股份有限公司
北京京东方能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方能源科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US13/983,351 priority Critical patent/US9429604B2/en
Publication of WO2013155844A1 publication Critical patent/WO2013155844A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R25/00Arrangements for measuring phase angle between a voltage and a current or between voltages or currents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/18Indicating phase sequence; Indicating synchronism

Definitions

  • the invention relates to the technical field of three-phase alternating current, in particular to a three-phase alternating current phase sequence detecting method, and a three-phase alternating current phase sequence detecting device using the detecting method.
  • the three-phase alternating current phase sequence has a crucial impact on the normal operation of three-phase electrical equipment. Under normal circumstances, the three-phase AC power supply requirements of three-phase electrical equipment are positive (as shown in Figure 1), and negative sequence is not allowed (as shown in Figure 2). Taking the electric drive equipment as an example, if the phase sequence of the three-phase AC power supply is wrong, the power transmission equipment will be reversely operated, causing malfunction of the electric drive equipment and even causing personal injury to the operator. Therefore, it is necessary to introduce a three-phase alternating current phase sequence detection and discrimination function in the control of the electric power transmission equipment.
  • the phase frequency information of the three-phase alternating current is extracted by extracting the angular frequency information of the three-phase alternating current, and the phase sequence of the three-phase alternating current is determined by judging the angular frequency information.
  • the control system is complicated because the angular frequency information of the three-phase alternating current needs to be extracted, and the feedback loop and the error signal are adjusted during the angular frequency extraction process.
  • the three-phase alternating current phase sequence detection method includes the following steps:
  • the periodic function being a linear function in a minimum positive period, and the periodic function
  • the period is the same as the period of the three-phase alternating current signal, and the positive and negative phases of the three-phase alternating current phase are judged according to the increase or decrease of the periodic function in a minimum positive period: if the periodic function is increased in a minimum positive period The function determines that the three-phase alternating current phase sequence is a positive sequence; if the periodic function is a subtractive function in a minimum positive period, determining that the three-phase alternating current phase sequence is a negative sequence.
  • the three-phase alternating current signal is a three-phase alternating current voltage signal or a three-phase alternating current current signal.
  • step 2) the manner of coordinate transformation is performed by Clarke coordinate transformation;
  • the formula of Clarke coordinate transformation is:
  • D a , D b and D e are instantaneous values of three-phase alternating current signals, and D a and Dp are instantaneous values
  • DD b and D e perform the Clarke coordinate transformation to obtain the electrical signal component in the two-phase stationary coordinate system.
  • the inverse tangent calculation of the electrical signal component is: iarctan(Z) / g /D a ) 0 ⁇ arctan(Z) / g / ⁇ ⁇ ) ⁇ ⁇
  • the sampling period is greater than the sampling error and less than the period of the three-phase alternating current signal.
  • the method for determining whether the periodic function is an increasing function or a decreasing function in a minimum positive period is:
  • sampling period is less than or equal to 0.1 times the period of the three-phase alternating current signal.
  • the step 1) further comprises: performing a standardization process on the set of instantaneous values, and the formula of the standardization process is:
  • X is ab
  • c, D a , D b and D c are the instantaneous values of the three-phase alternating current signal
  • ( ⁇ is the maximum value of the three-phase alternating current signal
  • d a , d b and d e are three phases The value of the instantaneous value of the AC signal.
  • the step 3) further comprises: performing standardization processing on the output signal value, and the formula of the standardization processing is:
  • the invention also provides a three-phase alternating current phase sequence detecting device, which comprises a three-phase alternating current power sampling module, a coordinate system transformation module, an inverse tangent function calculation module and a phase sequence direction determining module;
  • the three-phase alternating current power sampling module is configured to perform real-time sampling on the instantaneous value of the three-phase alternating current signal
  • the coordinate system conversion module is configured to convert instantaneous values of at least two groups of three-phase alternating current signals in a three-phase stationary coordinate system obtained by real-time sampling of a three-phase alternating current sample module into electricity in a two-phase stationary coordinate system. Signal component, and transmit it in real time to the inverse tangent function calculation module;
  • the arctangent function calculation module is configured to perform arctangent calculation on the electrical signal component respectively, and obtain at least two output signal values, and output the same to the phase sequence direction determining module in real time;
  • the phase sequence direction determining module is configured to determine the positive and negative phases of the three-phase alternating current phase sequence according to the increase or decrease of the periodic function of the at least two output signal values in a minimum positive period.
  • the detecting device further includes a first standardization processing module and/or a second standardization processing module.
  • the first standardization processing module is configured to perform standardization processing on the instantaneous values of at least two sets of three-phase alternating current signals obtained by the three-phase alternating current electric current sample module, and output the standard value to the real-time output to the target value.
  • Coordinate system transformation module
  • the second standardization processing module is configured to obtain at least two of the arctangent function calculation modules
  • the output signal values are subjected to standardization processing, and the standard values are output to the phase sequence direction determination module in real time.
  • the three-phase alternating current signal required by the present invention is a phase voltage signal or a phase current signal, and does not need to be converted into a line voltage signal or a line current signal, and is simple and practical.
  • the invention can be directly applied to the field of digital control, and can quickly and accurately detect the phase sequence of the three-phase alternating current signal without adding a new peripheral hardware loop, and the judging method is simple and reliable, and has a simple detection algorithm and no feedback loop. It does not require parameter adjustment and is suitable for the development of embedded systems.
  • the anti-interference ability of the invention is strong, and the phase sequence of the three-phase alternating current signal can be detected quickly and accurately under the condition that the three-phase alternating current signal has serious harmonics or imbalance.
