WO2013151079A1 - ランキンサイクル装置 - Google Patents

ランキンサイクル装置 Download PDF

Info

Publication number
WO2013151079A1
WO2013151079A1 PCT/JP2013/060167 JP2013060167W WO2013151079A1 WO 2013151079 A1 WO2013151079 A1 WO 2013151079A1 JP 2013060167 W JP2013060167 W JP 2013060167W WO 2013151079 A1 WO2013151079 A1 WO 2013151079A1
Authority
WO
WIPO (PCT)
Prior art keywords
working fluid
heat exchanger
refrigerant
flow rate
egr gas
Prior art date
Application number
PCT/JP2013/060167
Other languages
English (en)
French (fr)
Inventor
榎島 史修
井口 雅夫
英文 森
文彦 石黒
Original Assignee
株式会社 豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 豊田自動織機 filed Critical 株式会社 豊田自動織機
Publication of WO2013151079A1 publication Critical patent/WO2013151079A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/24Layout, e.g. schematics with two or more coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/33Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage controlling the temperature of the recirculated gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a Rankine cycle device.
  • a Rankine cycle device of this type is disclosed, for example, in Patent Document 1.
  • the Rankine cycle device of Patent Document 1 heats a working fluid flowing through a steam generator using an EGR (Exhaust Gas Recirculation) gas, which is a part of combustion gas (exhaust gas) exhausted from an engine, as a heat source. Then, the working fluid heated by the steam generator is drawn into the expander, and the expansion fluid decompresses and expands the working fluid substantially isentropically by the expander, whereby the thermal energy of the working fluid becomes mechanical energy such as rotational energy. It is converted.
  • EGR exhaust Gas Recirculation
  • an EGR bypass circuit that bypasses the steam generator, for example, in the EGR passage.
  • the amount of EGR gas heat-exchanged with the working fluid in the steam generator is reduced, so that the working fluid temperature is prevented from becoming too high.
  • the amount of EGR gas heat-exchanged with the working fluid in the steam generator is reduced, so the EGR gas is cooled in the steam generator It becomes easy to do. Therefore, there may occur a problem that the temperature of the EGR gas becomes too low.
  • This problem is not limited to the heat exchange between the EGR gas and the working fluid in the steam generator, but the same problem may occur if the heat exchange between the exhaust gas exhausted from the engine and the working fluid .
  • An object of the present invention is to provide a Rankine cycle device capable of preventing the temperature of exhaust gas from becoming too low and preventing the temperature of working fluid from becoming too high. is there.
  • one aspect of the present invention is a pump for pumping a working fluid, and a plurality of heat exchangers for heat exchange between the working fluid pumped by the pump and exhaust gas exhausted from an engine.
  • An expander for expanding the working fluid heat-exchanged in the heat exchangers to output mechanical energy, a condenser for condensing the working fluid expanded in the expander, the pump, and the plurality of heats A Rankine cycle device is provided that includes a exchanger, the expander, and a working fluid circuit configured by sequentially connecting the condenser.
  • the exhaust gas is configured to flow through the plurality of heat exchangers in a direction opposite to the flow direction of the working fluid.
  • the plurality of heat exchangers are a most upstream heat exchanger located most upstream in the flow direction of the working fluid from the outlet of the pump to the inlet of the expander, and the outlet of the pump to the inlet of the expander And a most downstream heat exchanger located most downstream in the flow direction of the working fluid.
  • the Rankine cycle device includes a working fluid flow rate changing unit that changes a flow rate of the working fluid flowing to a working fluid bypass passage that bypasses the most upstream heat exchanger, and an exhaust gas bypass passage that bypasses the most downstream heat exchanger At least one of the exhaust gas flow rate change units that changes the flow rate of the exhaust gas flowing to the
  • the working fluid flow rate changing unit increases the flow rate of working fluid flowing to the working fluid bypass passage.
  • the amount of working fluid heat-exchanged with the exhaust gas in the most upstream heat exchanger can be reduced, and the temperature of the exhaust gas can be prevented from becoming too low.
  • the working fluid passing through the working fluid bypass passage is not heat-exchanged with the exhaust gas in the most upstream heat exchanger. Then, the working fluid that passes through the most upstream heat exchanger without being bypassed to the working fluid bypass passage is cooled with heat exchange with the working fluid in the downstream heat exchanger in the most upstream heat exchanger and is cooled with the exhaust gas. Because the heat is exchanged, the temperature of the working fluid does not become too high.
  • the flow rate of the exhaust gas flowing to the exhaust gas bypass passage is increased by the exhaust gas flow rate changing unit.
  • the amount of exhaust gas heat-exchanged with the working fluid in the most downstream heat exchanger can be reduced, and the temperature of the working fluid can be prevented from becoming too high.
  • the exhaust gas passing through the exhaust gas bypass passage is not heat-exchanged with the working fluid in the most downstream heat exchanger. Then, the exhaust gas passing through the most downstream heat exchanger without being bypassed to the exhaust gas bypass passage is heated in the most downstream heat exchanger after being heat-exchanged with the exhaust gas in the upstream heat exchanger and heated with the working fluid. Since the heat is exchanged, the temperature of the exhaust gas does not become too low.
  • the Rankine cycle device is mounted on a vehicle.
  • the Rankine cycle device 10 is a working fluid formed by sequentially connecting an expander 20, a condenser 30, a pump 40, and a first heat exchanger 51 and a second heat exchanger 52 as heat exchangers.
  • a refrigerant circulation circuit 11 is provided as a circuit.
  • a refrigerant as a working fluid circulates.
  • the refrigerant flows through the refrigerant circulation circuit 11 by flowing in the order of the expander 20, the condenser 30, the pump 40, the first heat exchanger 51, and the second heat exchanger 52.
  • the outlet of the pump 40 and the first heat exchanger 51 are connected via the first passage 21.
  • the first heat exchanger 51 and the second heat exchanger 52 are connected via the second passage 22.
  • the second heat exchanger 52 and the inlet of the expander 20 are connected via a third passage 23.
  • the outlet of the expander 20 and the inlet of the condenser 30 are connected via a fourth passage 24.
  • the outlet of the condenser 30 and the inlet of the pump 40 are connected via a fifth passage 25.
  • the first heat exchanger 51 and the second heat exchanger 52 exchange heat of the refrigerant pressure-fed by the pump 40 with an EGR (Exhaust Gas Recirculation) gas which is a part of the exhaust gas exhausted from the engine 61.
  • EGR exhaust Gas Recirculation
  • the two heat exchangers 51 and 52 are arranged in series between the outlet of the pump 40 in the refrigerant circuit 11 and the inlet of the expander 20.
  • the first heat exchanger 51 corresponds to the most upstream heat exchanger located at the uppermost stream of the refrigerant flow direction from the outlet of the pump 40 to the inlet of the expander 20.
  • the second heat exchanger 52 corresponds to the most downstream heat exchanger located at the most downstream side in the flow direction of the refrigerant from the outlet of the pump 40 to the inlet of the expander 20.
  • the engine 61 is a diesel engine.
  • An intake passage 62 is connected to the engine 61.
  • the intake passage 62 is provided with a compressor 63 a of the supercharger 63.
  • an exhaust passage 64 is connected to the engine 61.
  • the exhaust passage 64 is provided with a turbine 63 b of the supercharger 63.
  • the supercharger 63 is a known variable nozzle turbocharger operated by an exhaust flow.
  • the variable nozzle turbocharger drives the compressor 63a using the rotational torque generated in the turbine 63b as a driving source by the action of the exhaust flow, and pumps intake air.
  • an intercooler 62a is provided downstream of the turbocharger 63 in the air flow direction. The intercooler 62 a cools the intake air whose temperature has been increased by the supercharging of the supercharger 63.
  • An EGR passage 65 is formed in the exhaust passage 64.
  • the EGR passage 65 returns EGR gas, which is a part of the exhaust gas exhausted from the engine 61, to the intake passage 62.
  • the EGR passage 65 is a part of the exhaust passage 64.
