WO2013153950A1 - 塗布拡散剤組成物、塗布拡散剤組成物の製造方法、太陽電池及び太陽電池の製造方法 - Google Patents

塗布拡散剤組成物、塗布拡散剤組成物の製造方法、太陽電池及び太陽電池の製造方法 Download PDF

Info

Publication number
WO2013153950A1
WO2013153950A1 PCT/JP2013/058908 JP2013058908W WO2013153950A1 WO 2013153950 A1 WO2013153950 A1 WO 2013153950A1 JP 2013058908 W JP2013058908 W JP 2013058908W WO 2013153950 A1 WO2013153950 A1 WO 2013153950A1
Authority
WO
WIPO (PCT)
Prior art keywords
agent composition
coating
diffusing agent
water
solar cell
Prior art date
Application number
PCT/JP2013/058908
Other languages
English (en)
French (fr)
Inventor
陽介 大井
大輔 廣庭
敬宏 橋本
洋介 圓山
Original Assignee
ナガセケムテックス株式会社
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナガセケムテックス株式会社, シャープ株式会社 filed Critical ナガセケムテックス株式会社
Priority to US14/391,365 priority Critical patent/US20150083209A1/en
Priority to CN201380019198.1A priority patent/CN104221134A/zh
Publication of WO2013153950A1 publication Critical patent/WO2013153950A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/2225Diffusion sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2255Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a coating diffusing agent composition used for diffusing impurities on a silicon substrate and a method for producing the same. Furthermore, it is related with the solar cell which has a pn junction, and converts light energy into electrical energy, and its manufacturing method.
  • the crystalline silicon solar cell has a function of converting light energy into electric energy by a pn junction.
  • the pn junction of a crystalline silicon solar cell is composed of a p-type semiconductor in which boron is diffused as an impurity and an n-type semiconductor in which phosphorus is diffused as an impurity on a silicon substrate.
  • a p-type impurity for example, boron
  • an n-type impurity for example, phosphorus
  • a method of diffusing phosphorus may be used in the case where characteristics are given to the solar battery cell.
  • the thermal diffusion method is a method in which a diffusion agent film containing impurities is formed on a silicon substrate and is diffused by heating to a high temperature.
  • the diffusion agent film is formed by coating or CVD (chemical vapor deposition). There are many cases.
  • As a coating method many methods such as spin coating, spray coating, and printing are used.
  • a diffusion coating agent containing phosphorus is first applied to a p-type silicon substrate, and this is applied at 800 to 1100 ° C. After calcination and thermal diffusion of phosphorus, a pn junction can be formed by removing the diffusion coating agent containing phosphorus with an aqueous hydrofluoric acid solution.
  • the solar cell may have a structure that more easily absorbs light by forming an antireflection film on the pn junction layer. In this case, as the antireflection film, A silicon nitride film, a titanium oxide film, or the like is often used.
  • a PTG (Phospho Titanate Glass) film is composed of diphosphorus pentoxide and titanium oxide.
  • a PTG film in a manufacturing process of a solar cell is a film having both an effect as a diffusing agent of phosphorus and an effect as an antireflection film.
  • a coating film formed using a PTG solution on a silicon substrate is heat-treated.
  • the n-type diffusion layer and the antireflection film can be formed at a time. Therefore, a method for manufacturing a solar cell having a step of forming a PTG film is an extremely cost-effective method and has been used a lot (for example, see Patent Documents 1 to 5).
  • a coating diffusing agent composition (PTG liquid) containing titanium is applied to a silicon substrate by various coating methods, and this is baked at 800 to 1100 ° C. to form an n-type diffusion layer and an antireflection film.
  • PTG film a coating diffusing agent composition
  • a PTG film can be formed by a CVD method.
  • a composition of the PTG liquid for example, a composition comprising titanate ester, carboxylic acid, diphosphorus pentoxide and alcohol is exemplified in Patent Document 2.
  • JP 59-115524 A Japanese Patent Laid-Open No. 7-22634 JP-A-8-85874 JP 2000-309869 A JP 2010-109201 A
  • a conventional PTG liquid has a property that a hydrolysis reaction of a titanate ester is caused by a hydroxyl group contained in the liquid, and a titanium component and a phosphorus component are decomposed and condensed. And when a hydrolysis reaction advances, a titanium component will precipitate as titanium hydroxide insoluble in an alcohol solvent, and the performance as a coating agent will deteriorate remarkably. Because of these properties, PTG liquids are difficult to store stably in the long term when they are industrially produced in large quantities, and it is necessary to manufacture and use them in small quantities frequently. There was a disadvantage that was disadvantageous.
  • a precipitate by adding water to a coating diffusing agent composition (corresponding to a PTG liquid) containing a titanate ester, a phosphorus compound and an organic solvent ( (Titanium hydroxide) can be suppressed, and the life of chemicals is longer than that of conventional PTG liquids that do not contain water. Even if PTG liquids are produced in large quantities, they can be stored stably for a long period of time. As a result, the present invention was completed by finding out that it is excellent in cost. It was also found that a PTG solution in which precipitates (titanium hydroxide) are less likely to be generated can be obtained by performing a step of adding water after mixing an organic solvent and a phosphorus compound.
  • the coating diffusing agent composition of the present invention is characterized by containing a titanate ester, a phosphorus compound, water and an organic solvent.
  • the phosphorus compound is preferably diphosphorus pentoxide and / or a phosphate ester
  • the organic solvent is preferably an alcohol.
  • the concentration of water is preferably 5% by weight or less, and more preferably 0.05 to 1.5% by weight. Furthermore, in the coating diffusing agent composition, the weight ratio of titanium atoms to phosphorus atoms (titanium / phosphorus) is preferably 0.5 to 0.9.
  • the manufacturing method of the coating diffusing agent composition of the present invention is a method of manufacturing the coating diffusing agent composition, A titanate ester is mixed with a solution (A) in which an organic solvent, a phosphorus compound, and water are blended.
  • a titanate ester is mixed with a solution (A) in which an organic solvent, a phosphorus compound, and water are blended.
  • coating diffuser composition it is preferable to mix water with the solution (B) which mix
  • water is a pure water.
  • the solar cell of the present invention includes an n-type diffusion layer and an antireflection film formed using the coating diffusing agent composition of the present invention.
  • the n-type diffusion layer and the antireflection film are formed on the silicon substrate by applying the coating diffusing agent composition of the present invention on the silicon substrate and then performing a heat treatment. It has the process to perform.
  • the coating diffusing agent composition of the present invention contains water in addition to the titanate ester, the phosphorus compound and the organic solvent, it can suppress the generation of precipitates (titanium hydroxide) over a long period of time.
  • the lifetime is long, and even when a coating diffusing agent composition is produced in large quantities, it can be stably stored for a long period of time, and the cost is excellent. Further, it can be uniformly applied on the silicon substrate.
  • the coating diffusing agent composition which has the characteristic mentioned above can be manufactured suitably.
  • the solar cell of the present invention has a uniform n-type diffusion layer and antireflection film. Moreover, it is cheap compared with the conventional solar cell. Moreover, in the manufacturing method of the solar cell of this invention, since the application
  • (A) is sectional drawing which shows typically an example of the solar cell of this invention
  • (b) is sectional drawing which shows typically another example of the solar cell of this invention.
  • (A)-(d) is sectional drawing for demonstrating the manufacturing method of the solar cell of this invention.
  • (E)-(g) is sectional drawing for demonstrating the manufacturing method of the solar cell of this invention.
  • 6 is a graph plotting the relationship between the concentration of water (2) and the time for maintaining the transparency of the liquid (coating diffusion agent composition) in Comparative Example 1 and Examples 1 to 9.
  • 6 is a graph plotting the relationship between the Ti / P weight ratio and the time for maintaining the transparency of the liquid (coating diffusion agent composition) in Example 3 and Examples 10 to 13.
  • 6 is a graph plotting the relationship between the composition weight of water (1) and the time for maintaining the transparency of the liquid (coating diffusion agent composition) in Example 3 and Examples 14 to 18.