  • FIG. 1 is a schematic diagram of a three-phase AC voltage positive sequence vector in the prior art
  • FIG. 2 is a schematic diagram of a three-phase AC voltage negative sequence vector in the prior art
  • FIG. 3 is a schematic flow chart showing a three-phase alternating current phase sequence detecting method according to a first embodiment of the present invention
  • 4-1 to 4-3 are waveform diagrams of respective parameters when the three-phase alternating current phase sequence is positive in accordance with the first embodiment of the present invention
  • Figure 4-1 shows the instantaneous values of the two phases in the three-phase AC phase voltage.
  • Ua and Ub are the waveforms of the values ua and ub (the waveform of Uc is not shown).
  • Figure 4-2 is a waveform diagram of phase voltage components ua and ⁇ in a two-phase stationary coordinate system obtained by performing clarke coordinate transformation on the values ua, ub, and uc;
  • Figure 4-3 is a waveform diagram of the value of the output signal value y* obtained by calculating the inverse tangent function of the voltage components ua and ⁇ in the two-phase stationary coordinate system and performing the labeling process;
  • 5-1 to 5-3 are waveform diagrams of respective parameters when the three-phase alternating current phase sequence is in negative sequence according to the first embodiment of the present invention.
  • Figure 5-1 shows the instantaneous values of the two phases in the three-phase AC phase voltage.
  • Ua and Ub are the waveforms of the values ua and ub (the waveform of Uc is not shown).
  • Figure 5-2 is a waveform diagram of the phase voltage components ua and ⁇ in the two-phase stationary coordinate system obtained by performing the Clarke coordinate transformation on the nominal values ua, ub, and uc;
  • FIG. 5-3 is a waveform diagram of the value y* of the output signal value obtained by performing the inverse tangent function calculation of the voltage components ua and ⁇ in the two-phase stationary coordinate system and performing the labeling process;
  • Fig. 6 is a view showing the structural composition of a three-phase alternating current phase sequence detecting apparatus according to a first embodiment of the present invention. detailed description
  • a three-phase alternating current phase sequence detection method includes the following steps:
  • the periodic function being a linear function in a minimum positive period, and the periodic function
  • the period is the same as the period of the three-phase alternating current signal, and the positive and negative phases of the three-phase alternating current phase are judged according to the increase or decrease of the periodic function in a minimum positive period: if the periodic function is increased in a minimum positive period The function determines that the three-phase alternating current phase sequence is a positive sequence; if the periodic function is a subtractive function in a minimum positive period, determining that the three-phase alternating current phase sequence is a negative sequence.
  • a three-phase alternating current phase sequence detecting device comprises a three-phase alternating current sampling module, a coordinate system conversion module, an inverse tangent function calculation module and a phase sequence direction determining module;
  • the three-phase alternating current power sampling module is configured to perform real-time sampling on the instantaneous value of the three-phase alternating current signal
  • the coordinate system conversion module is configured to convert instantaneous values of at least two sets of three-phase alternating current signals in a three-phase static coordinate system obtained by real-time sampling of a three-phase alternating current sample module into electric signals in a two-phase stationary coordinate system, respectively. Component, and transmit it in real time to the inverse tangent function calculation module;
  • the arctangent function calculation module is configured to perform an arctangent calculation on the electrical signal component, respectively. Obtaining at least two output signal values and outputting them to the phase sequence direction judging module in real time; the phase sequence direction judging module is configured to calculate a periodic function of the at least two output signal values at a minimum positive The increase or decrease in the period is used to judge the positive and negative phase sequence of the three-phase alternating current.
  • the three-phase alternating current signal (the instantaneous values of D a , D b and D e ) is a three-phase alternating current phase voltage signal (the instantaneous values are U a , U b and U c ).
  • the three-phase alternating current phase sequence detection method includes the following steps:
  • the sampling period is greater than the sampling error and less than the period of the three-phase alternating current voltage.
  • the set of instantaneous values U a , U b and U c obtained by the real-time sampling are subjected to standardization processing to obtain the standard values u a , u b and u c of the instantaneous values of the set.
  • the process of standardizing a certain / a group of parameters is the process of calculating its value. Applying the standardization process can save the scale factor in the formula, simplify the calculation, and make it easy to calculate and compare the results. In the present embodiment, it is preferable to use the standardization processing, but if the standardization processing is not used, the phase sequence judgment result of the three-phase alternating current signal is not affected.
  • the formula for standardizing the instantaneous values u a , u b and u c of the three-phase alternating current phase voltage is:
  • X is a, b, c, U a , U b and U c are the instantaneous values of the three-phase AC phase voltage
  • u max is the maximum value of the three-phase AC phase voltage
  • u a , u b and u c are three The value of the instantaneous value of the phase-to-phase voltage.
  • the coordinate transformation method uses a Clarke coordinate transformation
  • the Clarke coordinate transformation can convert a three-phase stationary coordinate system into a two-phase stationary coordinate system.
  • the formula for the Clarke coordinate transformation is:
  • u a , u b and u c are the standard values of the instantaneous values of the three-phase AC phase voltage
  • u a and up are the two phases obtained by performing the Clarke coordinate transformation on the standard values u a , u b and u c
  • the phase voltage in the stationary coordinate system is divided into sl04.
  • the phase voltage components u a and up in the two-phase stationary coordinate system are subjected to arctangent calculation to obtain the sample time (ie, the set of phase voltage instantaneous values are obtained by the sample).
  • An output signal value y corresponding to the time of U a , U b and U c ).
  • y is the output signal value
  • u a and up are the phase voltage components in the two-phase stationary coordinate system, and 0 ⁇ y ⁇ 2; r can be seen.
  • the output signal value y corresponding to the sample time is subjected to a standardization process to obtain a value y* of the output signal value y.
  • y is the output signal value and y* is the target value of the output signal value. Visible 0 ⁇ y* ⁇ l. Sl06.
  • the steps sl01 ⁇ s105 are performed one or more times to obtain the value y* of the output signal value corresponding to one or more sample times adjacent to the sample time described in step sl05.
  • the standard value y* of at least two output signal values constitutes a periodic function (the ordinate is the standard value y* of the output signal value, and the abscissa is the sampling period)
