WO2013153727A1 - Light-emitting device, and lamp - Google Patents

Light-emitting device, and lamp Download PDF

Info

Publication number
WO2013153727A1
WO2013153727A1 PCT/JP2013/001048 JP2013001048W WO2013153727A1 WO 2013153727 A1 WO2013153727 A1 WO 2013153727A1 JP 2013001048 W JP2013001048 W JP 2013001048W WO 2013153727 A1 WO2013153727 A1 WO 2013153727A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
light
emitting device
substrate
led
Prior art date
Application number
PCT/JP2013/001048
Other languages
French (fr)
Japanese (ja)
Inventor
直紀 田上
利雄 森
次弘 松田
裕美 田中
考志 大村
美奈子 赤井
洋介 藤巻
康輔 菅原
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201390000393.5U priority Critical patent/CN204179108U/en
Priority to JP2013526259A priority patent/JP5681963B2/en
Publication of WO2013153727A1 publication Critical patent/WO2013153727A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/001Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
    • F21V19/003Fastening of light source holders, e.g. of circuit boards or substrates holding light sources
    • F21V19/0045Fastening of light source holders, e.g. of circuit boards or substrates holding light sources by tongue and groove connections, e.g. dovetail interlocking means fixed by sliding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present invention relates to a light emitting device using a light emitting element and a lamp including the same.
  • LEDs Light Emitting Diodes
  • Patent Document 1 discloses a conventional bulb-type LED lamp.
  • Patent Document 2 discloses a conventional straight tube LED lamp.
  • an LED module including a substrate and a plurality of LEDs mounted on the substrate is used.
  • a pattern-formed terminal and a metal wiring are provided on the substrate of the LED module used for the LED lamp. And the electric power supplied from the exterior of an LED lamp via a nozzle
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a light emitting device and a lamp capable of suppressing peeling of a wiring pattern.
  • one embodiment of a light-emitting device includes a substrate, a light-emitting element provided on the substrate, and light emitted from the light-emitting element, which is formed to cover the light-emitting element.
  • a first wavelength conversion unit that converts the wavelength of the first wiring pattern; a first wiring pattern that is formed on the substrate and receives power from outside the light emitting device and supplies the light emitting element; and the first wiring pattern and the substrate are continuously connected And a glass film formed so as to cover it.
  • the glass film has translucency, and the first wiring pattern reflects light emitted from the light emitting element.
  • the glass film includes inorganic particles and reflects light emitted from the light emitting element.
  • the glass film may have an opening exposing the first wiring pattern.
  • the light emitting device further includes a second wavelength conversion unit that is formed between the substrate and the light emitting element and converts a wavelength of light emitted from the light emitting element.
  • the substrate may be translucent.
  • the light emitting device includes a plurality of the light emitting elements, and the light emitting device further includes a second wiring pattern that connects the plurality of light emitting elements in series,
  • the two wiring patterns can be configured not to contact the glass film and the second wavelength conversion unit.
  • the first wavelength conversion unit includes a first wavelength conversion material that converts a wavelength of light emitted from the light emitting element, and a resin material that includes the first wavelength conversion material.
  • the second wavelength conversion part is formed by sintering a second wavelength conversion material that converts the wavelength of light emitted from the light emitting element, and the second wavelength conversion material It can be said that it is a sintered compact film
  • the light-emitting device a hollow globe that houses the light-emitting device, a base that receives electric power for causing the light-emitting device to emit light, and the light-emitting device are placed in the globe. And a supporting column to support.
  • the lamp further includes a lead wire electrically connected to the base and soldered to the first wiring pattern of the light emitting device. it can.
  • FIG. 1A is a plan view of the light-emitting device according to Embodiment 1 of the present invention.
  • FIG. 1B is a cross-sectional view of the light-emitting device according to Embodiment 1 of the present invention.
  • FIG. 1C is a cross-sectional view of the light-emitting device according to Embodiment 1 of the present invention.
  • FIG. 1D is a cross-sectional view of the light-emitting device according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram for explaining a method of manufacturing the light emitting device according to Embodiment 1 of the present invention.
  • FIG. 3 is a view for explaining the method for manufacturing the light emitting device according to Embodiment 1 of the present invention.
  • FIG. 4A is a plan view of the light-emitting device according to Embodiment 2 of the present invention.
  • FIG. 4B is a cross-sectional view of the light-emitting device according to Embodiment 2 of the present invention.
  • FIG. 4C is a cross-sectional view of the light-emitting device according to Embodiment 2 of the present invention.
  • FIG. 5 is a diagram for explaining a method for manufacturing the light-emitting device according to Embodiment 2 of the present invention.
  • FIG. 6 is a side view of a light bulb shaped lamp according to Embodiment 3 of the present invention.
  • FIG. 7 is an exploded perspective view of a light bulb shaped lamp according to Embodiment 3 of the present invention.
  • FIG. 8 is a cross-sectional view of a light bulb shaped lamp according to Embodiment 3 of the present invention.
  • FIG. 9 is a schematic cross-sectional view of the illumination device according to the embodiment of the present invention.
  • the X axis, the Y axis, and the Z axis shown in each figure are three axes orthogonal to each other.
  • the X-axis direction is the longitudinal direction of the substrate (the direction in which a plurality of LEDs are arranged).
  • the Y-axis direction is a direction orthogonal to the X-axis and is a short direction of the substrate.
  • the Z-axis direction is a direction orthogonal to the X-axis and the Y-axis and is a direction perpendicular to the first main surface of the substrate.
  • Each figure is a schematic diagram and is not necessarily illustrated strictly.
  • FIG. 1A is a plan view showing the configuration of the light-emitting device 1 according to the present embodiment
  • FIG. 1B is a cross-sectional view showing the configuration of the light-emitting device 1 (taken along the line AA ′ in FIG. 1A)
  • 1C is a cross-sectional view showing the configuration of the light-emitting device 1 (cross-sectional view taken along the line BB ′ in FIG. 1A)
  • FIG. 1D is a configuration of the light-emitting device 1
  • FIG. 2 is a cross-sectional view (cross-sectional view taken along the line CC ′ of FIG. 1A).
  • the light emitting device 1 is a light emitting module (LED module) that emits light of a predetermined color, and is formed to cover the substrate 10, the plurality of LEDs 20 provided on the substrate 10, and the plurality of LEDs 20.
  • a sealing member 30 that converts the wavelength of light emitted from the LED 20, a first metal wiring 51 and a terminal 53 that are formed on the substrate 10, receive power from the outside of the light emitting device 1 and supply the LED 20, and the substrate 10
  • a second metal wiring 50 electrically connected between the plurality of LEDs 20, a glass film 52 formed so as to continuously cover the terminal 53 and the first metal wiring 51 and the substrate 10, and the LED 20.
  • the wire 60 which electrically connects the 1st metal wiring 51 and the 2nd metal wiring 50 is provided. In FIG. 1A, the wire 60 is not shown.
  • the light emitting device 1 is a COB (Chip On Board) type LED module in which an LED chip (bare chip) is directly mounted on a substrate 10.
  • COB Chip On Board
  • the substrate 10 is, for example, a ceramic substrate made of aluminum nitride, alumina, or the like, a metal substrate, a resin substrate, a glass substrate, or a flexible substrate.
  • the substrate 10 is a rectangular mounting substrate (LED mounting substrate) for mounting the LEDs 20, and a first main surface (front side surface) 10a that is a surface on which the LEDs 20 are mounted, and the first main surface 10a. And an opposing second main surface (back side surface) 10b.
  • the length of the substrate 10 in the X-axis direction (long side length) is L1
  • the length in the Y-axis direction (short side length) is L2
  • Two through holes 11 are provided at both ends of the substrate 10 in the X-axis direction. These two through holes 11 are for electrically connecting a lead wire for power supply (not shown) and the terminal 53, and the lead wire is inserted into the through hole 11.
  • One through hole 12 is provided in the center of the substrate 10.
  • the through hole 12 is for fixing the light emitting device 1 to another member (support member or the like), and a protrusion of a support member such as a support is fitted into the through hole 12.
  • the LED 20 is an example of the light emitting element of the present invention, and a plurality of LEDs 20 are mounted on the first main surface 10 a of the substrate 10.
  • the plurality of LEDs 20 are arranged so that a plurality of element arrays arranged in a straight line at the same pitch in the X-axis direction are arranged in the Y-axis direction.
  • the plurality of LEDs 20 are connected in series in the element rows, and are connected in parallel in the element rows.
  • the interval (pitch) between adjacent LEDs 20 in the element row is 1.8 mm
  • the distance between the LED 20 in one element row and the LED 20 in the other element row is, for example, 1. It is arranged to be 8 mm.
  • the LED 20 is a bare chip that emits monochromatic visible light in all directions, that is, laterally, upwardly and downwardly. For example, the LED 20 emits 20% of the total amount of light laterally, 60% of the total amount of light upward, and 20% of the total amount of light downward.
  • the LED 20 is a rectangular (square) blue LED chip that emits blue light when energized, for example, having a side length of about 0.35 mm (350 ⁇ m).
  • the blue LED chip for example, a gallium nitride based semiconductor light emitting device having a central wavelength of 440 nm to 470 nm, which is made of an InGaN based material, can be used.
  • the LED 20 includes a sapphire substrate 21 and a plurality of nitride semiconductor layers 22 stacked on the sapphire substrate 21 and having different compositions.
  • a cathode electrode 23 and an anode electrode 24 are provided at both ends of the upper surface of the nitride semiconductor layer 22.
  • a wire bond portion 25 is provided on the cathode electrode 23, and a wire bond portion 26 is provided on the anode electrode 24.
  • the cathode electrode 23 of one LED 20 and the anode electrode 24 of the other LED 20 are electrically connected by a wire 60 via wire bond portions 25 and 26.
  • the LED 20 is fixed on the substrate 10 with a translucent chip bonding material 70 so that the surface on the sapphire substrate 21 side faces the first main surface 10a of the substrate 10.
  • a translucent material for the chip bonding material 70 By using a translucent material for the chip bonding material 70, loss of light emitted from the side surface of the LED 20 can be reduced, and generation of shadows by the chip bonding material 70 can be suppressed.
  • the sealing member 30 is an example of the first wavelength conversion unit of the present invention, and seals the LED 20 so as to cover it.
  • the sealing member 30 is a sealing resin composed of a first wavelength conversion material that converts the wavelength of light emitted from the LED 20 and a resin material that contains the first wavelength conversion material.
  • a first wavelength conversion material phosphor particles that are excited by light emitted from the LED 20 to emit light of a desired color (wavelength) can be used, or a certain wavelength such as a semiconductor, a metal complex, an organic dye, or a pigment. It is also possible to use a material containing a substance that emits light having a wavelength different from that of the absorbed light. Note that a light diffusing material such as silica particles may be dispersed in the sealing member 30.
  • phosphor particles when the LED 20 is a blue LED that emits blue light, phosphor particles that convert the wavelength of the blue light into yellow light are used in order to emit white light from the sealing member 30.
  • YAG (yttrium / aluminum / garnet) -based yellow phosphor particles can be used as the phosphor particles.
  • a part of the blue light emitted from the LED 20 is converted into yellow light by the yellow phosphor particles contained in the sealing member 30.
  • the blue light that has not been absorbed by the yellow phosphor particles (not wavelength-converted) and the yellow light that has been wavelength-converted by the yellow phosphor particles are diffused and mixed in the sealing member 30.
  • the white light is emitted from the sealing member 30.
  • green phosphor particles or red phosphor particles may be used as the phosphor particles.
  • the LED 20 is an LED 20 that emits ultraviolet rays
  • a transparent resin material such as a silicone resin, an organic material such as a fluorine-based resin, or an inorganic material such as low-melting glass or sol-gel glass can be used.
  • the sealing member 30 having the above-described configuration is formed linearly along the arrangement direction (X-axis direction) of the plurality of LEDs 20 constituting the element row, and collectively seals the element rows of the LED 20.
  • a plurality of sealing members 30 are formed along the arrangement direction (Y-axis direction) of the element rows, and individually seal different element rows.
  • Each sealing member 30 has a length of 24 mm, a line width of 1.6 mm, and a center maximum height of 0.7 mm, for example.
  • the first metal wiring 51 is an example of a part of the first wiring pattern of the present invention.
  • both ends of the substrate 10 in the X-axis direction are provided.
  • Two islands are formed in a predetermined shape.
  • These two first metal wirings 51 are formed on the first main surface 10a so as to sandwich the element rows of the plurality of LEDs 20.
  • the first metal wiring 51 is formed in a substantially rectangular shape with the Y-axis direction of the substrate 10 as a longitudinal direction on the first main surface 10a, and the length in the Y-axis direction is the same as the Y-axis direction of the substrate 10 It is substantially the same as the interval between two element rows located at both ends.
  • the first metal wiring 51 protrudes toward the element row (in the X-axis direction) at a portion adjacent to the element row of the LED 20 on the first main surface 10a.
  • the protruding portion of the first metal wiring 51 becomes a connection portion with the wire 60 from the LED 20 and is covered with a sealing member 30 that covers the wire 60 connected to itself.
  • the terminal 53 is an example of another part of the first wiring pattern of the present invention, and is formed in a predetermined shape on the first main surface 10a so as to surround the through hole 11 as a solder electrode to be soldered.
  • Two terminals 53 are formed corresponding to each of the two first metal wirings 51. These two terminals 53 are formed integrally with the corresponding first metal wiring 51 and are electrically connected by being in contact with the corresponding first metal wiring 51.
  • One pair of the first metal wiring 51 and the terminal 53 corresponding to each other constitutes one first wiring pattern.
  • the terminal 53 is a power feeding unit of the light emitting device 1, and receives power from the outside (such as a lead wire) to cause the LED 20 to emit light, and the received power is passed through the first metal wiring 51 and the second metal wiring 50. It supplies to each LED20.
  • the second metal wiring 50 is an example of the second wiring pattern of the present invention, and a plurality of second metal wirings 50 are formed in a predetermined shape on the first main surface 10a in order to electrically connect the plurality of LEDs 20 to each other in series.
  • the plurality of second metal wirings 50 are formed in an island shape between the LEDs 20 adjacent in the element array on the first main surface 10a.
  • the second metal wiring 50 is formed in the first main surface 10a in a rectangular shape whose longitudinal direction is the Y-axis direction of the substrate 10, for example, the length in the X-axis direction is 0.4 mm and the length in the Y-axis direction is The length is 0.5 mm and the thickness in the Z-axis direction is 0.008 mm.
  • the first metal wiring 51, the second metal wiring 50, and the terminal 53 configured as described above are simultaneously patterned with the same metal material.
  • the metal material for example, silver (Ag), tungsten (W), copper (Cu), or the like can be used.
  • the surface of the first metal wiring 51, the second metal wiring 50, and the terminal 53 may be plated with nickel (Ni) / gold (Au) or the like.
  • the first metal wiring 51, the second metal wiring 50, and the terminal 53 may be made of different metal materials or may be formed in separate steps.
  • first metal wiring 51 and the terminal 53 configured as described above reflect the light emitted from the LED 20.
  • the wire 60 is an electric wire for electrically connecting the LED 20 and the first metal wiring 51, or the LED 20 and the second metal wiring 50, and is, for example, a gold wire.
  • the first metal wiring 51 or the second metal wiring formed on the upper surface of the LED 20 adjacent to each of the wire bond portions 25 and 26 and both sides of the LED 20 by the wire 60. 50 is wire-bonded.
  • the entire wire 60 is embedded in the sealing member 30 so as not to be exposed from the sealing member 30, for example.
  • the glass film 52 is glass mainly composed of silicon oxide (SiO 2 ), and is made of crystallized glass, for example. Since the glass film 52 has translucency and has a high light transmittance in the visible light region, the glass film 52 efficiently transmits the light emitted from the LED 20 toward the first metal wiring 51 and the terminal 53.
  • the transmittance of the glass film 52 is, for example, 10% or more, preferably 80% or more, and more preferably 90% or more with respect to light in the visible light region. In other words, the glass film 52 is transparent to the light in the visible light region, that is, the other side can be seen through.
  • the transmittance of the glass film 52 can be adjusted by changing the material composition, but can also be adjusted by changing the thickness of the glass film 52.
  • the glass film 52 has a thickness of 0.01 mm in the Z-axis direction, and is formed in a predetermined shape on the first main surface 10a so as to cover each of the two sets of the first metal wiring 51 and the terminal 53 collectively. Two are formed in a shape. These two glass films 52 are formed so as not to contact the second metal wiring 50 so that the second metal wiring 50 and the wire 60 can be electrically connected, and the corresponding first metal wiring 51 and only the terminal 53 are covered.
  • the glass film 52 is formed on the first main surface 10 a so as to protrude from the peripheral portion of the terminal 53, and covers the entire peripheral portion of the terminal 53. Further, the glass film 52 is not formed in a portion surrounding the through hole 11 in the terminal 53, that is, in a connection portion where a connection member such as solder is connected to the outside of the light emitting device 1. That is, the glass film 52 has an opening that exposes the soldered portion of the terminal 53 to the surface.
  • a temperature of about 300 ° C. is also applied to the terminal 53. Therefore, the film formed on the terminal 53 is resistant to such a temperature.
  • the glass film 52 can satisfy this requirement.
  • the glass film 52 can suppress the peeling of the terminal 53 while enabling the electrical connection between the terminal 53 and the outside of the light emitting device 1.
  • the opening of the glass film 52 is a perfect circle having a radius of 1.5 mm
  • the glass film 52 covers a portion 0.2 mm from the peripheral edge of the terminal 53 and protrudes 0.2 mm from the peripheral edge of the terminal 53. Formed as follows.
  • the glass film 52 is formed on the first main surface 10 a so as to protrude from the peripheral edge portion of the first metal wiring 51, and is the first except for the protruding portion (connection portion with the wire 60) of the first metal wiring 51. All of the metal wiring 51 is covered. With such a configuration, the glass film 52 can suppress the peeling of the first metal wiring 51 while enabling the electrical connection between the LED 20 and the first metal wiring 51.
  • the length in the X-axis direction of the glass film 52 covering the portion other than the protruding portion of the first metal wiring 51 is 0.5 mm
  • the length in the X-axis direction of the glass film 52 covering the portion other than the protruding portion of the first metal wiring 51 The glass film 52 is formed so as to protrude 0.2 mm from both ends of the first metal wiring 51 in the X-axis direction.
  • a sealing member 30 for sealing the element array of the LED 20 corresponding to the protruding portion is formed on the glass film 52 near the protruding portion of the first metal wiring 51.
  • the sealing member 30 may be formed so as not to contact the glass film 52.
  • the two glass films 52 are provided on the first main surface 10a corresponding to the two sets of the first metal wirings 51 and the terminals 53, only one glass film 52 may be provided. In this case, only one of the two sets of the first metal wiring 51 and the terminal 53 may be covered with the glass film 52, or the two sets of the first metal wiring 51 and the terminal 53 are covered with the one glass film 52. May be. However, the glass film 52 needs to be an insulating film so that the two sets of the first metal wiring 51 and the terminal 53 are not short-circuited.
  • the glass film 52 covers both the first metal wiring 51 and the terminal 53, the glass film 52 may cover only the terminal 53 without covering the first metal wiring 51.
  • the light-emitting device 1 of the present embodiment is formed so as to cover the substrate 10, the LED 20 provided on the substrate 10, and the LED 20, and the sealing member 30 that converts the wavelength of light emitted from the LED 20.
  • the light emitting device 1 is formed on the substrate 10, and receives the power from the outside of the light emitting device 1 and supplies the LED 20 with the first metal wiring 51 and the terminal 53, the first metal wiring 51 and the terminal 53, and the substrate 10.
  • a glass film 52 formed so as to cover continuously. Therefore, since the first metal wiring 51 and the terminal 53 are coated with the glass film 52, peeling of the first metal wiring 51 and the terminal 53 is suppressed.
  • the first metal wiring 51 and the terminal 53 are likely to be peeled off starting from the peripheral portion and the substrate 10. This can be avoided by the glass film 52 that completely covers the periphery of the one metal wiring 51 and the terminal 53.
  • the LED lamp when the LED lamp is configured using the light emitting device 1 of the present embodiment, not all the light of each LED 20 is emitted directly toward the inner surface of the tube of the LED lamp. It goes to the metal wiring 51, the terminal 53, and the like. Similarly, part of the light emitted toward the inner surface of the tube is reflected by the inner surface of the tube without passing through the tube, and travels toward the substrate 10, the first metal wiring 51, the terminal 53, and the like.
  • the glass film 52 has translucency, and the 1st metal wiring 51 and the terminal 53 reflect the light emitted from LED20. Accordingly, the light directed toward the substrate 10, the first metal wiring 51, the terminal 53, etc. can be reflected by the first metal wiring 51 and the terminal 53 and directed toward the inner surface of the LED lamp, thereby improving the light extraction efficiency of the LED lamp. Can be made.
  • the glass film 52 has an opening through which the terminal 53 is exposed. Accordingly, the exposed portion of the terminal 53 can be electrically connected to the outside of the light emitting device 1.
  • the glass film 52 is formed so as to cover the first metal wiring 51 and the terminal 53 and is not formed on the second metal wiring 50.
  • the glass film 52 may be formed so as to continuously cover the second metal wiring 50 and the substrate 10 in a form in which an opening is provided at a connection position of the second metal wiring 50 with the wire 60.
  • the glass film 52 may be formed so as to continuously cover the second metal wiring 50 and the substrate 10 without providing an opening. Good. Thereby, peeling of the 2nd metal wiring 50 can be suppressed.
  • FIGS. 2 and 3 are diagrams for explaining a method of manufacturing the light-emitting device 1 according to the present embodiment.
  • the manufacturing method of the light-emitting device 1 of this Embodiment is explained in full detail.
  • a substrate 10 provided with through holes 11 and 12 is prepared.
  • a plurality of second metal wirings 50 having a predetermined shape are formed in an island shape on the first main surface 11a of the substrate 10, and the two through holes 11 are respectively formed.
  • Two terminals 53 are formed so as to be separately enclosed, and two first metal wirings 51 are formed so as to be in contact with each of the two terminals 53.
  • the first metal wiring 51, the second metal wiring 50, and the terminal 53 can be formed, for example, by printing a conductive paste in a predetermined pattern and baking it at a temperature range of 700 ° C. to 800 ° C. for 10 minutes.
  • the conductive paste for example, a silver paste containing Ag as a main component can be used.
  • a glass film 52 is formed on the first main surface 11 a of the substrate 10 so as to cover the first metal wiring 51 and the terminal 53. Specifically, a glass film is formed on the first main surface 11a so as to cover a portion other than the connection portion where the soldering of the terminal 53 is performed and a portion other than the protruding portion connected to the wire 60 of the first metal wiring 51. 52 is formed.
  • the LED 20 is mounted on the first main surface 11 a of the substrate 10.
  • the LED 20 is mounted by die bonding the LED 20 with a die attach agent or the like. Then, in order to electrically connect LED20 and the 1st metal wiring 51 or the 2nd metal wiring 50, LED20 and the 1st metal wiring 51 or the 2nd metal wiring 50 which adjoins this LED20 are used for wire 60. Wire bonding.
  • the sealing member 30 is formed on the first main surface 10 a of the substrate 10.
  • a sealing member 30 can be applied and formed by a dispenser method.
  • a discharge nozzle of a dispenser is disposed above the LED 20, and the discharge nozzle is moved along the element array of the LED 20 while discharging the sealing member material (phosphor-containing resin) from the discharge nozzle.
  • the sealing member 30 of a predetermined shape can be formed by curing the sealing member material by a predetermined method. Thereby, the light-emitting device 1 is manufactured.
  • the glass film 52 can be specifically formed as follows.
  • powdery frit glass (powder glass) is prepared, and a paste for forming a glass film is prepared by adding a solvent to this and kneading.
  • a glass film forming paste is printed at a predetermined position on the first main surface 11a of the substrate 10 in a predetermined shape.
  • the paste for forming the glass film can be coated by application other than printing.
  • the substrate 10 on which the glass film forming paste is printed is fired.
  • the glass frit of the paste for forming the glass film is softened, and the glass film 52 as a sintered body film can be formed on the substrate 10 or the wiring pattern.
  • the first metal wiring 51 and the terminal 53 can be prevented from peeling off. Moreover, the light extraction efficiency of the LED lamp can be improved.
  • the glass film 52 transmits light so as to extract the light of the LED 20 that does not face the inner surface of the LED lamp and the light of the LED 20 reflected by the inner surface of the tube, that is, the light that is not extracted from the LED lamp, from the LED lamp.