  • One end of the EGR passage 65 is connected upstream of the turbocharger 63 in the flow direction of the exhaust gas.
  • the other end of the EGR passage 65 is connected to the intake passage 62.
  • a first heat exchanger 51 and a second heat exchanger 52 are disposed in the EGR passage 65. Then, the EGR gas flowing through the EGR passage 65 flows in the order of the second heat exchanger 52 and the first heat exchanger 51.
  • the EGR passage 65 is provided with an EGR valve 65 a on the downstream side of the first heat exchanger 51 in the flow direction of the EGR gas.
  • the amount of recirculation of the EGR gas to the intake passage 62 is adjusted by the EGR valve 65a.
  • the refrigerant circulation circuit 11 is provided with a refrigerant bypass passage 81 as a working fluid bypass passage that bypasses the first heat exchanger 51.
  • a refrigerant bypass passage 81 is provided with a refrigerant flow rate adjustment valve 81 a as a working fluid flow rate change unit that changes the flow rate of the refrigerant flowing to the refrigerant bypass passage 81 and the first heat exchanger 51.
  • the refrigerant flow rate adjustment valve 81 a can adjust the flow rate of the refrigerant flowing to the refrigerant bypass passage 81 and the flow rate of the refrigerant flowing to the first heat exchanger 51.
  • the EGR gas temperature as an exhaust gas temperature detection unit that detects the temperature of the EGR gas that has passed through the first heat exchanger 51 downstream of the first heat exchanger 51 in the EGR gas flow direction in the EGR passage 65
  • a detection sensor 92 is provided.
  • the EGR gas temperature detection sensor 92 is signal-connected to the control unit S. Then, the detection result detected by the EGR gas temperature detection sensor 92 is sent to the control unit S.
  • a refrigerant temperature detection sensor as a working fluid temperature detection unit that detects the temperature of the refrigerant that has passed through the second heat exchanger 52 downstream of the second heat exchanger 52 in the flow direction of the refrigerant 82 are provided.
  • the refrigerant temperature detection sensor 82 is signal-connected to the control unit S. Then, the detection result detected by the refrigerant temperature detection sensor 82 is sent to the control unit S.
  • the refrigerant is pressure-fed by the pump 40 and the refrigerant circulates in the refrigerant circulation circuit 11. Further, when the engine 61 is driven and the EGR valve 65 a is opened, the EGR gas which is a part of the exhaust gas exhausted from the engine 61 flows through the EGR passage 65.
  • the EGR gas flowing in the order of the second heat exchanger 52 and the first heat exchanger 51 passes through the second heat exchanger 52 and the first heat exchanger 51. It exchanges heat with the refrigerant passing through the vessel 52 and is cooled. Then, the EGR gas cooled by passing through the second heat exchanger 52 and the first heat exchanger 51 is recirculated to the intake passage 62 and mixed with the intake air to be again taken into the engine 61.
  • the second heat exchanger 52 and the first heat exchange are exchanged. It exchanges heat with the EGR gas passing through the vessel 51 and is heated. Then, the refrigerant heated by passing through the first heat exchanger 51 and the second heat exchanger 52 is drawn into the expander 20 via the third passage 23. Further, the refrigerant is expanded by the expander 20, a part of the heat of the refrigerant is extracted as mechanical energy, and power generation by a generator (not shown) and torque assistance of the engine 61 are performed.
  • the refrigerant that has been cooled and depressurized in the expander 20 is drawn into the condenser 30 via the fourth passage 24.
  • the refrigerant drawn into the condenser 30 is condensed in the condenser 30 to change into a liquid refrigerant, and the liquid refrigerant is drawn into the pump 40 through the fifth passage 25.
  • the refrigerant flow control valve 81a is closed.
  • the controller S adjusts the opening degree of the refrigerant flow rate adjustment valve 81a so that the flow rate of the refrigerant flowing to the refrigerant bypass passage 81 increases.
  • the controller S adjusts the opening degree of the refrigerant flow rate adjustment valve 81a so that the flow rate of the refrigerant flowing to the refrigerant bypass passage 81 increases.
  • the temperature of the EGR gas becomes too low, and the water vapor in the EGR gas condenses to generate water, and the sulfur contained in the EGR gas dissolves in the water to generate sulfuric acid, and this sulfuric acid causes the EGR gas to flow Deterioration of the components of the EGR passage 65 is prevented.
  • the "predetermined temperature” refers to the temperature at which the water vapor in the EGR gas begins to condense, and the "predetermined temperature” is slightly higher than the temperature at which the water vapor in the EGR gas begins to condense Say high temperatures.
  • “predetermined temperature” and “predetermined temperature” may not be always constant values, and may be appropriately changed according to the operating state of the engine 61.
  • the control unit S adjusts the opening degree of the refrigerant flow control valve 81a so that the flow rate of the refrigerant flowing to the refrigerant bypass passage 81 increases.
  • the flow rate of the refrigerant flowing to the refrigerant bypass passage 81 and the first heat exchanger 51 can be reduced. it can.
  • the refrigerant passing through the refrigerant bypass passage 81 is not heat-exchanged with the EGR gas in the first heat exchanger 51.
  • the refrigerant that passes through the first heat exchanger 51 without being bypassed to the refrigerant bypass passage 81 is the EGR gas that has been cooled by heat exchange with the refrigerant in the second heat exchanger 52 in the first heat exchanger 51. Since the heat is exchanged, the temperature is prevented from becoming excessively higher than the predetermined temperature.
  • predetermined temperature refers to the temperature at which the refrigerant begins to thermally decompose
  • predetermined temperature refers to a temperature slightly lower than the temperature at which the refrigerant begins to thermally decompose .
  • the “predetermined temperature” and the “predetermined temperature” may not be always constant values, and may be changed as appropriate depending on the operating state of the Rankine cycle device 10.
  • the refrigerant circulation circuit 11 is provided with the first heat exchanger 51 and the second heat exchanger 52. Furthermore, the refrigerant circulation circuit 11 is provided with a refrigerant flow control valve 81a that changes the flow of the refrigerant flowing to the refrigerant bypass passage 81 that bypasses the first heat exchanger 51. Then, the flow rate of the refrigerant flowing to the refrigerant bypass passage 81 is increased by the refrigerant flow rate adjustment valve 81a. As a result, the amount of refrigerant heat-exchanged with the EGR gas in the first heat exchanger 51 decreases, and it is possible to prevent the temperature of the EGR gas from becoming too low.
  • the refrigerant passing through the refrigerant bypass passage 81 is not heat-exchanged with the EGR gas in the first heat exchanger 51. Then, the refrigerant that passes through the first heat exchanger 51 without being bypassed to the refrigerant bypass passage 81 is the EGR gas that has been cooled by heat exchange with the refrigerant in the second heat exchanger 52 in the first heat exchanger 51. Because the heat is exchanged, the temperature does not become too high.
  • the EGR passage 65 is provided with an EGR gas temperature detection sensor 92 that detects the temperature of the EGR gas that has passed through the first heat exchanger 51. Then, when the temperature detected by the EGR gas temperature detection sensor 92 is lower than a predetermined temperature, the flow rate of the refrigerant flowing to the refrigerant bypass passage 81 and the first heat exchanger 51 by the refrigerant flow adjustment valve 81a is Be changed. Thereby, it can be made easy to prevent the temperature of the EGR gas from becoming too low.
  • the refrigerant circulation circuit 11 is provided with a refrigerant temperature detection sensor 82 that detects the temperature of the refrigerant that has passed through the second heat exchanger 52. Then, when the temperature detected by the refrigerant temperature detection sensor 82 is higher than a predetermined temperature, the flow rate of the refrigerant flowing to the refrigerant bypass passage 81 and the first heat exchanger 51 is changed by the refrigerant flow adjustment valve 81a. Be done. Thereby, it can be made easy to prevent the temperature of the refrigerant from becoming too high.
  • the engine 61 is a diesel engine.