  • the periodic function is a linear function in a minimum positive period, and the period of the periodic function is the same as the period of the three-phase alternating current voltage, according to the increase or decrease of the periodic function in a minimum positive period.
  • the periodic function is an increasing function or a decreasing function in a minimum positive period, and only needs to obtain an output signal value corresponding to the instantaneous values of two sets of three-phase alternating current voltages acquired at two adjacent sampling times. can. That is to say, only the standard value y* of an output signal value corresponding to the sampling time obtained in step sl05 is needed, and one corresponding to the sampling time adjacent to the sampling time mentioned in step sl05 obtained in step sl06. The value of the output signal value is y*.
  • the method for determining whether the periodic function is an increasing function or a decreasing function in a minimum positive period is specifically as follows:
  • Figure 4-1 to Figure 4-3 and Figure 5-1 to Figure 5-3 are waveform diagrams of the parameters u a , u b , u a , up and y* for the three-phase alternating current phase sequence in positive and negative sequence, respectively. Since the three-phase AC phase voltage has a vector and a zero relationship, the waveform of the third phase voltage can be known from the waveform of any two-phase voltage, so Figure 4-1 to Figure 4-3 and Figure 5-1 to Figure 5 The waveform of u c is not shown in -3.
  • the waveform between the adjacent two peaks in the waveform of any one of the three phase alternating current voltages is a waveform within a minimum positive period, that is, The waveform between the adjacent two peaks corresponds to a minimum positive period, and a certain phase voltage (for example) must exist in the three-phase alternating phase voltage, and the phase voltage values of adjacent two peaks in the waveform in the minimum positive period Corresponding to the maximum or minimum value of the primary function in a minimum positive period of the periodic function, as shown in FIGS. 4-1 to 4-3 and FIGS. 5-1 to 5-3.
  • y*(nl) is an output corresponding to the instantaneous value of the three-phase AC phase voltage obtained by the adjacent sampling time in the minimum positive period of the same three-phase AC phase voltage at the time of the certain sampling time.
  • the standard value of the signal that is, y*(n) and y*(nl) are respectively obtained from two adjacent sampling times in a minimum positive period of a phase voltage (such as u a ) of the three-phase AC phase voltage.
  • the value of the output signal corresponding to the instantaneous value of the three-phase AC phase voltage.
  • the periodic function when 0 ⁇ Ay* ⁇ l, the periodic function is an increasing function in a minimum positive period; when -l ⁇ Ay* ⁇ 0, the periodic function is a decreasing function in a minimum positive period. .
  • the sampling period At is less than or equal to 0.1 times the period T of the three-phase alternating current signal, that is, At 0.1T.
  • the embodiment further provides a three-phase alternating current phase sequence detecting device, including a three-phase alternating current power sampling module, a coordinate system conversion module, an inverse tangent function calculation module, a first standardization processing module, and a second The standardization processing module and the phase sequence direction judgment module.
  • a three-phase alternating current phase sequence detecting device including a three-phase alternating current power sampling module, a coordinate system conversion module, an inverse tangent function calculation module, a first standardization processing module, and a second The standardization processing module and the phase sequence direction judgment module.
  • the three-phase alternating current sample module is used for real-time sampling of the instantaneous value of the three-phase alternating current signal, and the instantaneous value of at least two groups of three-phase alternating current signals in a three-phase stationary coordinate system obtained in real time.
  • D a , D b and D c are transmitted to the first standardization processing module in real time.
  • the first standardization processing module is configured to respectively process the instantaneous values D a , D b and D c of the at least two groups of three-phase alternating current signals, and obtain at least two groups of labels
  • the values d a , d b and d c are respectively output to the coordinate system transformation module in real time.
  • the coordinate system transformation module is configured to convert the standard values d a , d b and d c of the instantaneous values of the three-phase alternating current signals of the at least two groups in the three-phase stationary coordinate system into two-phase stationary coordinate systems, respectively.
  • the lower electrical signal components d a , dp , and the resulting at least two sets of electrical signal components are transmitted in real time to the inverse tangent function calculation module.
  • the value of the instantaneous value of each set of three-phase AC signals corresponds to a different set of electrical signal components.
  • the arctangent function calculation module is configured to perform arctangent calculation on the at least two sets of electrical signal components d a , dp , respectively, to obtain at least two output signal values y, and to generate the at least two output signal values y in real time Output to the second standardization processing module.
  • the second standardization processing module is configured to respectively perform the labeling processing on the at least two output signal values y, and output the obtained at least two standard values y* to the phase sequence direction determining module in real time.
  • the phase sequence direction determining module is configured to: according to the standard value y* of the at least two output signal values
  • the periodic function of the periodic function is judged to increase or decrease in a minimum positive period to determine the positive and negative phase sequence of the three-phase alternating current. If the periodic function is an increasing function in a minimum positive period, the phase sequence of the three-phase alternating current is positive. If the periodic function is a decreasing function in a minimum positive period, the three-phase alternating current phase sequence is a negative sequence.
  • the three-phase alternating current signal is a three-phase alternating current phase voltage signal (the instantaneous values of U a , U b and U e ) or a three-phase alternating current phase current signal (the instantaneous values of which are Ia, lb and Ic);
  • the three-phase alternating current sampling module can use existing modules, such as a Hall sensor, a resistor divider module, a current transformer, etc.; the coordinate system conversion module can use an existing Clarke coordinate transformation module.
  • the three-phase alternating current signal is a three-phase alternating current signal (its instantaneous values are Ia, lb, and Ic), and the period of the three-phase alternating current phase is known to be the same as the period of the three-phase alternating current voltage;
  • the detection method described in this embodiment does not include step s102 and/or step s105, that is, the detection method does not include standardizing the instantaneous values (Ia, lb, and Ic) of the three-phase AC phase current. Steps and/or steps of standardizing the output signal values corresponding to the sample time.
  • the difference between the three-phase alternating current phase sequence detecting device of this embodiment and the first embodiment is that the detecting device does not include the first standardizing processing module and/or the second standardizing processing module.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