  • the first metal wiring 51 and the terminal 53 reflect the light of the LED 20 toward the inner surface of the tube.
  • the first metal wiring 51 and the terminal 53 are made of a material that transmits the light of the LED 20, for example, ITO. It can be made of a transparent conductive material such as (Indium Tin Oxide).
  • the light emitting device 1 of the present modification is different from the light emitting device 1 of the present embodiment in that the glass film 52 contains inorganic particles and reflects light emitted from the LED 20 toward the inner surface of the tube.
  • the difference from the light emitting device 1 of the present embodiment will be described in detail.
  • the glass film 52 is composed of, for example, inorganic particles as white additives for whitening the glass film 52 such as metal oxide fine particles, and glass containing silicon oxide (SiO 2 ) as a main component and containing inorganic particles. It is an inorganic film.
  • inorganic particles for example, fine particles composed of titanium oxide (TiO 2 ), aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ), magnesium oxide (MgO), or the like can be used.
  • the fine particles refer to particles having a particle system of several ⁇ m or less.
  • crystallized glass or the like can be used as the glass containing inorganic particles.
  • the glass film 52 can reflect the light emitted from the LED 20 and has a high reflectance with respect to visible light.
  • the reflectance of the glass film 52 is adjusted by adjusting the concentration of the inorganic particles.
  • concentration of an inorganic particle can be 80 wt%, for example.
  • the glass film 52 can be specifically formed as follows.
  • powdery inorganic particles are prepared, powdery frit glass (powder glass) is prepared as a binder for sintering, and a white glass is prepared by adding a solvent to the prepared inorganic particles and frit glass and kneading them.
  • a paste for film formation is prepared.
  • a white glass film forming paste is printed at a predetermined position on the first main surface 11a of the substrate 10 in a predetermined shape.
  • the white glass film-forming paste can be coated by application other than printing.
  • the substrate 10 on which the white glass film forming paste is printed is fired.
  • the glass frit of the white glass film forming paste is softened, and the inorganic particles are bonded to each other, and the inorganic particles are bonded (bonded) to the substrate 10 and the wiring pattern by the glass frit.
  • a white glass film 52 as a film can be formed.
  • the light emitting device 1 of this modification it is possible to suppress the separation of the first metal wiring 51 and the terminal 53 for the same reason as the light emitting device 1 of the first embodiment.
  • the glass film 52 includes inorganic particles and reflects the light emitted from the LED 20. Accordingly, the light traveling toward the first metal wiring 51 and the terminal 53 can be reflected by the glass film 52 on the first metal wiring 51 and the terminal 53 and directed toward the inner surface of the tube of the LED lamp. Efficiency can be improved.
  • the light-emitting device 1 of Embodiment 1 has a configuration in which light is extracted from only one surface (first main surface 10a) of the substrate 10.
  • the substrate 10 can be a light-transmitting substrate so that light can be extracted from the other surface (second main surface 10b) of the substrate 10.
  • desired light can be extracted from both surfaces of the substrate 10 by providing a wavelength conversion unit (second wavelength conversion unit) separate from the sealing member 30 between the LED 20 and the substrate 10.
  • a wavelength conversion unit second wavelength conversion unit
  • the peeling of the terminal 53 can also be suppressed.
  • the second wavelength conversion unit is formed on the first metal wiring 51 and the terminal 53, the light traveling toward the first metal wiring 51 and the terminal 53 passes through the second wavelength conversion unit. Light absorption occurs, causing problems such as color misregistration and a decrease in light extraction efficiency.
  • the first metal wiring 51 is suppressed while suppressing color misregistration, a decrease in light extraction efficiency, and the like. And the light-emitting device which can suppress peeling of the terminal 53 is implement
  • FIGS. 4A to 4C are plan views showing the configuration of the light-emitting device 2 according to the present embodiment
  • FIG. 4B is a cross-sectional view showing the configuration of the light-emitting device 2 (taken along the line AA ′ in FIG. 4A)
  • 4C is a cross-sectional view (cross-sectional view taken along the line BB ′ in FIG. 4A) showing the configuration of the light-emitting device 2.
  • FIG. Note that a cross-sectional view taken along the line C-C ′ of FIG. 4A is the same as FIG. 1D.
  • the substrate 10 has translucency, and is formed between the substrate 10 and each of the plurality of LEDs 20, and converts the wavelength of light emitted from the LEDs 20. Is different from the light-emitting device 1 of the first embodiment.
  • the light emitting device 1 includes a substrate 10, a plurality of LEDs 20, a sealing member 30, a phosphor layer 40, a first metal wiring 51, a second metal wiring 50, a terminal 53, a glass film 52, and a wire 60. With. In FIG. 4A, the wire 60 is not shown.
  • each component of the light-emitting device 2 will be described in detail focusing on differences from the light-emitting device 1 of the first embodiment.
  • substrate 10 is a translucent board
  • the transmittance of the substrate 10 is, for example, 10% or more, preferably 80% or more, more preferably 90% or more with respect to light in the visible light region.
  • a light transmitting ceramic substrate made of alumina or aluminum nitride, a transparent glass substrate, a quartz substrate, a sapphire substrate, a transparent resin substrate, or the like can be used.
  • a translucent ceramic substrate made of alumina having a transmittance of 90% can be used as the substrate 10.
  • the transmittance of the substrate 10 can be adjusted by changing the material composition, but can also be adjusted by changing the thickness of the substrate 10.
  • a plurality of LEDs 20 are mounted via the phosphor layer 40 on the first major surface 10a. That is, the LED 20 is mounted on the phosphor layer 40.
  • the phosphor layer 40 is an example of the second wavelength conversion unit of the present invention, and a plurality of phosphor layers 40 are formed in an island shape corresponding to each LED 20, and are formed immediately below the corresponding LED 20.
  • the plurality of phosphor layers 40 have the same shape and are formed in a rectangular shape whose longitudinal direction is the Y-axis direction of the substrate 10.
  • the length in the X-axis direction is 1.0 mm and the length in the Y-axis direction is The thickness in the Z-axis direction is 0.8 mm and the thickness is 0.045 mm.
  • the phosphor layer 40 is formed so as not to contact the first metal wiring 51 and the second metal wiring 50 formed between the adjacent LEDs 20. This is because when the phosphor layer 40 is formed on the first metal wiring 51 and the second metal wiring 50, the first metal wiring 51 and the second metal wiring 50 and the wire 60 are electrically connected. It is because it becomes impossible. In particular, since the first metal wiring 51 and the second metal wiring 50 have high wettability, the phosphor layer 40 is applied to the first metal wiring 51 and the second metal wiring 50 when the paste-like phosphor layer 40 is printed. This is because if they come into contact with each other, they spread on the first metal wiring 51 and the second metal wiring 50 and are unintentionally covered with the phosphor layer 40.
  • the phosphor layer 40 includes a second wavelength conversion material that converts the wavelength of light emitted from the LED 20 and an inorganic material (sintering binder) that is formed by sintering and contains the second wavelength conversion material. It is a sintered body film.
  • the second wavelength conversion material similarly to the sealing member 30, phosphor particles that are excited by light emitted from the LED 20 and emit light of a desired color (wavelength) can be used, or a semiconductor, a metal complex, A material containing a substance that emits light having a wavelength different from the light absorbed by absorbing light having a certain wavelength, such as an organic dye or a pigment, can also be used. Note that a light diffusing material such as silica particles may be dispersed in the sealing member 30.
  • the inorganic material is a binding material (binding material) for binding the phosphor particles to the substrate 10 and is made of a material having a high transmittance for visible light.
  • the phosphor particles as the second wavelength conversion material, when the LED 20 is a blue LED that emits blue light, in order to emit white light from the sealing member 30, the wavelength of blue light is converted into yellow light or yellow-green light.
  • Phosphor particles are used. Examples of such phosphor particles include YAG (yttrium, aluminum, garnet) -based yellow phosphor particles, yellow phosphor particles activated with Ce (cerium) excited at 430 nm to 470 nm, or yellow-green phosphor particles. Can be used. Thereby, a part of blue light emitted from the LED 20 is wavelength-converted into yellow light or yellow-green light by the yellow phosphor particles or yellow-green phosphor particles contained in the phosphor layer 40.
  • green phosphor particles or red phosphor particles may be used as the phosphor particles.
  • grains light-emitted in three primary colors (red, green, blue) is used.
  • red phosphor particles red phosphor particles activated with Eu 2+ (europium) excited at 430 nm to 470 nm can be used.
  • glass frit containing silicon oxide (SiO 2 ) as a main component, SnO 2 —B 2 O 3 made of low melting point crystal, or the like can be used. Glass frit can be formed by heating and melting glass powder. As glass powder of the glass frit, SiO 2 —B 2 O 3 —R 2 O, B 2 O 3 —R 2 O, or P 2 O 5 —R 2 O (wherein R 2 O is any , Li 2 O, Na 2 O, or K 2 O).
  • the concentration of the phosphor particles in the phosphor layer 40 is 91 wt% or less, and the thickness of the phosphor layer 40 is 0. 0.03 mm or more is preferable. This is because if the concentration of the phosphor particles exceeds 91%, the phosphor layer 40 peels from the alumina substrate.
  • peeling of the first metal wiring 51 and the terminal 53 can be suppressed for the same reason as the light emitting device 1 of the first embodiment.
  • the light-emitting device 2 includes a phosphor layer 40 that is formed between the substrate 10 and the LED 20 and converts the wavelength of light emitted from the LED 20, and the substrate 10 has translucency. Therefore, after a part of the light of the LED 20 passes through the phosphor layer 40, it propagates through the translucent substrate 10 and travels toward the first metal wiring 51 and the terminal 53. However, in the light emitting device 2, the first metal wiring 51 and the terminal 53 or the glass film 52 can reflect such light toward the tube inner surface of the LED lamp, thereby improving the light extraction efficiency of the LED lamp. be able to.
  • the light emitting device 2 includes a plurality of LEDs 20 and a second metal wiring 50 that connects the plurality of LEDs 20 in series, and the second metal wiring 50 does not contact the glass film 52 and the phosphor layer 40. . Since the surface of the second metal wiring 50 needs to be exposed for wire bonding, the second metal wiring 50 can be prevented from being unintentionally covered by the glass film 52 and the phosphor layer 40. it can.
  • the sealing member 30 is formed of a first wavelength conversion material that converts the wavelength of light emitted from the LED 20 and a resin material that contains the first wavelength conversion material.
  • the phosphor layer 40 is a sintered body film formed of a second wavelength conversion material that converts the wavelength of light emitted from the LED 20 and an inorganic material that is formed by sintering and contains the second wavelength conversion material. is there. Therefore, if the first metal wiring 51 and the terminal 53 are covered with the phosphor layer 40 in order to suppress the separation of the first metal wiring 51 and the terminal 53, a color shift and a decrease in light extraction efficiency occur. However, since the peeling of the first metal wiring 51 and the terminal 53 is suppressed by the glass film 52 having a transparent or reflecting function, such a problem does not occur.
  • FIG. 5 is a diagram for explaining a method of manufacturing the light emitting device 2 according to the present embodiment.
  • the manufacturing method of the light emitting device 2 according to the present embodiment is an embodiment in that it further includes a step of forming the phosphor layer 40 before the LED 20 is mounted on the substrate 10 after the glass film 52 is formed. 1 is different from the manufacturing method of the light emitting device 1.
  • the manufacturing method of the light-emitting device 2 according to the present embodiment will be described in detail focusing on differences from the manufacturing method of the light-emitting device 1 according to the first embodiment.
  • steps (a) to (c) in FIG. 2 are performed, and the first metal wiring 51, the second metal wiring 50, and the like are formed on the translucent substrate 10 provided with the through holes 11 and 12. Terminal 53 and glass film 52 are formed.
  • a plurality of island-shaped phosphor layers 40 are formed on the first main surface 11 a of the substrate 10 so as to be positioned between the adjacent second metal wirings 50. Form. Thereafter, after the LED 20 is provided on the phosphor layer 40, the LED 20 and the first metal wiring 51 or the second metal wiring 50 adjacent to the LED 20 are wire-bonded using the wire 60.
  • the sealing member 30 is formed on the first main surface 10 a of the substrate 10. Thereby, the light-emitting device 2 is manufactured.
  • the phosphor layer 40 can be specifically formed as follows.
  • powdered phosphor particles are prepared as the second wavelength conversion material, and powdered frit glass (powder glass) is prepared as a binder for sintering, and a solvent is added to the prepared phosphor particles and frit glass.
  • a paste for forming a sintered body film (a paste-like phosphor layer 40) is prepared by kneading.
  • powder glass having a softening point of 520 ° C. can be used as the binder for sintering.
  • the weight ratio (wt%) of the yellow phosphor particles and the powder glass can be set to a ratio of 80:20, for example.
  • the prepared material can be made into a paste by, for example, kneading (mixing) with a three-roll kneader.
  • the ratio of the phosphor particles is not limited to 80 wt%, and may be a ratio in the range of 20 to 91 wt%.
  • a paste for forming a sintered body film is printed in a predetermined shape on a predetermined position of the first main surface 10a of the substrate 10.
  • the paste for forming a sintered body film can be coated by application other than printing.
  • a predetermined surface treatment may be performed on the first main surface 10a of the substrate 10 before the substrate 10 is coated with the paste for forming the sintered body film.
  • the substrate 10 on which the paste for forming the sintered body film is printed is dried, for example, at a temperature of 150 ° C. for 30 minutes, and then baked at a temperature of about 600 ° C. for 10 minutes.
  • the glass frit is softened to form a sintered body film (phosphor layer 40) in which the phosphor particles are bonded to each other and the phosphor particles and the substrate 10 are bonded (bonded) by the glass frit. be able to.
  • the firing temperature is preferably a temperature at which the phosphor particles do not deteriorate and a temperature at which the glass frit is softened. Since the phosphor particles deteriorate when the temperature exceeds 700 ° C., the firing temperature is preferably less than 700 ° C. Thereby, the phosphor layer 40 can be coated on the first major surface 10 a of the substrate 10.
  • the first metal wiring 51 and the terminal 53 can be prevented from being peeled off. Moreover, the light extraction efficiency of the LED lamp can be improved.
  • the phosphor layer 40 is formed after the step of forming the glass film 52, but after the step of preparing the substrate 10. And if it is before the process of mounting LED20, it will not be restricted to this.
  • the formation process of the phosphor layer 40 may be performed after the process of forming the first wiring pattern and before the process of forming the glass film 52.
  • a light bulb shaped lamp 100 according to the present embodiment is an application example of the light emitting device according to the first or second embodiment.
  • FIG. 6 is a side view of the light bulb shaped lamp 100 according to the present embodiment.
  • FIG. 7 is an exploded perspective view of the light bulb shaped lamp 100 according to the present embodiment.
  • FIG. 8 is a cross-sectional view of the light bulb shaped lamp 100 according to the present embodiment.
  • the light bulb shaped lamp 100 is a light bulb shaped LED lamp that is a substitute for a light bulb shaped fluorescent light or an incandescent light bulb.
  • a lead wire 170 that receives power from the base 130 and has one end soldered to the terminal 53 of the LED module 120 and a lighting circuit 180 are provided.
  • the bulb-shaped lamp 100 includes an envelope made up of a globe 110, a resin case 160, and a base 130.
  • the LED module 120 the light-emitting device 1 or 2 of Embodiment 1 or 2 can be used.
  • each component of the light bulb shaped lamp 100 will be described in detail with reference to FIGS.
  • the globe 110 houses the LED module 120 and transmits light from the LED module 120 to the outside of the lamp.
  • the globe 110 is a glass bulb (clear bulb) made of silica glass that is transparent to visible light, for example. Therefore, the LED module 120 housed in the globe 110 can be viewed from the outside of the globe 110.
  • the shape of the globe 110 is a shape in which one end is closed in a spherical shape and an opening is provided at the other end.
  • the shape of the globe 110 is such that a part of the hollow sphere narrows while extending away from the center of the sphere, and an opening is formed at a position away from the center of the sphere.
  • a glass bulb having the same shape as a general incandescent bulb can be used.
  • a glass bulb such as an A shape, a G shape, or an E shape can be used as the globe 110.
  • the globe 110 is not necessarily transparent to visible light, and the globe 110 may have a light diffusion function.
  • a milky white light diffusing film may be formed by applying a resin containing a light diffusing material such as silica or calcium carbonate, a white pigment, or the like to the entire inner surface or outer surface of the globe 110.
  • the globe 110 does not need to be made of silica glass.
  • a globe 110 made of a resin material such as acrylic may be used.
  • the base 130 is a power receiving unit that receives power for causing the LEDs of the LED module 120 to emit light from the outside, and is attached to a socket of a lighting fixture, for example. When the light bulb shaped lamp 100 is lit, the base 130 receives power from the socket of the lighting fixture. The base 130 receives AC power through two contact points, and the power received by the base 130 is input to the power input unit of the lighting circuit 180 via a lead wire.
  • the base 130 is E-shaped, and a screwing portion for screwing into a socket of the lighting fixture is formed on the outer peripheral surface thereof. Further, on the inner peripheral surface of the base 130, a screwing portion for screwing into the resin case 160 is formed.
  • the base 130 has a metal bottomed cylindrical shape.
  • the type of the base 130 is not particularly limited.
  • a screw-type Edison type (E type) base can be used, and examples thereof include E26 type and E17 type.
  • the strut 140 is a metal stem provided so as to extend from the vicinity of the opening of the globe 110 toward the inside of the globe 110.
  • the column 140 functions as a holding member that holds the LED module 120.
  • One end of the column 140 is connected to the LED module 120, and the other end of the column 140 is connected to the support base 150.
  • the support column 140 is made of a metal material, and also functions as a heat radiating member for radiating heat generated in the LED module 120.
  • the support column 140 is made of aluminum having a thermal conductivity of 237 [W / m ⁇ K], for example.
  • the support column 140 has a protrusion for fitting with a through hole (the through hole 12 in FIGS. 1A and 1C) provided in the substrate of the LED module 120.
  • the protruding portion is provided so as to protrude from the top surface of the top of the support column 140 and functions as a position restricting portion that restricts the position of the LED module 120. That is, the protrusion is configured to determine the arrangement direction of the LED module 120.
  • pillar 140 you may use the stem which consists of a soft glass or transparent resin transparent with respect to visible light similarly to the conventional light bulb-type fluorescent lamp. Thereby, it can suppress that the light produced in the LED module 120 is lost by the support
  • the support base (support plate) 150 is a support member that supports the support column 140, and is connected to the opening end of the opening of the globe 110 as shown in FIG. 8.
  • the support base 150 is configured to close the opening of the globe 110 and is fixed to the resin case 160.
  • the support base 150 is provided with a through hole through which the lead wire 170 is passed.
  • the support base 150 is made of a metal material, and is made of aluminum in the same manner as the support column 140. Thereby, the heat of the LED module 120 thermally conducted to the support column 140 is efficiently conducted to the support base 150. As a result, it is possible to suppress a decrease in luminous efficiency and lifetime of the LED due to temperature rise.
  • the support base 150 is composed of a disk-shaped member having a stepped portion.
  • the stepped portion is in contact with the opening end of the opening of the globe 110, thereby closing the opening of the globe 110. Further, in the stepped portion, the support base 150, the resin case 160, and the opening end of the opening of the globe 110 are fixed by an adhesive.
  • the resin case 160 is an insulating case (circuit holder) that insulates the support column 140 from the base 130 and houses and holds the lighting circuit 180.
  • the resin case 160 includes a large-diameter cylindrical first case portion and a small-diameter cylindrical second case portion. Since the outer surface of the first case part is exposed to the outside air, the heat conducted to the resin case 160 is mainly dissipated from the first case part.
  • the second case portion is configured such that the outer peripheral surface is in contact with the inner peripheral surface of the base 130, and a screwing portion for screwing with the base 130 is formed on the outer peripheral surface of the second case portion. ing.
  • the resin case 160 can be formed of, for example, polybutylene terephthalate (PBT).
  • the two lead wires 170 are electric wires for supplying power for lighting the LED module 120 from the lighting circuit 180 to the LED module 120.
  • One end of each lead wire 170 is electrically connected to a terminal that is a power feeding portion of the LED module 120, and the other end of each lead wire 170 is electrically connected to a power output portion of the lighting circuit 180. .
  • the lighting circuit 180 is a circuit unit for lighting the LED module 120 (LED), and is housed in the resin case 160. Specifically, the lighting circuit 180 includes a plurality of circuit elements and a circuit board on which each circuit element is mounted. The lighting circuit 180 converts AC power fed from the base 130 into DC power, and supplies the DC power to the LED module 120 (LED chip) via the two lead wires 170.
  • the light bulb shaped lamp 100 is not necessarily provided with the lighting circuit 180.
  • the lighting circuit 180 is not limited to a smoothing circuit, and a dimmer circuit or a booster circuit can be appropriately selected and combined.
  • the light bulb shaped lamp 100 receives the light emitting device 1 or 2, the hollow globe 110 that houses the light emitting device 1 or 2, and the power for causing the light emitting device 1 or 2 to emit light.
  • a base 130 and a column 140 that supports the light emitting device 1 or 2 in the globe 110 are provided.
  • the light bulb shaped lamp 100 further includes a lead wire 170 electrically connected to the base 130 and soldered to the terminal 53 of the light emitting device 1 or 2. Therefore, since the LED module according to Embodiment 1 or 2 is used for the light bulb shaped lamp 100, a light bulb shaped lamp capable of suppressing the peeling of the wiring pattern of the LED module can be realized.
  • the light-emitting devices 1 and 2 according to the first and second embodiments described above are applied to a light bulb shaped lamp, the present invention is not limited thereto.
  • the light-emitting devices 1 and 2 according to the above-described embodiment can be applied to a straight tube lamp constituted by a long cylindrical straight tube or a round tube lamp constituted by an annular round tube.
  • the light emitting devices 1 and 2 according to the first and second embodiments can be applied to a lamp having a base structure such as a GX53 base or a GH76p base.
  • the light emitting devices 1 and 2 according to the first and second embodiments are also applied to a lighting unit having a configuration in which a lamp without a base, for example, a light emitting device (LED module) is arranged on a base such as a heat sink. be able to. Furthermore, the light-emitting devices 1 and 2 according to the first and second embodiments can be applied to other illumination systems as a light source.
  • a lighting unit having a configuration in which a lamp without a base, for example, a light emitting device (LED module) is arranged on a base such as a heat sink.
  • LED module light emitting device
  • the light-emitting devices 1 and 2 according to the first and second embodiments can be applied to other illumination systems as a light source.
  • the light emitting devices 1 and 2 according to Embodiments 1 and 2 described above are applied to a glass bulb used in an incandescent bulb. Not limited to this.
  • the light-emitting devices 1 and 2 according to the above-described first and second embodiments can also be applied to a light bulb shaped lamp including a metal case heat sink between a globe and a base.
  • the present invention can be applied to a light bulb shaped lamp having a long spherical bulb extending in the longitudinal direction used in a chandelier or a candle type lighting device.
  • the present invention can also be realized as an illumination device including a lamp such as the above-described light bulb shaped lamp.
  • the lighting device 3 may be configured to include the above-described light bulb shaped lamp 100 and a lighting fixture (lighting fixture) 4 to which the light bulb shaped lamp 100 is attached.
  • the lighting device 4 is for turning off and lighting the light bulb shaped lamp 100, and includes, for example, a device body 5 attached to the ceiling and a lamp cover 6 covering the light bulb shaped lamp 100.
  • the appliance main body 5 has a socket 5 a for attaching the cap 130 of the light bulb shaped lamp 100 and supplying power to the light bulb shaped lamp 100.
  • a translucent plate may be provided in the opening of the lamp cover 6.
  • the LED is exemplified as the light emitting element.
  • a semiconductor light emitting element such as a semiconductor laser
  • an EL element such as an organic EL (Electro Luminescence) or an inorganic EL, or other solid light emitting element is used. Also good.
  • the glass film has an opening, and the portion where the terminal is soldered is exposed on the surface.
  • an opening may not be formed in the glass film when the substrate and the terminal can be continuously covered with the glass film after the lead wire is connected to the terminal by soldering or the like.
  • all of the terminals may be covered with a glass film.
  • the present invention can be widely used as a light emitting device including a light emitting element such as an LED, and a lamp, an illumination unit, or an illumination system including the light emitting device.