  • the coating and diffusing agent composition of the present invention includes a titanate ester, a phosphorus compound, water, and an organic solvent.
  • titanate ester examples include tetramethoxy titanium, tetraethoxy titanium, tetrapropoxy titanium, tetraisopropoxy titanium, tetrabutoxy titanium, tetra-2-ethylhexyl titanium, and multimers of these titanium alkoxides, titanium chelates, acid Examples thereof include rate titanium. These may be used alone or in combination of two or more. Of these, tetraisopropoxy titanium is preferred. This is because the distribution volume is large and the cost is advantageous.
  • the concentration of titanate ester in the coating diffusing agent composition is preferably 20% by weight or less, and more preferably 10% by weight or less. The reason is that when the concentration of the titanate exceeds 20% by weight, the solid concentration in the coating diffusing agent composition is increased, and the coating property may be deteriorated. Moreover, the minimum with the preferable density
  • diphosphorus pentoxide diphosphorus pentoxide, phosphoric acid, phosphate ester etc. are mentioned, for example. These may be used alone or in combination of two or more. Among these, diphosphorus pentoxide and phosphoric acid ester having a small OH group that is a reaction factor of hydrolysis are desirable.
  • phosphate ester examples include methyl phosphate, dimethyl phosphate, trimethyl phosphate, ethyl phosphate, diethyl phosphate, triethyl phosphate, propyl phosphate, dipropyl phosphate, tripropyl phosphate, isopropyl phosphate, Examples include diisopropyl phosphate, butyl phosphate, dibutyl phosphate, tributyl phosphate, and multimers of these phosphate esters. These may be used alone or in combination of two or more. These phosphorus compounds may exist only in the above-described phosphorus compound in the coating diffusing agent composition, or may exist as a reaction product with an organic solvent or other components.
  • the concentration of the phosphorus compound in the coating diffusing agent composition is preferably 20% by weight or less, and more preferably 10% by weight or less. The reason is that when the concentration of the phosphorus compound exceeds 20% by weight, the solid content concentration in the coating diffusing agent composition is increased, and the coating property may be deteriorated. Moreover, the preferable minimum of the density
  • concentration of the said phosphorus compound is 0.5 weight%.
  • organic solvent examples include alcohols, organic acids, organic acid esters, organic amides, ethers, and the like. Among these, alcohols are preferable. In particular, an alcohol corresponding to the hydrolyzate of the alkoxy group of the titanate ester is most suitable. The reason is that the hydrolysis reaction of titanate ester hardly occurs due to chemical equilibrium, and long-term storage stability is expected. Therefore, for example, when tetraisopropoxy titanium is used as the titanate, it is desirable to use isopropanol as the organic solvent.
  • the concentration of the organic solvent in the coating diffusing agent composition is preferably 60% by weight or more, and more preferably 80% by weight or more. The reason is that when the concentration of the organic solvent is less than 60% by weight, the solid content concentration in the coating diffusing agent composition is increased, and the coating property may be deteriorated.
  • the preferable upper limit of the concentration of the organic solvent is 99% by weight.
  • the weight ratio of the phosphorus atom is 1, and the weight ratio of the titanium atom is 0.2 to 2.0, that is, the weight ratio of the titanium atom to the phosphorus atom ( (Titanium / phosphorus) is preferably 0.2 to 2.0.
  • the weight ratio of titanium atoms to the phosphorus atoms (titanium / phosphorus) is within the above range, the ability of the PTG film formed using the coating diffusing agent composition as an antireflection film and the ability to diffuse phosphorus are It exists in the range suitable for a battery manufacturing process, and is suitable as a PTG film
  • the weight ratio of titanium atoms to phosphorus atoms is more preferably 0.5 to 0.9, and still more preferably 0.67 to 0.75.
  • the ratio of the titanate ester is increased (when the weight ratio (titanium / phosphorus) is increased), the refractive index of the PTG film is increased and the film is excellent in the effect as an antireflection film. Since the (ratio) is low, it tends to be difficult to perform the intended phosphorus diffusion.
  • the titanate ratio is low (the weight ratio (titanium / phosphorus) is small), the diffusion of phosphorus becomes easy, but the refractive index of the PTG film deviates from the optimum value, and the antireflection film. As a result, the effect tends to decrease.
  • the coating diffusing agent composition of the present invention contains water. It is extremely important that the coating diffusing agent composition is mixed with water, and thereby the long-term storage stability of the coating diffusing agent composition is remarkably improved.
  • the concentration of water in the coating diffusing agent composition is preferably 5% by weight or less, and more preferably 1.5% by weight or less. When the water is added in a concentration exceeding 5% by weight, the titanate ester is rapidly hydrolyzed, and a large amount of white precipitate may be generated as titanium hydroxide. Furthermore, since this precipitate binds to the phosphorus component in the liquid and significantly reduces the phosphorus concentration in the liquid, the liquid (composition) in which the precipitate is generated cannot be used as a coating diffusing agent. . In order to exert the effect of the present invention, the concentration of the water is desirably 0.05% by weight or more.
  • a surfactant may be further added to the coating diffusing agent composition.
  • the surfactant include nonionic surfactants and ionic surfactants.
  • the coating diffusing agent composition having such a configuration can be preferably produced by the method for producing a coating diffusing agent composition of the present invention.
  • the manufacturing method of the coating diffusing agent composition of the present invention is a method of manufacturing the coating diffusing agent composition, A titanate ester is mixed with a solution (A) in which an organic solvent, a phosphorus compound, and water are blended.
  • a titanate ester is mixed with a solution (A) in which an organic solvent, a phosphorus compound, and water are blended.
  • an organic solvent, a phosphorus compound and water may be mixed at the same time, but after preparing a solution (B) containing the organic solvent and the phosphorus compound first, It is preferable to prepare a solution (A) by mixing water with this solution (B). This is because the generation of precipitates due to hydrolysis of titanate ester can be prevented.
  • the above water may be mixed all at once, or may be mixed in multiple times. For example, after mixing an organic solvent and a phosphorus compound with a part of water, the remaining water is mixed. However, it is preferable to mix the organic solvent and the phosphorus compound first, dissolve the phosphorus compound in the organic solvent, and then mix the entire amount of water. Moreover, when mix
  • pure water means that which contains substantially no components other than water.
  • the following embodiments are particularly preferred embodiments in the method for producing a coating and diffusing agent composition of the present invention. That is, first, 80% by weight or more of isopropyl alcohol and 10% by weight or less of diphosphorus pentoxide are added to the total weight of the composition to be produced, and mixed and dissolved. Subsequently, 0.05 to 1.5% by weight of water is added, and after stirring well, 10% by weight or less of tetraisopropoxy titanium is added to obtain a coating diffusing agent composition.
  • the coating diffusing agent composition of the present invention may be obtained by such a method for producing a coating diffusing agent composition.
  • the solar cell of the present invention includes an n-type diffusion layer and an antireflection film formed using the coating diffusing agent composition of the present invention.
  • a solar cell having the structure shown in FIG. FIG. 1A is a cross-sectional view schematically showing an example of the solar cell of the present invention
  • FIG. 1B is a cross-sectional view schematically showing another example of the solar cell of the present invention.