  • a diesel engine contains more sulfur in the exhaust gas than a gasoline engine, so the temperature of the EGR gas becomes too low, and when the EGR gas condenses, the sulfur reacts with the condensed water to generate sulfuric acid Easy to do.
  • sulfuric acid is generated by condensation of the EGR gas in the diesel engine, and the components of the EGR passage 65 are degraded. Can be prevented.
  • the EGR passage 65 is provided with an EGR gas bypass passage 91 as an exhaust gas bypass passage that bypasses the second heat exchanger 52.
  • One end of the EGR gas bypass passage 91 is connected upstream of the second heat exchanger 52 in the EGR gas flow direction in the EGR passage 65, and the other end is the second heat exchange in the EGR gas flow direction It is connected downstream of the vessel 52 and upstream of the first heat exchanger 51.
  • the EGR gas bypass passage 91 is provided with an EGR gas flow rate adjustment valve 91 a as an exhaust gas flow rate change unit that changes the flow rate of the EGR gas flowing to the EGR gas bypass passage 91 and the second heat exchanger 52.
  • the EGR gas flow rate adjustment valve 91 a can adjust the flow rate of the EGR gas flowing to the EGR gas bypass passage 91 and the flow rate of the EGR gas flowing to the second heat exchanger 52.
  • the EGR gas flow rate adjustment valve 91 a is signal-connected to the controller S.
  • the opening degree of the EGR gas flow rate adjustment valve 91a is adjusted by the control unit S.
  • the controller S adjusts the opening degree of the EGR gas flow adjustment valve 91a so that the flow rate of the EGR gas flowing to the EGR gas bypass passage 91 increases Do.
  • the controller S adjusts the opening degree of the EGR gas flow adjustment valve 91a so that the flow rate of the EGR gas flowing to the EGR gas bypass passage 91 increases Do.
  • the controller S adjusts the opening degree of the EGR gas flow rate adjustment valve 91a so that the flow rate of the EGR gas flowing to the EGR gas bypass passage 91 increases. .
  • the controller S adjusts the opening degree of the EGR gas flow rate adjustment valve 91a so that the flow rate of the EGR gas flowing to the EGR gas bypass passage 91 increases.
  • the EGR gas passing through the second heat exchanger 52 without being bypassed to the EGR gas bypass passage 91 is heated by heat exchange with the EGR gas in the first heat exchanger 51 in the second heat exchanger 52. Since the heat is exchanged with the refrigerant, it is prevented that the temperature is lower than a predetermined temperature.
  • the EGR passage 65 is provided with an EGR gas flow rate adjustment valve 91a for changing the flow rate of the EGR gas flowing to the EGR gas bypass passage 91 bypassing the second heat exchanger 52. Then, the flow rate of the EGR gas flowing to the second heat exchanger 52 is reduced more than the flow rate of the EGR gas flowing to the EGR gas bypass passage 91 by the EGR gas flow rate adjustment valve 91 a. Thereby, in the second heat exchanger 52, the amount of EGR gas heat-exchanged with the refrigerant decreases, and it is possible to prevent the temperature of the refrigerant from becoming too high.
  • the EGR gas passing through the EGR gas bypass passage 91 is not heat-exchanged with the refrigerant in the second heat exchanger 52. Then, the EGR gas passing through the second heat exchanger 52 without being bypassed to the EGR gas bypass passage 91 is heated by heat exchange with the EGR gas in the first heat exchanger 51 in the second heat exchanger 52. Since the heat is exchanged with the refrigerant, the temperature of the EGR gas does not become too low.
  • the refrigerant circulation circuit 11 is provided with a refrigerant bypass passage 81 and a refrigerant flow control valve 81a
  • the EGR passage 65 is provided with an EGR gas bypass passage 91 and an EGR gas flow adjustment valve 91a. It is also good. In this case, for example, when the flow rate of the refrigerant flowing to the refrigerant bypass passage 81 is increased by the refrigerant flow adjustment valve 81a, the flow rate of the EGR gas flowing to the EGR gas bypass passage 91 is reduced by the EGR gas flow adjustment valve 91a. 2. It is necessary to increase the flow rate of the EGR gas flowing to the heat exchanger 52.
  • coolant and EGR gas may be increased.
  • the refrigerant bypass passage 81 needs to at least bypass the most upstream heat exchanger located at the most upstream side of the refrigerant flow direction among the heat exchangers.
  • the EGR gas bypass passage 91 needs to at least bypass the most downstream heat exchanger located at the most downstream side in the flow direction of the refrigerant among the plurality of heat exchangers.
  • a heat exchanger may be provided which exchanges heat between a heat source fluid other than the exhaust gas (for example, cooling water for the engine 61) and the refrigerant.
  • the working fluid flow rate change unit may be a switching valve that switches the flow of the refrigerant to the flow to the refrigerant bypass passage 81 or the flow to the first heat exchanger 51. Then, the switching valve switches the flow of the refrigerant to the flow to the refrigerant bypass passage 81 or the flow to the first heat exchanger 51, whereby the refrigerant flowing to the refrigerant bypass passage 81 and the first heat exchanger 51 Flow rate may be changed.
  • the EGR gas flow rate change unit may be a switching valve that switches the flow of the EGR gas to the flow to the EGR gas bypass passage 91 or the flow to the second heat exchanger 52. Then, by switching the flow of the EGR gas to the flow to the EGR gas bypass passage 91 or the flow to the second heat exchanger 52 by the switching valve, the EGR gas bypass passage 91 and the second heat exchanger 52 The flow rate of the EGR gas flowing into may be changed.
  • the flow rate of the refrigerant flowing to the refrigerant bypass passage 81 and the first heat exchanger 51 is changed based on the charge amount of the battery that charges the electricity generated by the expander 20,
  • the flow rate of the EGR gas flowing to the EGR gas bypass passage 91 and the second heat exchanger 52 may be changed.
  • the charge amount of the battery exceeds a predetermined amount
  • the refrigerant or the EGR gas is bypassed to the refrigerant bypass passage 81 or the EGR gas bypass passage 91.
  • the "predetermined amount” is an amount that the amount of charge of the battery is smaller than the amount of full charge.
  • the temperature of the refrigerant can be made lower than that before the refrigerant or the EGR gas is bypassed to the refrigerant bypass passage 81 or the EGR gas bypass passage 91.
  • the refrigerant can be expanded by the expander 20 to reduce mechanical energy extracted by the expander 20, and as a result, the amount of electricity charged to the battery can be reduced.
  • the flow rate of the refrigerant flowing to the refrigerant bypass passage 81 and the first heat exchanger 51 is changed based on the pressure at the outlet of the expander 20, or the EGR gas bypass passage 91 and the second
  • the flow rate of the EGR gas flowing to the heat exchanger 52 may be changed.
  • the pressure at the outlet of the expander 20 exceeds a predetermined pressure
  • the refrigerant or the EGR gas is bypassed to the refrigerant bypass passage 81 or the EGR gas bypass passage 91.
  • the temperature of the refrigerant can be made lower than that before the refrigerant or the EGR gas is bypassed to the refrigerant bypass passage 81 or the EGR gas bypass passage 91.
  • the refrigerant can be expanded by the expander 20 to reduce the pressure of the refrigerant flowing out of the outlet of the expander 20.
  • the refrigerant can be easily condensed by the condenser 30.
  • the “predetermined pressure” refers to a pressure slightly lower than the pressure of the refrigerant that causes the condenser 30 to be overloaded when condensing the refrigerant in the condenser 30.
  • the flow directions of the refrigerant flowing through the first and second heat exchangers 51 and 52 and the EGR gas may be partially the same as long as they are reverse to each other as a whole. If the refrigerant flows in the order of the first heat exchanger 51 and the second heat exchanger 52 and the EGR gas flows in the order of the second heat exchanger 52 and the first heat exchanger 51, the first heat exchanger 51
  • the flowing directions of the refrigerant flowing through the and the EGR gas may be the same as each other.
  • the flow directions of the refrigerant flowing through the second heat exchanger 52 and the EGR gas may be the same.
  • the refrigerant may be heat-exchanged with the exhaust gas exhausted to the outside of the vehicle in the first heat exchanger 51 and the second heat exchanger 52.
  • the working fluid may be, for example, water.
  • the engine 61 may be a gasoline engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