Abstract

 A light-emitting device (1) provided with: a substrate (10); LEDs (20) provided on the substrate (10); sealing members (30) that are formed so as to cover the LEDs (20), and that convert the wavelength of the light emitted by the LEDs (20); first gold wiring (51) and terminals (53) that are formed on the substrate, and that receive electric power from outside the light-emitting device (1) and supply the electric power to the LEDs (20); and a glass film (52) that is formed so as to connect and cover the first gold wiring (51), the terminals (53) and the substrate (10).

Description

発光装置及びランプLight emitting device and lamp
 本発明は、発光素子を用いた発光装置及びこれを備えるランプに関する。 The present invention relates to a light emitting device using a light emitting element and a lamp including the same.
 近年、LED(Light Emitting Diode)等の半導体発光素子は、高効率及び長寿命であることから、各種ランプの新しい光源として期待されており、LEDを光源とするLEDランプの研究開発が進められている。 In recent years, semiconductor light emitting devices such as LEDs (Light Emitting Diodes) are expected to be new light sources for various lamps because of their high efficiency and long life, and research and development of LED lamps using LEDs as light sources has been promoted. Yes.
 このようなLEDランプとしては、直管形のLEDランプ(直管形LEDランプ)及び電球形のLEDランプ(電球形LEDランプ)がある。例えば、特許文献1には、従来の電球形LEDランプが開示されている。また、特許文献2には、従来の直管形LEDランプが開示されている。そして、これらのLEDランプでは、基板と、基板上に実装された複数のLEDとを備えるLEDモジュールが用いられる。 As such an LED lamp, there are a straight tube type LED lamp (straight tube type LED lamp) and a light bulb type LED lamp (bulb shape LED lamp). For example, Patent Document 1 discloses a conventional bulb-type LED lamp. Patent Document 2 discloses a conventional straight tube LED lamp. In these LED lamps, an LED module including a substrate and a plurality of LEDs mounted on the substrate is used.
特開2006-313717号公報JP 2006-313717 A 特開2009-043447号公報JP 2009-043447 A
 ところで、LEDランプに用いられるLEDモジュールの基板上には、LED以外にもパターン形成された端子及び金属配線等(配線パターン)が設けられる。そして、口金等を介してLEDランプ外部から供給される電力がこの配線パターンを介してLEDに供給される。 By the way, on the substrate of the LED module used for the LED lamp, in addition to the LED, a pattern-formed terminal and a metal wiring (wiring pattern) are provided. And the electric power supplied from the exterior of an LED lamp via a nozzle | cap | die etc. is supplied to LED via this wiring pattern.
 しかしながら、このような配線パターンはその表面が露出されているため、外気等の影響により剥離が起き易いという問題がある。特に、配線パターン(金属パターン)の周縁部が露出している場合には、その周縁部と基板との間を起点として剥離が起き易い。結果として、配線パターンの剥離が起きた場合には、LEDへの電力供給が不安定になるため、LEDの発光輝度の低下等の問題が生じる。 However, since the surface of such a wiring pattern is exposed, there is a problem that peeling is likely to occur due to the influence of outside air or the like. In particular, when the peripheral portion of the wiring pattern (metal pattern) is exposed, peeling is likely to occur starting from the peripheral portion and the substrate. As a result, when the wiring pattern is peeled off, the power supply to the LED becomes unstable, causing problems such as a decrease in the light emission luminance of the LED.
 本発明は、このような問題を解決するためになされたものであり、配線パターンの剥離を抑制することのできる発光装置及びランプを提供することを目的とする。 The present invention has been made to solve such a problem, and an object of the present invention is to provide a light emitting device and a lamp capable of suppressing peeling of a wiring pattern.
 上記課題を解決するために、本発明に係る発光装置の一態様は、基板と、前記基板の上に設けられた発光素子と、前記発光素子を覆うように形成され、前記発光素子が発する光の波長を変換する第1波長変換部と、前記基板の上に形成され、発光装置外部から電力を受けて前記発光素子に供給する第1配線パターンと、前記第1配線パターン及び前記基板を連続して覆うように形成されたガラス膜とを備える、ことを特徴とする。 In order to solve the above problems, one embodiment of a light-emitting device according to the present invention includes a substrate, a light-emitting element provided on the substrate, and light emitted from the light-emitting element, which is formed to cover the light-emitting element. A first wavelength conversion unit that converts the wavelength of the first wiring pattern; a first wiring pattern that is formed on the substrate and receives power from outside the light emitting device and supplies the light emitting element; and the first wiring pattern and the substrate are continuously connected And a glass film formed so as to cover it.
 さらに、本発明に係る発光装置の一態様において、前記ガラス膜は、透光性を有し、前記第1配線パターンは、前記発光素子から発せられた光を反射する、とすることができる。 Furthermore, in one embodiment of the light emitting device according to the present invention, the glass film has translucency, and the first wiring pattern reflects light emitted from the light emitting element.
 さらに、本発明に係る発光装置の一態様において、前記ガラス膜は、無機粒子を含み、前記発光素子から発せられた光を反射する、とすることができる。 Furthermore, in one embodiment of the light emitting device according to the present invention, the glass film includes inorganic particles and reflects light emitted from the light emitting element.
 さらに、本発明に係る発光装置の一態様において、前記ガラス膜は、前記第1配線パターンを露出させる開口を有する、とすることができる。 Furthermore, in one aspect of the light emitting device according to the present invention, the glass film may have an opening exposing the first wiring pattern.
 さらに、本発明に係る発光装置の一態様において、前記発光装置は、さらに、前記基板と前記発光素子との間に形成され、前記発光素子が発する光の波長を変換する第2波長変換部を備え、前記基板は、透光性を有する、とすることができる。 Furthermore, in one aspect of the light emitting device according to the present invention, the light emitting device further includes a second wavelength conversion unit that is formed between the substrate and the light emitting element and converts a wavelength of light emitted from the light emitting element. The substrate may be translucent.
 さらに、本発明に係る発光装置の一態様において、前記発光装置は、前記発光素子を複数備え、前記発光装置は、さらに、前記複数の発光素子を直列接続する第2配線パターンを備え、前記第2配線パターンは、前記ガラス膜及び前記第2波長変換部と接触しない、とすることができる。 Furthermore, in an aspect of the light emitting device according to the present invention, the light emitting device includes a plurality of the light emitting elements, and the light emitting device further includes a second wiring pattern that connects the plurality of light emitting elements in series, The two wiring patterns can be configured not to contact the glass film and the second wavelength conversion unit.
 さらに、本発明に係る発光装置の一態様において、前記第1波長変換部は、前記発光素子が発する光の波長を変換する第1波長変換材と、前記第1波長変換材を含有する樹脂材料とから構成される封止樹脂であり、前記第2波長変換部は、前記発光素子が発する光の波長を変換する第2波長変換材と、焼結により形成され、前記第2波長変換材を含有する無機材料とから構成される焼結体膜である、とすることができる。 Furthermore, in one aspect of the light emitting device according to the present invention, the first wavelength conversion unit includes a first wavelength conversion material that converts a wavelength of light emitted from the light emitting element, and a resin material that includes the first wavelength conversion material. The second wavelength conversion part is formed by sintering a second wavelength conversion material that converts the wavelength of light emitted from the light emitting element, and the second wavelength conversion material It can be said that it is a sintered compact film | membrane comprised from the inorganic material to contain.
 また、本発明に係るランプの一態様は、上記発光装置と、前記発光装置を収納する中空のグローブと、前記発光装置を発光させるための電力を受ける口金と、前記発光装置を前記グローブ内に支持する支柱とを備える、ことを特徴とする。 According to another aspect of the lamp of the present invention, the light-emitting device, a hollow globe that houses the light-emitting device, a base that receives electric power for causing the light-emitting device to emit light, and the light-emitting device are placed in the globe. And a supporting column to support.
 さらに、本発明に係るランプの一態様において、前記ランプは、さらに、前記口金と電気的に接続され、前記発光装置の前記第1配線パターンに半田付けされたリード線を備える、とすることができる。 Furthermore, in one aspect of the lamp according to the present invention, the lamp further includes a lead wire electrically connected to the base and soldered to the first wiring pattern of the light emitting device. it can.
 本発明によれば、配線パターンの剥離を抑制することができる。 According to the present invention, peeling of the wiring pattern can be suppressed.
図1Aは、本発明の実施の形態1に係る発光装置の平面図である。FIG. 1A is a plan view of the light-emitting device according to Embodiment 1 of the present invention. 図1Bは、本発明の実施の形態1に係る発光装置の断面図である。FIG. 1B is a cross-sectional view of the light-emitting device according to Embodiment 1 of the present invention. 図1Cは、本発明の実施の形態1に係る発光装置の断面図である。FIG. 1C is a cross-sectional view of the light-emitting device according to Embodiment 1 of the present invention. 図1Dは、本発明の実施の形態1に係る発光装置の断面図である。FIG. 1D is a cross-sectional view of the light-emitting device according to Embodiment 1 of the present invention. 図2は、本発明の実施の形態1に係る発光装置の製造方法を説明するための図である。FIG. 2 is a diagram for explaining a method of manufacturing the light emitting device according to Embodiment 1 of the present invention. 図3は、本発明の実施の形態1に係る発光装置の製造方法を説明するための図である。FIG. 3 is a view for explaining the method for manufacturing the light emitting device according to Embodiment 1 of the present invention. 図4Aは、本発明の実施の形態2に係る発光装置の平面図である。FIG. 4A is a plan view of the light-emitting device according to Embodiment 2 of the present invention. 図4Bは、本発明の実施の形態2に係る発光装置の断面図である。FIG. 4B is a cross-sectional view of the light-emitting device according to Embodiment 2 of the present invention. 図4Cは、本発明の実施の形態2に係る発光装置の断面図である。FIG. 4C is a cross-sectional view of the light-emitting device according to Embodiment 2 of the present invention. 図5は、本発明の実施の形態2に係る発光装置の製造方法を説明するための図である。FIG. 5 is a diagram for explaining a method for manufacturing the light-emitting device according to Embodiment 2 of the present invention. 図6は、本発明の実施の形態3に係る電球形ランプの側面図である。FIG. 6 is a side view of a light bulb shaped lamp according to Embodiment 3 of the present invention. 図7は、本発明の実施の形態3に係る電球形ランプの分解斜視図である。FIG. 7 is an exploded perspective view of a light bulb shaped lamp according to Embodiment 3 of the present invention. 図8は、本発明の実施の形態3に係る電球形ランプの断面図である。FIG. 8 is a cross-sectional view of a light bulb shaped lamp according to Embodiment 3 of the present invention. 図9は、本発明の実施の形態に係る照明装置の概略断面図である。FIG. 9 is a schematic cross-sectional view of the illumination device according to the embodiment of the present invention.
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序等は、一例であり、本発明を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、各図面において、実質的に同一の構成、動作及び効果を表す要素については、同一の符号を付す。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Each of the embodiments described below shows a preferred specific example of the present invention. Numerical values, shapes, materials, components, arrangement positions and connection forms of components, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims showing the highest concept of the present invention are described as optional constituent elements. Moreover, in each drawing, the same code | symbol is attached | subjected about the element showing substantially the same structure, operation | movement, and an effect.
 また、各図に示されるX軸、Y軸及びZ軸は、互いに直交する3軸である。以下の実施の形態において、X軸方向とは、基板の長手方向(複数のLEDの並び方向)である。また、Y軸方向とは、X軸と直交する方向であって、基板の短手方向である。また、Z軸方向とは、X軸及びY軸と直交する方向であって、基板の第1主面に対して垂直な方向である。なお、各図は、模式図であり、必ずしも厳密に図示されたものではない。 Also, the X axis, the Y axis, and the Z axis shown in each figure are three axes orthogonal to each other. In the following embodiments, the X-axis direction is the longitudinal direction of the substrate (the direction in which a plurality of LEDs are arranged). Further, the Y-axis direction is a direction orthogonal to the X-axis and is a short direction of the substrate. Further, the Z-axis direction is a direction orthogonal to the X-axis and the Y-axis and is a direction perpendicular to the first main surface of the substrate. Each figure is a schematic diagram and is not necessarily illustrated strictly.
 (実施の形態1)
 まず、本発明の実施の形態1に係る発光装置1の構成について、図1A~図1Dを用いて説明する。図1Aは、本実施の形態に係る発光装置1の構成を示す平面図であり、図1Bは、同発光装置1の構成を示す断面図(図1AのA-A’線に沿って切断した断面図)であり、図1Cは、同発光装置1の構成を示す断面図(図1AのB-B’線に沿って切断した断面図)であり、図1Dは、同発光装置1の構成を示す断面図(図1AのC-C’線に沿って切断した断面図)である。
(Embodiment 1)
First, the configuration of the light-emitting device 1 according to Embodiment 1 of the present invention will be described with reference to FIGS. 1A to 1D. 1A is a plan view showing the configuration of the light-emitting device 1 according to the present embodiment, and FIG. 1B is a cross-sectional view showing the configuration of the light-emitting device 1 (taken along the line AA ′ in FIG. 1A). 1C is a cross-sectional view showing the configuration of the light-emitting device 1 (cross-sectional view taken along the line BB ′ in FIG. 1A), and FIG. 1D is a configuration of the light-emitting device 1 FIG. 2 is a cross-sectional view (cross-sectional view taken along the line CC ′ of FIG. 1A).
 発光装置1は、所定の色の光を放出する発光モジュール(LEDモジュール)であって、基板10と、基板10の上に設けられた複数のLED20と、複数のLED20を覆うように形成され、LED20が発する光の波長を変換する封止部材30と、基板10の上に形成され、発光装置1外部から電力を受けてLED20に供給する第1金属配線51及び端子53と、基板10の上に形成され、複数のLED20間を電気的に接続する第2金属配線50と、端子53及び第1金属配線51と基板10とを連続して覆うように形成されたガラス膜52と、LED20と第1金属配線51及び第2金属配線50とを電気的に接続するワイヤー60とを備える。なお、図1Aにおいて、ワイヤー60は図示されていない。 The light emitting device 1 is a light emitting module (LED module) that emits light of a predetermined color, and is formed to cover the substrate 10, the plurality of LEDs 20 provided on the substrate 10, and the plurality of LEDs 20. A sealing member 30 that converts the wavelength of light emitted from the LED 20, a first metal wiring 51 and a terminal 53 that are formed on the substrate 10, receive power from the outside of the light emitting device 1 and supply the LED 20, and the substrate 10 A second metal wiring 50 electrically connected between the plurality of LEDs 20, a glass film 52 formed so as to continuously cover the terminal 53 and the first metal wiring 51 and the substrate 10, and the LED 20. The wire 60 which electrically connects the 1st metal wiring 51 and the 2nd metal wiring 50 is provided. In FIG. 1A, the wire 60 is not shown.
 発光装置1は、基板10にLEDチップ(ベアチップ)が直接実装されたCOB(Chip On Board)型のLEDモジュールである。以下、発光装置1の各構成部材について詳述する。 The light emitting device 1 is a COB (Chip On Board) type LED module in which an LED chip (bare chip) is directly mounted on a substrate 10. Hereinafter, each component of the light emitting device 1 will be described in detail.
 [基板]
 基板10は、例えば窒化アルミニウムやアルミナ等からなるセラミック基板、金属基板、樹脂基板、ガラス基板、又は、フレキシブル基板等である。基板10は、LED20を実装するための矩形状の実装基板(LED実装用基板)であり、LED20が実装される面である第1主面(表側面)10aと、この第1主面10aに対向する第2主面(裏側面)10bとを有する。基板10は、そのX軸方向の長さ(長辺の長さ)をL1とし、Y軸方向の長さ(短辺の長さ)をL2とし、Z軸方向の基板10の厚みをdとすると、例えばL1=26mm、L2=13mm、d=1mmとされる。
[substrate]
The substrate 10 is, for example, a ceramic substrate made of aluminum nitride, alumina, or the like, a metal substrate, a resin substrate, a glass substrate, or a flexible substrate. The substrate 10 is a rectangular mounting substrate (LED mounting substrate) for mounting the LEDs 20, and a first main surface (front side surface) 10a that is a surface on which the LEDs 20 are mounted, and the first main surface 10a. And an opposing second main surface (back side surface) 10b. The length of the substrate 10 in the X-axis direction (long side length) is L1, the length in the Y-axis direction (short side length) is L2, and the thickness of the substrate 10 in the Z-axis direction is d. Then, for example, L1 = 26 mm, L2 = 13 mm, and d = 1 mm.
 基板10のX軸方向の両端部には2つの貫通孔11が設けられている。これら2つの貫通孔11は、給電用のリード線(不図示)と端子53とを電気的に接続するためのものであり、貫通孔11にはリード線が挿通される。 Two through holes 11 are provided at both ends of the substrate 10 in the X-axis direction. These two through holes 11 are for electrically connecting a lead wire for power supply (not shown) and the terminal 53, and the lead wire is inserted into the through hole 11.
 基板10の中央部には1つの貫通孔12が設けられている。この貫通孔12は、発光装置1を他の部材(支持部材等)に固定するためのものであり、貫通孔12には支柱等の支持部材の突起部が嵌合される。 One through hole 12 is provided in the center of the substrate 10. The through hole 12 is for fixing the light emitting device 1 to another member (support member or the like), and a protrusion of a support member such as a support is fitted into the through hole 12.
 なお、貫通孔11がなくても端子53への給電は可能であり、また、貫通孔12がなくても発光装置1の支持部材への固定は可能である。従って、これらの貫通孔11及び12は設けられなくても構わない。 Note that power can be supplied to the terminal 53 without the through hole 11, and the light emitting device 1 can be fixed to the support member without the through hole 12. Therefore, these through holes 11 and 12 may not be provided.
 [LED]
 LED20は、本発明の発光素子の一例であって、基板10の第1主面10aの上に複数実装されている。この複数のLED20は、X軸方向に同一ピッチで直線状に配列された素子列がY軸方向に複数本並べられるように配設されている。複数のLED20は素子列において直列接続され、素子列同士において並列接続されている。例えば、複数のLED20は、素子列内において隣り合うLED20の間隔(ピッチ)が1.8mmとなり、隣り合う素子列において一方の素子列のLED20と他方の素子列のLED20との間隔が例えば1.8mmとなるように配設されている。
[LED]
The LED 20 is an example of the light emitting element of the present invention, and a plurality of LEDs 20 are mounted on the first main surface 10 a of the substrate 10. The plurality of LEDs 20 are arranged so that a plurality of element arrays arranged in a straight line at the same pitch in the X-axis direction are arranged in the Y-axis direction. The plurality of LEDs 20 are connected in series in the element rows, and are connected in parallel in the element rows. For example, in the plurality of LEDs 20, the interval (pitch) between adjacent LEDs 20 in the element row is 1.8 mm, and the distance between the LED 20 in one element row and the LED 20 in the other element row is, for example, 1. It is arranged to be 8 mm.
 LED20は、全方位、つまり側方、上方及び下方に向けて単色の可視光を発するベアチップである。LED20は、例えば、側方に全光量の20%、上方に全光量の60%、下方に全光量の20%の光を発する。 The LED 20 is a bare chip that emits monochromatic visible light in all directions, that is, laterally, upwardly and downwardly. For example, the LED 20 emits 20% of the total amount of light laterally, 60% of the total amount of light upward, and 20% of the total amount of light downward.
 LED20は、例えば一辺の長さが約0.35mm(350μm)で、通電されることで青色光を発する矩形状(正方形)の青色LEDチップである。青色LEDチップとしては、例えばInGaN系の材料によって構成された、中心波長が440nm~470nmの窒化ガリウム系の半導体発光素子を用いることができる。 The LED 20 is a rectangular (square) blue LED chip that emits blue light when energized, for example, having a side length of about 0.35 mm (350 μm). As the blue LED chip, for example, a gallium nitride based semiconductor light emitting device having a central wavelength of 440 nm to 470 nm, which is made of an InGaN based material, can be used.
 LED20は、図1Dに示すように、サファイア基板21と、サファイア基板21上に積層された、互いに異なる組成から構成される複数の窒化物半導体層22とを有する。 1D, the LED 20 includes a sapphire substrate 21 and a plurality of nitride semiconductor layers 22 stacked on the sapphire substrate 21 and having different compositions.
 窒化物半導体層22の上面の両端部には、カソード電極23とアノード電極24とが設けられている。そして、カソード電極23の上にはワイヤーボンド部25が設けられ、アノード電極24の上にはワイヤーボンド部26が設けられている。隣り合うLED20において、一方のLED20のカソード電極23と他方のLED20のアノード電極24とは、ワイヤーボンド部25及び26を介して、ワイヤー60により電気的に接続されている。 A cathode electrode 23 and an anode electrode 24 are provided at both ends of the upper surface of the nitride semiconductor layer 22. A wire bond portion 25 is provided on the cathode electrode 23, and a wire bond portion 26 is provided on the anode electrode 24. In the adjacent LEDs 20, the cathode electrode 23 of one LED 20 and the anode electrode 24 of the other LED 20 are electrically connected by a wire 60 via wire bond portions 25 and 26.
 LED20は、サファイア基板21側の面が基板10の第1主面10aと対向するように、透光性のチップボンディング材70により基板10の上に固定されている。チップボンディング材70には、酸化金属から構成されるフィラーを含有したシリコーン樹脂などを用いることができる。チップボンディング材70に透光性材料を使用することにより、LED20の側面から出る光の損失を低減することができ、チップボンディング材70による影の発生を抑えることができる。 The LED 20 is fixed on the substrate 10 with a translucent chip bonding material 70 so that the surface on the sapphire substrate 21 side faces the first main surface 10a of the substrate 10. For the chip bonding material 70, a silicone resin containing a filler made of metal oxide can be used. By using a translucent material for the chip bonding material 70, loss of light emitted from the side surface of the LED 20 can be reduced, and generation of shadows by the chip bonding material 70 can be suppressed.
 [封止部材]
 封止部材30は、本発明の第1波長変換部の一例であり、LED20を覆うようにして封止する。封止部材30は、LED20が発する光の波長を変換する第1波長変換材と、第1波長変換材を含有する樹脂材料とから構成される封止樹脂である。第1波長変換材としては、LED20が発する光によって励起されて所望の色(波長)の光を放出する蛍光体粒子を用いることもできるし、半導体、金属錯体、有機染料又は顔料等のある波長の光を吸収して吸収した光とは異なる波長の光を発する物質を含む材料を用いることもできる。なお、封止部材30には、シリカ粒子等の光拡散材が分散されていてもよい。
[Sealing member]
The sealing member 30 is an example of the first wavelength conversion unit of the present invention, and seals the LED 20 so as to cover it. The sealing member 30 is a sealing resin composed of a first wavelength conversion material that converts the wavelength of light emitted from the LED 20 and a resin material that contains the first wavelength conversion material. As the first wavelength conversion material, phosphor particles that are excited by light emitted from the LED 20 to emit light of a desired color (wavelength) can be used, or a certain wavelength such as a semiconductor, a metal complex, an organic dye, or a pigment. It is also possible to use a material containing a substance that emits light having a wavelength different from that of the absorbed light. Note that a light diffusing material such as silica particles may be dispersed in the sealing member 30.
 このような蛍光体粒子としては、LED20が青色光を発する青色LEDである場合、封止部材30から白色光を出射させるために、青色光を黄色光に波長変換する蛍光体粒子が用いられる。例えば、蛍光体粒子としてYAG(イットリウム・アルミニウム・ガーネット)系の黄色蛍光体粒子を用いることができる。これにより、LED20が発した青色光の一部は、封止部材30に含まれる黄色蛍光体粒子によって黄色光に波長変換される。そして、黄色蛍光体粒子に吸収されなかった(波長変換されなかった)青色光と、黄色蛍光体粒子によって波長変換された黄色光とは、封止部材30の中で拡散及び混合されることにより、封止部材30から白色光となって出射される。なお、蛍光体粒子として、黄色蛍光体粒子以外に緑色蛍光体粒子又は赤色蛍光体粒子等が用いられてもよく、LED20が紫外線を発するLED20である場合、第1波長変換材である蛍光体粒子としては、三原色(赤色、緑色、青色)に発光する各色蛍光体粒子を組み合わせたものが用いられる。 As such phosphor particles, when the LED 20 is a blue LED that emits blue light, phosphor particles that convert the wavelength of the blue light into yellow light are used in order to emit white light from the sealing member 30. For example, YAG (yttrium / aluminum / garnet) -based yellow phosphor particles can be used as the phosphor particles. Thereby, a part of the blue light emitted from the LED 20 is converted into yellow light by the yellow phosphor particles contained in the sealing member 30. Then, the blue light that has not been absorbed by the yellow phosphor particles (not wavelength-converted) and the yellow light that has been wavelength-converted by the yellow phosphor particles are diffused and mixed in the sealing member 30. The white light is emitted from the sealing member 30. In addition to the yellow phosphor particles, green phosphor particles or red phosphor particles may be used as the phosphor particles. When the LED 20 is an LED 20 that emits ultraviolet rays, the phosphor particles that are the first wavelength conversion material As for, what combined each color fluorescent substance particle | grains light-emitted in three primary colors (red, green, blue) is used.
 一方、蛍光体粒子を含有させる樹脂材料としては、シリコーン樹脂等の透明樹脂材料、フッ素系樹脂等の有機材、又は低融点ガラスもしくはゾルゲルガラス等の無機材等を用いることができる。 On the other hand, as the resin material containing the phosphor particles, a transparent resin material such as a silicone resin, an organic material such as a fluorine-based resin, or an inorganic material such as low-melting glass or sol-gel glass can be used.
 上述した構成の封止部材30は、素子列を構成する複数のLED20の配列方向(X軸方向)に沿って直線状に形成され、LED20の素子列を一括封止している。同時に、封止部材30は、素子列の配列方向(Y軸方向)に沿って複数形成され、異なる素子列を個別に封止している。1本あたりの封止部材30は、例えば、長さが24mm、線幅が1.6mm、中心最大高さが0.7mmである。 The sealing member 30 having the above-described configuration is formed linearly along the arrangement direction (X-axis direction) of the plurality of LEDs 20 constituting the element row, and collectively seals the element rows of the LED 20. At the same time, a plurality of sealing members 30 are formed along the arrangement direction (Y-axis direction) of the element rows, and individually seal different element rows. Each sealing member 30 has a length of 24 mm, a line width of 1.6 mm, and a center maximum height of 0.7 mm, for example.