  • a solar cell 100 shown in FIG. 1A is a double-sided electrode type solar cell, and has a fine pyramid-shaped texture structure (not shown) on one surface (light-receiving surface / upper surface in the drawing) of the silicon substrate 1. And an antireflection film 5 made of titanium oxide containing phosphorus and an n-type diffusion layer 6 is further provided thereon. On the light receiving surface side, a light receiving surface electrode 10 penetrating the antireflection film 5 and connected to the n-type diffusion layer 6 is formed. In addition, a BSF (Back Surface Field) layer 11 is formed on the other surface (back surface / lower surface in the drawing) of the silicon substrate 1, and a back surface aluminum electrode 13 and a back surface silver electrode 12 are formed. Further, a groove 14 for performing pn junction isolation is formed on the back surface side.
  • BSF Back Surface Field
  • a solar cell 200 shown in FIG. 1B is a back electrode type solar cell, and a fine pyramid-shaped texture structure (not shown) is formed on one surface (light receiving surface / upper surface in the drawing) of the silicon substrate 15. And a light-receiving surface n-type diffusion layer 16 and an antireflection film 17 made of titanium oxide containing phosphorus. An n-type diffusion layer 18 and a p-type diffusion layer 19 are formed on the other surface (back surface / lower surface in the figure) of the silicon substrate 15, and a back surface passivation film 22 is further stacked thereon. .
  • an n-type electrode 20 connected to the n-type diffusion layer 18 and a p-type electrode 21 connected to the p-type diffusion layer 19 are formed so as to penetrate the back surface passivation film 22.
  • the structure of the solar cell of the present invention is not limited to the structure described in FIGS. 1A and 1B, but has a structure provided with an antireflection film made of a titanium oxide containing an n-type diffusion layer and phosphorus. What is necessary is just to have.
  • the manufacturing method of the solar cell of this invention is demonstrated.
  • the n-type diffusion layer and the antireflection film are formed on the silicon substrate by applying the coating diffusing agent composition of the present invention on the silicon substrate and then performing a heat treatment. It has the process to perform.
  • FIGS. 2-1 (a) to (d) and FIGS. 2-2 (e) to (g) are cross-sectional views for explaining the method of manufacturing the solar cell of the present invention.
  • FIGS. 2-1 (a) to (d) and FIGS. 2-2 (e) to (g) shows a cross section of the solar cell, and the upper side in the figure is a light receiving surface. The other is the back side.
  • a silicon substrate 1 obtained by slicing a single crystal or polycrystalline n-type or p-type silicon ingot using a known wire saw or the like is prepared. Since the silicon substrate 1 immediately after slicing has a slice damage layer 2 generated during slicing (see FIG. 2-1 (a)), for example, the slice damage layer 2 is formed using a mixed acid of hydrogen fluoride aqueous solution and nitric acid. Remove.
  • etching using an aqueous NaOH solution or the like is performed on one surface (light-receiving surface) of the silicon substrate 1 to form minute pyramidal irregularities (texture structure) 3 (see FIG. 2-1 (b)).
  • This texture structure 3 contributes to light confinement on the light receiving surface of the solar cell and has an effect of improving the characteristics of the solar cell.
  • the etching may be performed using an acid.
  • the texture structure 3 is omitted in FIGS. 2-1 (c) to 2-2 (g) referred to in the following description.
  • the coating diffusing agent composition 4 is applied to the light receiving surface of the silicon substrate 1 (see FIG. 2-1 (c)).
  • a coating method for example, a spin coating method or the like can be used.
  • the silicon substrate 1 coated with the coating diffusing agent composition 4 is placed in a quartz tube furnace, and heat treatment is performed in a N 2 atmosphere at a temperature of 800 to 1100 ° C. for 5 to 30 minutes. Thereby, phosphorus is diffused to form the n-type diffusion layer 6 on the light receiving surface (the upper surface in the drawing) of the silicon substrate 1, and the antireflection film 5 made of titanium oxide containing phosphorus is formed ( (See FIG. 2-1 (d)).
  • the aluminum paste 8 and the silver paste 9 are printed on the back surface (lower surface in the drawing) of the silicon substrate 1 by a screen printing method, and further dried. Thereafter, a silver paste 7 is printed on the antireflection film 5 on the light receiving surface of the silicon substrate 1 by a screen printing method and dried (see FIG. 2-2 (e)).
  • the silicon substrate 1 that has undergone the step (5) is baked at a temperature of 800 to 1100 ° C.
  • the silver paste 7 on the antireflection film 5 on the light receiving surface passes through the antireflection film 5 and is connected to the n-type diffusion layer 6 to form the light receiving surface electrode 10, and the aluminum paste 8 on the back surface is one.
  • the portion is diffused into the silicon substrate 1 to form the BSF layer 11 and the back surface aluminum electrode 13 and the back surface silver electrode 12 are formed (see FIG. 2-2 (f)).
  • pn junction separation is performed by forming a groove 14 by laser processing in the outer edge portion of the back surface of the silicon substrate 1 (see FIG. 2-2 (g)).
  • a solar cell can be manufactured through such a process.
  • the method for producing the solar cell of the present invention is not limited to the above-described method described with reference to FIGS. 2-1 and 2, and an n-type diffusion layer using the coating diffusing agent composition of the present invention. And a step of forming an antireflection film made of titanium oxide containing phosphorus.
  • Example 1 Comparative Example 1
  • isopropyl alcohol isopropanol
  • niline pentoxide niline pentoxide
  • water (1) were mixed and dissolved.
  • water (2) was further added and mixed, and then tetraisopropoxytitanium was mixed to prepare a coating diffusing agent composition.
  • the amount of each component used in each example is as shown in Table 1 below.
  • concentration of water and the timing which adds water were adjusted by changing the quantity of water (1) and water (2).
  • the coating diffusing agent composition obtained in each Example was stored under a high temperature condition of 60 ° C., and the time until the precipitate (titanium hydroxide) was generated was evaluated. The results are shown in Table 1. In addition, the time until the precipitate was generated was evaluated by the time during which the transparency of the liquid (coating diffusion agent composition) was maintained. Since the above coating diffusing agent composition tends to generate precipitates faster as the storage temperature is higher, this evaluation should evaluate the stability over time regarding the generation of precipitates when industrially manufactured in large quantities. Can do.
  • Example 4 As shown in FIG. 3, in the case of Example 4, the result that the liquid (coating diffusion agent composition) was transparent was the longest without causing precipitation and suspending.
  • Example 4 which is the maximum value of the time of being transparent is compared with Comparative Example 1, it is confirmed that there is about 2.5 times the liquid life, and adding water (2) It proved to be very effective in improving the stability.
  • the coating diffusing agent composition is transparent when water is added at the timing of water (1). It has been confirmed that the time tends to be shorter.
  • Example 19 to 22, Comparative Examples 2 to 5 About the coating diffusing agent composition prepared in the same manner as in Example 3 or Comparative Example 1, the coating diffusing agent composition when stored under any temperature condition of 40 ° C., 25 ° C., 5 ° C. and ⁇ 5 ° C. The stability over time was evaluated. The results are shown in Table 2. The stability over time was evaluated in the same manner as in Examples 1 to 18 and Comparative Example 1 except for the storage temperature.
  • the coating diffusing agent composition in which water (2) has a composition weight of 0.15 g and the coating diffusing agent composition not containing water are transparent at any of the storage temperatures described above.
  • a result with a difference of about 1.5 times or more at a certain time was obtained. From this, it was confirmed that the coating diffusion agent composition of the present invention has improved stability over time with respect to the generation of precipitates even in the temperature range where it is actually stored.
  • Example 23 to 29 A coating diffusing agent composition was prepared in the same manner as in Example 19 except that the aqueous solution of inorganic acid, organic acid, inorganic alkali, and organic alkali shown in Table 3 was added instead of water (2). About the obtained spreading
  • TMAH tetramethylammonium hydroxide
  • MEA monoethanolamine
  • coating diffuser composition which concerns on this invention can be used conveniently for manufacture of a solar cell etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本発明は、析出物の発生を抑制することができ、従来の水を含まないPTG液に比べ薬液寿命が長く、PTG液を大量に生産しても長期的に安定して保存することが可能となり、コスト的に優れる塗布拡散剤組成物を提供することを目的とする。 本発明の塗布拡散剤組成物は、チタン酸エステル、リン化合物、水及び有機溶剤を含むことを特徴とする。 

