WO2016129451A1 - 熱交換器、エネルギー回収装置、および船舶 - Google Patents

熱交換器、エネルギー回収装置、および船舶 Download PDF

Info

Publication number
WO2016129451A1
WO2016129451A1 PCT/JP2016/053024 JP2016053024W WO2016129451A1 WO 2016129451 A1 WO2016129451 A1 WO 2016129451A1 JP 2016053024 W JP2016053024 W JP 2016053024W WO 2016129451 A1 WO2016129451 A1 WO 2016129451A1
Authority
WO
WIPO (PCT)
Prior art keywords
working medium
heating unit
heat exchanger
supercharged air
pipe
Prior art date
Application number
PCT/JP2016/053024
Other languages
English (en)
French (fr)
Inventor
成人 足立
和雄 高橋
哲郎 藤井
一也 荒平
雅一 山本
裕 小林
利雄 提島
Original Assignee
株式会社神戸製鋼所
旭海運株式会社
常石造船株式会社
三浦工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所, 旭海運株式会社, 常石造船株式会社, 三浦工業株式会社 filed Critical 株式会社神戸製鋼所
Priority to EP16749095.2A priority Critical patent/EP3258094A4/en
Priority to KR1020177022365A priority patent/KR101940436B1/ko
Priority to CN201680009762.5A priority patent/CN107208572B/zh
Priority to US15/549,017 priority patent/US10408092B2/en
Priority to KR1020187019810A priority patent/KR20180083444A/ko
Publication of WO2016129451A1 publication Critical patent/WO2016129451A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/02Plants modified to use their waste heat, other than that of exhaust, e.g. engine-friction heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • F02G5/04Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J3/00Driving of auxiliaries
    • B63J3/02Driving of auxiliaries from propulsion power plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a heat exchanger mounted on a ship, an energy recovery device including the heat exchanger, and a ship including the energy recovery device.
  • Patent Document 1 discloses exhaust heat recovery in which thermal energy of a diesel engine 500 of a ship is recovered and electric power is generated using the recovered thermal energy, as shown in FIG. The system is described. This exhaust heat recovery system heats the organic medium M having a lower boiling point than the air cooling water W by the air cooling water W of the air cooler 600 that cools the compressed air A discharged from the supercharger 510 of the diesel engine 500.
  • a first exhaust heat recovery device 700 is provided.
  • the air cooling water W recovers the heat of the compressed air A in the air cooler 600, then recovers the heat of the exhaust gas G sent from the supercharger 510 to the chimney 800, and then to the first exhaust heat recovery unit 700.
  • the exhaust heat recovery system of Patent Document 1 performs heat exchange between the two heat mediums of the compressed air A and the exhaust gas G and the air cooling water W, and the air cooling water W whose temperature has increased due to the heat exchange.
  • the organic medium M is heated. Thereby, the thermal energy of the diesel engine 500 is recovered via the organic medium M.
  • thermal energy can be recovered from two heat media, compressed air A and exhaust gas G.
  • the thermal energy is recovered in the organic medium M through the air cooling water W having a boiling point higher than that of the organic medium M.
  • the thermal energy of the compressed air A and the exhaust gas G is directly recovered by the organic medium M, it is difficult to sufficiently recover the thermal energy.
  • the diesel engine 500 may be operated at a low load for the purpose of reducing fuel consumption. In such a case, since the thermal energy of the compressed air A collected by the air cooling water W becomes small, it becomes more difficult to sufficiently collect the thermal energy.
  • An object of the present invention is to provide a heat exchanger that solves the above problems, an energy recovery device that includes the heat exchanger, and a ship that includes the energy recovery device.
  • a heat exchanger is mounted on a ship including an engine, a supercharger that supplies supercharged air to the engine, and an economizer that recovers exhaust heat of the engine to generate steam.
  • a heat exchanger that applies heat of supply air and steam to a working medium used for driving an expander of an energy recovery device, and is generated in the economizer, a first heating unit that heats the working medium with supercharged air Heated in the first heating part by the second heating part for heating the supercharged air before flowing into the first heating part by the steam, and the supercharged air before being heated in the second heating part
  • a third heating unit that heats the subsequent working medium.
  • FIG. 1 is a schematic configuration diagram of an exhaust heat recovery system described in Patent Document 1.
  • FIG. 1 is a schematic configuration diagram of an exhaust heat recovery system described in Patent Document 1.
  • the ship Y1 includes an energy recovery device X1, a supercharger 100, an engine 200, and an economizer 300.
  • the supercharger 100 includes a compressor 110, a turbine 120, a scavenging line 130, and an exhaust line 140.