 [金属配線、端子]
 第1金属配線51は、本発明の第1配線パターンの一部の一例であり、LED20の素子列と端子53とを電気的に並列接続するために、基板10のX軸方向の両端部に所定形状で島状に2つ形成されている。これら2つの第1金属配線51は、第1主面10aにおいて、複数のLED20の素子列を挟み込むように形成されている。
[Metal wiring, terminals]
The first metal wiring 51 is an example of a part of the first wiring pattern of the present invention. In order to electrically connect the element array of the LED 20 and the terminal 53 in parallel, both ends of the substrate 10 in the X-axis direction are provided. Two islands are formed in a predetermined shape. These two first metal wirings 51 are formed on the first main surface 10a so as to sandwich the element rows of the plurality of LEDs 20.
 第1金属配線51は、第1主面10aにおいて、基板10のY軸方向を長手方向とする略矩形状で形成されており、そのY軸方向の長さは、基板10のY軸方向の両端に位置する2つの素子列の間隔と略同じである。 The first metal wiring 51 is formed in a substantially rectangular shape with the Y-axis direction of the substrate 10 as a longitudinal direction on the first main surface 10a, and the length in the Y-axis direction is the same as the Y-axis direction of the substrate 10 It is substantially the same as the interval between two element rows located at both ends.
 第1金属配線51は、第1主面10aにおいて、LED20の素子列と隣り合う部分で素子列に向かって(X軸方向に)突出している。この第1金属配線51の突出部は、LED20からのワイヤー60との接続箇所となり、自身と接続されたワイヤー60を覆う封止部材30により覆われている。 The first metal wiring 51 protrudes toward the element row (in the X-axis direction) at a portion adjacent to the element row of the LED 20 on the first main surface 10a. The protruding portion of the first metal wiring 51 becomes a connection portion with the wire 60 from the LED 20 and is covered with a sealing member 30 that covers the wire 60 connected to itself.
 端子53は、本発明の第1配線パターンの他部の一例であり、半田付けが行われる半田電極として、貫通孔11を囲むように第1主面10aに所定形状で形成されている。端子53は、2つの第1金属配線51のそれぞれに対応して2つ形成されている。これら2つの端子53は、それぞれ対応する第1金属配線51と一体化して形成され、対応する第1金属配線51と接することで電気的に接続されている。このような対応する1組の第1金属配線51及び端子53により1つの第1配線パターンが構成されている。 The terminal 53 is an example of another part of the first wiring pattern of the present invention, and is formed in a predetermined shape on the first main surface 10a so as to surround the through hole 11 as a solder electrode to be soldered. Two terminals 53 are formed corresponding to each of the two first metal wirings 51. These two terminals 53 are formed integrally with the corresponding first metal wiring 51 and are electrically connected by being in contact with the corresponding first metal wiring 51. One pair of the first metal wiring 51 and the terminal 53 corresponding to each other constitutes one first wiring pattern.
 端子53は、発光装置1の給電部であって、LED20を発光させるために、外部(リード線等)から電力を受け、受けた電力を第1金属配線51及び第2金属配線50を介して各LED20に供給する。 The terminal 53 is a power feeding unit of the light emitting device 1, and receives power from the outside (such as a lead wire) to cause the LED 20 to emit light, and the received power is passed through the first metal wiring 51 and the second metal wiring 50. It supplies to each LED20.
 第2金属配線50は、本発明の第2配線パターンの一例であり、複数のLED20同士を電気的に直列接続するために、第1主面10aに所定形状で複数形成されている。これら複数の第2金属配線50は、第1主面10aにおいて、素子列内で隣り合うLED20の間に島状に形成されている。 The second metal wiring 50 is an example of the second wiring pattern of the present invention, and a plurality of second metal wirings 50 are formed in a predetermined shape on the first main surface 10a in order to electrically connect the plurality of LEDs 20 to each other in series. The plurality of second metal wirings 50 are formed in an island shape between the LEDs 20 adjacent in the element array on the first main surface 10a.
 第2金属配線50は、第1主面10aにおいて、基板10のY軸方向を長手方向とする矩形状に形成されており、例えばそのX軸方向の長さが0.4mm、Y軸方向の長さが0.5mm、Z軸方向の厚さが0.008mmである。 The second metal wiring 50 is formed in the first main surface 10a in a rectangular shape whose longitudinal direction is the Y-axis direction of the substrate 10, for example, the length in the X-axis direction is 0.4 mm and the length in the Y-axis direction is The length is 0.5 mm and the thickness in the Z-axis direction is 0.008 mm.
 上述した構成の第1金属配線51、第2金属配線50及び端子53は同じ金属材料で同時にパターン形成される。金属材料としては、例えば、銀(Ag)、タングステン(W)又は銅(Cu)等を用いることができる。なお、第1金属配線51、第2金属配線50及び端子53の表面に、ニッケル(Ni)/金(Au)等のメッキ処理を施しても構わない。また、第1金属配線51、第2金属配線50及び端子53は、異なる金属材料により構成されてもよいし、別々の工程で形成されてもよい。 The first metal wiring 51, the second metal wiring 50, and the terminal 53 configured as described above are simultaneously patterned with the same metal material. As the metal material, for example, silver (Ag), tungsten (W), copper (Cu), or the like can be used. Note that the surface of the first metal wiring 51, the second metal wiring 50, and the terminal 53 may be plated with nickel (Ni) / gold (Au) or the like. The first metal wiring 51, the second metal wiring 50, and the terminal 53 may be made of different metal materials or may be formed in separate steps.
 また、上述した構成の第1金属配線51及び端子53は、LED20から発せられた光を反射する。 Further, the first metal wiring 51 and the terminal 53 configured as described above reflect the light emitted from the LED 20.
 [ワイヤー]
 ワイヤー60は、LED20と第1金属配線51、又はLED20と第2金属配線50とを電気的に接続するための電線であり、例えば、金ワイヤーである。図1Dで説明したように、このワイヤー60により、LED20の上面に設けられたはワイヤーボンド部25及び26のそれぞれとLED20の両側に隣接して形成された第1金属配線51又は第2金属配線50とがワイヤボンディングされている。
[wire]
The wire 60 is an electric wire for electrically connecting the LED 20 and the first metal wiring 51, or the LED 20 and the second metal wiring 50, and is, for example, a gold wire. As described with reference to FIG. 1D, the first metal wiring 51 or the second metal wiring formed on the upper surface of the LED 20 adjacent to each of the wire bond portions 25 and 26 and both sides of the LED 20 by the wire 60. 50 is wire-bonded.
 ワイヤー60は、例えば、封止部材30から露出しないように、全体が封止部材30の中に埋め込まれる。 The entire wire 60 is embedded in the sealing member 30 so as not to be exposed from the sealing member 30, for example.
 [ガラス膜]
 ガラス膜52は、酸化シリコン(SiO)を主成分とするガラスであり、例えば結晶化ガラスより構成される。ガラス膜52は、透光性を有し、可視光領域の光の透過率が高いため、LED20から発せられた光を効率的に第1金属配線51及び端子53に向けて透過させる。ガラス膜52の透過率は、例えば可視光領域の光に対して10%以上、好ましくは80%以上、さらに好ましくは90%以上である。言い換えると、ガラス膜52は、可視光領域の光に対して透明、つまり向こう側が透けて見える状態である。なお、ガラス膜52の透過率は、材料組成を変更することによって調整することができるが、ガラス膜52の厚みを変更することによっても調整することができる。
[Glass film]
The glass film 52 is glass mainly composed of silicon oxide (SiO 2 ), and is made of crystallized glass, for example. Since the glass film 52 has translucency and has a high light transmittance in the visible light region, the glass film 52 efficiently transmits the light emitted from the LED 20 toward the first metal wiring 51 and the terminal 53. The transmittance of the glass film 52 is, for example, 10% or more, preferably 80% or more, and more preferably 90% or more with respect to light in the visible light region. In other words, the glass film 52 is transparent to the light in the visible light region, that is, the other side can be seen through. The transmittance of the glass film 52 can be adjusted by changing the material composition, but can also be adjusted by changing the thickness of the glass film 52.
 ガラス膜52は、例えばZ軸方向の厚さが0.01mmであり、2組の第1金属配線51及び端子53のそれぞれを一括して覆うように、第1主面10aに所定形状で島状に2つ形成されている。これら2つのガラス膜52は、第2金属配線50とワイヤー60との電気的な接続が可能になるように、第2金属配線50と接触しないように形成されており、対応する第1金属配線51及び端子53のみを覆っている。 For example, the glass film 52 has a thickness of 0.01 mm in the Z-axis direction, and is formed in a predetermined shape on the first main surface 10a so as to cover each of the two sets of the first metal wiring 51 and the terminal 53 collectively. Two are formed in a shape. These two glass films 52 are formed so as not to contact the second metal wiring 50 so that the second metal wiring 50 and the wire 60 can be electrically connected, and the corresponding first metal wiring 51 and only the terminal 53 are covered.
 ガラス膜52は、第1主面10aにおいて、端子53の周縁部からはみだすように形成されており、端子53の周縁部の全てを覆っている。さらに、ガラス膜52は、端子53における貫通孔11を囲む部分、つまり半田等の発光装置1外部との接続部材が設けられる接続部分に形成されていない。つまり、ガラス膜52は、端子53の半田付けされる部分を表面に露出させる開口を有する。端子53に半田付けが行われる際には約300℃の温度が端子53にも加えられるため、端子53の上に形成される膜に対しては、このような温度に対して耐性を持つものが要求されるが、ガラス膜52はこの要求を満足することができる。従って、ガラス膜52は、端子53と発光装置1外部との電気的な接続を可能にしつつ、端子53の剥離を抑えることができる。例えば、ガラス膜52の開口を半径1.5mmの真円とした場合、ガラス膜52は、端子53の周縁部から0.2mmの部分を覆い、かつ、端子53の周縁部から0.2mmはみだすように形成される。 The glass film 52 is formed on the first main surface 10 a so as to protrude from the peripheral portion of the terminal 53, and covers the entire peripheral portion of the terminal 53. Further, the glass film 52 is not formed in a portion surrounding the through hole 11 in the terminal 53, that is, in a connection portion where a connection member such as solder is connected to the outside of the light emitting device 1. That is, the glass film 52 has an opening that exposes the soldered portion of the terminal 53 to the surface. When soldering is performed on the terminal 53, a temperature of about 300 ° C. is also applied to the terminal 53. Therefore, the film formed on the terminal 53 is resistant to such a temperature. However, the glass film 52 can satisfy this requirement. Therefore, the glass film 52 can suppress the peeling of the terminal 53 while enabling the electrical connection between the terminal 53 and the outside of the light emitting device 1. For example, when the opening of the glass film 52 is a perfect circle having a radius of 1.5 mm, the glass film 52 covers a portion 0.2 mm from the peripheral edge of the terminal 53 and protrudes 0.2 mm from the peripheral edge of the terminal 53. Formed as follows.
 ガラス膜52は、第1主面10aにおいて、第1金属配線51の周縁部からはみだすように形成されており、第1金属配線51の突出部(ワイヤー60との接続箇所)を除いて第1金属配線51の全てを覆っている。このような構成により、ガラス膜52は、LED20と第1金属配線51との電気的な接続を可能にしつつ、第1金属配線51の剥離を抑えることが可能となる。例えば、突出部以外の第1金属配線51のX軸方向の長さ(線幅)を0.5mmとした場合、第1金属配線51の突出部以外を覆うガラス膜52のX軸方向の長さは0.9mmとされ、ガラス膜52は、第1金属配線51のX軸方向の両端からそれぞれ0.2mmはみだすように形成される。 The glass film 52 is formed on the first main surface 10 a so as to protrude from the peripheral edge portion of the first metal wiring 51, and is the first except for the protruding portion (connection portion with the wire 60) of the first metal wiring 51. All of the metal wiring 51 is covered. With such a configuration, the glass film 52 can suppress the peeling of the first metal wiring 51 while enabling the electrical connection between the LED 20 and the first metal wiring 51. For example, when the length (line width) in the X-axis direction of the first metal wiring 51 other than the protruding portion is 0.5 mm, the length in the X-axis direction of the glass film 52 covering the portion other than the protruding portion of the first metal wiring 51 The glass film 52 is formed so as to protrude 0.2 mm from both ends of the first metal wiring 51 in the X-axis direction.
 第1金属配線51の突出部近傍の上のガラス膜52の上には、その突出部に対応するLED20の素子列を封止する封止部材30が形成されている。なお、封止部材30とガラス膜52との接着性を考慮して、封止部材30はガラス膜52と接しないように形成されてもよい。 On the glass film 52 near the protruding portion of the first metal wiring 51, a sealing member 30 for sealing the element array of the LED 20 corresponding to the protruding portion is formed. In consideration of the adhesion between the sealing member 30 and the glass film 52, the sealing member 30 may be formed so as not to contact the glass film 52.
 なお、第1主面10aには、2組の第1金属配線51及び端子53に対応して2つのガラス膜52が設けられるとしたが、1つのガラス膜52のみが設けられてもよい。この場合、2組の第1金属配線51及び端子53のいずれかのみがガラス膜52で覆われてもよいし、1つのガラス膜52により2組の第1金属配線51及び端子53が覆われてもよい。ただし、2組の第1金属配線51及び端子53がショートしないように、ガラス膜52は絶縁性の膜とする必要がある。 Although the two glass films 52 are provided on the first main surface 10a corresponding to the two sets of the first metal wirings 51 and the terminals 53, only one glass film 52 may be provided. In this case, only one of the two sets of the first metal wiring 51 and the terminal 53 may be covered with the glass film 52, or the two sets of the first metal wiring 51 and the terminal 53 are covered with the one glass film 52. May be. However, the glass film 52 needs to be an insulating film so that the two sets of the first metal wiring 51 and the terminal 53 are not short-circuited.
 また、ガラス膜52は、第1金属配線51及び端子53の両方を覆うとしたが、第1金属配線51を覆わず、端子53のみを覆ってもよい。 Further, although the glass film 52 covers both the first metal wiring 51 and the terminal 53, the glass film 52 may cover only the terminal 53 without covering the first metal wiring 51.
 以上のように本実施の形態の発光装置1は、基板10と、基板10の上に設けられたLED20と、LED20を覆うように形成され、LED20が発する光の波長を変換する封止部材30とを備える。さらに、発光装置1は、基板10の上に形成され、発光装置1外部から電力を受けてLED20に供給する第1金属配線51及び端子53と、第1金属配線51及び端子53と基板10とを連続して覆うように形成されたガラス膜52とを備える。従って、第1金属配線51及び端子53はガラス膜52でコーティングされているため、第1金属配線51及び端子53の剥離が抑えられる。特に、第1金属配線51及び端子53の周縁部が露出している場合には、周縁部と基板10との間を起点として第1金属配線51及び端子53の剥離が起き易くなるが、第1金属配線51及び端子53の周縁部を完全に覆うガラス膜52によりこれを回避することができる。 As described above, the light-emitting device 1 of the present embodiment is formed so as to cover the substrate 10, the LED 20 provided on the substrate 10, and the LED 20, and the sealing member 30 that converts the wavelength of light emitted from the LED 20. With. Further, the light emitting device 1 is formed on the substrate 10, and receives the power from the outside of the light emitting device 1 and supplies the LED 20 with the first metal wiring 51 and the terminal 53, the first metal wiring 51 and the terminal 53, and the substrate 10. And a glass film 52 formed so as to cover continuously. Therefore, since the first metal wiring 51 and the terminal 53 are coated with the glass film 52, peeling of the first metal wiring 51 and the terminal 53 is suppressed. In particular, when the peripheral portions of the first metal wiring 51 and the terminal 53 are exposed, the first metal wiring 51 and the terminal 53 are likely to be peeled off starting from the peripheral portion and the substrate 10. This can be avoided by the glass film 52 that completely covers the periphery of the one metal wiring 51 and the terminal 53.
 また、本実施の形態の発光装置1を用いてLEDランプを構成した場合、各LED20の光は全てが直接LEDランプの管内面に向かって発せられるのではなく、一部は基板10、第1金属配線51及び端子53等に向かう。同様に、管内面に向かって発せられた光についても、その一部は管を透過することなく管内面で反射されて、基板10、第1金属配線51及び端子53等に向かう。しかし、本実施の形態の発光装置1では、ガラス膜52は透光性を有し、第1金属配線51及び端子53はLED20から発せられた光を反射する。従って、基板10、第1金属配線51及び端子53等に向かう光を第1金属配線51及び端子53で反射させてLEDランプの管内面に向かわせることができ、LEDランプの光取り出し効率を向上させることができる。 Further, when the LED lamp is configured using the light emitting device 1 of the present embodiment, not all the light of each LED 20 is emitted directly toward the inner surface of the tube of the LED lamp. It goes to the metal wiring 51, the terminal 53, and the like. Similarly, part of the light emitted toward the inner surface of the tube is reflected by the inner surface of the tube without passing through the tube, and travels toward the substrate 10, the first metal wiring 51, the terminal 53, and the like. However, in the light-emitting device 1 of this Embodiment, the glass film 52 has translucency, and the 1st metal wiring 51 and the terminal 53 reflect the light emitted from LED20. Accordingly, the light directed toward the substrate 10, the first metal wiring 51, the terminal 53, etc. can be reflected by the first metal wiring 51 and the terminal 53 and directed toward the inner surface of the LED lamp, thereby improving the light extraction efficiency of the LED lamp. Can be made.
 また、本実施の形態の発光装置1では、ガラス膜52は、端子53を露出させる開口を有する。従って、端子53の露出する部分で発光装置1外部と電気的に接続させることができる。 Further, in the light emitting device 1 of the present embodiment, the glass film 52 has an opening through which the terminal 53 is exposed. Accordingly, the exposed portion of the terminal 53 can be electrically connected to the outside of the light emitting device 1.
 なお、本実施の形態の発光装置1において、ガラス膜52は、第1金属配線51及び端子53を覆うように形成され、第2金属配線50の上には形成されないとした。しかし、ガラス膜52は、第2金属配線50におけるワイヤー60との接続箇所に開口を設ける形で第2金属配線50及び基板10を連続して覆うように形成されてもよい。また、LED20が第1主面10aの上でフリップチップ実装される場合には、ガラス膜52は、開口を設けることなく第2金属配線50及び基板10を連続して覆うように形成されてもよい。これにより、第2金属配線50の剥離を抑えることができる。 In the light emitting device 1 of the present embodiment, the glass film 52 is formed so as to cover the first metal wiring 51 and the terminal 53 and is not formed on the second metal wiring 50. However, the glass film 52 may be formed so as to continuously cover the second metal wiring 50 and the substrate 10 in a form in which an opening is provided at a connection position of the second metal wiring 50 with the wire 60. Further, when the LED 20 is flip-chip mounted on the first main surface 10a, the glass film 52 may be formed so as to continuously cover the second metal wiring 50 and the substrate 10 without providing an opening. Good. Thereby, peeling of the 2nd metal wiring 50 can be suppressed.
 次に、本実施の形態に係る発光装置1の製造方法の一例について、図2及び図3を用いて説明する。図2及び図3は、本実施の形態に係る発光装置1の製造方法を説明するための図である。以下、本実施の形態の発光装置1の製造方法について詳述する。 Next, an example of a method for manufacturing the light-emitting device 1 according to the present embodiment will be described with reference to FIGS. 2 and 3 are diagrams for explaining a method of manufacturing the light-emitting device 1 according to the present embodiment. Hereinafter, the manufacturing method of the light-emitting device 1 of this Embodiment is explained in full detail.
 まず、図2の(a)に示すように、貫通孔11及び12が設けられた基板10を準備する。 First, as shown in FIG. 2A, a substrate 10 provided with through holes 11 and 12 is prepared.
 次に、図2の(b)に示すように、基板10の第1の主面11a上に、所定形状の第2金属配線50を島状に複数形成するとともに、2つの貫通孔11をそれぞれ別々に囲むように端子53を2つ形成し、さらに、2つの端子53のそれぞれと接するように第1金属配線51を2つ形成する。第1金属配線51、第2金属配線50及び端子53は、例えば、導電性ペーストを所定のパターンで印刷し、700℃~800℃の温度範囲で10分間焼成することによって形成することができる。導電性ペーストとしては、例えばAgを主成分とする銀ペーストを用いることができる。 Next, as shown in FIG. 2B, a plurality of second metal wirings 50 having a predetermined shape are formed in an island shape on the first main surface 11a of the substrate 10, and the two through holes 11 are respectively formed. Two terminals 53 are formed so as to be separately enclosed, and two first metal wirings 51 are formed so as to be in contact with each of the two terminals 53. The first metal wiring 51, the second metal wiring 50, and the terminal 53 can be formed, for example, by printing a conductive paste in a predetermined pattern and baking it at a temperature range of 700 ° C. to 800 ° C. for 10 minutes. As the conductive paste, for example, a silver paste containing Ag as a main component can be used.
 次に、図2の(c)に示すように、基板10の第1の主面11a上に、第1金属配線51及び端子53を覆うようにガラス膜52を形成する。具体的には、第1の主面11a上に、端子53の半田付け等が行われる接続部分以外と、第1金属配線51のワイヤー60と接続される突出部以外とを覆うようにガラス膜52を形成する。 Next, as shown in FIG. 2C, a glass film 52 is formed on the first main surface 11 a of the substrate 10 so as to cover the first metal wiring 51 and the terminal 53. Specifically, a glass film is formed on the first main surface 11a so as to cover a portion other than the connection portion where the soldering of the terminal 53 is performed and a portion other than the protruding portion connected to the wire 60 of the first metal wiring 51. 52 is formed.
 次に、図3の(a)に示すように、基板10の第1の主面11a上に、LED20を実装する。LED20の実装は、ダイアタッチ剤等によってLED20をダイボンディングすることにより行われる。その後、LED20と第1金属配線51又は第2金属配線50とを電気的に接続するために、LED20とこのLED20に隣接する第1金属配線51又は第2金属配線50とをワイヤー60を用いてワイヤボンディングする。 Next, as shown in FIG. 3A, the LED 20 is mounted on the first main surface 11 a of the substrate 10. The LED 20 is mounted by die bonding the LED 20 with a die attach agent or the like. Then, in order to electrically connect LED20 and the 1st metal wiring 51 or the 2nd metal wiring 50, LED20 and the 1st metal wiring 51 or the 2nd metal wiring 50 which adjoins this LED20 are used for wire 60. Wire bonding.
 最後に、図3の(b)に示すように、基板10の第1主面10a上に、封止部材30を形成する。このような封止部材30は、ディスペンサー方式によって塗布形成することができる。例えば、LED20の上方にディスペンサーの吐出ノズルを配置し、吐出ノズルから封止部材材料(蛍光体含有樹脂)を吐出させながら吐出ノズルをLED20の素子列に沿って移動させることで、封止部材材料を直線状に塗布することができる。その後、所定の方法によって封止部材材料を硬化させることにより、所定形状の封止部材30を形成することができる。これにより、発光装置1が製造される。 Finally, as shown in FIG. 3B, the sealing member 30 is formed on the first main surface 10 a of the substrate 10. Such a sealing member 30 can be applied and formed by a dispenser method. For example, a discharge nozzle of a dispenser is disposed above the LED 20, and the discharge nozzle is moved along the element array of the LED 20 while discharging the sealing member material (phosphor-containing resin) from the discharge nozzle. Can be applied linearly. Then, the sealing member 30 of a predetermined shape can be formed by curing the sealing member material by a predetermined method. Thereby, the light-emitting device 1 is manufactured.
 ここで、ガラス膜52は、具体的に、以下のようにして形成することができる。 Here, the glass film 52 can be specifically formed as follows.
 まず、粉末状のフリットガラス(粉末ガラス)を準備し、これに溶剤を添加し混練することによってガラス膜形成用のペーストを作製する。 First, powdery frit glass (powder glass) is prepared, and a paste for forming a glass film is prepared by adding a solvent to this and kneading.
 次に、ガラス膜形成用のペーストを基板10の第1の主面11a上の所定の位置に所定形状で印刷する。なお、ガラス膜形成用のペーストは印刷以外に塗布によってもコーティングすることができる。 Next, a glass film forming paste is printed at a predetermined position on the first main surface 11a of the substrate 10 in a predetermined shape. In addition, the paste for forming the glass film can be coated by application other than printing.
 次に、ガラス膜形成用のペーストが印刷された基板10を焼成する。焼成することによってガラス膜形成用のペーストのガラスフリットが軟化して、基板10もしくは配線パターン上に焼結体膜としてのガラス膜52を形成することができる。 Next, the substrate 10 on which the glass film forming paste is printed is fired. By baking, the glass frit of the paste for forming the glass film is softened, and the glass film 52 as a sintered body film can be formed on the substrate 10 or the wiring pattern.
 以上のように本実施の形態の発光装置1の製造方法によれば、第1金属配線51及び端子53の剥離を抑えることができる。また、LEDランプの光取り出し効率を向上させることができる。 As described above, according to the method for manufacturing the light emitting device 1 of the present embodiment, the first metal wiring 51 and the terminal 53 can be prevented from peeling off. Moreover, the light extraction efficiency of the LED lamp can be improved.
 (変形例)
 本実施の形態では、LEDランプの管内面に向かわないLED20の光及び管内面で反射されたLED20の光、つまりLEDランプから取り出されない光をLEDランプから取り出すために、ガラス膜52は透光性を有し、第1金属配線51及び端子53はLED20の光を管内面に向けて反射させるとした。しかしながら、LED20の光をガラス膜52自体が管内面に向けて反射しても同様の効果を得ることができ、さらに第1金属配線51及び端子53を、LED20の光を透過する材料、例えばITO(Indium Tin Oxide)等の透明導電材料で構成することができる。すなわち、第1金属配線51及び端子53の材料選択の自由度を高くすることができる。従って、本変形例の発光装置1は、ガラス膜52が無機粒子を含み、LED20から発せられた光を管内面に向けて反射する点で本実施の形態の発光装置1と異なる。以下、本実施の形態の発光装置1と異なる点を中心に詳述する。
(Modification)
In the present embodiment, the glass film 52 transmits light so as to extract the light of the LED 20 that does not face the inner surface of the LED lamp and the light of the LED 20 reflected by the inner surface of the tube, that is, the light that is not extracted from the LED lamp, from the LED lamp. The first metal wiring 51 and the terminal 53 reflect the light of the LED 20 toward the inner surface of the tube. However, even if the glass film 52 itself reflects the light of the LED 20 toward the inner surface of the tube, the same effect can be obtained. Further, the first metal wiring 51 and the terminal 53 are made of a material that transmits the light of the LED 20, for example, ITO. It can be made of a transparent conductive material such as (Indium Tin Oxide). That is, the degree of freedom in material selection for the first metal wiring 51 and the terminal 53 can be increased. Therefore, the light emitting device 1 of the present modification is different from the light emitting device 1 of the present embodiment in that the glass film 52 contains inorganic particles and reflects light emitted from the LED 20 toward the inner surface of the tube. Hereinafter, the difference from the light emitting device 1 of the present embodiment will be described in detail.