ランキンサイクル装置は、作動流体回路を形成するポンプ、複数の熱交換器、膨張機、及び凝縮器を備える。複数の熱交換器は、ポンプの出口から膨張機の入口までの作動流体の流通方向における最上流に位置する最上流熱交換器と、ポンプの出口から膨張機の入口までの作動流体の流通方向における最下流に位置する最下流熱交換器とを含む。ランキンサイクル装置は、最上流熱交換器をバイパスする作動流体バイパス通路へ流れる作動流体の流量を変更する作動流体流量変更部、及び、最下流熱交換器をバイパスする排気ガスバイパス通路へ流れる排気ガスの流量を変更する排気ガス流量変更部のうちの少なくとも一方を備えている。

Description

ランキンサイクル装置
 本発明は、ランキンサイクル装置に関する。
 この種のランキンサイクル装置は、例えば特許文献1に開示されている。特許文献1のランキンサイクル装置は、エンジンから排気される燃焼ガス(排気ガス)の一部であるEGR(Exhaust Gas Recirculation)ガスを熱源として、蒸気発生器を流れる作動流体を加熱する。そして、蒸気発生器で加熱された作動流体が膨張機に吸入され、膨張機により作動流体を略等エントロピ的に減圧膨張することで、作動流体の有する熱エネルギーが回転エネルギー等の機械的エネルギーに変換される。
特開2005-42618号公報
 ところで、蒸気発生器においてEGRガスが作動流体と熱交換されることで、EGRガスの温度が低くなり過ぎると、EGRガス中の水蒸気が凝縮して水が発生し、EGRガスに含まれる硫黄が水に溶けることにより硫酸が生じる。この硫酸により、EGRガスが流れるEGR通路の構成部品が劣化してしまう。一方、蒸気発生器において作動流体がEGRガスと熱交換されることで、作動流体の温度が高くなり過ぎると、作動流体が熱分解してしまったり、作動流体に含まれる潤滑油が炭化してしまったりしてランキンサイクル装置の効率低下や信頼性低下につながる。
 そこで、上記課題を解決するために、例えば、ランキンサイクル装置における回路において、蒸気発生器をバイパスする作動流体バイパス回路を配設することが考えられる。作動流体の一部が作動流体バイパス回路へバイパスされることにより、蒸気発生器においてEGRガスと熱交換される作動流体の量が低減されるため、EGRガスの温度が低くなり過ぎてしまうことが抑制される。この場合、EGRガスの温度が低くなり過ぎてしまうことは抑制されるが、蒸気発生器においてEGRガスと熱交換される作動流体の量が少なくなっているため、蒸気発生器において作動流体が加熱され易くなってしまう。そのため、作動流体の温度が高くなり過ぎてしまうという問題が発生し得る。
 これに対して、例えば、EGR通路において、蒸気発生器をバイパスするEGRバイパス回路を配設することも考えられる。EGRガスの一部がEGRバイパス回路へバイパスされることにより、蒸気発生器において作動流体と熱交換されるEGRガスの量が低減されるため、作動流体の温度が高くなり過ぎることが抑制される。この場合、作動流体の温度が高くなり過ぎてしまうことは抑制されるが、蒸気発生器において作動流体と熱交換されるEGRガスの量が少なくなっているため、蒸気発生器においてEGRガスが冷却され易くなってしまう。そのため、EGRガスの温度が低くなり過ぎてしまうという問題が発生し得る。
 なお、この問題は蒸気発生器におけるEGRガスと作動流体との熱交換に限定されるものではなく、エンジンから排気される排気ガスと作動流体との熱交換であれば、同様な問題が起こり得る。
 本発明の目的は、排気ガスの温度が低くなり過ぎてしまうことを防止することができるとともに、作動流体の温度が高くなり過ぎてしまうことを防止することができるランキンサイクル装置を提供することにある。
 上記目的を達成するために、本発明の一態様は、作動流体を圧送するポンプと、前記ポンプにより圧送された前記作動流体をエンジンから排気される排気ガスと熱交換させる複数の熱交換器と、前記各熱交換器で熱交換された作動流体を膨張させて機械的エネルギーを出力する膨張機と、前記膨張機で膨張された作動流体を凝縮させる凝縮器と、前記ポンプ、前記複数の熱交換器、前記膨張機、及び前記凝縮器が順次接続されて構成された作動流体回路とを備えるランキンサイクル装置が提供される。前記排気ガスは、前記複数の熱交換器を、前記作動流体の流通方向とは逆方向に流れるように構成される。前記複数の熱交換器は、前記ポンプの出口から前記膨張機の入口までの前記作動流体の流通方向における最上流に位置する最上流熱交換器と、前記ポンプの出口から前記膨張機の入口までの前記作動流体の流通方向における最下流に位置する最下流熱交換器とを含む。前記ランキンサイクル装置は、前記最上流熱交換器をバイパスする作動流体バイパス通路へ流れる前記作動流体の流量を変更する作動流体流量変更部、及び、前記最下流熱交換器をバイパスする排気ガスバイパス通路へ流れる前記排気ガスの流量を変更する排気ガス流量変更部のうちの少なくとも一方を備えている。
 作動流体流量変更部により、作動流体バイパス通路へ流れる作動流体の流量が増大される。これにより、最上流熱交換器において排気ガスと熱交換される作動流体の量が少なくなり、排気ガスの温度が低くなり過ぎてしまうことを防止することができる。また、作動流体バイパス通路を通過する作動流体は、最上流熱交換器で排気ガスと熱交換されない。そして、作動流体バイパス通路へバイパスされずに最上流熱交換器を通過する作動流体は、最上流熱交換器において、下流側の熱交換器で作動流体と熱交換されて冷却された排気ガスと熱交換されるため、作動流体の温度が高くなり過ぎてしまうことが無い。
 また、排気ガス流量変更部により、排気ガスバイパス通路へ流れる排気ガスの流量が増大される。これにより、最下流熱交換器において作動流体と熱交換される排気ガスの量が少なくなり、作動流体の温度が高くなり過ぎてしまうことを防止することができる。また、排気ガスバイパス通路を通過する排気ガスは、最下流熱交換器で作動流体と熱交換されない。そして、排気ガスバイパス通路へバイパスされずに最下流熱交換器を通過する排気ガスは、最下流熱交換器において、上流側の熱交換器で排気ガスと熱交換されて加熱された作動流体と熱交換されるため、排気ガスの温度が低くなり過ぎてしまうことが無い。
第1の実施形態におけるランキンサイクル装置を示す模式図。 第2の実施形態におけるランキンサイクル装置を示す模式図。 別の実施形態におけるランキンサイクル装置を示す模式図。
 (第1の実施形態)
 以下、第1の実施形態を図1にしたがって説明する。なお、ランキンサイクル装置は車両に搭載されている。
 図1に示すように、ランキンサイクル装置10は、膨張機20、凝縮器30、ポンプ40、熱交換器としての第1熱交換器51及び第2熱交換器52を順次接続してなる作動流体回路としての冷媒循環回路11を備える。この冷媒循環回路11では、作動流体としての冷媒が循環する。そして、冷媒循環回路11では、冷媒は、膨張機20、凝縮器30、ポンプ40、第1熱交換器51、第2熱交換器52の順に流れて冷媒循環回路11を循環する。