  • the supercharged air compressed by the compressor 110 is supplied to the engine 200 through the scavenging line 130.
  • Exhaust gas generated in the engine 200 is sent to the turbine 120 through the exhaust line 140.
  • the turbine 120 is driven by the expansion energy of the exhaust gas, and the compressor 110 is driven by the driving force of the turbine 120.
  • the economizer 300 recovers heat from the exhaust gas of the engine 200 and generates water vapor.
  • the economizer 300 is shown separately from the exhaust line 140, but in reality, the economizer 300 is provided at a site downstream of the turbine 120 of the exhaust line 140.
  • the energy recovery device X1 is a power generation system that uses a Rankine cycle of a working medium.
  • an organic fluid having a boiling point lower than that of water is used as the working medium.
  • R245fa or the like is used as the working medium.
  • the heat exchanger 2, the expander 3, the generator 4, the condenser 5, and the pump 6 are connected in this order by a circulation channel 7.
  • the heat exchanger 2 is located on the scavenging line 130. In the heat exchanger 2, the superheated air and the heat of water vapor flowing out from the economizer 300 are given to the working medium.
  • the expander 3 is located downstream of the heat exchanger 2 in the flow direction of the working medium.
  • a screw expander is used as the expander 3
  • the rotor portion which is a screw, is rotationally driven by the expansion energy of the gas phase working medium.
  • the expander 3 not only a screw expander but a centrifugal type, a scroll type, etc. may be used.
  • the generator 4 is connected to the expander 3.
  • the condensing part 5 is located downstream of the expander 3 in the flow direction of the working medium.
  • the condensing unit 5 includes a condenser 51 and a storage unit 52.
  • the condenser 51 has a working medium flow path 51a through which a working medium flows and a cooling water flow path 51b through which cooling water flows.
  • the storage part 52 is located downstream of the condenser 51 in the flow direction of the working medium.
  • the storage unit 52 stores a liquid-phase working medium.
  • the working medium flow path 51 a and the storage section 52 of the condenser 51 are connected by a connection pipe 53.
  • the pump 6 is located between the storage unit 52 and the heat exchanger 2 on the circulation flow path 7.
  • the pump 6 supplies the liquid phase working medium stored in the storage unit 52 to the heat exchanger 2.
  • a centrifugal pump having an impeller as a rotor, a gear pump having a rotor composed of a pair of gears, or the like is used as the pump 6.
  • the liquid phase working medium is heated by supercharged air and steam in the heat exchanger 2 to become superheated steam. Then, the working medium flows into the expander 3 from the heat exchanger, and the expander 3 is driven. The power of the expander 3 is transmitted to the generator 4 to generate electric power.
  • the gas phase working medium expanded by the expander 3 flows into the working medium flow path 51 a of the condenser 51.
  • the working medium is condensed by exchanging heat with the cooling water flowing through the cooling water flow path 51b.
  • the condensed working medium flows into the storage unit 52. Then, the liquid-phase working medium in the reservoir 52 is supplied to the heat exchanger 2 by the pump 6.
  • the working medium circulates in the circulation flow path 7, so that electric power is stably generated based on the heat of the supercharged air and water vapor.
  • the heat exchanger 2 includes a heat exchanger body 21, a working medium pipe 22 through which a working medium flows, and a steam pipe 23 through which water vapor from the economizer 300 flows.
  • the heat exchanger main body 21 accommodates a working medium pipe 22 and a steam pipe 23 in the internal space.
  • supercharged air flows through the space outside the working medium pipe 22 and the steam pipe 23 from the supercharger 100 to the engine 200.
  • the outer portion of the heat exchanger body 21 is referred to as “supercharged air flow path”.
  • the upstream part of the supercharged air flow path is connected to the first scavenging line 131 that is the upstream part of the scavenging line 130, and the downstream part of the supercharged air flow path is the downstream part of the scavenging line 130 Is connected to the second scavenging line 132.
  • the working medium pipe 22 has an upstream portion 22a that is an upstream portion in the flow direction of the working medium and a downstream portion 22c that is a downstream portion.
  • the upstream part 22a and the downstream part 22c are accommodated in the heat exchanger main body 21, respectively.
  • the upstream portion 22a of the working medium pipe 22 is located downstream of the heat exchanger 2 and the downstream portion 22c is located upstream in the flow direction of the supercharged air.
  • the steam pipe 23 is accommodated in the heat exchanger main body 21 and is positioned between the upstream portion 22a and the downstream portion 22c.
  • first heating part 2A A portion formed by the steam pipe 23 and the supercharger flow path is referred to as a “second heating unit 2B”.