Description

塗布拡散剤組成物、塗布拡散剤組成物の製造方法、太陽電池及び太陽電池の製造方法
本発明は、シリコン基板上に不純物を拡散させる際に用いられる塗布拡散剤組成物及びその製造方法に関する。さらに、pn接合を有し、光エネルギーを電気エネルギーに変換する太陽電池及びその製造方法に関する。
結晶シリコン系太陽電池は、pn接合により光エネルギーを電気エネルギーに変換する機能を持つ。一般的に、結晶シリコン系太陽電池のpn接合はシリコン基板上に不純物としてホウ素を拡散させたp型半導体と、不純物としてリンを拡散させたn型半導体とから構成されている。pn接合の形成方法としては、n型半導体であるシリコンにp型となる不純物(例としてはホウ素)を拡散させる場合と、p型半導体であるシリコンにn型となる不純物(例としてはリン)を拡散させる場合とがある。
また、太陽電池セルに特性を持たせる場合にもリンを拡散する手法が用いられることもある。
不純物の拡散方法としては、イオン注入法、熱拡散法などが知られており、熱拡散法はコスト的に特に優れている。
熱拡散法は、不純物を含む拡散剤の膜をシリコン基板に形成し、高温に加熱して拡散させる方法であり、拡散剤の膜は塗布もしくはCVD法(化学気相堆積法)により形成される場合が多い。塗布の方法としては、回転塗布、スプレー塗布、印刷など多くの方式が用いられている。
シリコン基板にリンを熱拡散により拡散させ、pn接合を形成させて太陽電池を製造する場合には、例えば、まずリンを含む拡散塗布剤をp型シリコン基板に塗布し、これを800~1100℃で焼成してリンを熱拡散させた後、フッ化水素酸水溶液によりリンを含む拡散塗布剤を除去することにより、pn接合を形成することができる。
また、太陽電池は光変換効率を上げるために、pn接合層の上に反射防止膜を形成することで、より光を吸収しやすい構造とすることもあり、この場合、反射防止膜としては、窒化シリコン膜、酸化チタン膜などが多く用いられている。
PTG(Phospho Titanate Glass)膜は、五酸化二リンとチタン酸化物とからなる。太陽電池の製造工程におけるPTG膜は、リンの拡散剤としての効果と反射防止膜としての効果とを併せ持つ膜であり、例えば、シリコン基板にPTG液を用いて形成した塗膜を加熱処理することにより、n型拡散層の形成と反射防止膜の形成とを一度に行うことができる。そのため、PTG膜を形成する工程を有する太陽電池の製造方法は、コスト的に極めて優れた手法であり、以前から多く使用されている(例えば、特許文献1~5参照)。
PTG膜の形成方法としては、チタンを含む塗布拡散剤組成物(PTG液)をシリコン基板に種々の塗布法により塗布し、これを800~1100℃で焼成してn型拡散層と反射防止膜(PTG膜)を形成する方法があり、他にCVD法によるPTG膜の形成も可能である。
PTG液の組成としては、例えば、チタン酸エステル、カルボン酸、五酸化二リン及びアルコールから成るものが特許文献2に例示されている。
特開昭59-115524号公報 特開平7-22634号公報 特開平8-85874号公報 特開2000-309869号公報 特開2010-109201号公報
従来のPTG液は、液中に含まれる水酸基によるチタン酸エステルの加水分解反応が起こり、チタン成分およびリン成分が分解及び縮合する性質がある。そして、加水分解反応が進行すると、アルコール溶媒に不溶な水酸化チタンとして、チタン成分が析出し、塗布剤としての性能が著しく劣化することとなる。
このような性質のため、PTG液は、工業的に大量に生産した場合、長期的に安定して液を保管することが困難であり、少量ずつ頻繁に製造して使用する必要があったためコスト的に不利となる欠点があった。
本発明者らは、上記課題を解決するために鋭意検討した結果、チタン酸エステル、リン化合物及び有機溶剤を含む塗布拡散剤組成物(PTG液に相当)に水を配合することにより析出物(水酸化チタン)の発生を抑制することができ、従来の水を含まないPTG液に比べ、薬液寿命が長くなり、PTG液を大量に生産しても長期的に安定して保存することが可能となり、コスト的に優れることを見出し、本発明を完成した。
また、有機溶剤及びリン化合物を混合した後に、水を加える工程を行うことで、析出物(水酸化チタン)がより発生しにくいPTG液を得ることができることも合わせて見出した。
即ち、本発明の塗布拡散剤組成物は、チタン酸エステル、リン化合物、水及び有機溶剤を含むことを特徴とする。
上記塗布拡散剤組成物において、上記リン化合物は、五酸化二リン及び/又はリン酸エステルであることが好ましく、上記有機溶剤は、アルコールであることが好ましい。
また、上記塗布拡散剤組成物において、水の濃度は、5重量%以下であることが好ましく、0.05~1.5重量%であることがより好ましい。
さらに、上記塗布拡散剤組成物においては、リン原子に対するチタン原子の重量割合(チタン/リン)が、0.5~0.9であることが好ましい。
本発明の塗布拡散剤組成物の製造方法は、上記塗布拡散剤組成物を製造する方法であって、
有機溶剤、リン化合物及び水を配合した溶液(A)に、チタン酸エステルを混合することを特徴とする。
上記塗布拡散剤組成物の製造方法では、有機溶剤及びリン化合物を配合した溶液(B)に、水を混合して溶液(A)とすることが好ましい。
また、上記塗布拡散剤組成物の製造方法において、水は、純水であることが好ましい。
本発明の太陽電池は、本発明の塗布拡散剤組成物を用いて形成されたn型拡散層及び反射防止膜を備えることを特徴とする。
本発明の太陽電池の製造方法は、シリコン基板上に、本発明の塗布拡散剤組成物を塗布した後、加熱処理を行うことにより、上記シリコン基板上にn型拡散層及び反射防止膜を形成する工程を有することを特徴とする。
本発明の塗布拡散剤組成物は、チタン酸エステル、リン化合物及び有機溶剤に加えて水を含有するため、長期間に渡って析出物(水酸化チタン)の発生を抑制することができ、薬液寿命が長く、塗布拡散剤組成物を大量に生産しても長期的に安定して保存することが可能となり、コスト的に優れる。また、シリコン基板上にムラなく均一に塗布することができる。
また、本発明の塗布拡散剤組成物の製造方法では、特定の順序で成分を配合するため、上述した特性を有する塗布拡散剤組成物を好適に製造することができる。