 ポンプ40の出口と第1熱交換器51とは第1通路21を介して接続されている。第1熱交換器51と第2熱交換器52とは第2通路22を介して接続されている。第2熱交換器52と膨張機20の入口とは第3通路23を介して接続されている。膨張機20の出口と凝縮器30の入口とは第4通路24を介して接続されている。凝縮器30の出口とポンプ40の入口とは第5通路25を介して接続されている。第1熱交換器51及び第2熱交換器52は、ポンプ40により圧送された冷媒を、エンジン61から排気される排気ガスの一部であるEGR(Exhaust Gas Recirculation)ガスと熱交換させる。よって、本実施形態では、冷媒循環回路11におけるポンプ40の出口から膨張機20の入口までの間で二つの熱交換器51,52が直列配置されている。そして、第1熱交換器51が、ポンプ40の出口から膨張機20の入口までの冷媒の流通方向の最上流に位置する最上流熱交換器に相当する。第2熱交換器52が、ポンプ40の出口から膨張機20の入口までの冷媒の流通方向の最下流に位置する最下流熱交換器に相当する。また、本実施形態では、エンジン61はディーゼルエンジンである。
 エンジン61には吸気通路62が接続されている。吸気通路62には過給機63のコンプレッサ63aが設けられている。また、エンジン61に排気通路64が接続されている。排気通路64には過給機63のタービン63bが設けられている。過給機63は、排気流によって作動される公知の可変ノズル式ターボチャージャである。可変ノズル式ターボチャージャは、排気流の作用によりタービン63bに生じる回転トルクを駆動源としてコンプレッサ63aを駆動させ、吸入空気を圧送する。吸気通路62には、空気の流通方向における過給機63よりも下流側にインタークーラ62aが設けられている。このインタークーラ62aによって、過給機63の過給により温度上昇した吸入空気の冷却が図られる。
 排気通路64には、エンジン61から排気される排気ガスの一部であるEGRガスを吸気通路62に還流させるEGR通路65が形成されている。EGR通路65は排気通路64の一部である。EGR通路65の一端は、排気ガスの流通方向における過給機63よりも上流側に接続される。EGR通路65の他端は吸気通路62に接続されている。EGR通路65には第1熱交換器51及び第2熱交換器52が配設されている。そして、EGR通路65を流れるEGRガスは、第2熱交換器52及び第1熱交換器51の順に流れる。すなわち、EGRガスは、ポンプ40の出口から膨張機20の入口までの冷媒の流通方向とは全体として逆方向に流れる。EGR通路65には、EGRガスの流通方向における第1熱交換器51よりも下流側にEGRバルブ65a設けられている。このEGRバルブ65aによって、吸気通路62へのEGRガスの還流量が調整される。
 冷媒循環回路11には、第1熱交換器51をバイパスする作動流体バイパス通路としての冷媒バイパス通路81が配設されている。冷媒バイパス通路81の一端は第1通路21に接続されるとともに、他端は第2通路22に接続されている。冷媒バイパス通路81には、冷媒バイパス通路81と第1熱交換器51とへ流れる冷媒の流量を変更する作動流体流量変更部としての冷媒流量調整バルブ81aが設けられている。冷媒流量調整バルブ81aは、冷媒バイパス通路81へ流れる冷媒の流量と、第1熱交換器51へ流れる冷媒の流量とを調節可能になっている。
 EGR通路65には、EGRガスの流通方向における第1熱交換器51よりも下流側に、第1熱交換器51を通過したEGRガスの温度を検出する排気ガス温度検出部としてのEGRガス温度検出センサ92が設けられている。EGRガス温度検出センサ92は制御部Sに信号接続されている。そして、EGRガス温度検出センサ92により検出された検出結果は制御部Sに送られる。
 冷媒循環回路11には、冷媒の流通方向における第2熱交換器52よりも下流側に、第2熱交換器52を通過した冷媒の温度を検出する作動流体温度検出部としての冷媒温度検出センサ82が設けられている。冷媒温度検出センサ82は制御部Sに信号接続されている。そして、冷媒温度検出センサ82により検出された検出結果は制御部Sに送られる。
 次に、第1の実施形態の作用について説明する。
 ポンプ40が駆動されると、ポンプ40により冷媒が圧送されて冷媒循環回路11を冷媒が循環する。また、エンジン61が駆動され、且つEGRバルブ65aが開かれている場合、エンジン61から排気される排気ガスの一部であるEGRガスは、EGR通路65を流れる。第2熱交換器52及び第1熱交換器51の順に流れるEGRガスは、第2熱交換器52及び第1熱交換器51を通過する際に、第1熱交換器51及び第2熱交換器52を通過する冷媒と熱交換されて冷却される。そして、第2熱交換器52及び第1熱交換器51を通過して冷却されたEGRガスは、吸気通路62へ還流されるとともに、吸入空気と混合されてエンジン61に再び吸気される。
 また、第1熱交換器51及び第2熱交換器52を流れる冷媒は、第1熱交換器51及び第2熱交換器52を通過する際に、第2熱交換器52及び第1熱交換器51を通過するEGRガスと熱交換されて加熱される。そして、第1熱交換器51及び第2熱交換器52を通過して加熱された冷媒は、第3通路23を介して膨張機20に吸入される。さらに、冷媒は膨張機20で膨張し、冷媒の持つ熱量の一部が機械的エネルギーとして取り出されて、図示しない発電機による発電やエンジン61のトルク補助が行われる。膨張機20において降温及び降圧した冷媒は、第4通路24を介して凝縮器30へ吸入される。凝縮器30に吸入された冷媒は、凝縮器30で凝縮されて液冷媒に相変化し、その液冷媒は、第5通路25を介してポンプ40に吸入される。なお、このとき、冷媒流量調整バルブ81aは閉じられている。
 エンジン61の出力が低く、EGRガス温度検出センサ92により検出されたEGRガスの温度が、予め定められた温度よりも低かったと仮定する。すると、制御部Sは、EGRガス温度検出センサ92により検出された検出結果に基づいて、冷媒バイパス通路81へ流れる冷媒の流量が増えるように、冷媒流量調整バルブ81aの開度を調節する。このように、冷媒バイパス通路81と第1熱交換器51とへ流れる冷媒の流量を変更することで、第1熱交換器51において、EGRガスと熱交換される冷媒の量が少なくなる。そのため、EGRガスの温度が所定の温度よりも低くなり過ぎてしまうことが防止される。
 よって、EGRガスの温度が低くなり過ぎて、EGRガス中の水蒸気が凝縮して水が発生し、EGRガスに含まれる硫黄が水に溶けることにより硫酸が生じ、この硫酸により、EGRガスが流れるEGR通路65の構成部品が劣化してしまうことが防止されている。ここで、「所定の温度」とは、EGRガス中の水蒸気が凝縮し始める温度のことを言い、「予め定められた温度」とは、EGRガス中の水蒸気が凝縮し始める温度よりも僅かに高い温度のことを言う。また、「所定の温度」及び「予め定められた温度」は、常に一定値ではなく、エンジン61の作動状態により適宜変更してもよい。