  • second heating unit 2B A portion formed by the downstream portion 22c of the working medium pipe 22 and the supercharged air flow path is referred to as a “third heating portion 2C”.
  • the working medium flows in the order of the first heating unit 2A and the third heating unit 2C. Flowing. That is, in the heat exchanger 2, the flow of the supercharged air and the flow of the working medium are opposite to each other, so-called counterflow.
  • the working medium is heated by the supercharged air
  • the second heating unit 2B the supercharged air is heated by the water vapor.
  • FIG. 2 is a simulation result of temperature changes of the supercharged air and the working medium passing through the heat exchanger 2.
  • the section Z1 shown in FIG. 2 corresponds to the heating section of the working medium in the first heating section 2A
  • the section Z2 corresponds to the heating section of the supercharged air in the second heating section 2B
  • the section Z3 corresponds to the heating section of the working medium in the third heating unit 2C.
  • a liquid-phase working medium flows into the first heating unit 2A and is heated by the supercharged air after passing through the second heating unit 2B in the first heating unit 2A.
  • the working medium has a boiling point of 122.1 ° C. As a result, the liquid-phase working medium becomes steam.
  • the gas phase working medium flowing out from the first heating unit 2A flows into the third heating unit 2C, and flows into the heat exchanger main body 21 from the first scavenging line 131 in the third heating unit 2C. It is further heated by the supercharged air immediately after. That is, in the third heating unit 2C, the working medium after being heated in the first heating unit 2A is further heated by the supercharged air before being heated in the second heating unit 2B. As a result, the working medium becomes superheated steam and flows out from the third heating unit 2C.
  • the temperature of the working medium is constant in the section Z3, but actually, the temperature of the gas-phase working medium rises in the third heating unit 2C.
  • the supercharged air flows from the compressor 110 of FIG. 1 into the third heating unit 2C and heat-exchanges with the working medium, so that the temperature gradually decreases in the zone Z3. . Thereafter, the supercharged air flows into the second heating unit 2B and is heated by the water vapor flowing through the steam pipe 23. That is, in the second heating unit 2B, the supercharged air before flowing into the first heating unit 2A is heated by water vapor. As a result, the temperature of the supercharged air rises to a temperature sufficiently higher than the boiling point of the working medium in the zone Z2. The water vapor after heat exchange condenses and flows out of the heat exchanger main body 21.
  • the temperature of the supercharged air whose amount of heat has been recovered is lowered again by exchanging heat with the liquid-phase working medium in the first heating unit 2A. And as shown in FIG. 1, the supercharged air which became low temperature goes to the engine 200 from the 1st heating part 2A.
  • a cooling facility for cooling the supercharged air becomes unnecessary, or it is not necessary to provide a cooling facility having high cooling performance. Thereby, the electric power required for the operation of the cooling facility is reduced.
  • the structure and operation of the energy recovery device X1 mounted on the ship Y1 have been described above.
  • the supercharged air whose temperature has been lowered by heating the working medium in the third heating unit 2C is heated by the water vapor generated by the economizer 300 in the second heating unit 2B. .
  • the supercharged air can sufficiently heat the liquid-phase working medium in the first heating unit 2A.
  • the engine 200 of the ship Y1 when the engine 200 of the ship Y1 is operated at a low load, specifically, a load of 40% to 60% (more preferably, a load of 45% to 50%), compared to a high load. Even if the temperature of the supercharged air sent from the compressor 110 to the engine 200 decreases, the heat energy necessary for driving the energy recovery device X1 is ensured by heating the supercharged air with the steam.
  • the energy recovery device X1 is a power generation system that uses a Rankine cycle of a low-boiling organic fluid, it is possible to more efficiently recover the heat of the steam generated by the supercharged air and the economizer.
  • the first to third heating units 2A to 2C are integrally formed in the heat exchanger main body 21, whereby the heat exchanger 2 can be reduced in size.
  • the working medium and the supercharged air are counterflowed in the first heating unit 2A and the third heating unit 2C, thereby increasing the thermal energy recovery efficiency of the supercharged air in the energy recovery device X1.
  • the 3 includes a heat exchanger body 21, a supercharged air pipe 24 through which supercharged air flows, and a steam pipe 23 through which water vapor flowing out from the economizer 300 flows.
  • the supercharged air pipe 24 and the steam pipe 23 are accommodated in the heat exchanger main body 21.
  • the working medium flows through the space outside the supercharged air pipe 24 and the steam pipe 23.
  • the outer space is referred to as a “working medium flow path”.
  • the working medium flow path is connected to a part 71 between the expander 3 and the heat exchanger 2 and a part 74 between the pump 6 and the heat exchanger 2 in the circulation flow path 7.