また、本発明の太陽電池は、本発明の塗布拡散剤組成物を用いてn型拡散層及び反射防止膜が形成されているため、均一なn型拡散層及び反射防止膜を有する。また、従来の太陽電池と比較して安価である。
また、本発明の太陽電池の製造方法では、拡散剤として本発明の塗布拡散剤組成物を用いるため、上述した特性を有する太陽電池を好適に製造することができる。
(a)は、本発明の太陽電池の一例を模式的に示す断面図であり、(b)は、本発明の太陽電池の別の一例を模式的に示す断面図である。 (a)~(d)は、本発明の太陽電池の製造方法を説明するための断面図である。 (e)~(g)は、本発明の太陽電池の製造方法を説明するための断面図である。 比較例1及び実施例1~9における水(2)の濃度と液(塗布拡散剤組成物)の透明維持の時間との関係をプロットしたグラフである。 実施例3及び実施例10~13におけるTi/P重量比と液(塗布拡散剤組成物)の透明維持の時間との関係をプロットしたグラフである。 実施例3及び実施例14~18における水(1)の組成重量と液(塗布拡散剤組成物)の透明維持の時間との関係をプロットしたグラフである。
まず、本発明の塗布拡散剤組成物について説明する。
本発明の塗布拡散剤組成物は、チタン酸エステル、リン化合物、水及び有機溶剤を含むことを特徴とする。
上記チタン酸エステルとしては、例えば、テトラメトキシチタン、テトラエトキシチタン、テトラプロポキシチタン、テトライソプロポキシチタン、テトラブトキシチタン、テトラ-2-エチルヘキシルチタン、及び、これらチタンアルコキシドの多量体、チタンキレート、アシレートチタン等が挙げられる。これらは単独で用いても良いし、2種以上併用しても良い。
これらのなかでは、テトライソプロポキシチタンが好ましい。流通量が多く、コスト的にも有利だからである。
上記塗布拡散剤組成物におけるチタン酸エステルの濃度は、20重量%以下が好ましく、10重量%以下がより好ましい。
その理由は、上記チタン酸エステルの濃度が20重量%を超えると、塗布拡散剤組成物中の固形分濃度が高くなり、塗布性が悪化するおそれがあるためである。
また、上記チタン酸エステルの濃度の好ましい下限は、0.5重量%である。
上記リン化合物としては、例えば、五酸化二リン、リン酸、リン酸エステル等が挙げられる。これらは単独で用いても良いし、2種以上併用しても良い。
これらのなかでは、加水分解の反応要因となるOH基の少ない五酸化二リン及びリン酸エステルが望ましい。
上記リン酸エステルとしては、例えば、リン酸メチル、リン酸ジメチル、リン酸トリメチル、リン酸エチル、リン酸ジエチル、リン酸トリエチル、リン酸プロピル、リン酸ジプロピル、リン酸トリプロピル、リン酸イソプロピル、リン酸ジイソプロピル、リン酸ブチル、リン酸ジブチル、リン酸トリブチル、及び、これらリン酸エステルの多量体等が挙げられる。これらは単独で用いても良いし、2種以上併用しても良い。
これらのリン化合物は、塗布拡散剤組成物中に上記リン化合物のみで存在している可能性もあり、また有機溶剤や他の成分との反応生成物として存在している可能性もある。
上記塗布拡散剤組成物におけるリン化合物の濃度は、20重量%以下が好ましく、10重量%以下がより好ましい。
その理由は、上記リン化合物の濃度が20重量%を超えると、塗布拡散剤組成物中の固形分濃度が高くなり、塗布性が悪化するおそれがあるためである。
また、上記リン化合物の濃度の好ましい下限は、0.5重量%である。
上記有機溶剤としては、例えば、アルコール、有機酸、有機酸エステル、有機アミド、エーテル等が挙げられるが、これらのなかでは、アルコールが好適である。特に、上記チタン酸エステルのアルコキシ基の加水分解物に一致したアルコールが最も適している。
その理由は、化学平衡によりチタン酸エステルの加水分解反応が起こりにくくなり、長期間の保存安定性が期待されるためである。
よって、例えば、上記チタン酸エステルとしてテトライソプロポキシチタンを使用する場合には、上記有機溶剤としてイソプロパノールを使用することが望ましい。
上記塗布拡散剤組成物における有機溶剤の濃度は、60重量%以上が好ましく、80重量%以上がより好ましい。
その理由は、上記有機溶剤の濃度が60重量%未満であると、塗布拡散剤組成物中の固形分濃度が高くなり、塗布性が悪化するおそれがあるためである。
また、上記有機溶剤の濃度の好ましい上限は、99重量%である。
上記チタン酸エステルと上記リン化合物の比率については、リン原子の重量比率を1として、チタン原子の重量比率が0.2~2.0となること、即ち、リン原子に対するチタン原子の重量割合(チタン/リン)が0.2~2.0となることが好ましい。
上記リン原子に対するチタン原子の重量割合(チタン/リン)が上記範囲内にあると、上記塗布拡散剤組成物を用いて形成されたPTG膜の反射防止膜としての能力とリンの拡散能力が太陽電池製造プロセスに適した範囲内にあり、太陽電池製造用のPTG膜として好適である。
リン原子に対するチタン原子の重量割合(チタン/リン)は、0.5~0.9がより好ましく、0.67~0.75がさらに好ましい。
上記チタン酸エステルの比率が高くなると(上記重量割合(チタン/リン)が大きくなると)、上記PTG膜の屈折率が高くなり、反射防止膜としての効果に優れた膜となるものの、リンの濃度(比率)が低いことから目的のリン拡散を行うことが難しくなる傾向にある。一方、チタン酸エステルの比率が低くなると(上記重量割合(チタン/リン)が小さくなると)、リンの拡散は容易となるが、PTG膜の屈折率が最適値からずれることになり、反射防止膜としての効果が低下する傾向にある。
本発明の塗布拡散剤組成物は、水を含有する。
上記塗布拡散剤組成物は、水が配合されていることが極めて重要であり、これにより上記塗布拡散剤組成物の長期保存安定性が格段に向上することとなる。
上記塗布拡散剤組成物における水の濃度は、5重量%以下が好ましく、1.5重量%以下がより好ましい。
上記水を濃度5重量%を超えて添加すると、上記チタン酸エステルが急激に加水分解を起こし、水酸化チタンとして白色の析出物が大量に発生するおそれがある。さらに、この析出物は、液中のリン成分と結合し、液中のリン濃度を著しく低下させるため、上記析出物が発生した液(組成物)は、塗布拡散剤として使用することができなくなる。
また、本発明の効果が発揮されるためには、上記水の濃度は0.05重量%以上であることが望ましい。
上記塗布拡散剤組成物には、さらに界面活性剤を加えてもよい。