 また、冷媒温度検出センサ82により検出された温度が、予め定められた温度よりも高かったと仮定する。すると、制御部Sは、冷媒温度検出センサ82により検出された検出結果に基づいて、冷媒バイパス通路81へ流れる冷媒の流量が増えるように、冷媒流量調整バルブ81aの開度を調節する。このように、冷媒バイパス通路81と第1熱交換器51とへ流れる冷媒の流量を変更することで、第1熱交換器51において、EGRガスと熱交換される冷媒の流量を少なくすることができる。冷媒バイパス通路81を通過する冷媒は、第1熱交換器51でEGRガスと熱交換されない。
 そして、冷媒バイパス通路81へバイパスされずに第1熱交換器51を通過する冷媒は、第1熱交換器51において、第2熱交換器52で冷媒と熱交換されて冷却されたEGRガスと熱交換されるため、温度が所定の温度よりも高くなり過ぎてしまうことが防止されている。
 よって、冷媒の温度が高くなり過ぎて、冷媒が熱分解してしまったり、冷媒に含まれる潤滑油が炭化してしまったりすることが防止されている。ここで、「所定の温度」とは、冷媒が熱分解し始める温度のことを言い、「予め定められた温度」とは、冷媒が熱分解し始める温度よりも僅かに低い温度のことを言う。また、「所定の温度」及び「予め定められた温度」は、常に一定値ではなく、ランキンサイクル装置10の作動状態により適宜変更してもよい。
 第1の実施形態では以下の効果を得ることができる。
 (1)冷媒循環回路11に、第1熱交換器51及び第2熱交換器52が設けられている。さらに、冷媒循環回路11に、第1熱交換器51をバイパスする冷媒バイパス通路81へ流れる冷媒の流量を変更する冷媒流量調整バルブ81aが設けられている。そして、冷媒流量調整バルブ81aにより、冷媒バイパス通路81へ流れる冷媒の流量が増大される。これにより、第1熱交換器51においてEGRガスと熱交換される冷媒の量が少なくなり、EGRガスの温度が低くなり過ぎてしまうことを防止することができる。また、冷媒バイパス通路81を通過する冷媒は、第1熱交換器51でEGRガスと熱交換されない。そして、冷媒バイパス通路81へバイパスされずに第1熱交換器51を通過する冷媒は、第1熱交換器51において、第2熱交換器52で冷媒と熱交換されて冷却されたEGRガスと熱交換されるため、温度が高くなり過ぎてしまうことが無い。
 (2)EGR通路65に、第1熱交換器51を通過したEGRガスの温度を検出するEGRガス温度検出センサ92が設けられている。そして、EGRガス温度検出センサ92により検出された温度が予め定められた温度よりも低い場合に、冷媒流量調整バルブ81aにより、冷媒バイパス通路81と第1熱交換器51とへ流れる冷媒の流量が変更される。これにより、EGRガスの温度が低くなり過ぎてしまうことを防止し易くすることができる。
 (3)冷媒循環回路11に、第2熱交換器52を通過した冷媒の温度を検出する冷媒温度検出センサ82が設けられている。そして、冷媒温度検出センサ82により検出された温度が予め定められた温度よりも高い場合に、冷媒流量調整バルブ81aにより、冷媒バイパス通路81と第1熱交換器51とへ流れる冷媒の流量が変更される。これにより、冷媒の温度が高くなり過ぎてしまうことを防止し易くすることができる。
 (4)冷媒とEGRガスとが第1熱交換器51及び第2熱交換器52において熱交換される。よって、EGRガスの温度が低くなり過ぎて、EGRガス中の水蒸気が凝縮して水が発生し、EGRガスに含まれる硫黄が水に溶けることにより硫酸が生じ、この硫酸により、EGRガスが流れるEGR通路65の構成部品が劣化してしまうことを防止することができる。その結果、EGR通路65の構成部品の劣化が原因で、エンジン61の性能に不具合が生じてしまうことを防止することができる。
 (5)冷媒の温度が高くなり過ぎてしまうことを防止することができるため、冷媒の温度が高くなり過ぎて、冷媒が熱分解してしまったり、冷媒に含まれる潤滑油が炭化してしまったりすることを防止することができる。その結果、ランキンサイクル装置10の効率低下や信頼性低下を抑制することができる。
 (6)エンジン61は、ディーゼルエンジンである。ディーゼルエンジンは、ガソリンエンジンに比べると、排気ガスに硫黄が多く含まれているため、EGRガスの温度が低くなり過ぎて、EGRガスが凝縮すると、硫黄と凝縮水とが反応して硫酸が発生し易い。しかし、本実施形態では、EGRガスの温度が低くなり過ぎることを防止することができるため、ディーゼルエンジンにおいて、EGRガスの凝縮によって硫酸が発生し、EGR通路65の構成部品が劣化してしまうことを防止することができる。
 (第2の実施形態)
 以下、第2の実施形態を図2にしたがって説明する。なお、以下に説明する実施形態では、既に説明した第1の実施形態と同一構成について同一符号を付すなどして、その重複する説明を省略又は簡略する。また、第2の実施形態では、第1の実施形態において、冷媒循環回路11に設けられていた冷媒バイパス通路81及び冷媒流量調整バルブ81aが省略されている。
 図2に示すように、EGR通路65には、第2熱交換器52をバイパスする排気ガスバイパス通路としてのEGRガスバイパス通路91が配設されている。EGRガスバイパス通路91の一端は、EGR通路65において、EGRガスの流通方向における第2熱交換器52よりも上流側に接続されるとともに、他端は、EGRガスの流通方向における第2熱交換器52よりも下流側であって、第1熱交換器51よりも上流側に接続されている。EGRガスバイパス通路91には、EGRガスバイパス通路91と第2熱交換器52とへ流れるEGRガスの流量を変更する排気ガス流量変更部としてのEGRガス流量調整バルブ91aが設けられている。EGRガス流量調整バルブ91aは、EGRガスバイパス通路91へ流れるEGRガスの流量と、第2熱交換器52へ流れるEGRガスの流量とを調節可能になっている。EGRガス流量調整バルブ91aは制御部Sに信号接続されている。そして、EGRガス流量調整バルブ91aの開度は、制御部Sによって調節される。
 次に、第2の実施形態の作用について説明する。
 エンジン61の出力が低く、EGRガス温度検出センサ92により検出されたEGRガスの温度が、予め定められた温度よりも低かったと仮定する。すると、制御部Sは、EGRガス温度検出センサ92により検出された検出結果に基づいて、EGRガスバイパス通路91へ流れるEGRガスの流量が増えるように、EGRガス流量調整バルブ91aの開度を調節する。このように、EGRガスバイパス通路91と第2熱交換器52とへ流れるEGRガスの流量を変更することで、第2熱交換器52において、冷媒と熱交換されるEGRガスの流量を少なくすることができる。EGRガスバイパス通路91を通過するEGRガスは、第2熱交換器52で冷媒と熱交換されない。