  • the supercharged air pipe 24 has an upstream portion 24a which is an upstream portion in the supercharging air flow direction and a downstream portion 24c which is a downstream portion.
  • the upstream portion 24a is located on the downstream side in the working medium flow path, and the downstream portion 24c is located on the upstream side in the working medium flow path.
  • the upstream portion 24 a is connected to the first scavenging line 131.
  • the downstream part 24 c is connected to the second scavenging line 132.
  • the steam pipe 23 is located between the upstream part 24a and the downstream part 24c in the heat exchanger main body 21.
  • the first heating unit 2A is formed by the downstream portion 24c of the supercharged air pipe 24 and the working medium flow path.
  • the second heating unit 2B is formed by the steam pipe 23 and the working medium flow path.
  • a third heating unit 2C is formed by the upstream portion 24a of the supercharged air pipe 24 and the working medium flow path.
  • the working medium is in the order of the first heating unit 2A, the second heating unit 2B, and the third heating unit 2C.
  • Flowing That is, the flow of supercharged air and the flow of working medium are counterflows.
  • the liquid phase working medium flows into the first heating unit 2A.
  • the working medium is heated by the supercharged air after passing through the third heating unit 2C.
  • the liquid-phase working medium (some of which may be in the gas phase) is further heated and vaporized by the steam supplied from the economizer 300 to the steam pipe 23.
  • the gas phase working medium is heated by the high-temperature supercharged air immediately after being discharged from the compressor 110 to become superheated steam. That is, in the third heating unit 2C, the working medium heated in the second heating unit 2B is heated by the supercharged air before heat exchange with the working medium in the first heating unit 2A. The working medium that has become superheated steam flows into the expander 3.
  • heat exchange is performed between the working gas and the two gas phase heat mediums of supercharged air supplied to the engine 200 and water vapor generated in the economizer 300. For this reason, even when the engine 200 of the ship Y1 is operated at a low load, the energy recovery device X1 can recover sufficient thermal energy.
  • the first to third heating units 2A to 2C are integrally formed in the heat exchanger main body 21, whereby the heat exchanger 2 can be reduced in size.
  • the storage unit 52 and the connection pipe 53 may be omitted, and the condensing unit 5 may be formed using only the condenser 51. In this case, a portion in which the liquid phase working medium is stored is provided in the condenser 51.
  • a plurality of heat exchangers each having the first heating unit 2A, the second heating unit 2B, and the third heating unit 2C may be provided.
  • the working medium may flow out from the heat exchanger 2 as saturated steam.
  • a rotary machine such as a compressor may be used as a power recovery machine that recovers the power of the expander 3.
  • the above heat exchanger is mounted on a ship equipped with an engine, a supercharger that supplies supercharged air to the engine, and an economizer that recovers exhaust heat of the engine and generates steam.
  • a heat exchanger for supplying the working medium used for driving the expander of the energy recovery apparatus, the first heating unit for heating the working medium with supercharged air, and the steam generated in the economizer A second heating unit for heating the supercharged air before flowing into the first heating unit; and a working medium after being heated in the first heating unit by the supercharged air before being heated in the second heating unit And a third heating unit that heats.
  • the working medium is heated by the superheated air whose temperature has been lowered by heating the working medium in the third heating unit with steam in the second heating unit, and thereby the temperature has been raised. Can be further heated. For this reason, even if it is a case where the engine of a ship carries out low load operation, sufficient thermal energy can be collected in an energy recovery device.
  • the heat exchanger includes a working medium pipe through which a working medium flows, a steam pipe through which steam generated by the economizer flows, the working medium pipe and the steam pipe inside, and the working medium pipe and the It is preferable to have a heat exchanger main body formed so that supercharged air flows in a space outside the steam pipe.
  • the first heating part is formed by the upstream part and the outer space of the working medium pipe
  • the third heating part is formed by the downstream part and the outer space of the working medium pipe
  • the steam pipe is formed by the outer space.
  • the heat exchanger can be miniaturized by integrally forming the first heating unit, the second heating unit, and the third heating unit in the heat exchanger body.
  • the above heat exchanger is mounted on a ship equipped with an engine, a supercharger that supplies supercharged air to the engine, and an economizer that recovers exhaust heat of the engine and generates steam.
  • a heat exchanger for supplying the working medium used for driving the expander of the energy recovery apparatus, the first heating unit for heating the working medium with supercharged air, and the steam generated in the economizer A second heating unit for heating the working medium heated in the first heating unit, and an operation after being heated in the second heating unit by the supercharged air before heat exchange with the working medium in the first heating unit
  • a third heating unit that heats the medium.