本发明提供一种三相交流电相序检测方法,包括如下步骤:1)对三相交流电信号的瞬时值进行实时采样;2)采用坐标变换的方式将所述瞬时值转换为两相静止坐标系下的电信号分量;3)对所述电信号分量进行反正切计算,得出输出信号值;4)执行步骤1)~3)一次或多次,从而得出一个或多个输出信号值;5)将步骤3)得出的输出信号值与步骤4)得出的一个或多个输出信号值组成周期函数,若所述周期函数在一个最小正周期内为增函数,则判断所述三相交流电相序为正序;反之为负序。相应地,还提供一种采用上述检测方法的三相交流电相序检测装置。本发明所述三相交流电相序检测方法及装置具有简单实用、无需反馈回路及参数调整等优点。

Description

一种三相交流电相序检测方法及装置 技术领域
本发明涉及三相交流电技术领域, 具体涉及一种三相交流电相序检测方 法, 以及釆用所述检测方法的三相交流电相序检测装置。 背景技术
三相交流电相序对三相用电设备能否正常运转有着至关重要的影响。 一 般情况下, 三相用电设备的三相交流电源要求为正序(如图 1所示 ), 而不允 许出现负序(如图 2所示)。 以电力传动设备为例, 三相交流电源一旦相序错 误, 会造成电力传动设备反向运转, 导致电力传动设备出现故障, 甚至造成 操作人员的人身伤害。 因此, 在电力传动设备的控制中需要引入三相交流电 相序检测和判别功能。
现有技术中, 釆用提取三相交流电的角频率信息, 通过判断所述角频率 信息来确定三相交流电的相序。 该方法虽然能够实现相序的准确检测, 但是 由于需要提取三相交流电的角频率信息, 且在角频率提取过程中存在反馈回 路以及误差信号的调节, 其控制系统较为复杂。 发明内容 一种简单实用、 无需反馈回路及参数调整, 并能够快速、 准确检测出三相交 流电相序的三相交流电相序检测方法, 以及釆用所述检测方法的三相交流电 相序检测装置。
解决本发明技术问题所釆用的技术方案是:
所述三相交流电相序检测方法包括如下步骤:
1 )对三相交流电信号的瞬时值进行实时釆样, 得到一组瞬时值;
2 )釆用坐标变换的方式将所述一组瞬时值转换为两相静止坐标系下的电 信号分量;
3 )对所述电信号分量进行反正切计算,得出釆样时刻对应的一个输出信 号值;
4 )执行步骤 1 ) ~3 )—次或多次, 从而得出与步骤 3 )所述釆样时刻相 邻的一个或多个釆样时刻对应的输出信号值;
5 )将步骤 3 )得出的输出信号值与步骤 4 )得出的一个或多个输出信号 值组成周期函数, 所述周期函数在一个最小正周期内为一次函数, 且所述周 期函数的周期与三相交流电信号的周期相同, 根据所述周期函数在一个最小 正周期内的增减性来判断三相交流电相序的正负: 若所述周期函数在一个最 小正周期内为增函数, 则判断所述三相交流电相序为正序; 若所述周期函数 在一个最小正周期内为减函数, 则判断所述三相交流电相序为负序。
优选的是, 所述三相交流电信号为三相交流相电压信号或三相交流相电 流信号。
优选的是, 在步骤 2 ) 中, 所述坐标变换的方式釆用 Clarke坐标变换; Clarke坐标变换的公式为:
Figure imgf000004_0001
( 1 )
其中: Da、 Db与 De为三相交流电信号的瞬时值, Da与 Dp为将瞬时值
D Db与 De进行 Clarke坐标变换后得到的两相静止坐标系下的电信号分量。
优选的是, 在步骤 3 )中, 对所述电信号分量进行反正切计算的公式为: iarctan(Z)/g /Da) 0 < arctan(Z)/g /Όα) < π
y |arctan(Z)/g jDa ) + 2π - π < arctan(Z)/g jDa ) < 0 ( ) 其中: y为所述输出信号值, Da与 Dp为将瞬时值 Da、 Db与 Dc进行 Clarke 坐标变换后得到的两相静止坐标系下的电信号分量。
优选的是, 所述釆样周期大于釆样误差且小于三相交流电信号的周期。 进一步优选的是, 在步骤 5 ) 中, 判断所述周期函数在一个最小正周期 内是增函数还是减函数的方法为:
令 Ay=y(n)-y(n-l), 其中, y(n)与 y(n-l)分别为三相交流电信号中某一相 电信号的一个最小正周期内相邻两次釆样时刻得到的三相交流电信号的瞬时 值对应的输出信号值, 若 0<Ay<27i , 则所述周期函数在一个最小正周期内为增函数; 若 -2π<Δγ<0 , 则所述周期函数在一个最小正周期内为减函数。
进一步优选的是,所述釆样周期小于或等于三相交流电信号的周期的 0.1 倍。
优选的是, 所述步骤 1 )还包括对所述一组瞬时值进行标么化处理, 标 幺化处理的公式为:
dx=D ( 3 )
其中: X为 a b、 c, Da、 Db与 Dc为三相交流电信号的瞬时值, (^^为 三相交流电信号的最大值, da、 db与 de为三相交流电信号的瞬时值的标幺值。
优选的是, 所述步骤 3 )还包括对所述一个输出信号值进行标么化处理, 标幺化处理的公式为:
γ*=γ/2π ( 4 )
其中, y为所述输出信号值, y*为所述输出信号值的标幺值。
本发明同时提供一种三相交流电相序检测装置, 包括三相交流电釆样模 块、 坐标系变换模块、 反正切函数计算模块以及相序方向判断模块;
所述三相交流电釆样模块用于对三相交流电信号的瞬时值进行实时釆 样;
所述坐标系变换模块用于将三相交流电釆样模块实时釆样得到的三相静 止坐标系下的至少两组的三相交流电信号的瞬时值分别转换为两相静止坐标 系下的电信号分量, 并将其实时传输至反正切函数计算模块;
所述反正切函数计算模块用于分别对所述电信号分量进行反正切计算, 得出至少两个的输出信号值, 并将其实时输出至相序方向判断模块;
所述相序方向判断模块用于才艮据所述至少两个输出信号值组成的周期函 数在一个最小正周期内的增减性来判断三相交流电相序的正负。
优选的是,所述检测装置还包括有第一标么化处理模块和 /或第二标幺化 处理模块,
所述第一标么化处理模块用于对所述三相交流电釆样模块实时釆样得到 的至少两组三相交流电信号的瞬时值进行标么化处理, 并将标么值实时输出 至坐标系变换模块;
所述第二标么化处理模块用于对所述反正切函数计算模块得出的至少两 个输出信号值进行标么化处理, 并将标么值实时输出至相序方向判断模块。 有益效果:
( 1 )本发明所需三相交流电信号为相电压信号或相电流信号,无需转换 成线电压信号或线电流信号, 简单实用。
( 2 )本发明可直接应用于数字控制领域,无需增加新的外围硬件回路即 可快速、 准确检测出三相交流电信号相序, 判断方法简单可靠, 同时还具有 检测算法简单、 无需反馈回路、 无需参数调整, 适用于嵌入式系统的开发等 优点。