 冷媒温度検出センサ82により検出された温度が、予め定められた温度よりも高かったと仮定する。すると、制御部Sは、冷媒温度検出センサ82により検出された検出結果に基づいて、EGRガスバイパス通路91へ流れるEGRガスの流量が増えるように、EGRガス流量調整バルブ91aの開度を調節する。このように、EGRガスバイパス通路91と第2熱交換器52とへ流れるEGRガスの流量を変更することで、第2熱交換器52において、冷媒と熱交換されるEGRガスの流量を少なくすることができるため、冷媒の温度が所定の温度よりも高くなり過ぎてしまうことが防止されている。
 そして、EGRガスバイパス通路91へバイパスされずに第2熱交換器52を通過するEGRガスは、第2熱交換器52において、第1熱交換器51でEGRガスと熱交換されて加熱された冷媒と熱交換されるため、所定の温度よりも低くなり過ぎてしまうことが防止されている。
 したがって、第2の実施形態によれば、第1の実施形態の効果(2)~(6)と同様の効果に加えて、以下に示す効果を得ることができる。
 (7)EGR通路65に、第2熱交換器52をバイパスするEGRガスバイパス通路91へ流れるEGRガスの流量を変更するEGRガス流量調整バルブ91aが設けられている。そして、EGRガス流量調整バルブ91aにより、EGRガスバイパス通路91へ流れるEGRガスの流量よりも第2熱交換器52へ流れるEGRガスの流量が低減される。これにより、第2熱交換器52において、冷媒と熱交換されるEGRガスの量が少なくなり、冷媒の温度が高くなり過ぎてしまうことを防止することができる。また、EGRガスバイパス通路91を通過するEGRガスは、第2熱交換器52で冷媒と熱交換されない。そして、EGRガスバイパス通路91へバイパスされずに第2熱交換器52を通過するEGRガスは、第2熱交換器52において、第1熱交換器51でEGRガスと熱交換されて加熱された冷媒と熱交換されるため、EGRガスの温度が低くなり過ぎてしまうことが無い。
 なお、上記各実施形態は以下のように変更されてもよい。
 ○ 図3に示すように、冷媒循環回路11に、冷媒バイパス通路81及び冷媒流量調整バルブ81aが設けられるとともに、EGR通路65に、EGRガスバイパス通路91及びEGRガス流量調整バルブ91aが設けられてもよい。この場合、例えば、冷媒流量調整バルブ81aにより、冷媒バイパス通路81へ流れる冷媒の流量が増大されたときには、EGRガス流量調整バルブ91aにより、EGRガスバイパス通路91へ流れるEGRガスの流量を減らして第2熱交換器52へ流れるEGRガスの流量を増やす必要がある。同様に、EGRガス流量調整バルブ91aにより、EGRガスバイパス通路91へ流れるEGRガスの流量が増大されたときには、冷媒流量調整バルブ81aにより、冷媒バイパス通路81へ流れる冷媒の流量を減らして第1熱交換器51へ流れる冷媒の流量を増やす必要がある。
 ○ 上記各実施形態において、冷媒とEGRガスとを熱交換させる熱交換器の数が増やされてもよい。この場合、例えば、冷媒バイパス通路81は、各熱交換器のうち、冷媒の流通方向の最上流に位置する最上流熱交換器を少なくともバイパスしている必要がある。また、EGRガスバイパス通路91は、複数の熱交換器のうち、冷媒の流通方向の最下流に位置する最下流熱交換器を少なくともバイパスしている必要がある。また、第1熱交換器51及び第2熱交換器52に加えて、排気ガス以外の熱源流体(例えばエンジン61の冷却水)と冷媒とを熱交換する熱交換器が設けられてもよい。
 ○ 第1の実施形態において、作動流体流量変更部は、冷媒の流れを、冷媒バイパス通路81への流れ、又は第1熱交換器51への流れに切り替える切替弁であってもよい。そして、当該切替弁により、冷媒の流れを、冷媒バイパス通路81への流れ、又は第1熱交換器51への流れに切り替えることで、冷媒バイパス通路81と第1熱交換器51とへ流れる冷媒の流量が変更されてもよい。
 ○ 第2の実施形態において、EGRガス流量変更部は、EGRガスの流れを、EGRガスバイパス通路91への流れ、又は第2熱交換器52への流れに切り替える切替弁であってもよい。そして、当該切替弁により、EGRガスの流れを、EGRガスバイパス通路91への流れ、又は第2熱交換器52への流れに切り替えることで、EGRガスバイパス通路91と第2熱交換器52とへ流れるEGRガスの流量が変更されてもよい。
 ○ 上記各実施形態において、例えば、膨張機20により発電された電気を充電するバッテリの充電量に基づいて、冷媒バイパス通路81と第1熱交換器51とへ流れる冷媒の流量が変更されたり、EGRガスバイパス通路91と第2熱交換器52とへ流れるEGRガスの流量が変更されたりしてもよい。具体的には、バッテリの充電量が所定量を上回ったときには、冷媒バイパス通路81又はEGRガスバイパス通路91に冷媒又はEGRガスがバイパスされる。ここで、「所定量」とは、バッテリの充電量が満充電の量よりも少ない量のことである。これにより、冷媒の温度を、冷媒又はEGRガスを冷媒バイパス通路81又はEGRガスバイパス通路91にバイパスさせる前に比べて低くすることができる。よって、冷媒が膨張機20により膨張されて、膨張機20により取り出される機械的エネルギーを減らすことができ、その結果として、バッテリに充電される電気の量を減らすことができる。
 ○ 上記各実施形態において、例えば、膨張機20の出口の圧力に基づいて、冷媒バイパス通路81と第1熱交換器51とへ流れる冷媒の流量が変更されたり、EGRガスバイパス通路91と第2熱交換器52とへ流れるEGRガスの流量が変更されたりしてもよい。具体的には、膨張機20の出口の圧力が所定の圧力を上回ったときには、冷媒バイパス通路81又はEGRガスバイパス通路91に冷媒又はEGRガスをバイパスされる。これにより、冷媒の温度を、冷媒又はEGRガスを冷媒バイパス通路81又はEGRガスバイパス通路91にバイパスさせる前に比べて低くすることができる。よって、冷媒が膨張機20により膨張されて、膨張機20の出口から流出した冷媒の圧力を下げることができ、その結果として、冷媒を凝縮器30で凝縮させ易くすることができる。ここで、「所定の圧力」とは、凝縮器30での冷媒の凝縮において、凝縮器30に負荷が掛かり過ぎてしまう冷媒の圧力よりも僅かに低い圧力のことを言う。
 ○ 上記各実施形態において、第1及び第2熱交換器51,52を流れる冷媒とEGRガスとの流通方向は、全体として互いに逆方向であれば部分的に同じ方向であってもよい。冷媒が第1熱交換器51及び第2熱交換器52の順で流れ、EGRガスが第2熱交換器52及び第1熱交換器51の順で流れていれば、第1熱交換器51を流れる冷媒とEGRガスとの流通方向は互いに同じ方向であってもよい。また、第2熱交換器52を流れる冷媒とEGRガスとの流通方向は互いに同じ方向であってもよい。
 ○ 上記各実施形態において、冷媒は、第1熱交換器51及び第2熱交換器52において、車両の外部へ排気される排気ガスと熱交換されてもよい。
 ○ 上記各実施形態において、作動流体は、例えば、水であってもよい。
 ○ 上記各実施形態において、エンジン61はガソリンエンジンであってもよい。