  • heat exchanger heat exchange is performed between the two heat mediums of the supercharged air supplied to the engine and the steam generated in the economizer and the working medium.
  • sufficient thermal energy can be recovered in the energy recovery device.
  • the heat exchanger includes a supercharged air pipe through which supercharged air flows, a steam pipe through which steam generated by the economizer flows, the supercharged air pipe and the steam pipe inside, and the supercharger. It is preferable to have a heat exchanger main body formed so that the working medium flows in a space outside the air pipe and the steam pipe.
  • the first heating part is formed by the downstream part of the supercharged air pipe and the outer space
  • the third heating part is formed by the upstream part of the supercharged air pipe and the outer space
  • the second heating unit is preferably formed by a steam pipe and the outer space.
  • the heat exchanger can be miniaturized by integrally forming the first heating unit, the second heating unit, and the third heating unit in the heat exchanger body.
  • the third heating unit uses superheated steam as a working medium.
  • the energy recovery device includes a working medium that is an organic fluid having a boiling point lower than that of water, a heat exchanger according to the present invention, and a pump that supplies a liquid-phase working medium to the first heating unit of the heat exchanger.
  • An expander into which the gas phase working medium that has flowed out of the third heating unit flows, a power recovery device that is connected to the expander and collects power of the expander, and an operation that has flowed out of the expander A condensing unit for condensing the medium.
  • the ship includes an energy recovery device according to the present invention, an engine, a supercharger that supplies supercharged air to the engine, and an economizer that recovers exhaust heat of the engine to generate steam.
  • the ship includes the energy recovery device according to the present invention, sufficient energy can be recovered in the energy recovery device even when the engine is operated at a low load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