上記界面活性剤としては、例えば、ノニオン系界面活性剤、イオン性界面活性剤等が挙げられる。
このような構成からなる塗布拡散剤組成物は、本発明の塗布拡散剤組成物の製造方法により好適に製造することができる。
次に、本発明の塗布拡散剤組成物の製造方法について説明する。
本発明の塗布拡散剤組成物の製造方法は、上記塗布拡散剤組成物を製造する方法であって、
有機溶剤、リン化合物及び水を配合した溶液(A)に、チタン酸エステルを混合することを特徴とする。
上記製造方法では、有機溶剤、リン化合物及び水を配合した溶液(A)を調製した後、この溶液(A)にチタン酸エステルを混合することが重要である。
このような工程を経ることにより、チタン酸エステルの加水分解に起因する析出物の発生を防止することができるからである。
上記製造方法において、上記溶液(A)を調製する場合、有機溶剤、リン化合物及び水を同時に混合しても良いが、先に有機溶剤及びリン化合物を配合した溶液(B)を調製した後、この溶液(B)に水を混合して溶液(A)を調製することが好ましい。
この理由は、チタン酸エステルの加水分解に起因する析出物の発生を防止することができるからである。
また、上記水は、一度に全量混合しても良く、複数回に分けて混合しても良く、例えば、有機溶剤及びリン化合物と水の一部とを混合した後、残りの水を混合しても良いが、有機溶剤とリン化合物とを先に混合し、リン化合物を有機溶剤に溶解させた後、水を全量混合させることが好ましい。
また、水を配合する場合、上記水は、無機酸、有機酸、無機アルカリ又は有機アルカリなどの水溶液として添加してもよいが、純水として添加することが好ましい。
ここで、純水とは、水以外の成分が実質的に含まれないものを意味する。
本発明の塗布拡散剤組成物の製造方法における特に好ましい実施形態としては、以下の実施形態が挙げられる。
即ち、まず製造する組成物の全重量に対して、イソプロピルアルコールを80重量%以上、五酸化二リンを10重量%以下投入し、混合溶解させる。続いて、水を0.05~1.5重量%加え、よく撹拌した後に、テトライソプロポキシチタンを10重量%以下加えて塗布拡散剤組成物を得る実施形態である。
本発明の塗布拡散剤組成物は、このような塗布拡散剤組成物の製造方法により得られたものであってもよい。
次に、本発明の太陽電池について説明する。
本発明の太陽電池は、本発明の塗布拡散剤組成物を用いて形成されたn型拡散層及び反射防止膜を備えることを特徴とする。
このような太陽電池の具体例としては、例えば、図1に示した構造の太陽電池が挙げられる。
図1(a)は、本発明の太陽電池の一例を模式的に示す断面図であり、(b)は、本発明の太陽電池の別の一例を模式的に示す断面図である。
図1(a)に示す太陽電池100は、両面電極型太陽電池であり、シリコン基板1の一方の面(受光面/図中、上面)に、微小なピラミッド形状のテクスチャ構造(図示せず)を備え、さらに、その上にn型拡散層6及びリンを含むチタン酸化物からなる反射防止膜5を備えている。また、この受光面側には、反射防止膜5を貫通しn型拡散層6に接続された受光面電極10が形成されている。
また、シリコン基板1の他方の面(裏面/図中、下面)には、BSF(Back Surface Field)層11が形成されるとともに、裏面アルミ電極13及び裏面銀電極12が形成されている。さらに、上記裏面側には、pn接合分離を行う溝14が形成されている。
図1(b)に示す太陽電池200は、裏面電極型太陽電池であり、シリコン基板15の一方の面(受光面/図中、上面)に、微小なピラミッド形状のテクスチャ構造(図示せず)を備え、さらに、その上に受光面n型拡散層16及びリンを含むチタン酸化物からなる反射防止膜17を備えている。
また、シリコン基板15の他方の面(裏面/図中、下面)には、n型拡散層18及びp型拡散層19が形成されて、さらにその上に、裏面パッシベーション膜22が積層されている。さらに、裏面パッシベーション膜22を貫通するように、n型拡散層18に接続されたn型電極20及びp型拡散層19に接続されたp型電極21が形成されている。
なお、本発明の太陽電池の構造は、図1(a)、(b)に記載した構造に限定されず、n型拡散層及びリンを含むチタン酸化物からなる反射防止膜を備えた構造を有するものであればよい。
次に、本発明の太陽電池の製造方法について説明する。
本発明の太陽電池の製造方法は、シリコン基板上に、本発明の塗布拡散剤組成物を塗布した後、加熱処理を行うことにより、上記シリコン基板上にn型拡散層及び反射防止膜を形成する工程を有することを特徴とする。
以下、上記太陽電池を製造する方法について、図1(a)に示した両面電極型太陽電池を製造する場合を例に図2を参照しながら工程順に説明する。
図2-1(a)~(d)及び図2-2(e)~(g)は本発明の太陽電池の製造方法を説明するための断面図である。
また、図2-1(a)~(d)及び図2-2(e)~(g)の各図は太陽電池の一断面を示すものであり、図中の上方が受光面であり、他方が裏面である。
(1)まず、公知のワイヤソーなどを用い、単結晶又は多結晶のn型導電性又はp型導電性を有するシリコンインゴットからスライスして得られたシリコン基板1を用意する。スライス直後のシリコン基板1にはスライス時に発生したスライスダメージ層2があるので(図2-1(a)参照)、例えば、フッ化水素水溶液と硝酸との混酸などを用いてスライスダメージ層2を除去する。
(2)次に、シリコン基板1の一表面(受光面)にNaOH水溶液などを用いたエッチングを行い、微小なピラミッド形状の凹凸(テクスチャ構造)3を形成する(図2-1(b)参照)。このテクスチャ構造3は太陽電池受光面の光閉じ込めに寄与し、太陽電池の特性を向上させる効果がある。ここで、エッチングは酸を用いて行ってもよい。
なお、以下の説明で参照する図2-1(c)~図2-2(g)では、テクスチャ構造3を省略する。
(3)次に、シリコン基板1の受光面に塗布拡散剤組成物4を塗布する(図2-1(c)参照)。
ここで、塗布の方法としては、例えば、スピンコート法等を用いることができる。
(4)次に、塗布拡散剤組成物4を塗布したシリコン基板1を石英チューブ炉に入れ、N雰囲気中において800~1100℃の温度で、5~30分間の熱処理を行う。
これにより、シリコン基板1の受光面(図中、上面)に、リンが拡散してn型拡散層6が形成されるとともに、リンを含むチタン酸化物からなる反射防止膜5が形成される(図2-1(d)参照)。