( 3 )本发明抗干扰能力强,在三相交流电信号存在严重谐波或是不平衡 状况下也能快速、 准确地检测出三相交流电信号的相序。 附图说明
图 1为现有技术中三相交流电压正序矢量示意图;
图 2为现有技术中三相交流电压负序矢量示意图;
图 3 为才艮据本发明第一实施例的三相交流电相序检测方法的流程示意 图;
图 4-1至图 4-3为根据本发明第一实施例的三相交流电相序为正序时各 个参数的波形图;
图 4-1为三相交流相电压中的两相的瞬时值 Ua与 Ub的标么值 ua与 ub 的波形图 (Uc的标么值 uc的波形未示出);
图 4-2为将标么值 ua、 ub与 uc进行 clarke坐标变换后得到的两相静止 坐标系下的相电压分量 ua与 ιιβ的波形图;
图 4-3为将两相静止坐标系下的电压分量 ua与 ιιβ进行反正切函数计算 并进行标么化处理后得到的输出信号值的标么值 y*的波形图;
图 5-1至图 5-3为根据本发明第一实施例的三相交流电相序为负序时各 个参数的波形图;
图 5-1为三相交流相电压中的两相的瞬时值 Ua与 Ub的标么值 ua与 ub 的波形图 (Uc的标么值 uc的波形未示出);
图 5-2为将标么值 ua、 ub与 uc进行 clarke坐标变换后得到的两相静止 坐标系下的相电压分量 ua与 ιιβ的波形图; 图 5-3为将两相静止坐标系下的电压分量 ua与 ιιβ进行反正切函数计算 并进行标么化处理后得到的输出信号值的标么值 y*的波形图;
图 6为根据本发明第一实施例的三相交流电相序检测装置的结构组成示 意图。 具体实施方式
为使本领域技术人员更好地理解本发明的技术方案, 下面结合附图和具 体实施方式对本发明三相交流电相序检测方法及装置作进一步详细描述。
一种三相交流电相序检测方法, 其包括如下步骤:
1 )对三相交流电信号的瞬时值进行实时釆样, 得到一组瞬时值;
2 )釆用坐标变换的方式将所述一组瞬时值转换为两相静止坐标系下的电 信号分量;
3 )对所述电信号分量进行反正切计算,得出釆样时刻对应的一个输出信 号值;
4 )执行步骤 1 ) ~3 )—次或多次, 从而得出一个或多个相邻的与釆样时 刻对应的输出信号值;
5 )将步骤 3 )得出的输出信号值与步骤 4 )得出的一个或多个输出信号 值组成周期函数, 所述周期函数在一个最小正周期内为一次函数, 且所述周 期函数的周期与三相交流电信号的周期相同, 根据所述周期函数在一个最小 正周期内的增减性来判断三相交流电相序的正负: 若所述周期函数在一个最 小正周期内为增函数, 则判断所述三相交流电相序为正序; 若所述周期函数 在一个最小正周期内为减函数, 则判断所述三相交流电相序为负序。
一种三相交流电相序检测装置, 包括三相交流电釆样模块、 坐标系变换 模块、 反正切函数计算模块以及相序方向判断模块;
所述三相交流电釆样模块用于对三相交流电信号的瞬时值进行实时釆 样;
所述坐标系变换模块用于将三相交流电釆样模块实时釆样得到的三相静 止坐标系下的至少两组三相交流电信号的瞬时值分别转换为两相静止坐标系 下的电信号分量, 并将其实时传输至反正切函数计算模块;
所述反正切函数计算模块用于分别对所述电信号分量进行反正切计算, 得出至少两个的输出信号值, 并将其实时输出至相序方向判断模块; 所述相序方向判断模块用于才艮据所述至少两个输出信号值组成的周期函 数在一个最小正周期内的增减性来判断三相交流电相序的正负。
第一实施例:
本实施例中, 所述三相交流电信号 (其瞬时值为 Da、 Db与 De )为三相 交流相电压信号 (其瞬时值为 Ua、 Ub与 Uc )。
如图 3所示, 所述三相交流电相序检测方法包括如下步骤:
slOl. 对三相交流相电压的瞬时值进行实时釆样, 得到一组相电压瞬时 值 ua、 ub与 ue, 所述瞬时值处于三相静止坐标系下。
其中, 所述釆样周期大于釆样误差且小于三相交流相电压的周期。
sl02. 对所述实时釆样得到的一组瞬时值 Ua、 Ub与 Uc进行标么化处理, 得到该组瞬时值的标幺值 ua、 ub与 uc
所述标么值是电力系统分析和工程计算中常用的数值标记方法, 其表示 某个 /某组参数的相对值,且标么值=实际值 /基准值。对某个 /某组参数进行标 么化处理的过程即是计算其标么值的过程。 应用标么化处理可省去公式中的 比例系数,使计算简化, 易于进行计算和对结果的分析比较。在本实施例中, 优选釆用标么化处理, 但如不釆用标么化处理, 也不会影响三相交流电信号 的相序判断结果。
本实施例中, 对所述三相交流相电压的瞬时值 ua、 ub与 uc进行标幺化 处理的公式为:
U X= U U^ ( 5 )
其中: X为 a、 b、 c, Ua、 Ub与 Uc为三相交流相电压的瞬时值, umax为 三相交流相电压的最大值, ua、 ub与 uc为三相交流相电压的瞬时值的标幺值。
s 103. 釆用坐标变换的方式将所述实时釆样得到的一组瞬时值的标幺值 ua、 ub与 ue转换为两相静止坐标系下的相电压分量 ua、 ιιβ
本实施例中, 所述坐标变换的方式釆用 Clarke坐标变换, 所述 Clarke坐 标变换能够将三相静止坐标系转换为两相静止坐标系。 所述 Clarke坐标变换 的公式为:
Figure imgf000009_0001
其中: ua、 ub与 uc为三相交流相电压的瞬时值的标幺值, ua与 up为将标 幺值 ua、 ub与 uc进行 Clarke坐标变换后得到的两相静止坐标系下的相电压分 sl04. 对所述两相静止坐标系下的相电压分量 ua与 up进行反正切计算, 得出釆样时刻 (即釆样得到所述一组相电压瞬时值 Ua、 Ub与 Uc的时刻 )对 应的一个输出信号值 y。
对所述相电压分量进行反正切计算的公式为: ( ? )
Figure imgf000009_0002
其中: y为所述输出信号值, ua与 up为两相静止坐标系下的相电压分量, 可见 0<y<2;r。
sl05. 对所述釆样时刻对应的一个输出信号值 y进行标么化处理, 得到 该输出信号值 y的标么值 y*。
对所述输出信号值 y进行标么化处理的公式为:
γ*=γ/2π ( 4 )
< π
也 < 0 ( g )
Figure imgf000009_0003
其中, y为所述输出信号值 , y*为所述输出信号值的标么值。可见 0<y*<l。 sl06. 执行步骤 sl01~sl05—次或多次, 从而得出与步骤 sl05所述釆样 时刻相邻的一个或多个釆样时刻对应的输出信号值的标么值 y*。