 エンジン200、過給機100、およびエコノマイザ300を備える船舶Y1に搭載されるエネルギー回収装置X1における熱交換器2であって、過給機100の過給空気により作動媒体を加熱する第1加熱部2Aと、エコノマイザ300において生成された水蒸気により第1加熱部2Aに流入する前の過給空気を加熱する第2加熱部2Bと、第2加熱部2Bにて加熱される前の過給空気により第1加熱部2Aにおいて加熱された後の作動媒体を加熱する第3加熱部2Cとを備える。

Description

熱交換器、エネルギー回収装置、および船舶
 本発明は、船舶に搭載される熱交換器、当該熱交換器を備えるエネルギー回収装置、および当該エネルギー回収装置を備える船舶に関連する。
 従来、各種の設備における熱エネルギーを回収するエネルギー回収装置が知られている。このようなエネルギー回収装置の一例として、特許文献1には、図4に示すように、船舶のディーゼルエンジン500の熱エネルギーを回収し、当該回収した熱エネルギーを利用して発電を行う排熱回収システムが記載されている。この排熱回収システムは、ディーゼルエンジン500の過給機510から吐出された圧縮空気Aを冷却するエアクーラー600の空気冷却水Wによって、当該空気冷却水Wよりも沸点の低い有機媒体Mを加熱するための第1排熱回収器700を備えている。ここで、空気冷却水Wは、エアクーラー600において圧縮空気Aの熱を回収した後に、過給機510から煙突800に送られる排ガスGの熱を回収し、その後第1排熱回収器700に流入する。すなわち、特許文献1の排熱回収システムは、圧縮空気Aおよび排ガスGの2つの熱媒体と空気冷却水Wとの間で熱交換を行い、当該熱交換によって温度が上昇した空気冷却水Wによって有機媒体Mを加熱する。これにより、有機媒体Mを介してディーゼルエンジン500の熱エネルギーが回収される。
 特許文献1の排熱回収システムでは、圧縮空気Aおよび排ガスGの2つの熱媒体から熱エネルギーを回収できる。しかしながら、前記熱エネルギーは、有機媒体Mよりも沸点の高い空気冷却水Wを介して当該有機媒体Mに回収される。このため、圧縮空気Aおよび排ガスGの熱エネルギーが有機媒体Mに直接回収される場合に比して、熱エネルギーを十分に回収することが困難である。特に、排熱回収システムが搭載される船舶においては、例えば燃料消費量を抑える目的でディーゼルエンジン500が低負荷運転される場合がある。このような場合、空気冷却水Wが回収する圧縮空気Aの熱エネルギーが小さくなるため、熱エネルギーを十分に回収することがより困難となる。
特開2013-160132号公報
 本発明の目的は、上記の問題を解決した熱交換器、当該熱交換器を備えるエネルギー回収装置、および当該エネルギー回収装置を備える船舶を提供することである。
 本発明の一局面に従う熱交換器は、エンジン、前記エンジンに過給空気を供給する過給機、および前記エンジンの排熱を回収して蒸気を生成するエコノマイザを備えた船舶に搭載され、過給空気及び蒸気の熱をエネルギー回収装置の膨張機の駆動に利用される作動媒体に与える熱交換器であって、過給空気により作動媒体を加熱する第1加熱部と、前記エコノマイザにおいて生成された蒸気により前記第1加熱部に流入する前の過給空気を加熱する第2加熱部と、前記第2加熱部にて加熱される前の過給空気により前記第1加熱部において加熱された後の作動媒体を加熱する第3加熱部と、を備える。
本発明の第1実施形態に係る船舶Y1の概略構成図である。 運転中の本実施形態に係るエネルギー回収装置において、熱交換器内の過給空気および作動媒体の温度を示すグラフである。 本発明の第2実施形態に係る船舶Y1の他の例を示す概略構成図である。 特許文献1に記載された排熱回収システムの概略構成図である。
 (第1実施形態)
 以下、本発明の第1実施形態について、図面を参照しながら説明する。但し、以下で参照する各図は、説明の便宜上、本実施形態に係る船舶Y1を説明するために必要な主要部材を簡略化して示したものである。したがって、本実施形態に係る船舶Y1は、本明細書が参照する各図に示されていない任意の構成部材を備え得る。
 船舶Y1はエネルギー回収装置X1と、過給機100と、エンジン200と、エコノマイザ300と、を備えている。
 過給機100は、圧縮機110、タービン120、掃気ライン130、および排気ライン140を有している。圧縮機110で圧縮された過給空気は、掃気ライン130を通じてエンジン200に供給される。エンジン200にて生じた排ガスは、排気ライン140を通じてタービン120に送られる。タービン120は、排ガスの膨張エネルギーによって駆動され、このタービン120の駆動力により圧縮機110が駆動される。
 エコノマイザ300は、エンジン200の排ガスから熱を回収し水蒸気を生成する。なお、各図では、図示の都合上、エコノマイザ300を排気ライン140から離間して示しているが、実際には、エコノマイザ300は排気ライン140のタービン120よりも下流側の部位に設けられる。
 エネルギー回収装置X1は、作動媒体のランキンサイクルを利用した発電システムであり、当該作動媒体と、熱交換器2と、膨張機3と、発電機4と、凝縮部5と、ポンプ6と、循環流路7とを備えている。本実施形態では、作動媒体として、水よりも低沸点の有機流体が利用される。例えば、作動媒体としてR245fa等が利用される。