Claims (5)

  1.  ランキンサイクル装置であって、
     作動流体を圧送するポンプと、
     前記ポンプにより圧送された前記作動流体をエンジンから排気される排気ガスと熱交換させる複数の熱交換器と、
     前記各熱交換器で熱交換された作動流体を膨張させて機械的エネルギーを出力する膨張機と、
     前記膨張機で膨張された作動流体を凝縮させる凝縮器と、
     前記ポンプ、前記複数の熱交換器、前記膨張機、及び前記凝縮器が順次接続されて構成された作動流体回路とを備え、
     前記排気ガスは、前記複数の熱交換器を、前記作動流体の流通方向とは逆方向に流れるように構成され、
     前記複数の熱交換器は、前記ポンプの出口から前記膨張機の入口までの前記作動流体の流通方向における最上流に位置する最上流熱交換器と、前記ポンプの出口から前記膨張機の入口までの前記作動流体の流通方向における最下流に位置する最下流熱交換器とを含み、
     前記ランキンサイクル装置は、
     前記最上流熱交換器をバイパスする作動流体バイパス通路へ流れる前記作動流体の流量を変更する作動流体流量変更部、及び、前記最下流熱交換器をバイパスする排気ガスバイパス通路へ流れる前記排気ガスの流量を変更する排気ガス流量変更部のうちの少なくとも一方を備えている、ランキンサイクル装置。
  2.  前記最上流熱交換器を通過した排気ガスの温度を検出する排気ガス温度検出部をさらに備え、前記ランキンサイクル装置は、前記排気ガスの温度に基づき前記作動流体流量変更部及び前記排気ガス流量変更部のうちの少なくとも一方を制御するように構成されている請求項1に記載のランキンサイクル装置。
  3.  前記最下流熱交換器を通過した作動流体の温度を検出する作動流体温度検出部をさらに備え、前記ランキンサイクル装置は、前記作動流体の温度に基づき前記作動流体流量変更部及び前記排気ガス流量変更部のうちの少なくとも一方を制御するように構成されている請求項1又は請求項2に記載のランキンサイクル装置。
  4.  前記排気ガスはEGRガスである、請求項1~請求項3のいずれか一項に記載のランキンサイクル装置。
  5.  前記エンジンはディーゼルエンジンを含む、請求項1~請求項4のいずれか一項に記載のランキンサイクル装置。
PCT/JP2013/060167 2012-04-05 2013-04-03 ランキンサイクル装置 WO2013151079A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012086442A JP2013217221A (ja) 2012-04-05 2012-04-05 ランキンサイクル装置
JP2012-086442 2012-04-05

Publications (1)

Publication Number Publication Date
WO2013151079A1 true WO2013151079A1 (ja) 2013-10-10

Family

ID=49300560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060167 WO2013151079A1 (ja) 2012-04-05 2013-04-03 ランキンサイクル装置

Country Status (2)

Country Link
JP (1) JP2013217221A (ja)
WO (1) WO2013151079A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180163672A1 (en) * 2016-12-14 2018-06-14 Hyundai Motor Company Heat exchanger for vehicle
US10443948B2 (en) 2016-12-14 2019-10-15 Hyundai Motor Company Heat exchanger for vehicle having housing with heat exchange core installed therein
NL2029295B1 (en) * 2021-09-30 2023-04-06 Daf Trucks Nv Exhaust gas recirculation assembly

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101567171B1 (ko) 2013-12-27 2015-11-06 현대자동차주식회사 내연기관의 배기열 재활용 시스템
JP6217426B2 (ja) * 2014-02-07 2017-10-25 いすゞ自動車株式会社 廃熱回収システム
WO2016140018A1 (ja) * 2015-03-05 2016-09-09 富士電機株式会社 バイナリ発電システム、制御装置およびプログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419158A (en) * 1987-07-14 1989-01-23 San Plant Kk Exhaust gas heat recovering apparatus
JP2008038916A (ja) * 2007-09-28 2008-02-21 Denso Corp ランキンサイクル
WO2009101977A1 (ja) * 2008-02-14 2009-08-20 Sanden Corporation 内燃機関の廃熱利用装置
JP2010503795A (ja) * 2006-09-19 2010-02-04 バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフト 熱交換器配列
JP2011153558A (ja) * 2010-01-27 2011-08-11 Mitsubishi Electric Corp 排熱回生システム
WO2012043335A1 (ja) * 2010-09-30 2012-04-05 サンデン株式会社 内燃機関の廃熱利用装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419158A (en) * 1987-07-14 1989-01-23 San Plant Kk Exhaust gas heat recovering apparatus
JP2010503795A (ja) * 2006-09-19 2010-02-04 バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフト 熱交換器配列
JP2008038916A (ja) * 2007-09-28 2008-02-21 Denso Corp ランキンサイクル
WO2009101977A1 (ja) * 2008-02-14 2009-08-20 Sanden Corporation 内燃機関の廃熱利用装置
JP2011153558A (ja) * 2010-01-27 2011-08-11 Mitsubishi Electric Corp 排熱回生システム
WO2012043335A1 (ja) * 2010-09-30 2012-04-05 サンデン株式会社 内燃機関の廃熱利用装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180163672A1 (en) * 2016-12-14 2018-06-14 Hyundai Motor Company Heat exchanger for vehicle
CN108223206A (zh) * 2016-12-14 2018-06-29 现代自动车株式会社 用于车辆的热交换器
US10443948B2 (en) 2016-12-14 2019-10-15 Hyundai Motor Company Heat exchanger for vehicle having housing with heat exchange core installed therein
US10533525B2 (en) * 2016-12-14 2020-01-14 Hyundai Motor Company Heat exchanger for vehicle
NL2029295B1 (en) * 2021-09-30 2023-04-06 Daf Trucks Nv Exhaust gas recirculation assembly

Also Published As

Publication number Publication date
JP2013217221A (ja) 2013-10-24

Similar Documents

Publication Publication Date Title
CN103154488B (zh) 内燃机的废热利用装置
JP5976644B2 (ja) 部分的な復熱を伴う廃熱回収システム
WO2013151079A1 (ja) ランキンサイクル装置
JP5070290B2 (ja) 熱交換器配列
WO2015064301A1 (ja) エンジン冷却システム
WO2013046853A1 (ja) 廃熱回生システム
JP2012007500A (ja) 内燃機関の排気熱回収装置
JP2009236014A (ja) 廃熱回収装置
EP2351915A1 (en) Combined cycle power plant and method of operating such power plant
JP2013238131A (ja) 廃熱利用装置
WO2013046783A1 (ja) 廃熱回生システム
KR20130122946A (ko) 내연기관의 배기가스 터보차저
JP2014190170A (ja) 廃熱回生システム
US20190234343A1 (en) Organic rankine cycle waste heat recovery system having two loops
JP2013032751A (ja) エンジンシステム
CN111527297B (zh) 用于转换来自内燃机损失热的热能的装置
JP6186866B2 (ja) エンジンの冷却システム
WO2014103977A1 (ja) 内燃機関の廃熱利用装置
WO2016129451A1 (ja) 熱交換器、エネルギー回収装置、および船舶
JP2017120067A (ja) 車両用冷却システムの制御装置
JP2013217222A (ja) ランキンサイクル装置
JP2013160076A (ja) ランキンサイクル装置
KR20180108451A (ko) 과급 공기 냉각 유닛
JP2015059425A (ja) 内燃機関の廃熱回収装置
JP2017120068A (ja) 廃熱回収装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13772175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13772175

Country of ref document: EP

Kind code of ref document: A1