sl07. 才艮据步骤 sl05和步骤 sl06得出的至少两个输出信号值的标幺值 y*组成周期函数(其纵坐标为输出信号值的标么值 y*, 横坐标为釆样周期), 所述周期函数在一个最小正周期内为一次函数, 且所述周期函数的周期与三 相交流相电压的周期相同, 才艮据所述周期函数在一个最小正周期内的增减性 来判断三相交流电相序的正负: 若所述周期函数在一个最小正周期内为增函 数, 说明三相交流相电压瞬时值中的任意两相电压的瞬时值, 如 Ua与 Ub, Ua超前 Ub 120° , 也即所述三相交流电相序为正序; 若所述周期函数在一个 最小正周期内为减函数, 说明三相交流相电压瞬时值中的任意两相电压的瞬 时值, 如 ¾与¾, Ua滞后 Ub 120° , 也即所述三相交流电相序为负序。
从理论上来说, 判断所述周期函数在一个最小正周期内是增函数还是减 函数只需得到相邻两个釆样时刻获取的两组三相交流相电压的瞬时值对应的 输出信号值即可。也就是说, 只需要步骤 sl05得出的釆样时刻对应的一个输 出信号值的标么值 y*, 与步骤 sl06得出的与步骤 sl05所述釆样时刻相邻的 釆样时刻对应的一个输出信号值的标么值 y*即可。判断所述周期函数在一个 最小正周期内是增函数还是减函数的方法具体为:
图 4 -1至图 4-3以及图 5-1至图 5-3分别为三相交流电相序为正序与负 序时参数 ua、 ub、 ua、 up与 y*的波形图, 由于三相交流相电压存在矢量和为 零的关系, 釆样任意两相电压的波形即可知第三相电压的波形, 因此图 4-1 至图 4-3以及图 5-1至图 5-3中没有示出 uc的波形图。 由于所述周期函数的 周期与三相交流相电压的周期相同, 定义三相交流相电压中任一相电压的波 形中相邻两波峰之间的波形为一个最小正周期内的波形, 也即所述相邻两波 峰之间的波形对应一个最小正周期, 且三相交流相电压中一定存在某一相电 压 (如 ), 其最小正周期内的波形中相邻两波峰处的相电压值分别对应所 述周期函数的一个最小正周期内的一次函数的最大值或最小值, 如图 4-1至 图 4-3以及图 5-1至图 5-3所示。
令 Ay*=y*(n)-y*(n-l), 其中, y*(n)为三相交流相电压的某一相电压(如
¾ ) 的一个最小正周期内某一时刻釆样得到的该相电压的瞬时值 以及同时 刻釆样得到的另两相电压的瞬时值 ub与 uc所对应的输出信号值的标幺值,而 y*(n-l)为与所述某一釆样时刻在同一个三相交流相电压最小正周期内的相邻 的釆样时刻釆样得到的三相交流相电压瞬时值所对应的输出信号的标幺值, 即 y*(n)与 y*(n-l)分别为三相交流相电压中某一相电压 (如 ua ) 的一个最小 正周期内相邻两次釆样时刻得到的三相交流相电压的瞬时值对应的输出信号 的标幺值。
由于釆样周期大于釆样误差且小于三相交流相电压的周期, 则令 △t=klT, 其中 kl为系数, 且 0<kl<l , At为釆样周期, T为三相交流相电压 的周期。 可以通过 Ay*所处的区间值来判断所述周期函数在一个最小正周期内的 增减性:
1 )当所述周期函数在一个最小正周期内为增函数时,根据比例关系可知 △y*=kl , 则 0<Δγ*<1 ;
2 )当所述周期函数在一个最小正周期内为减函数时,根据比例关系可知
△y*=-kl , 则 -l<Ay*<0。
综上可知,当 0<Ay*<l时,所述周期函数在一个最小正周期内为增函数; 当 -l<Ay*<0时, 所述周期函数在一个最小正周期内为减函数。
优选所述釆样周期 At小于或等于三相交流电信号周期 T的 0.1倍,即 At 0.1T。
如图 6所示, 本实施例还提供一种三相交流电相序检测装置, 包括三相 交流电釆样模块、 坐标系变换模块、 反正切函数计算模块、 第一标么化处理 模块、 第二标么化处理模块以及相序方向判断模块。
所述三相交流电釆样模块用于对三相交流电信号的瞬时值进行实时釆 样, 并将实时釆样得到的三相静止坐标系下的至少两组的三相交流电信号的 瞬时值 Da、 Db与 Dc实时传输至第一标么化处理模块。
所述第一标么化处理模块用于分别对所述至少两组的三相交流电信号的 瞬时值 Da、 Db与 Dc进行标么化处理, 并将得到的至少两组的标么值 da、 db 与 dc分别实时输出至坐标系变换模块。
所述坐标系变换模块用于将所述三相静止坐标系下的至少两组的三相交 流电信号的瞬时值的标幺值 da、 db与 dc分别转换为两相静止坐标系下的电信 号分量 da、 dp, 并将得到的至少两组的电信号分量实时传输至反正切函数计 算模块。 当然, 每一组三相交流电信号的瞬时值的标么值均对应得到一组不 同的电信号分量。
所述反正切函数计算模块用于分别对所述至少两组电信号分量 da、 dp进 行反正切计算,得出至少两个输出信号值 y,并将所述至少两个输出信号值 y 实时输出至第二标么化处理模块。
所述第二标么化处理模块用于分别对所述至少两个输出信号值 y进行标 幺化处理, 并将得到的至少两个标么值 y*实时输出至相序方向判断模块。
所述相序方向判断模块用于根据所述至少两个输出信号值的标么值 y* 组成的周期函数在一个最小正周期内的增减性来判断三相交流电相序的正 负, 若所述周期函数在一个最小正周期内为增函数, 则所述三相交流电相序 为正序; 若所述周期函数在一个最小正周期内为减函数, 则所述三相交流电 相序为负序。
其中, 所述三相交流电信号为三相交流相电压信号(其瞬时值为 Ua、 Ub 与 Ue )或三相交流相电流信号(其瞬时值为 Ia、 lb与 Ic ); 所述三相交流电 釆样模块可釆用现有模块, 如霍尔传感器、 电阻分压釆样模块、 电流互感器 等; 所述坐标系变换模块可釆用现有的 Clarke坐标变换模块。
第二实施例:
本实施例所述三相交流电相序检测方法与第一实施例的区别在于:
1 )所述三相交流电信号为三相交流相电流信号(其瞬时值为 Ia、 lb与 Ic ), 且已知三相交流相电流的周期与三相交流相电压的周期相同;
2 )本实施例所述检测方法不包括步骤 sl02和 /或步骤 sl05 , 即所述检测 方法不包括对所述三相交流相电流的瞬时值(Ia、 lb与 Ic )进行标么化处理 的步骤和 /或对釆样时刻对应的输出信号值进行标么化处理的步骤。
本实施例所述三相交流电相序检测装置与第一实施例的区别在于: 所述 检测装置不包括第一标么化处理模块和 /或第二标么化处理模块。
本实施例中的其他结构以及作用都与第一实施例相同, 这里不再赘述。 例性实施方式, 然而本发明并不局限于此。 对于本领域内的普通技术人员而 言, 在不脱离本发明的精神和实质的情况下, 可以做出各种变型和改进, 这 些变型和改进也视为本发明的保护范围。