 熱交換器2、膨張機3、発電機4、凝縮部5、およびポンプ6は、循環流路7によってこの順に接続されている。熱交換器2は掃気ライン130上に位置する。熱交換器2では、過給空気およびエコノマイザ300から流出した水蒸気の熱が作動媒体に与えられる。
 膨張機3は作動媒体の流れ方向において熱交換器2の下流側に位置する。本実施形態では、膨張機3としてスクリュ膨張機が用いられ、気相の作動媒体の膨張エネルギーによりスクリュであるロータ部が回転駆動される。なお、膨張機3としては、スクリュ膨張機に限らず、遠心式のものやスクロールタイプのもの等が用いられてもよい。発電機4は膨張機3に接続されている。
 凝縮部5は、作動媒体の流れ方向において膨張機3の下流側に位置している。凝縮部5は凝縮器51と、貯留部52とを有している。凝縮器51は作動媒体が流れる作動媒体流路51aと、冷却水が流れる冷却水流路51bとを有している。貯留部52は作動媒体の流れ方向において凝縮器51の下流側に位置している。貯留部52には液相の作動媒体が貯留されている。作動媒体流路51aと凝縮器51の貯留部52とは接続配管53によって接続されている。
 ポンプ6は、循環流路7上において貯留部52と熱交換器2との間に位置している。ポンプ6は貯留部52に貯留された液相の作動媒体を熱交換器2に供給する。ポンプ6としては、インペラをロータとして備える遠心ポンプや、ロータが一対のギアからなるギアポンプ等が用いられる。
 エネルギー回収装置X1の駆動時には、熱交換器2において過給空気及び水蒸気により液相の作動媒体が加熱されて過熱蒸気となる。そして、作動媒体は熱交換器から膨張機3に流入し、膨張機3が駆動される。膨張機3の動力が発電機4に伝達されて電力が生成される。膨張機3にて膨張した気相の作動媒体は凝縮器51の作動媒体流路51aに流入する。凝縮器51では、作動媒体が冷却水流路51bを流れる冷却水との間で熱交換して凝縮する。凝縮した作動媒体は貯留部52に流入する。そして、貯留部52内の液相の作動媒体はポンプ6により熱交換器2へと供給される。このように、エネルギー回収装置X1では、作動媒体が循環流路7を循環することにより過給空気及び水蒸気の熱に基づいて電力が安定的に生成される。
 次に、熱交換器2の構造について説明する。熱交換器2は、熱交換器本体21と、作動媒体が流れる作動媒体配管22と、エコノマイザ300からの水蒸気が流れる蒸気配管23と、を有している。熱交換器本体21には、内部空間に作動媒体配管22および蒸気配管23が収容されている。
 熱交換器本体21の内部では、作動媒体配管22および蒸気配管23の外側の空間を過給機100からエンジン200へと向かって過給空気が流れる。本実施形態では、熱交換器本体21の当該外側の部位を「過給空気流路」という。過給空気の流れ方向において、過給空気流路の上流部は掃気ライン130の上流部分である第1掃気ライン131に接続され、過給空気流路の下流部は、掃気ライン130の下流部分である第2掃気ライン132に接続される。
 作動媒体配管22は、作動媒体の流れ方向における上流側の部位である上流部22aと、下流側の部位である下流部22cとを有している。上流部22aおよび下流部22cはそれぞれ熱交換器本体21内に収容される。熱交換器本体21内では、過給空気の流れ方向において、作動媒体配管22の上流部22aは熱交換器2の下流に位置し、下流部22cは上流に位置している。
 蒸気配管23は、熱交換器本体21内に収容されて上流部22aと下流部22cとの間に位置している。
 以下の説明では、熱交換器2のうち作動媒体配管22の上流部22aおよび過給空気流路により形成される部位を「第1加熱部2A」と呼ぶ。蒸気配管23および過給機流路により形成される部位を「第2加熱部2B」と呼ぶ。作動媒体配管22の下流部22cおよび過給空気流路により形成される部位を「第3加熱部2C」と呼ぶ。
 熱交換器2では、過給空気が第3加熱部2C、第2加熱部2Bおよび第1加熱部2Aの順に流れるのに対し、作動媒体は第1加熱部2Aおよび第3加熱部2Cの順に流れる。すなわち、熱交換器2内において過給空気の流れおよび作動媒体の流れが互いに逆、いわゆる対向流とされる。第1加熱部2A及び第3加熱部2Cでは過給空気により作動媒体が加熱され、第2加熱部2Bでは水蒸気により過給空気が加熱される。
 図2は熱交換器2を通過する過給空気および作動媒体の温度変化のシミュレーション結果である。ここで、図2に示す区間Z1は、第1加熱部2Aにおける作動媒体の加熱区間に対応し、区間Z2は第2加熱部2Bにおける過給空気の加熱区間に対応する。区間Z3は、第3加熱部2Cにおける作動媒体の加熱区間に対応する。
 図1に示すエネルギー回収装置X1の駆動時には、第1加熱部2Aに液相の作動媒体が流入し、第1加熱部2Aにおいて、第2加熱部2Bを通過した後の過給空気により加熱される。図2中に破線にて示すように、液相の作動媒体は区間Z1において過給空気に加熱されることにより温度上昇し、区間Z2の直前で沸点に達することが判る。本実施形態では、作動媒体の沸点は、122.1℃である。その結果、液相の作動媒体が蒸気となる。