(5)次に、シリコン基板1の裏面(図中、下面)にアルミペースト8と銀ペースト9をスクリーン印刷法で印刷し、さらに乾燥を行う。その後、シリコン基板1の受光面上の反射防止膜5の上に銀ペースト7をスクリーン印刷法で印刷し乾燥を行う(図2-2(e)参照)。
(6)次に、上記(5)の工程を経たシリコン基板1を800~1100℃の温度で焼成する。これにより、受光面上の反射防止膜5の上の銀ペースト7は反射防止膜5を貫通しn型拡散層6に接続され受光面電極10が形成されるとともに、裏面のアルミペースト8は一部がシリコン基板1に拡散しBSF層11が形成されるとともに裏面アルミ電極13及び裏面銀電極12が形成される(図2-2(f)参照)。
(7)最後に、シリコン基板1の裏面の外縁部に、レーザ処理にて溝14を形成することでpn接合分離を行う(図2-2(g)参照)。
このような工程を経ることにより、太陽電池を製造することができる。
なお、本発明の太陽電池の製造方法は、図2-1、2を参照しながら説明した上述の方法に限定されるわけではなく、本発明の塗布拡散剤組成物を用いてn型拡散層及びリンを含むチタン酸化物からなる反射防止膜を形成する工程を有するものであればよい。
以下に、実施例を挙げて本発明を説明するが、本発明はこれらの実施例のみに限定されるわけではない。
以下の実施例/比較例では、有機溶剤としてイソプロピルアルコールを、チタン酸エステルとしてテトライソプロポキシチタンを、リン化合物として五酸化二リンを使用した。
また、以下の実施例/比較例において、単に「水」と記載した場合、水以外の成分を実質的に含まない純水を指す。
(実施例1~18、比較例1)
まず、イソプロピルアルコール(イソプロパノール)、五酸化ニリン、水(1)を混合溶解させた。その後、さらに水(2)を加え混合した後、テトライソプロポキシチタンを混合することにより、塗布拡散剤組成物を調製した。
なお、各実施例で使用した各成分の量は、下記表1に示した通りである。また、各実施例において、水(1)及び水(2)の量を変更することにより、水の濃度、及び、水を添加するタイミングを調整した。
(経時安定性の評価)
各実施例で得られた塗布拡散剤組成物について、60℃の高温条件下で保管し、析出物(水酸化チタン)が発生するまでの時間を評価した。結果を表1に示す。
なお、析出物が発生するまでの時間は、液(塗布拡散剤組成物)の透明性が維持されている時間で評価した。
上記塗布拡散剤組成物は保管温度が高温であるほどに早く析出物が発生する傾向にあるため、この評価では、工業的に大量に製造した場合の析出物発生に関する経時安定性を評価することができる。
Figure JPOXMLDOC01-appb-T000001
また、表1に示した結果に関し、比較例1及び実施例1~9における水(2)の濃度と液(塗布拡散剤組成物)の透明維持の時間との関係を図3にプロットし、実施例3及び実施例10~13におけるTi/P重量比と液(塗布拡散剤組成物)の透明維持の時間との関係を図4にプロットし、実施例3及び実施例14~18における水(1)の組成重量と液(塗布拡散剤組成物)の透明維持の時間との関係を図5にプロットした。
図3に示したように、実施例4の場合に、析出物が発生せず懸濁することなく液(塗布拡散剤組成物)が透明である時間が最も長くなる結果が得られた。透明である時間の極大値である実施例4と比較例1とを比べると、約2.5倍の液寿命があることが確認され、水(2)を加えることが塗布拡散剤組成物の安定性を向上させるのに非常に有効であることが明らかとなった。
図4に示したように、重量割合(チタン/リン)は0.70~0.72の付近で液(塗布拡散剤組成物)が透明である時間の極大値をとることが確認された。
従って、塗布拡散剤組成物の重量割合(チタン/リン)がこの付近にある場合、析出物の発生に関する液寿命として、最も優れていることが明らかとなった。
図5に示したように、水(2)のタイミングで水を加えた塗布拡散剤組成物であっても、水(1)のタイミングで水が加えられることにより、塗布拡散剤組成物が透明である時間は短くなる傾向があることが確認された。
(実施例19~22、比較例2~5)
実施例3又は比較例1と同様にして調製した塗布拡散剤組成物について、40℃、25℃、5℃及び-5℃のいずれかの温度条件下で保管した場合の塗布拡散剤組成物の経時安定性を評価した。結果を表2に示す。なお、経時安定性の評価は、保管温度以外は実施例1~18及び比較例1と同様の方法で行った。
Figure JPOXMLDOC01-appb-T000002
表2に示したように、水(2)が0.15gの組成重量となる塗布拡散剤組成物と水を含まない塗布拡散剤組成物とでは、上述したいずれの保管温度においても、透明である時間に約1.5倍以上の差がある結果が得られた。
このことから、本発明の塗布拡散剤組成物では、実際に保管される温度範囲においても、析出物発生に関する経時安定性が向上していることが確認された。
(実施例23~29)
水(2)に代えて、表3に示した無機酸、有機酸、無機アルカリ、有機アルカリの水溶液を加えた以外は実施例19と同様にして塗布拡散剤組成物を調製した。得られた塗布拡散剤組成物について、実施例19と同様にして40℃保管条件下での析出物発生に関する経時安定性を評価した。結果を表3に示す。なお、表3には参考のため、実施例19及び比較例2の結果も併記した。
Figure JPOXMLDOC01-appb-T000003
表3中、「TMAH」は水酸化テトラメチルアンモニウムを示し、「MEA」はモノエタノールアミンを示す。
表3に示した通り、水、又は、無機酸、有機酸、無機アルカリ若しくは有機アルカリの水溶液を加えることで、液の透明が維持される時間が上昇することが確認され、中でも水は最も析出物発生を抑制する効果が高く液寿命向上に特に効果があることが示された。
本発明に係る塗布拡散剤組成物は、太陽電池等の製造に好適に使用することができる。
1、15 シリコン基板
2 スライスダメージ層
3 テクスチャ構造
4 塗布拡散剤組成物
5、17 反射防止膜
6、18 n型拡散層
7、9 銀ペースト
8 アルミペースト、
10 受光面電極
11 BSF層
12 裏面銀電極
13 裏面アルミ電極
14 溝
16 受光面n型拡散層
19 p型拡散層
20 n型電極、
21 p型電極
22 裏面パッシベーション膜
100、200 太陽電池