 [ガラス膜]
 ガラス膜52は、例えば酸化金属微粒子等のガラス膜52を白色化する白色添加剤としての無機粒子と、酸化シリコン(SiO)を主成分とし、無機粒子を含有するガラスとから構成される白色の無機膜である。無機粒子としては、例えば、酸化チタン(TiO)、酸化アルミニウム(Al)、酸化シリコン(SiO)又は酸化マグネシウム(MgO)等から構成される微粒子を用いることができる。なお、微粒子とは、数μm以下の粒系を有する粒子をいう。一方、無機粒子を含有させるガラスとしては、結晶化ガラス等を用いることができる。
[Glass film]
The glass film 52 is composed of, for example, inorganic particles as white additives for whitening the glass film 52 such as metal oxide fine particles, and glass containing silicon oxide (SiO 2 ) as a main component and containing inorganic particles. It is an inorganic film. As the inorganic particles, for example, fine particles composed of titanium oxide (TiO 2 ), aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ), magnesium oxide (MgO), or the like can be used. The fine particles refer to particles having a particle system of several μm or less. On the other hand, crystallized glass or the like can be used as the glass containing inorganic particles.
 ガラス膜52は、LED20から発せられた光を反射することができ、可視光に対して高い反射率を有する。ガラス膜52の反射率は、無機粒子の濃度を調整することで調整される。無機粒子の濃度は、例えば80wt%とすることができる。 The glass film 52 can reflect the light emitted from the LED 20 and has a high reflectance with respect to visible light. The reflectance of the glass film 52 is adjusted by adjusting the concentration of the inorganic particles. The density | concentration of an inorganic particle can be 80 wt%, for example.
 ここで、ガラス膜52は、具体的に、以下のようにして形成することができる。 Here, the glass film 52 can be specifically formed as follows.
 まず、粉末状の無機粒子を準備するとともに、焼結用結合材として粉末状のフリットガラス(粉末ガラス)を準備し、準備した無機粒子及びフリットガラスに溶剤を添加し混練することによって白色のガラス膜形成用のペーストを作製する。 First, powdery inorganic particles are prepared, powdery frit glass (powder glass) is prepared as a binder for sintering, and a white glass is prepared by adding a solvent to the prepared inorganic particles and frit glass and kneading them. A paste for film formation is prepared.
 次に、白色のガラス膜形成用のペーストを基板10の第1の主面11a上の所定の位置に所定形状で印刷する。なお、白色のガラス膜形成用のペーストは印刷以外に塗布によってもコーティングすることができる。 Next, a white glass film forming paste is printed at a predetermined position on the first main surface 11a of the substrate 10 in a predetermined shape. The white glass film-forming paste can be coated by application other than printing.
 次に、白色のガラス膜形成用のペーストが印刷された基板10を焼成する。焼成することによって白色のガラス膜形成用のペーストのガラスフリットが軟化して、無機粒子同士が、また、無機粒子と基板10および配線パターンとが、ガラスフリットにより結着(接合)した焼結体膜としての白色のガラス膜52を形成することができる。 Next, the substrate 10 on which the white glass film forming paste is printed is fired. When sintered, the glass frit of the white glass film forming paste is softened, and the inorganic particles are bonded to each other, and the inorganic particles are bonded (bonded) to the substrate 10 and the wiring pattern by the glass frit. A white glass film 52 as a film can be formed.
 以上のように本変形例の発光装置1によれば、実施の形態1の発光装置1と同様の理由により、第1金属配線51及び端子53の剥離を抑えることができる。 As described above, according to the light emitting device 1 of this modification, it is possible to suppress the separation of the first metal wiring 51 and the terminal 53 for the same reason as the light emitting device 1 of the first embodiment.
 また、本変形例の発光装置1によれば、ガラス膜52は、無機粒子を含み、LED20から発せられた光を反射する。従って、第1金属配線51及び端子53等に向かう光を第1金属配線51及び端子53の上のガラス膜52で反射させてLEDランプの管内面に向かわせることができ、LEDランプの光取り出し効率を向上させることができる。 Further, according to the light emitting device 1 of the present modification, the glass film 52 includes inorganic particles and reflects the light emitted from the LED 20. Accordingly, the light traveling toward the first metal wiring 51 and the terminal 53 can be reflected by the glass film 52 on the first metal wiring 51 and the terminal 53 and directed toward the inner surface of the tube of the LED lamp. Efficiency can be improved.
 (実施の形態2)
 実施の形態1の発光装置1は、基板10の片面(第1主面10a)のみから光を取り出す構成を有する。しかしながら、LED20は下方に向けても光を出射するため、基板10を透光性基板とすることで、基板10のもう一方の面(第2主面10b)からも光を取り出す構成とできる。この場合、LED20と基板10との間に封止部材30とは別の波長変換部(第2波長変換部)を設けることで、基板10の両面から所望の光を取り出すことができる。このような構成では、ガラス膜52でなく、第2波長変換部を第1金属配線51及び端子53と基板10との上に連続して形成し、第2波長変換部により第1金属配線51及び端子53の剥離を抑えることもできる。しかしながら、第2波長変換部を第1金属配線51及び端子53の上に形成すると、第1金属配線51及び端子53に向かう光は第2波長変換部を通過するため、第2波長変換部による光の吸収が起こり、色ずれや光取り出し効率の低下等の問題が発生する。
(Embodiment 2)
The light-emitting device 1 of Embodiment 1 has a configuration in which light is extracted from only one surface (first main surface 10a) of the substrate 10. However, since the LED 20 emits light even when directed downward, the substrate 10 can be a light-transmitting substrate so that light can be extracted from the other surface (second main surface 10b) of the substrate 10. In this case, desired light can be extracted from both surfaces of the substrate 10 by providing a wavelength conversion unit (second wavelength conversion unit) separate from the sealing member 30 between the LED 20 and the substrate 10. In such a configuration, not the glass film 52 but the second wavelength conversion part is continuously formed on the first metal wiring 51, the terminal 53 and the substrate 10, and the first metal wiring 51 is formed by the second wavelength conversion part. And the peeling of the terminal 53 can also be suppressed. However, when the second wavelength conversion unit is formed on the first metal wiring 51 and the terminal 53, the light traveling toward the first metal wiring 51 and the terminal 53 passes through the second wavelength conversion unit. Light absorption occurs, causing problems such as color misregistration and a decrease in light extraction efficiency.
 そこで、本発明の実施の形態2に係る発光装置2は、LED20と基板10との間に波長変換部を設ける構成において、色ずれや光取り出し効率の低下等を抑えつつ、第1金属配線51及び端子53の剥離を抑えることができる発光装置を実現するものである。 Therefore, in the light emitting device 2 according to the second embodiment of the present invention, in the configuration in which the wavelength conversion unit is provided between the LED 20 and the substrate 10, the first metal wiring 51 is suppressed while suppressing color misregistration, a decrease in light extraction efficiency, and the like. And the light-emitting device which can suppress peeling of the terminal 53 is implement | achieved.
 まず、本発明の実施の形態2に係る発光装置2の構成について、図4A~図4Cを用いて説明する。図4Aは、本実施の形態に係る発光装置2の構成を示す平面図であり、図4Bは、同発光装置2の構成を示す断面図(図4AのA-A’線に沿って切断した断面図)であり、図4Cは、同発光装置2の構成を示す断面図(図4AのB-B’線に沿って切断した断面図)である。なお、図4AのC-C’線に沿って切断した断面図は、図1Dと同様である。 First, the configuration of the light emitting device 2 according to Embodiment 2 of the present invention will be described with reference to FIGS. 4A to 4C. 4A is a plan view showing the configuration of the light-emitting device 2 according to the present embodiment, and FIG. 4B is a cross-sectional view showing the configuration of the light-emitting device 2 (taken along the line AA ′ in FIG. 4A). 4C is a cross-sectional view (cross-sectional view taken along the line BB ′ in FIG. 4A) showing the configuration of the light-emitting device 2. As shown in FIG. Note that a cross-sectional view taken along the line C-C ′ of FIG. 4A is the same as FIG. 1D.
 本実施の形態に係る発光装置2は、基板10が透光性を有し、基板10と複数のLED20の各々との間に形成され、LED20が発する光の波長を変換する第2波長変換部をさらに備える点で実施の形態1の発光装置1と異なる。 In the light emitting device 2 according to the present embodiment, the substrate 10 has translucency, and is formed between the substrate 10 and each of the plurality of LEDs 20, and converts the wavelength of light emitted from the LEDs 20. Is different from the light-emitting device 1 of the first embodiment.
 発光装置1は、基板10と、複数のLED20と、封止部材30と、蛍光体層40と、第1金属配線51、第2金属配線50と、端子53と、ガラス膜52と、ワイヤー60とを備える。なお、図4Aにおいて、ワイヤー60は図示されていない。以下、発光装置2の各構成部材について実施の形態1の発光装置1と異なる点を中心に詳述する。 The light emitting device 1 includes a substrate 10, a plurality of LEDs 20, a sealing member 30, a phosphor layer 40, a first metal wiring 51, a second metal wiring 50, a terminal 53, a glass film 52, and a wire 60. With. In FIG. 4A, the wire 60 is not shown. Hereinafter, each component of the light-emitting device 2 will be described in detail focusing on differences from the light-emitting device 1 of the first embodiment.
 [基板]
 基板10は、透光性を有する透光性基板であり、LED20が発する光を透過させる。基板10の透過率は、例えば可視光領域の光に対して10%以上、好ましくは80%以上、さらに好ましくは90%以上である。このような透光性を有する基板10としては、アルミナや窒化アルミニウムから構成される透光性セラミック基板、透明ガラス基板、水晶基板、サファイア基板、又は透明樹脂基板等を用いることができる。例えば、基板10として透過率が90%であるアルミナから構成される透光性セラミック基板を用いることができる。なお、基板10の透過率は、材料組成を変更することによって調整することができるが、基板10の厚みを変更することによっても調整することができる。
[substrate]
The board | substrate 10 is a translucent board | substrate which has translucency, and permeate | transmits the light which LED20 emits. The transmittance of the substrate 10 is, for example, 10% or more, preferably 80% or more, more preferably 90% or more with respect to light in the visible light region. As the substrate 10 having such a light transmitting property, a light transmitting ceramic substrate made of alumina or aluminum nitride, a transparent glass substrate, a quartz substrate, a sapphire substrate, a transparent resin substrate, or the like can be used. For example, a translucent ceramic substrate made of alumina having a transmittance of 90% can be used as the substrate 10. The transmittance of the substrate 10 can be adjusted by changing the material composition, but can also be adjusted by changing the thickness of the substrate 10.
 [LED]
 LED20は、第1主面10aの上において、蛍光体層40を介して複数実装されている。すなわち、LED20は、蛍光体層40の上に実装されている。
[LED]
A plurality of LEDs 20 are mounted via the phosphor layer 40 on the first major surface 10a. That is, the LED 20 is mounted on the phosphor layer 40.
 [蛍光体層]
 蛍光体層40は、本発明の第2波長変換部の一例であり、各LED20に対応して島状に複数形成され、対応するLED20の直下に形成されている。複数の蛍光体層40は、同一形状で基板10のY軸方向を長手方向とする矩形状に形成されており、例えばそのX軸方向の長さが1.0mm、Y軸方向の長さが0.8mm、Z軸方向の厚さが0.045mmとされている。
[Phosphor layer]
The phosphor layer 40 is an example of the second wavelength conversion unit of the present invention, and a plurality of phosphor layers 40 are formed in an island shape corresponding to each LED 20, and are formed immediately below the corresponding LED 20. The plurality of phosphor layers 40 have the same shape and are formed in a rectangular shape whose longitudinal direction is the Y-axis direction of the substrate 10. For example, the length in the X-axis direction is 1.0 mm and the length in the Y-axis direction is The thickness in the Z-axis direction is 0.8 mm and the thickness is 0.045 mm.
 蛍光体層40は、隣り合うLED20の間に形成された第1金属配線51及び第2金属配線50と接触しないように形成されている。これは、第1金属配線51及び第2金属配線50の上に蛍光体層40が形成されてしまうと、第1金属配線51及び第2金属配線50とワイヤー60とを電気的に接続させることができなくなるからである。特に、第1金属配線51及び第2金属配線50は濡れ性が高いことから、ペースト状の蛍光体層40を印刷する際、蛍光体層40が第1金属配線51及び第2金属配線50に接触してしまうと第1金属配線51及び第2金属配線50の上に広がってしまい、蛍光体層40によって意図せずに覆われてしまうからである。 The phosphor layer 40 is formed so as not to contact the first metal wiring 51 and the second metal wiring 50 formed between the adjacent LEDs 20. This is because when the phosphor layer 40 is formed on the first metal wiring 51 and the second metal wiring 50, the first metal wiring 51 and the second metal wiring 50 and the wire 60 are electrically connected. It is because it becomes impossible. In particular, since the first metal wiring 51 and the second metal wiring 50 have high wettability, the phosphor layer 40 is applied to the first metal wiring 51 and the second metal wiring 50 when the paste-like phosphor layer 40 is printed. This is because if they come into contact with each other, they spread on the first metal wiring 51 and the second metal wiring 50 and are unintentionally covered with the phosphor layer 40.
 蛍光体層40は、LED20が発する光の波長を変換する第2波長変換材と、焼結により形成され、第2波長変換材を含有する無機材料(焼結用結合材)とから構成される焼結体膜である。第2波長変換材としては、封止部材30と同様に、LED20が発する光によって励起されて所望の色(波長)の光を放出する蛍光体粒子を用いることもできるし、半導体、金属錯体、有機染料又は顔料等のある波長の光を吸収して吸収した光とは異なる波長の光を発する物質を含む材料を用いることもできる。なお、封止部材30には、シリカ粒子等の光拡散材が分散されていてもよい。無機材料は、蛍光体粒子を基板10に結着させるための結合材(結着材)であり、可視光に対する透過率が高い材料で構成されている。 The phosphor layer 40 includes a second wavelength conversion material that converts the wavelength of light emitted from the LED 20 and an inorganic material (sintering binder) that is formed by sintering and contains the second wavelength conversion material. It is a sintered body film. As the second wavelength conversion material, similarly to the sealing member 30, phosphor particles that are excited by light emitted from the LED 20 and emit light of a desired color (wavelength) can be used, or a semiconductor, a metal complex, A material containing a substance that emits light having a wavelength different from the light absorbed by absorbing light having a certain wavelength, such as an organic dye or a pigment, can also be used. Note that a light diffusing material such as silica particles may be dispersed in the sealing member 30. The inorganic material is a binding material (binding material) for binding the phosphor particles to the substrate 10 and is made of a material having a high transmittance for visible light.
 第2波長変換材である蛍光体粒子としては、LED20が青色光を発する青色LEDである場合、封止部材30から白色光を出射させるために、青色光を黄色光又は黄緑色光に波長変換する蛍光体粒子が用いられる。このような蛍光体粒子としては、例えばYAG(イットリウム・アルミニウム・ガーネット)系の黄色蛍光体粒子、430nm~470nmで励起するCe(セリウム)を賦活された黄色蛍光体粒子又は黄緑色蛍光体粒子を用いることができる。これにより、LED20が発した青色光の一部は、蛍光体層40に含まれる黄色蛍光体粒子又は黄緑色蛍光体粒子によって黄色光又は黄緑色光に波長変換される。そして、黄色蛍光体粒子又は黄緑色蛍光体粒子に吸収されなかった(波長変換されなかった)青色光と、黄色蛍光体粒子又は黄緑色蛍光体粒子によって波長変換された黄色光又は黄緑色光とは、封止部材30の中で拡散及び混合されることにより、蛍光体層40から白色光となって出射される。なお、蛍光体粒子として、黄色蛍光体粒子以外に緑色蛍光体粒子又は赤色蛍光体粒子等が用いられてもよく、LED20が紫外線を発するLED20である場合、第1波長変換材である蛍光体粒子としては、三原色(赤色、緑色、青色)に発光する各色蛍光体粒子を組み合わせたものが用いられる。赤色蛍光体粒子としては、430nm~470nmで励起するEu2+(ユウロピウム)を賦活された赤色蛍光体粒子を用いることができる。 As the phosphor particles as the second wavelength conversion material, when the LED 20 is a blue LED that emits blue light, in order to emit white light from the sealing member 30, the wavelength of blue light is converted into yellow light or yellow-green light. Phosphor particles are used. Examples of such phosphor particles include YAG (yttrium, aluminum, garnet) -based yellow phosphor particles, yellow phosphor particles activated with Ce (cerium) excited at 430 nm to 470 nm, or yellow-green phosphor particles. Can be used. Thereby, a part of blue light emitted from the LED 20 is wavelength-converted into yellow light or yellow-green light by the yellow phosphor particles or yellow-green phosphor particles contained in the phosphor layer 40. And the blue light that was not absorbed by the yellow phosphor particles or the yellow-green phosphor particles (the wavelength was not converted), and the yellow light or yellow-green light that was wavelength-converted by the yellow phosphor particles or the yellow-green phosphor particles Is diffused and mixed in the sealing member 30 to be emitted from the phosphor layer 40 as white light. In addition to the yellow phosphor particles, green phosphor particles or red phosphor particles may be used as the phosphor particles. When the LED 20 is an LED 20 that emits ultraviolet rays, the phosphor particles that are the first wavelength conversion material As for, what combined each color fluorescent substance particle | grains light-emitted in three primary colors (red, green, blue) is used. As the red phosphor particles, red phosphor particles activated with Eu 2+ (europium) excited at 430 nm to 470 nm can be used.
 蛍光体粒子を含有させる無機材料としては、酸化シリコン(SiO)を主成分とするガラスフリット、及び低融点結晶からなるSnO-B等を用いることができる。ガラスフリットは、ガラス粉末を加熱して溶解することによって形成することができる。ガラスフリットのガラス粉末としては、SiO-B-RO系、B-RO系又はP-RO系(但し、ROは、いずれも、LiO、NaO、又は、KOである)を用いることができる。 As the inorganic material containing the phosphor particles, glass frit containing silicon oxide (SiO 2 ) as a main component, SnO 2 —B 2 O 3 made of low melting point crystal, or the like can be used. Glass frit can be formed by heating and melting glass powder. As glass powder of the glass frit, SiO 2 —B 2 O 3 —R 2 O, B 2 O 3 —R 2 O, or P 2 O 5 —R 2 O (wherein R 2 O is any , Li 2 O, Na 2 O, or K 2 O).
 なお、第2波長変換材が蛍光体粒子であり、基板10がアルミナ基板である場合、蛍光体層40における蛍光体粒子の濃度が91wt%以下であり、また蛍光体層40の厚さは0.035mm以上であることが好ましい。これは、蛍光体粒子の濃度が91%を超えると、アルミナ基板に対して蛍光体層40の剥離が生じるからである。 When the second wavelength conversion material is phosphor particles and the substrate 10 is an alumina substrate, the concentration of the phosphor particles in the phosphor layer 40 is 91 wt% or less, and the thickness of the phosphor layer 40 is 0. 0.03 mm or more is preferable. This is because if the concentration of the phosphor particles exceeds 91%, the phosphor layer 40 peels from the alumina substrate.
 以上、本実施の形態に係る発光装置2によれば、実施の形態1の発光装置1と同様の理由により、第1金属配線51及び端子53の剥離を抑えることができる。 As described above, according to the light emitting device 2 according to the present embodiment, peeling of the first metal wiring 51 and the terminal 53 can be suppressed for the same reason as the light emitting device 1 of the first embodiment.
 また、本実施の形態に係る発光装置2は、基板10とLED20との間に形成され、LED20が発する光の波長を変換する蛍光体層40を備え、基板10は、透光性を有する。従って、LED20の光の一部は蛍光体層40を通過した後、透光性の基板10内を伝播して第1金属配線51及び端子53等に向かう。しかし、発光装置2では、このような光を、第1金属配線51及び端子53又はガラス膜52はLEDランプの管内面に向けて反射させることができるので、LEDランプの光取り出し効率を向上させることができる。 The light-emitting device 2 according to the present embodiment includes a phosphor layer 40 that is formed between the substrate 10 and the LED 20 and converts the wavelength of light emitted from the LED 20, and the substrate 10 has translucency. Therefore, after a part of the light of the LED 20 passes through the phosphor layer 40, it propagates through the translucent substrate 10 and travels toward the first metal wiring 51 and the terminal 53. However, in the light emitting device 2, the first metal wiring 51 and the terminal 53 or the glass film 52 can reflect such light toward the tube inner surface of the LED lamp, thereby improving the light extraction efficiency of the LED lamp. be able to.
 本実施の形態に係る発光装置2は、LED20を複数備え、また複数のLED20を直列接続する第2金属配線50を備え、第2金属配線50は、ガラス膜52及び蛍光体層40と接触しない。ワイヤボンディングのために、第2金属配線50の表面は露出している必要があるため、第2金属配線50がガラス膜52及び蛍光体層40によって意図せずに覆われることを回避することができる。 The light emitting device 2 according to the present embodiment includes a plurality of LEDs 20 and a second metal wiring 50 that connects the plurality of LEDs 20 in series, and the second metal wiring 50 does not contact the glass film 52 and the phosphor layer 40. . Since the surface of the second metal wiring 50 needs to be exposed for wire bonding, the second metal wiring 50 can be prevented from being unintentionally covered by the glass film 52 and the phosphor layer 40. it can.
 本実施の形態に係る発光装置2では、封止部材30は、LED20が発する光の波長を変換する第1波長変換材と、第1波長変換材を含有する樹脂材料とから構成される封止樹脂である。また、蛍光体層40は、LED20が発する光の波長を変換する第2波長変換材と、焼結により形成され、第2波長変換材を含有する無機材料とから構成される焼結体膜である。従って、第1金属配線51及び端子53の剥離を抑えるために、第1金属配線51及び端子53を蛍光体層40で覆うと、色ずれや光取り出し効率の低下が発生する。しかし、第1金属配線51及び端子53の剥離は、透明又は反射機能を持つガラス膜52により抑えられるため、このような問題は発生しない。 In the light emitting device 2 according to the present embodiment, the sealing member 30 is formed of a first wavelength conversion material that converts the wavelength of light emitted from the LED 20 and a resin material that contains the first wavelength conversion material. Resin. The phosphor layer 40 is a sintered body film formed of a second wavelength conversion material that converts the wavelength of light emitted from the LED 20 and an inorganic material that is formed by sintering and contains the second wavelength conversion material. is there. Therefore, if the first metal wiring 51 and the terminal 53 are covered with the phosphor layer 40 in order to suppress the separation of the first metal wiring 51 and the terminal 53, a color shift and a decrease in light extraction efficiency occur. However, since the peeling of the first metal wiring 51 and the terminal 53 is suppressed by the glass film 52 having a transparent or reflecting function, such a problem does not occur.
 次に、本実施の形態に係る発光装置2の製造方法の一例について、図5を用いて説明する。図5は、本実施の形態に係る発光装置2の製造方法を説明するための図である。 Next, an example of a method for manufacturing the light emitting device 2 according to the present embodiment will be described with reference to FIG. FIG. 5 is a diagram for explaining a method of manufacturing the light emitting device 2 according to the present embodiment.
 本実施の形態に係る発光装置2の製造方法は、ガラス膜52を形成した後でLED20を基板10の上に実装する前に、蛍光体層40を形成する工程をさらに含む点で実施の形態1の発光装置1の製造方法と異なる。以下、本実施の形態の発光装置2の製造方法について実施の形態1の発光装置1の製造方法と異なる点を中心に詳述する。 The manufacturing method of the light emitting device 2 according to the present embodiment is an embodiment in that it further includes a step of forming the phosphor layer 40 before the LED 20 is mounted on the substrate 10 after the glass film 52 is formed. 1 is different from the manufacturing method of the light emitting device 1. Hereinafter, the manufacturing method of the light-emitting device 2 according to the present embodiment will be described in detail focusing on differences from the manufacturing method of the light-emitting device 1 according to the first embodiment.
 まず、図2の(a)~(c)の各工程を実施し、貫通孔11及び12が設けられた透光性の基板10の上に、第1金属配線51、第2金属配線50、端子53及びガラス膜52を形成する。 First, steps (a) to (c) in FIG. 2 are performed, and the first metal wiring 51, the second metal wiring 50, and the like are formed on the translucent substrate 10 provided with the through holes 11 and 12. Terminal 53 and glass film 52 are formed.
 次に、図5の(a)に示すように、基板10の第1の主面11aの上に、隣り合う第2金属配線50の間に位置するように島状の蛍光体層40を複数形成する。その後、蛍光体層40の上にLED20を設けた後、LED20とこのLED20に隣接する第1金属配線51又は第2金属配線50とをワイヤー60を用いてワイヤボンディングする。 Next, as shown in FIG. 5A, a plurality of island-shaped phosphor layers 40 are formed on the first main surface 11 a of the substrate 10 so as to be positioned between the adjacent second metal wirings 50. Form. Thereafter, after the LED 20 is provided on the phosphor layer 40, the LED 20 and the first metal wiring 51 or the second metal wiring 50 adjacent to the LED 20 are wire-bonded using the wire 60.
 最後に、図5の(b)に示すように、基板10の第1主面10a上に、封止部材30を形成する。これにより、発光装置2が製造される。 Finally, as shown in FIG. 5B, the sealing member 30 is formed on the first main surface 10 a of the substrate 10. Thereby, the light-emitting device 2 is manufactured.
 ここで、蛍光体層40は、具体的に、以下のようにして形成することができる。 Here, the phosphor layer 40 can be specifically formed as follows.
 まず、第2波長変換材として粉末状の蛍光体粒子を準備するとともに、焼結用結合材として粉末状のフリットガラス(粉末ガラス)を準備し、準備した蛍光体粒子及びフリットガラスに溶剤を添加し混練することによって焼結体膜形成用のペースト(ペースト状の蛍光体層40)を作製する。焼結用結合材として、例えば軟化点が520℃の粉末ガラスを用いることができる。黄色蛍光体粒子及び粉末ガラスの重量比(wt%)は、例えば80:20の割合とすることができる。準備した上記材料は、例えば3本ロールの混練機によって混練(混合)することによってペースト状にすることができる。なお、蛍光体粒子の割合は80wt%に限らず、20~91wt%の範囲の割合としてもよい。 First, powdered phosphor particles are prepared as the second wavelength conversion material, and powdered frit glass (powder glass) is prepared as a binder for sintering, and a solvent is added to the prepared phosphor particles and frit glass. Then, a paste for forming a sintered body film (a paste-like phosphor layer 40) is prepared by kneading. For example, powder glass having a softening point of 520 ° C. can be used as the binder for sintering. The weight ratio (wt%) of the yellow phosphor particles and the powder glass can be set to a ratio of 80:20, for example. The prepared material can be made into a paste by, for example, kneading (mixing) with a three-roll kneader. The ratio of the phosphor particles is not limited to 80 wt%, and may be a ratio in the range of 20 to 91 wt%.