Claims

权利要求书
1. 一种三相交流电相序检测方法, 包括如下步骤:
1 )对三相交流电信号的瞬时值进行实时釆样, 得到一组瞬时值;
2 )釆用坐标变换的方式将所述一组瞬时值转换为两相静止坐标系下的电 信号分量;
3 )对所述电信号分量进行反正切计算,得出釆样时刻对应的一个输出信 号值;
4 )执行步骤 1 ) ~3 )—次或多次, 从而得出与步骤 3 )所述釆样时刻相 邻的一个或多个釆样时刻对应的输出信号值;
5 )将步骤 3 )得出的输出信号值与步骤 4 )得出的一个或多个输出信号 值组成周期函数, 所述周期函数在一个最小正周期内为一次函数, 且所述周 期函数的周期与三相交流电信号的周期相同, 根据所述周期函数在一个最小 正周期内的增减性来判断三相交流电相序的正负: 若所述周期函数在一个最 小正周期内为增函数, 则判断所述三相交流电相序为正序; 若所述周期函数 在一个最小正周期内为减函数, 则判断所述三相交流电相序为负序。
2. 根据权利要求 1所述的检测方法, 其中, 所述三相交流电信号为三相 交流相电压信号或三相交流相电流信号。
3. 根据权利要求 1所述的检测方法, 在步骤 2 )中, 所述坐标变换的方 式釆用 Clarke坐标变换;
述 Clarke坐标变换的公式为:
Figure imgf000013_0001
其中: Da、 Db与 De为三相交流电信号的瞬时值, Da与 Dp为将瞬时值 Da、 Db与 De进行 Clarke坐标变换后得到的两相静止坐标系下的电信号分量。
4. 根据权利要求 1所述的检测方法, 在步骤 3 )中, 对所述电信号分量 进行反正切计算的公式为: iarctan(Z)/g /¾) 0 < arctan(Z)/g /Da) <
y |arctan(Z)/g jDa ) + 2π - π < arctan(Z)/g jDa )< 0 ( 2 ) 其中: y为所述输出信号值, Da与 Dp为将瞬时值 Da、 Db与 Dc进行 Clarke 坐标变换后得到的两相静止坐标系下的电信号分量。
5. 根据权利要求 1所述的检测方法, 其中, 所述釆样周期大于釆样误差 且小于三相交流电信号的周期。
6. 根据权利要求 5所述的检测方法, 在步骤 5 )中, 判断所述周期函数 在一个最小正周期内是增函数还是减函数的方法为:
令 Ay=y(n)-y(n-l), 其中, y(n)与 y(n-l)分别为三相交流电信号中某一电 信号的一个最小正周期内相邻两次釆样时刻得到的三相交流电信号的瞬时值 对应的输出信号值,
若 0<Δγ<2π , 则所述周期函数在一个最小正周期内为增函数; 若 -2π<Δγ<0 , 则所述周期函数在一个最小正周期内为减函数。
7. 根据权利要求 5所述的检测方法, 其中, 所述釆样周期小于或等于三 相交流电信号的周期的 0.1倍。
8. 根据权利要求 1所述的检测方法, 所述步骤 1 )还包括对所述一组瞬 时值进行标么化处理, 标么化处理的公式为:
dx=D ( 3 )
其中: X为 a b、 c, Da、 Db与 Dc为三相交流电信号的瞬时值, (^^为 三相交流电信号的最大值, da、 db与 de为三相交流电信号的瞬时值的标幺值。
9. 根据权利要求 1所述的检测方法, 所述步骤 3 )还包括对所述一个输 出信号值进行标么化处理, 标么化处理的公式为:
γ*=γ/2π ( 4 )
其中, y为所述输出信号值, y*为所述输出信号值的标幺值。
10. 一种三相交流电相序检测装置, 包括三相交流电釆样模块、 坐标系 变换模块、 反正切函数计算模块以及相序方向判断模块;
所述三相交流电釆样模块用于对三相交流电信号的瞬时值进行实时釆 样;
所述坐标系变换模块用于将三相交流电釆样模块实时釆样得到的三相静 止坐标系下的至少两组的三相交流电信号的瞬时值分别转换为两相静止坐标 系下的电信号分量, 并将其实时传输至反正切函数计算模块; 所述反正切函数计算模块用于分别对所述电信号分量进行反正切计算, 得出至少两个输出信号值, 并将其实时输出至相序方向判断模块;
所述相序方向判断模块用于根据所述至少两个输出信号值组成的周期函 数在一个最小正周期内的增减性来判断三相交流电相序的正负。
11. 根据权利要求 10所述的检测装置,所述检测装置还包括第一标幺化 处理模块和 /或第二标么化处理模块,
所述第一标么化处理模块用于对所述三相交流电釆样模块实时釆样得到 的至少两组三相交流电信号的瞬时值进行标么化处理, 并将标么值实时输出 至坐标系变换模块;
所述第二标么化处理模块用于对所述反正切函数计算模块得出的至少两 个输出信号值进行标么化处理, 并将标么值实时输出至相序方向判断模块。
PCT/CN2012/085962 2012-04-20 2012-12-05 一种三相交流电相序检测方法及装置 WO2013155844A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/983,351 US9429604B2 (en) 2012-04-20 2012-12-05 Three-phase AC phase sequence detecting method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012101190201A CN102680806A (zh) 2012-04-20 2012-04-20 一种三相交流电相序检测方法及装置
CN201210119020.1 2012-04-20

Publications (1)

Publication Number Publication Date
WO2013155844A1 true WO2013155844A1 (zh) 2013-10-24

Family

ID=46813038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/085962 WO2013155844A1 (zh) 2012-04-20 2012-12-05 一种三相交流电相序检测方法及装置

Country Status (3)