Claims (11)

  1. チタン酸エステル、リン化合物、水及び有機溶剤を含むことを特徴とする塗布拡散剤組成物。
  2. リン化合物は、五酸化二リン及び/又はリン酸エステルである請求項1に記載の塗布拡散剤組成物。
  3. 有機溶剤は、アルコールである請求項1又は2に記載の塗布拡散剤組成物。
  4. 水の濃度が、5重量%以下である請求項1~3のいずれかに記載の塗布拡散剤組成物。
  5. 水の濃度が、0.05~1.5重量%である請求項1~4のいずれかに記載の塗布拡散剤組成物。
  6. リン原子に対するチタン原子の重量割合(チタン/リン)が、0.5~0.9である請求項1~5のいずれかに記載の塗布拡散剤組成物。
  7. 請求項1~6のいずれかに記載の塗布拡散剤組成物を製造する方法であって、
    有機溶剤、リン化合物及び水を配合した溶液(A)に、チタン酸エステルを混合することを特徴とする塗布拡散剤組成物の製造方法。
  8. 有機溶剤及びリン化合物を配合した溶液(B)に、水を混合して溶液(A)とする請求項7に記載の塗布拡散剤組成物の製造方法。
  9. 水は、純水である請求項7又は8に記載の塗布拡散剤組成物の製造方法。
  10. 請求項1~6のいずれかに記載の塗布拡散剤組成物を用いて形成されたn型拡散層及び反射防止膜を備えることを特徴とする太陽電池。
  11. シリコン基板上に、請求項1~6のいずれかに記載の塗布拡散剤組成物を塗布した後、加熱処理を行うことにより、前記シリコン基板上にn型拡散層及び反射防止膜を形成する工程を有することを特徴とする太陽電池の製造方法。
PCT/JP2013/058908 2012-04-13 2013-03-27 塗布拡散剤組成物、塗布拡散剤組成物の製造方法、太陽電池及び太陽電池の製造方法 WO2013153950A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/391,365 US20150083209A1 (en) 2012-04-13 2013-03-27 Coatable diffusing agent composition, method for producing coatable diffusing agent composition, solar cell, and method for manufacturing solar cell
CN201380019198.1A CN104221134A (zh) 2012-04-13 2013-03-27 涂布扩散剂组合物、涂布扩散剂组合物的制造方法、太阳能电池及太阳能电池的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012091800A JP2013222747A (ja) 2012-04-13 2012-04-13 塗布拡散剤組成物、塗布拡散剤組成物の製造方法、太陽電池及び太陽電池の製造方法
JP2012-091800 2012-04-13

Publications (1)

Publication Number Publication Date
WO2013153950A1 true WO2013153950A1 (ja) 2013-10-17

Family

ID=49327519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058908 WO2013153950A1 (ja) 2012-04-13 2013-03-27 塗布拡散剤組成物、塗布拡散剤組成物の製造方法、太陽電池及び太陽電池の製造方法

Country Status (5)

Country Link
US (1) US20150083209A1 (ja)
JP (1) JP2013222747A (ja)
CN (1) CN104221134A (ja)
TW (1) TW201342632A (ja)
WO (1) WO2013153950A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015178307A1 (ja) * 2014-05-23 2015-11-26 シャープ株式会社 光電変換素子

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104505439A (zh) * 2015-01-10 2015-04-08 复旦大学 一步完成扩散、表面钝化和减反射的太阳电池制备方法
JP6330108B1 (ja) 2016-11-07 2018-05-23 信越化学工業株式会社 高光電変換効率太陽電池及び高光電変換効率太陽電池の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623597B2 (ja) * 1977-11-30 1987-01-26 Sharp Kk
JPH11340486A (ja) * 1998-05-26 1999-12-10 Sharp Corp pn接合及び反応生成物の形成方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4256980B2 (ja) * 1999-04-21 2009-04-22 シャープ株式会社 チタン酸化物膜の製造装置
KR101528382B1 (ko) * 2007-10-17 2015-06-12 헤레우스 프레셔스 메탈즈 노스 아메리카 콘쇼호켄 엘엘씨 단면 후면 컨택 태양 전지용 유전성 코팅물

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623597B2 (ja) * 1977-11-30 1987-01-26 Sharp Kk
JPH11340486A (ja) * 1998-05-26 1999-12-10 Sharp Corp pn接合及び反応生成物の形成方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015178307A1 (ja) * 2014-05-23 2015-11-26 シャープ株式会社 光電変換素子

Also Published As

Publication number Publication date
CN104221134A (zh) 2014-12-17
JP2013222747A (ja) 2013-10-28
TW201342632A (zh) 2013-10-16
US20150083209A1 (en) 2015-03-26

Similar Documents

Publication Publication Date Title
JP5019397B2 (ja) 太陽電池およびその製造方法
JP4393938B2 (ja) 電極材料及び太陽電池、並びに太陽電池の製造方法
US9837575B2 (en) Method of manufacturing solar battery cell
KR102120147B1 (ko) 태양 전지의 제조 방법 및 태양 전지
KR20130129818A (ko) 실리콘 웨이퍼들 상에 n+pp+ 또는 p+nn+ 구조를 준비하는 방법
US8440494B2 (en) Single-crystalline silicon alkaline texturing with glycerol or ethylene glycol additives
JP2017531926A (ja) N型両面電池のウェットエッチング方法
WO2013153950A1 (ja) 塗布拡散剤組成物、塗布拡散剤組成物の製造方法、太陽電池及び太陽電池の製造方法
CN105122461A (zh) 太阳能电池的制造方法
JP6144778B2 (ja) 太陽電池の製造方法
TWI715798B (zh) 聚矽氧烷、半導體用材料、半導體及太陽能電池製備方法
US20170025561A1 (en) Manufacturing method of solar cell and solar cell
CN106796964A (zh) 太阳能电池及太阳能电池的制造方法
CN102282682B (zh) 增加晶片薄层电阻和/或光电池功率密度水平的溶液
TW201703855A (zh) 用於高效結晶矽太陽能電池製造中作為擴散及合金化阻障物之可印刷糊狀物
TWI663738B (zh) Method for forming surface coating film and solar cell with surface coating film
CN103510160A (zh) 一种晶体硅太阳能电池制绒添加剂
KR101083372B1 (ko) 보론 도핑방법 및 이를 이용한 태양전지 제조방법
CN103746008A (zh) 一种太阳能电池用减反射层及其制备工艺
WO2015083453A1 (ja) 太陽電池の製造方法
KR101132292B1 (ko) 광 흡수 및 광전 변환 효율이 우수한 실리콘계 태양전지 및 그 제조 방법
BR102012030606A2 (pt) Processo de difusão de dopantes em lâminas de silício para fabricação de células solares
JP2012182275A (ja) 太陽電池、および太陽電池の製造方法
WO2024057722A1 (ja) 不純物拡散組成物、それを用いた半導体素子の製造方法および太陽電池の製造方法
KR101224643B1 (ko) 태양전지 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13775236

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14391365

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13775236

Country of ref document: EP

Kind code of ref document: A1