 次に、焼結体膜形成用のペーストを基板10の第1主面10aの所定の位置に所定形状で印刷する。なお、焼結体膜形成用のペーストは印刷以外に塗布によってもコーティングすることができる。また、焼結体膜形成用のペーストを基板10にコーティングする前に、基板10の第1主面10aに対して所定の表面処理を施しても構わない。 Next, a paste for forming a sintered body film is printed in a predetermined shape on a predetermined position of the first main surface 10a of the substrate 10. In addition, the paste for forming a sintered body film can be coated by application other than printing. In addition, a predetermined surface treatment may be performed on the first main surface 10a of the substrate 10 before the substrate 10 is coated with the paste for forming the sintered body film.
 次に、焼結体膜形成用のペーストが印刷された基板10を、例えば、150℃の温度で30分間乾燥させて、その後、約600℃の温度で10分間焼成する。焼成することによってガラスフリットが軟化して、蛍光体粒子同士が、また、蛍光体粒子と基板10とが、ガラスフリットにより結着(接合)した焼結体膜(蛍光体層40)を形成することができる。なお、焼成温度としては、蛍光体粒子が劣化しない温度であって、かつ、ガラスフリットが軟化する温度であることが好ましい。蛍光体粒子は700℃を超えると劣化するので、焼成温度は700℃未満であることが好ましい。これにより、基板10の第1主面10a上に、蛍光体層40を被膜させることができる。 Next, the substrate 10 on which the paste for forming the sintered body film is printed is dried, for example, at a temperature of 150 ° C. for 30 minutes, and then baked at a temperature of about 600 ° C. for 10 minutes. By firing, the glass frit is softened to form a sintered body film (phosphor layer 40) in which the phosphor particles are bonded to each other and the phosphor particles and the substrate 10 are bonded (bonded) by the glass frit. be able to. The firing temperature is preferably a temperature at which the phosphor particles do not deteriorate and a temperature at which the glass frit is softened. Since the phosphor particles deteriorate when the temperature exceeds 700 ° C., the firing temperature is preferably less than 700 ° C. Thereby, the phosphor layer 40 can be coated on the first major surface 10 a of the substrate 10.
 以上のように本実施の形態の発光装置2の製造方法によれば、第1金属配線51及び端子53の剥離を抑えることができる。また、LEDランプの光取り出し効率を向上させることができる。 As described above, according to the method for manufacturing the light emitting device 2 of the present embodiment, the first metal wiring 51 and the terminal 53 can be prevented from being peeled off. Moreover, the light extraction efficiency of the LED lamp can be improved.
 なお、本実施の形態の発光装置2の製造方法では、蛍光体層40の形成工程は、ガラス膜52を形成する工程の後で行われるとしたが、基板10を準備する工程の後であり、かつ、LED20を実装する工程の前であれば、これに限られない。例えば、蛍光体層40の形成工程は、第1配線パターンを形成する工程の後でガラス膜52を形成する工程の前に行われてもよい。 In the method for manufacturing the light emitting device 2 according to the present embodiment, the phosphor layer 40 is formed after the step of forming the glass film 52, but after the step of preparing the substrate 10. And if it is before the process of mounting LED20, it will not be restricted to this. For example, the formation process of the phosphor layer 40 may be performed after the process of forming the first wiring pattern and before the process of forming the glass film 52.
 (実施の形態3)
 次に、本発明に係る実施の形態3に係る電球形ランプ100について、図6~図8を用いて説明する。本実施の形態に係る電球形ランプ100は、実施の形態1又は2に係る発光装置の適用例である。図6は、本実施の形態に係る電球形ランプ100の側面図である。図7は、本実施の形態に係る電球形ランプ100の分解斜視図である。図8は、本実施の形態に係る電球形ランプ100の断面図である。
(Embodiment 3)
Next, a light bulb shaped lamp 100 according to Embodiment 3 of the present invention will be described with reference to FIGS. A light bulb shaped lamp 100 according to the present embodiment is an application example of the light emitting device according to the first or second embodiment. FIG. 6 is a side view of the light bulb shaped lamp 100 according to the present embodiment. FIG. 7 is an exploded perspective view of the light bulb shaped lamp 100 according to the present embodiment. FIG. 8 is a cross-sectional view of the light bulb shaped lamp 100 according to the present embodiment.
 電球形ランプ100は、電球形蛍光灯又は白熱電球の代替品となる電球形LEDランプであって、透光性で中空のグローブ110と、光源であるLEDモジュール120と、LEDモジュール120を発光させるための電力を受ける口金130と、LEDモジュール120をグローブ110内に支持(保持)する支柱140と、支柱140を支持する支持台150と、樹脂ケース160と、口金130と電気的に接続されて口金130から電力を受け、一端がLEDモジュール120の端子53に半田付けられたリード線170と、点灯回路180とを備える。 The light bulb shaped lamp 100 is a light bulb shaped LED lamp that is a substitute for a light bulb shaped fluorescent light or an incandescent light bulb. A base 130 for receiving power for power, a support 140 for supporting (holding) the LED module 120 in the globe 110, a support 150 for supporting the support 140, a resin case 160, and the base 130. A lead wire 170 that receives power from the base 130 and has one end soldered to the terminal 53 of the LED module 120 and a lighting circuit 180 are provided.
 電球形ランプ100は、グローブ110と樹脂ケース160と口金130とによって外囲器が構成されている。LEDモジュール120としては、実施の形態1又は2の発光装置1又は2を用いることができる。以下、電球形ランプ100の各構成部材について、図6~図8を参照しながら詳細に説明する。 The bulb-shaped lamp 100 includes an envelope made up of a globe 110, a resin case 160, and a base 130. As the LED module 120, the light-emitting device 1 or 2 of Embodiment 1 or 2 can be used. Hereinafter, each component of the light bulb shaped lamp 100 will be described in detail with reference to FIGS.
 [グローブ]
 グローブ110は、LEDモジュール120を収納するとともに、LEDモジュール120からの光をランプ外部に透光する。グローブ110は、例えば可視光に対して透明なシリカガラス製のガラスバルブ(クリアバルブ)である。従って、グローブ110内に収納されたLEDモジュール120は、グローブ110の外側から視認することができる。
[Glove]
The globe 110 houses the LED module 120 and transmits light from the LED module 120 to the outside of the lamp. The globe 110 is a glass bulb (clear bulb) made of silica glass that is transparent to visible light, for example. Therefore, the LED module 120 housed in the globe 110 can be viewed from the outside of the globe 110.
 グローブ110の形状は、一端が球状に閉塞され、他端に開口部を有する形状である。言い換えると、グローブ110の形状は、中空の球の一部が、球の中心部から遠ざかる方向に伸びながら狭まったような形状であり、球の中心部から遠ざかった位置に開口部が形成されている。このような形状のグローブ110としては、一般的な白熱電球と同様の形状のガラスバルブを用いることができる。例えば、グローブ110として、A形、G形又はE形等のガラスバルブを用いることができる。 The shape of the globe 110 is a shape in which one end is closed in a spherical shape and an opening is provided at the other end. In other words, the shape of the globe 110 is such that a part of the hollow sphere narrows while extending away from the center of the sphere, and an opening is formed at a position away from the center of the sphere. Yes. As the globe 110 having such a shape, a glass bulb having the same shape as a general incandescent bulb can be used. For example, a glass bulb such as an A shape, a G shape, or an E shape can be used as the globe 110.
 なお、グローブ110は、必ずしも可視光に対して透明である必要はなく、グローブ110に光拡散機能を持たせてもよい。例えば、シリカや炭酸カルシウム等の光拡散材を含有する樹脂や白色顔料等をグローブ110の内面又は外面の全面に塗布することによって乳白色の光拡散膜を形成してもよい。また、グローブ110は、シリカガラス製である必要もない。例えば、アクリル等の樹脂材料によって作製されたグローブ110を用いても構わない。 Note that the globe 110 is not necessarily transparent to visible light, and the globe 110 may have a light diffusion function. For example, a milky white light diffusing film may be formed by applying a resin containing a light diffusing material such as silica or calcium carbonate, a white pigment, or the like to the entire inner surface or outer surface of the globe 110. Further, the globe 110 does not need to be made of silica glass. For example, a globe 110 made of a resin material such as acrylic may be used.
 [口金]
 口金130は、外部からLEDモジュール120のLEDを発光させるための電力を受ける受電部であって、例えば、照明器具のソケットに取り付けられる。電球形ランプ100が点灯した場合に、口金130は、照明器具のソケットから電力を受ける。口金130は二接点によって交流電力を受け、口金130で受けた電力はリード線を介して点灯回路180の電力入力部に入力される。
[Base]
The base 130 is a power receiving unit that receives power for causing the LEDs of the LED module 120 to emit light from the outside, and is attached to a socket of a lighting fixture, for example. When the light bulb shaped lamp 100 is lit, the base 130 receives power from the socket of the lighting fixture. The base 130 receives AC power through two contact points, and the power received by the base 130 is input to the power input unit of the lighting circuit 180 via a lead wire.
 口金130は、E形であり、その外周面には照明器具のソケットに螺合させるための螺合部が形成されている。また、口金130の内周面には、樹脂ケース160に螺合させるための螺合部が形成されている。なお、口金130は、金属製の有底筒体形状である。 The base 130 is E-shaped, and a screwing portion for screwing into a socket of the lighting fixture is formed on the outer peripheral surface thereof. Further, on the inner peripheral surface of the base 130, a screwing portion for screwing into the resin case 160 is formed. The base 130 has a metal bottomed cylindrical shape.
 口金130の種類は、特に限定されるものではないが、例えばねじ込み型のエジソンタイプ(E型)の口金を用いることができ、E26形又はE17形等が挙げられる。 The type of the base 130 is not particularly limited. For example, a screw-type Edison type (E type) base can be used, and examples thereof include E26 type and E17 type.
 [支柱]
 支柱140は、グローブ110の開口部の近傍からグローブ110の内方に向かって延びるように設けられた金属製のステムである。支柱140は、LEDモジュール120を保持する保持部材として機能し、支柱140の一端はLEDモジュール120に接続され、支柱140の他端は支持台150に接続されている。
[Support]
The strut 140 is a metal stem provided so as to extend from the vicinity of the opening of the globe 110 toward the inside of the globe 110. The column 140 functions as a holding member that holds the LED module 120. One end of the column 140 is connected to the LED module 120, and the other end of the column 140 is connected to the support base 150.
 支柱140は、金属材料によって構成されており、LEDモジュール120で発生する熱を放熱させるための放熱部材としても機能する。支柱140は、例えば熱伝導率が237[W/m・K]であるアルミニウムによって構成されている。このように、支柱140が金属材料によって構成されているので、LEDモジュール120の熱は基板を介して支柱140に効率良く伝導する。これにより、LEDモジュール120の熱を口金130側に逃がすことができる。この結果、温度上昇によるLEDの発光効率の低下及び寿命の低下を抑制することができる。 The support column 140 is made of a metal material, and also functions as a heat radiating member for radiating heat generated in the LED module 120. The support column 140 is made of aluminum having a thermal conductivity of 237 [W / m · K], for example. Thus, since the support | pillar 140 is comprised with the metal material, the heat | fever of the LED module 120 is efficiently conducted to the support | pillar 140 through a board | substrate. Thereby, the heat of the LED module 120 can be released to the base 130 side. As a result, it is possible to suppress a decrease in luminous efficiency and lifetime of the LED due to temperature rise.
 支柱140は、LEDモジュール120の基板に設けられた貫通孔(図1A及び図1Cの貫通孔12)と嵌合させるための突起部を有する。突起部は、支柱140の頂部上面から突出するように設けられており、LEDモジュール120の位置を規制する位置規制部として機能する。すなわち、突起部は、LEDモジュール120の配置方向を決めるように構成されている。 The support column 140 has a protrusion for fitting with a through hole (the through hole 12 in FIGS. 1A and 1C) provided in the substrate of the LED module 120. The protruding portion is provided so as to protrude from the top surface of the top of the support column 140 and functions as a position restricting portion that restricts the position of the LED module 120. That is, the protrusion is configured to determine the arrangement direction of the LED module 120.
 なお、支柱140としては、従来の電球形蛍光ランプと同様に、可視光に対して透明な軟質ガラス又は透明樹脂からなるステムを用いてもよい。これにより、LEDモジュール120で生じた光が支柱140によって損失することを抑制することができる。また、支柱140によって影が発生されることも防ぐことができる。さらに、LEDモジュール120が発した白色光によって支柱140が光り輝くので、電球形ランプ100は、視覚的に優れた美観を発揮することも可能となる。 In addition, as the support | pillar 140, you may use the stem which consists of a soft glass or transparent resin transparent with respect to visible light similarly to the conventional light bulb-type fluorescent lamp. Thereby, it can suppress that the light produced in the LED module 120 is lost by the support | pillar 140. FIG. Further, it is possible to prevent a shadow from being generated by the support 140. Furthermore, since the column 140 shines with the white light emitted from the LED module 120, the light bulb shaped lamp 100 can also exhibit a visually attractive appearance.
 [支持台]
 支持台(支持板)150は、支柱140を支持する支持部材であり、図8に示すように、グローブ110の開口部の開口端に接続されている。支持台150は、グローブ110の開口部を塞ぐように構成され、かつ、樹脂ケース160に固定されている。支持台150には、リード線170を通すための貫通孔が設けられている。
[Support stand]
The support base (support plate) 150 is a support member that supports the support column 140, and is connected to the opening end of the opening of the globe 110 as shown in FIG. 8. The support base 150 is configured to close the opening of the globe 110 and is fixed to the resin case 160. The support base 150 is provided with a through hole through which the lead wire 170 is passed.
 支持台150は、金属材料によって構成されており、支柱140と同様に、アルミニウムによって構成されている。これにより、支柱140に熱伝導したLEDモジュール120の熱は、支持台150に効率良く伝導する。この結果、温度上昇によるLEDの発光効率の低下及び寿命の低下を抑制することができる。 The support base 150 is made of a metal material, and is made of aluminum in the same manner as the support column 140. Thereby, the heat of the LED module 120 thermally conducted to the support column 140 is efficiently conducted to the support base 150. As a result, it is possible to suppress a decrease in luminous efficiency and lifetime of the LED due to temperature rise.
 支持台150は、段差部を有する円盤状部材で構成されている。この段差部には、グローブ110の開口部の開口端が当接されており、これにより、グローブ110の開口部が塞がれている。また、段差部において、支持台150と樹脂ケース160とグローブ110の開口部の開口端とは、接着材によって固着されている。 The support base 150 is composed of a disk-shaped member having a stepped portion. The stepped portion is in contact with the opening end of the opening of the globe 110, thereby closing the opening of the globe 110. Further, in the stepped portion, the support base 150, the resin case 160, and the opening end of the opening of the globe 110 are fixed by an adhesive.
 [樹脂ケース]
 樹脂ケース160は、支柱140と口金130とを絶縁するとともに、点灯回路180を収納して保持するための絶縁ケース(回路ホルダ)である。樹脂ケース160は、大径円筒状の第1ケース部と、小径円筒状の第2ケース部とからなる。第1ケース部の外表面は外気に露出しているので、樹脂ケース160に伝導した熱は、主に第1ケース部から放熱される。一方、第2ケース部は、外周面が口金130の内周面と接触するように構成されており、第2ケース部の外周面には口金130と螺合するための螺合部が形成されている。樹脂ケース160は、例えば、ポリブチレンテレフタレート(PBT)によって成形することができる。
[Resin case]
The resin case 160 is an insulating case (circuit holder) that insulates the support column 140 from the base 130 and houses and holds the lighting circuit 180. The resin case 160 includes a large-diameter cylindrical first case portion and a small-diameter cylindrical second case portion. Since the outer surface of the first case part is exposed to the outside air, the heat conducted to the resin case 160 is mainly dissipated from the first case part. On the other hand, the second case portion is configured such that the outer peripheral surface is in contact with the inner peripheral surface of the base 130, and a screwing portion for screwing with the base 130 is formed on the outer peripheral surface of the second case portion. ing. The resin case 160 can be formed of, for example, polybutylene terephthalate (PBT).
 [リード線]
 2本のリード線170は、LEDモジュール120を点灯させるための電力を点灯回路180からLEDモジュール120に供給するための電線である。各リード線170の一方側端はLEDモジュール120の給電部である端子と電気的に接続されて、各リード線170の他方側端は点灯回路180の電力出力部と電気的に接続されている。
[Lead]
The two lead wires 170 are electric wires for supplying power for lighting the LED module 120 from the lighting circuit 180 to the LED module 120. One end of each lead wire 170 is electrically connected to a terminal that is a power feeding portion of the LED module 120, and the other end of each lead wire 170 is electrically connected to a power output portion of the lighting circuit 180. .
 [点灯回路]
 点灯回路180は、LEDモジュール120(LED)を点灯させるための回路ユニットであり、樹脂ケース160内に収納されている。具体的には、点灯回路180は、複数の回路素子と、各回路素子が実装される回路基板とを有する。点灯回路180は、口金130から給電された交流電力を直流電力に変換し、2本のリード線170を介して直流電力をLEDモジュール120(LEDチップ)に供給する。
[Lighting circuit]
The lighting circuit 180 is a circuit unit for lighting the LED module 120 (LED), and is housed in the resin case 160. Specifically, the lighting circuit 180 includes a plurality of circuit elements and a circuit board on which each circuit element is mounted. The lighting circuit 180 converts AC power fed from the base 130 into DC power, and supplies the DC power to the LED module 120 (LED chip) via the two lead wires 170.
 なお、電球形ランプ100は、必ずしも点灯回路180を備える必要はない。例えば、照明器具及び電池等から直接直流電力が供給される場合には、電球形ランプ100は、点灯回路180を備えなくてもよい。また、点灯回路180は、平滑回路に限られるものではなく、調光回路又は昇圧回路等も適宜選択して組み合わせることもできる。 Note that the light bulb shaped lamp 100 is not necessarily provided with the lighting circuit 180. For example, when direct-current power is directly supplied from a lighting fixture, a battery, or the like, the light bulb shaped lamp 100 may not include the lighting circuit 180. Further, the lighting circuit 180 is not limited to a smoothing circuit, and a dimmer circuit or a booster circuit can be appropriately selected and combined.
 以上のように本実施の形態に係る電球形ランプ100は、発光装置1又は2と、発光装置1又は2を収納する中空のグローブ110と、発光装置1又は2を発光させるための電力を受ける口金130と、発光装置1又は2をグローブ110内に支持する支柱140とを備える。電球形ランプ100は、さらに、口金130と電気的に接続され、発光装置1又は2の端子53に半田付けされたリード線170を備える。従って、電球形ランプ100には、実施の形態1又は2に係るLEDモジュールが用いられているので、LEDモジュールの配線パターンの剥離を抑制することのできる電球形ランプを実現することができる。 As described above, the light bulb shaped lamp 100 according to the present embodiment receives the light emitting device 1 or 2, the hollow globe 110 that houses the light emitting device 1 or 2, and the power for causing the light emitting device 1 or 2 to emit light. A base 130 and a column 140 that supports the light emitting device 1 or 2 in the globe 110 are provided. The light bulb shaped lamp 100 further includes a lead wire 170 electrically connected to the base 130 and soldered to the terminal 53 of the light emitting device 1 or 2. Therefore, since the LED module according to Embodiment 1 or 2 is used for the light bulb shaped lamp 100, a light bulb shaped lamp capable of suppressing the peeling of the wiring pattern of the LED module can be realized.
 以上、本発明に係る発光装置及びランプについて、実施の形態に基づいて説明してきたが、本発明は、上記の実施の形態に限定されるものではない。 As mentioned above, although the light-emitting device and the lamp which concern on this invention have been demonstrated based on embodiment, this invention is not limited to said embodiment.
 例えば、上記の実施の形態1及び2に係る発光装置1及び2は、電球形ランプに適用した例を示したが、これに限らない。例えば、上記の実施の形態に係る発光装置1及び2は、長尺筒状の直管で構成された直管形ランプ又は環状の丸管で構成された丸管形ランプに適用することもできる。あるいは、上記の実施の形態1及び2に係る発光装置1及び2は、GX53口金又はGH76p口金等の口金構造を有するランプにも適用することができる。 For example, although the light-emitting devices 1 and 2 according to the first and second embodiments described above are applied to a light bulb shaped lamp, the present invention is not limited thereto. For example, the light-emitting devices 1 and 2 according to the above-described embodiment can be applied to a straight tube lamp constituted by a long cylindrical straight tube or a round tube lamp constituted by an annular round tube. . Alternatively, the light emitting devices 1 and 2 according to the first and second embodiments can be applied to a lamp having a base structure such as a GX53 base or a GH76p base.
 また、上記の実施の形態1及び2に係る発光装置1及び2は、口金を有さないランプ、例えば発光装置(LEDモジュール)をヒートシンク等の基台に配置した構成の照明ユニットにも適用することができる。さらに、上記の実施の形態1及び2に係る発光装置1及び2は、光源として、その他の照明システムにも適用することができる。 The light emitting devices 1 and 2 according to the first and second embodiments are also applied to a lighting unit having a configuration in which a lamp without a base, for example, a light emitting device (LED module) is arranged on a base such as a heat sink. be able to. Furthermore, the light-emitting devices 1 and 2 according to the first and second embodiments can be applied to other illumination systems as a light source.
 また、電球形ランプの適用例(実施の形態3)としては、上記の実施の形態1及び2に係る発光装置1及び2を、白熱電球に用いられるガラスバルブに適用する例を示したが、これに限らない。例えば、上記の実施の形態1及び2に係る発光装置1及び2は、グローブと口金との間に金属筐体のヒートシンクを備える電球形ランプにも適用することもできる。また、シャンデリアやロウソク型照明装置に用いられる縦長に延びた長球形状のバルブを有する電球形ランプに適用することもできる。 In addition, as an application example (Embodiment 3) of the light bulb shaped lamp, the light emitting devices 1 and 2 according to Embodiments 1 and 2 described above are applied to a glass bulb used in an incandescent bulb. Not limited to this. For example, the light-emitting devices 1 and 2 according to the above-described first and second embodiments can also be applied to a light bulb shaped lamp including a metal case heat sink between a globe and a base. Further, the present invention can be applied to a light bulb shaped lamp having a long spherical bulb extending in the longitudinal direction used in a chandelier or a candle type lighting device.
 また、本発明は、上記の電球形ランプ等のランプを備える照明装置として実現することもできる。例えば、図9に示すように、本発明に係る照明装置3として、上記の電球形ランプ100と、当該電球形ランプ100が取り付けられる点灯器具(照明器具)4とを備えるように構成してもよい。この場合、点灯器具4は、電球形ランプ100の消灯及び点灯を行うものであり、例えば、天井に取り付けられる器具本体5と、電球形ランプ100を覆うランプカバー6とを備える。このうち、器具本体5は、電球形ランプ100の口金130が装着されるとともに電球形ランプ100に給電を行うソケット5aを有する。なお、ランプカバー6の開口部に透光性プレートを設けてもよい。 Further, the present invention can also be realized as an illumination device including a lamp such as the above-described light bulb shaped lamp. For example, as shown in FIG. 9, the lighting device 3 according to the present invention may be configured to include the above-described light bulb shaped lamp 100 and a lighting fixture (lighting fixture) 4 to which the light bulb shaped lamp 100 is attached. Good. In this case, the lighting device 4 is for turning off and lighting the light bulb shaped lamp 100, and includes, for example, a device body 5 attached to the ceiling and a lamp cover 6 covering the light bulb shaped lamp 100. Among these, the appliance main body 5 has a socket 5 a for attaching the cap 130 of the light bulb shaped lamp 100 and supplying power to the light bulb shaped lamp 100. A translucent plate may be provided in the opening of the lamp cover 6.
 また、上記の実施の形態において、発光素子としてLEDを例示したが、半導体レーザ等の半導体発光素子、又は、有機EL(Electro Luminescence)や無機EL等のEL素子、その他の固体発光素子を用いてもよい。 In the above embodiment, the LED is exemplified as the light emitting element. However, a semiconductor light emitting element such as a semiconductor laser, an EL element such as an organic EL (Electro Luminescence) or an inorganic EL, or other solid light emitting element is used. Also good.
 また、上記の実施の形態において、ガラス膜には開口が形成され、端子の半田付け等が行われる部分は表面に露出するとした。しかし、半田付け等により端子にリード線を接続した後で、基板及び端子を連続してガラス膜で覆うことが可能である場合、このような開口はガラス膜に形成されなくてもよい。極端な場合、端子の全てがガラス膜により覆われてもよい。 Further, in the above embodiment, the glass film has an opening, and the portion where the terminal is soldered is exposed on the surface. However, such an opening may not be formed in the glass film when the substrate and the terminal can be continuously covered with the glass film after the lead wire is connected to the terminal by soldering or the like. In extreme cases, all of the terminals may be covered with a glass film.
 その他、本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したもの、又は、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。 In addition, unless the spirit of the present invention departs from the scope of the present invention, various modifications conceived by those skilled in the art have been made in this embodiment, or forms constructed by combining components in different embodiments. include.
 本発明は、LED等の発光素子を備える発光装置、及び、当該発光装置を備えるランプ、照明ユニット又は照明システム等として広く利用することができる。 The present invention can be widely used as a light emitting device including a light emitting element such as an LED, and a lamp, an illumination unit, or an illumination system including the light emitting device.
 1、2 発光装置
 3 照明装置
 4 点灯器具
 5 器具本体
 5a ソケット
 6 ランプカバー
 10 基板
 10a 第1主面
 10b 第2主面
 11、12 貫通孔
 20 LED
 21 サファイア基板
 22 窒化物半導体層
 23 カソード電極
 24 アノード電極
 25、26 ワイヤーボンド部
 30 封止部材
 40 蛍光体層
 50 第2金属配線
 51 第1金属配線
 52 ガラス膜
 53 端子
 60 ワイヤー
 70 チップボンディング材
 100 電球形ランプ
 110 グローブ
 120 LEDモジュール
 130 口金
 140 支柱
 150 支持台
 160 樹脂ケース
 170 リード線
 180 点灯回路
DESCRIPTION OF SYMBOLS 1, 2 Light-emitting device 3 Illuminating device 4 Lighting fixture 5 Appliance main body 5a Socket 6 Lamp cover 10 Board | substrate 10a 1st main surface 10b 2nd main surface 11, 12 Through-hole 20 LED
DESCRIPTION OF SYMBOLS 21 Sapphire substrate 22 Nitride semiconductor layer 23 Cathode electrode 24 Anode electrode 25, 26 Wire bond part 30 Sealing member 40 Phosphor layer 50 2nd metal wiring 51 1st metal wiring 52 Glass film 53 Terminal 60 Wire 70 Chip bonding material 100 Light bulb shaped lamp 110 Globe 120 LED module 130 Base 140 Post 150 Support base 160 Resin case 170 Lead wire 180 Lighting circuit