Country Link
US (1) US9429604B2 (zh)
CN (1) CN102680806A (zh)
WO (1) WO2013155844A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110190612A (zh) * 2019-04-26 2019-08-30 宁波三星智能电气有限公司 基于地理位置和相位识别的台区三相不平衡治理方法
CN114910713A (zh) * 2022-04-18 2022-08-16 华南理工大学 基于数值计算的三相电源电压相序及频率检测方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5405698B1 (ja) * 2012-03-30 2014-02-05 新電元工業株式会社 制御回路、および制御回路を備える発電装置
CN102680806A (zh) 2012-04-20 2012-09-19 京东方科技集团股份有限公司 一种三相交流电相序检测方法及装置
CN102914703B (zh) * 2012-10-17 2015-04-29 南京理工大学 基于瞬时点的相序快速测量方法
CN102937672B (zh) * 2012-11-02 2015-05-27 北京天诚同创电气有限公司 一种用于并网设备的三相交流电相序检测方法及其检测装置
CN102944761B (zh) * 2012-11-02 2015-05-27 北京天诚同创电气有限公司 一种用于并网设备的三相交流电相序检测方法及其检测装置
CN103364634B (zh) * 2013-07-18 2015-11-18 深圳晶福源科技股份有限公司 三相交流电源频率测量方法
CN104459354B (zh) * 2013-09-22 2017-06-13 阳光电源股份有限公司 一种三相交流电网相序检测方法及装置
US20150309096A1 (en) * 2014-04-29 2015-10-29 Lsis Co., Ltd. Instantaneous power monitoring system for hvdc system
CN104267267B (zh) * 2014-09-30 2018-05-08 日立楼宇技术(广州)有限公司 能量回馈并网逆变器的相序识别方法和系统
CN106291224B (zh) * 2016-08-16 2018-12-18 重庆新世杰电气股份有限公司 一种防止贯通线相序连接错误的方法及装置
CN110869778B (zh) * 2019-04-29 2022-02-22 深圳欣锐科技股份有限公司 三相电网的相序检测方法及相关装置
CN111537809B (zh) * 2020-06-21 2022-06-07 陕西航空电气有限责任公司 一种适用于交流供电系统的数字式相序检测方法
CN112531784B (zh) * 2020-12-14 2022-08-19 浙江艾罗网络能源技术股份有限公司 一种三相电网相序自适应的锁相及逆变控制方法
CN114019404A (zh) * 2021-11-05 2022-02-08 深圳市泛海三江电子股份有限公司 一种三相交流电源相序检测方法以及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10155276A (ja) * 1996-11-20 1998-06-09 Hitachi Ltd 電力変換装置
CN1265742A (zh) * 1997-06-20 2000-09-06 西门子公司 识别三相电网中相序的方法以及这种方法和所属数字式过载继电器的应用
CN1387048A (zh) * 2002-04-27 2002-12-25 艾默生网络能源有限公司 三相交流电相序判断方法和装置
CN101320063A (zh) * 2008-07-09 2008-12-10 中兴通讯股份有限公司 三相交流电相序检测装置及方法
CN102243277A (zh) * 2011-04-14 2011-11-16 国电南瑞科技股份有限公司 双srf下双馈风力发电机转子电压正负序量检测方法
CN102680806A (zh) * 2012-04-20 2012-09-19 京东方科技集团股份有限公司 一种三相交流电相序检测方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7948225B2 (en) * 2004-11-18 2011-05-24 Power Systems Integrity, Inc. Phase identification systems and methods
DE502006006244D1 (de) * 2006-06-23 2010-04-08 Abb Schweiz Ag Verfahren zum Betrieb einer Umrichterschaltung
US8238506B2 (en) * 2009-01-06 2012-08-07 National Applied Research Laboratories Phase-discriminating device and method
FR2954871B1 (fr) * 2009-12-30 2015-06-19 Thales Sa Dispositif de detection de signaux impulsionnels a sensibilite amelioree

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10155276A (ja) * 1996-11-20 1998-06-09 Hitachi Ltd 電力変換装置
CN1265742A (zh) * 1997-06-20 2000-09-06 西门子公司 识别三相电网中相序的方法以及这种方法和所属数字式过载继电器的应用
CN1387048A (zh) * 2002-04-27 2002-12-25 艾默生网络能源有限公司 三相交流电相序判断方法和装置
CN101320063A (zh) * 2008-07-09 2008-12-10 中兴通讯股份有限公司 三相交流电相序检测装置及方法
CN102243277A (zh) * 2011-04-14 2011-11-16 国电南瑞科技股份有限公司 双srf下双馈风力发电机转子电压正负序量检测方法
CN102680806A (zh) * 2012-04-20 2012-09-19 京东方科技集团股份有限公司 一种三相交流电相序检测方法及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110190612A (zh) * 2019-04-26 2019-08-30 宁波三星智能电气有限公司 基于地理位置和相位识别的台区三相不平衡治理方法
CN110190612B (zh) * 2019-04-26 2022-06-03 宁波三星智能电气有限公司 基于地理位置和相位识别的台区三相不平衡治理方法
CN114910713A (zh) * 2022-04-18 2022-08-16 华南理工大学 基于数值计算的三相电源电压相序及频率检测方法

Also Published As

Publication number Publication date
CN102680806A (zh) 2012-09-19
US9429604B2 (en) 2016-08-30
US20140062457A1 (en) 2014-03-06

Similar Documents

Publication Publication Date Title
WO2013155844A1 (zh) 一种三相交流电相序检测方法及装置
US8649130B2 (en) Motor driving apparatus having fault diagnostic function
JP4657151B2 (ja) 回転位相角測定装置及びこれを用いた周波数測定装置、同期フェーザ測定装置、開閉極位相制御装置、同期投入装置及び相判別装置
JP5194083B2 (ja) 電気機器の永久磁石の劣化判定方法及び装置
KR101169797B1 (ko) 3상 유도전동기의 고정자 권선 고장 진단시스템
CN106468735B (zh) 相位角获取方法和系统
JP6824494B1 (ja) 異常診断装置、電力変換装置および異常診断方法
US20110295530A1 (en) Fault diagnosis device for amplitude modulation device
CN101344549B (zh) 一种三相电路缺相检测的方法及其装置
JP2010066055A (ja) 電力測定器における結線状態検出方法
JP2010190645A (ja) 漏れ電流検出方法、漏れ電流検出装置及び系統監視装置
CN102937672A (zh) 一种用于并网设备的三相交流电相序检测方法及其检测装置
EP3066481A1 (en) Systems and methods for insulation impedance monitoring
TWI427298B (zh) 信號生成裝置、測量裝置、漏電檢測裝置及信號生成方法
CN103823181B (zh) 一种电机机组质量检测系统及方法
CN110907864B (zh) 电机定子绕组的故障检测方法、装置、设备及存储介质
EP3133632B1 (en) Circuit breaker
US20130158909A1 (en) Power quality monitoring apparatus and method thereof
JP6588261B2 (ja) 絶縁監視装置およびインバータ装置
CN113574791B (zh) 电力转换装置、驱动控制系统、机器学习装置以及电动机监视方法
US9863986B2 (en) Electric power measuring system
CN112834891B (zh) 检测相控整流电路中失效晶闸管的方法、装置及终端设备
JP2006025550A (ja) 周波数検出装置及び分散電源装置
JP6453556B2 (ja) 交流電気信号検出装置および交流電気信号検出方法
JP6082316B2 (ja) 誘導電動機制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13983351

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12874668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/03/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12874668

Country of ref document: EP

Kind code of ref document: A1