Claims (9)

  1.  基板と、
     前記基板の上に設けられた発光素子と、
     前記発光素子を覆うように形成され、前記発光素子が発する光の波長を変換する第1波長変換部と、
     前記基板の上に形成され、発光装置外部から電力を受けて前記発光素子に供給する第1配線パターンと、
     前記第1配線パターン及び前記基板を連続して覆うように形成されたガラス膜とを備える、
     発光装置。
    A substrate,
    A light emitting device provided on the substrate;
    A first wavelength conversion unit that is formed so as to cover the light emitting element and converts a wavelength of light emitted from the light emitting element;
    A first wiring pattern formed on the substrate and receiving power from outside the light emitting device and supplying the light emitting element;
    A glass film formed so as to continuously cover the first wiring pattern and the substrate,
    Light emitting device.
  2.  前記ガラス膜は、透光性を有し、
     前記第1配線パターンは、前記発光素子から発せられた光を反射する、
     請求項1に記載の発光装置。
    The glass film has translucency,
    The first wiring pattern reflects light emitted from the light emitting element;
    The light emitting device according to claim 1.
  3.  前記ガラス膜は、無機粒子を含み、前記発光素子から発せられた光を反射する、
     請求項1に記載の発光装置。
    The glass film includes inorganic particles and reflects light emitted from the light emitting element.
    The light emitting device according to claim 1.
  4.  前記ガラス膜は、前記第1配線パターンを露出させる開口を有する、
     請求項1~3のいずれか1項に記載の発光装置。
    The glass film has an opening exposing the first wiring pattern;
    The light emitting device according to any one of claims 1 to 3.
  5.  前記発光装置は、さらに、前記基板と前記発光素子との間に形成され、前記発光素子が発する光の波長を変換する第2波長変換部を備え、
     前記基板は、透光性を有する、
     請求項1~4のいずれか1項に記載の発光装置。
    The light emitting device further includes a second wavelength conversion unit that is formed between the substrate and the light emitting element and converts a wavelength of light emitted from the light emitting element,
    The substrate has translucency,
    The light emitting device according to any one of claims 1 to 4.
  6.  前記発光装置は、前記発光素子を複数備え、
     前記発光装置は、さらに、前記複数の発光素子を直列接続する第2配線パターンを備え、
     前記第2配線パターンは、前記ガラス膜及び前記第2波長変換部と接触しない、
     請求項5に記載の発光装置。
    The light emitting device includes a plurality of the light emitting elements,
    The light emitting device further includes a second wiring pattern that connects the plurality of light emitting elements in series,
    The second wiring pattern does not contact the glass film and the second wavelength conversion unit;
    The light emitting device according to claim 5.
  7.  前記第1波長変換部は、前記発光素子が発する光の波長を変換する第1波長変換材と、前記第1波長変換材を含有する樹脂材料とから構成される封止樹脂であり、
     前記第2波長変換部は、前記発光素子が発する光の波長を変換する第2波長変換材と、焼結により形成され、前記第2波長変換材を含有する無機材料とから構成される焼結体膜である、
     請求項5又は6に記載の発光装置。
    The first wavelength conversion unit is a sealing resin composed of a first wavelength conversion material that converts a wavelength of light emitted from the light emitting element, and a resin material containing the first wavelength conversion material,
    The second wavelength conversion section is a sintered material composed of a second wavelength conversion material that converts the wavelength of light emitted from the light emitting element, and an inorganic material that is formed by sintering and contains the second wavelength conversion material. A body membrane,
    The light emitting device according to claim 5.
  8.  請求項1~7のいずれか1項に記載の発光装置と、
     前記発光装置を収納する中空のグローブと、
     前記発光装置を発光させるための電力を受ける口金と、
     前記発光装置を前記グローブ内に支持する支柱とを備える、
     ランプ。
    A light emitting device according to any one of claims 1 to 7;
    A hollow glove for housing the light emitting device;
    A base for receiving power for causing the light emitting device to emit light;
    A support for supporting the light emitting device in the globe,
    lamp.
  9.  前記ランプは、さらに、前記口金と電気的に接続され、前記発光装置の前記第1配線パターンに半田付けされたリード線を備える、
     請求項8に記載のランプ。
    The lamp further includes a lead wire electrically connected to the base and soldered to the first wiring pattern of the light emitting device.
    The lamp according to claim 8.
PCT/JP2013/001048 2012-04-11 2013-02-25 Light-emitting device, and lamp WO2013153727A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201390000393.5U CN204179108U (en) 2012-04-11 2013-02-25 Light-emitting device and lamp
JP2013526259A JP5681963B2 (en) 2012-04-11 2013-02-25 Light emitting device and lamp

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-090435 2012-04-11
JP2012090435 2012-04-11

Publications (1)

Publication Number Publication Date
WO2013153727A1 true WO2013153727A1 (en) 2013-10-17

Family

ID=49327324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001048 WO2013153727A1 (en) 2012-04-11 2013-02-25 Light-emitting device, and lamp

Country Status (4)

Country Link
JP (1) JP5681963B2 (en)
CN (1) CN204179108U (en)
TW (1) TW201342572A (en)
WO (1) WO2013153727A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109071325B (en) * 2013-05-10 2022-04-29 康宁股份有限公司 Sealing device comprising a transparent laser welding area
CN105377783B (en) 2013-05-10 2019-03-08 康宁股份有限公司 Laser welding is carried out to transparent glass sheet using low melt glass or thin absorbing film
CN109212814A (en) * 2017-06-30 2019-01-15 日亚化学工业株式会社 The manufacturing method and light emitting module of light emitting module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134795A (en) * 2000-10-27 2002-05-10 Sanken Electric Co Ltd Semiconductor light-emitting device and manufacturing method therefor
JP2007088318A (en) * 2005-09-26 2007-04-05 Taiwan Oasis Technology Co Ltd White light-emitting diode and manufacturing process therefor
JP2010016223A (en) * 2008-07-04 2010-01-21 Panasonic Corp Lamp
JP2010199105A (en) * 2009-02-23 2010-09-09 Stanley Electric Co Ltd Light-emitting device and method of manufacturing the same
JP2011238819A (en) * 2010-05-12 2011-11-24 Toyoda Gosei Co Ltd Light-emitting device and package

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134795A (en) * 2000-10-27 2002-05-10 Sanken Electric Co Ltd Semiconductor light-emitting device and manufacturing method therefor
JP2007088318A (en) * 2005-09-26 2007-04-05 Taiwan Oasis Technology Co Ltd White light-emitting diode and manufacturing process therefor
JP2010016223A (en) * 2008-07-04 2010-01-21 Panasonic Corp Lamp
JP2010199105A (en) * 2009-02-23 2010-09-09 Stanley Electric Co Ltd Light-emitting device and method of manufacturing the same
JP2011238819A (en) * 2010-05-12 2011-11-24 Toyoda Gosei Co Ltd Light-emitting device and package

Also Published As

Publication number Publication date
JP5681963B2 (en) 2015-03-11
JPWO2013153727A1 (en) 2015-12-17
TW201342572A (en) 2013-10-16
CN204179108U (en) 2015-02-25

Similar Documents

Publication Publication Date Title
JP5276226B2 (en) Mounting board, light emitting device and lamp
JP5432341B2 (en) Light bulb shaped lamp and lighting device
JP5433759B2 (en) Light bulb shaped lamp
JP5147997B2 (en) Light emitting device, light bulb shaped lamp and lighting device
JP5830668B2 (en) Light emitting device and light source for illumination
JP5870258B2 (en) Light bulb shaped lamp and lighting device
JP5681963B2 (en) Light emitting device and lamp
JP5351365B1 (en) Light emitting device and lamp
WO2014013671A1 (en) Bulb-type lamp and illumination device
JP5420124B1 (en) Light bulb shaped lamp, lighting device, and method of manufacturing light bulb shaped lamp
WO2014030276A1 (en) Bulb lamp and illumination device
JP5417556B1 (en) Light bulb shaped lamp and lighting device
JP5493058B1 (en) Light bulb shaped lamp and lighting device
JP5465364B1 (en) Light bulb shaped lamp and lighting device
JP2014107022A (en) Illumination light source and lighting device
WO2014030275A1 (en) Light bulb-shaped lamp and lighting device
JP5433818B1 (en) Light bulb shaped lamp and lighting device
WO2014041721A1 (en) Light source for illumination and illumination device
WO2014006790A1 (en) Bulb-shaped lamp, illumination device, and bulb-shaped lamp manufacturing method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201390000393.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2013526259

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13776078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13776078

Country of ref document: EP

Kind code of ref document: A1