 図1に示すように、第1加熱部2Aから流出した気相の作動媒体は、第3加熱部2Cに流入し、第3加熱部2Cにおいて第1掃気ライン131から熱交換器本体21に流入した直後の過給空気によってさらに加熱される。すなわち、第3加熱部2Cでは、第2加熱部2Bにて加熱される前の過給空気により第1加熱部2Aにおいて加熱された後の作動媒体がさらに加熱される。その結果、作動媒体が過熱蒸気となり第3加熱部2Cから流出する。なお、図2では、作動媒体の温度は区間Z3において一定となっているが、実際には、第3加熱部2Cでは、気相の作動媒体の温度が上昇する。作動媒体を過熱蒸気とすることにより、熱交換器2から膨張機3に至る途上において作動媒体の一部が液化してしまうことが防止される。
 一方、図2中に実線にて示すように、過給空気は図1の圧縮機110から第3加熱部2Cに流入して作動媒体と熱交することから、区間Z3において温度が漸次減少する。その後、過給空気は第2加熱部2Bに流入し、蒸気配管23を流れる水蒸気によって加熱される。すなわち、第2加熱部2Bでは、水蒸気により第1加熱部2Aに流入する前の過給空気が加熱される。その結果、区間Z2において過給空気の温度が作動媒体の沸点よりも十分に高い温度まで上昇する。なお、熱交換後の水蒸気は凝縮し、熱交換器本体21の外部に流出する。熱量が回復した過給空気は第1加熱部2Aにおいて液相の作動媒体と熱交換することにより、再び温度が低下する。そして、図1に示すように、第1加熱部2Aからエンジン200へと低温となった過給空気が向かう。船舶Y1では、過給空気が熱交換器2にて冷却されることにより、過給空気を冷却する冷却設備が不要となる、あるいは、高い冷却性能を有する冷却設備を設ける必要がない。これにより、冷却設備の運転に必要な電力が低減される。
 以上、船舶Y1に搭載されたエネルギー回収装置X1の構造および動作について説明した。このエネルギー回収装置X1の熱交換器2では、第3加熱部2Cにおいて作動媒体を加熱することにより温度が低下した過給空気が、第2加熱部2Bにおいてエコノマイザ300が生成した水蒸気により加熱される。これにより、第1加熱部2Aにおいて過給空気が液相の作動媒体を十分に加熱することができる。その結果、エネルギー回収装置X1において膨張機3および発電機4の駆動に必要な熱エネルギーを回収することができる。特に、船舶Y1のエンジン200が低負荷、具体的には、40%以上60%以下の負荷(より好ましくは、45%以上50%以下の負荷)にて運転される場合、高負荷時に比べて圧縮機110からエンジン200へと送られる過給空気の温度が低下してしまっても、水蒸気により過給空気が加熱されることによりエネルギー回収装置X1の駆動に必要な熱エネルギーが確保される。
 エネルギー回収装置X1が低沸点有機流体のランキンサイクルを利用した発電システムであるため、より効率よく過給空気およびエコノマイザにて生成される水蒸気の熱を回収することができる。
 エネルギー回収装置X1では、熱交換器本体21の内部に第1ないし第3加熱部2A~2Cが一体に形成されることにより、熱交換器2を小型化することができる。熱交換器2では、第1加熱部2Aおよび第3加熱部2Cにおいて、作動媒体と過給空気とが対向流になることにより、エネルギー回収装置X1における過給空気の熱エネルギー回収効率を高めることができる。
 (第2実施形態)
 次に、図3を参照しつつエネルギー回収装置X1における熱交換器2の他の構成例について説明する。
 図3に示す熱交換器2は、熱交換器本体21と、過給空気が流れる過給空気配管24と、エコノマイザ300から流出した水蒸気が流れる蒸気配管23とを備える。過給空気配管24および蒸気配管23は熱交換器本体21内に収容される。熱交換器本体21の内部では、過給空気配管24および蒸気配管23の外側の空間を作動媒体が流れる。以下、当該外側の空間を「作動媒体流路」という。作動媒体流路は、循環流路7のうち膨張機3と熱交換器2との間の部位71、及び、ポンプ6と熱交換器2との間の部位74に接続される。
 過給空気配管24は、過給空気の流れ方向における上流側の部位である上流部24aと、下流側の部位である下流部24cとを有している。熱交換器本体21内部では、上流部24aは作動媒体流路における下流側に位置し、下流部24cは作動媒体流路における上流側に位置している。上流部24aは第1掃気ライン131に接続される。下流部24cは第2掃気ライン132に接続される。蒸気配管23は、熱交換器本体21の内部において、上流部24aと下流部24cとの間に位置している。
 熱交換器2では、過給空気配管24の下流部24cおよび作動媒体流路により第1加熱部2Aが形成される。蒸気配管23および作動媒体流路により第2加熱部2Bが形成される。過給空気配管24の上流部24aおよび作動媒体流路により第3加熱部2Cが形成される。
 熱交換器2では、過給空気が第3加熱部2Cおよび第1加熱部2Aの順に流れるのに対し、作動媒体は第1加熱部2A、第2加熱部2Bおよび第3加熱部2Cの順に流れる。すなわち、過給空気の流れおよび作動媒体の流れは対向流となっている。
 エネルギー回収装置X1の駆動時には、液相の作動媒体が第1加熱部2Aに流入する。第1加熱部2Aでは、第3加熱部2Cを通過した後の過給空気により作動媒体が加熱される。さらに、第2加熱部2Bにおいて、液相の作動媒体(ただし、一部が気相となっていてもよい。)がエコノマイザ300から蒸気配管23に供給された水蒸気によってさらに加熱されて気化する。
 第3加熱部2Cにおいて、気相の作動媒体は、圧縮機110から吐出された直後の高温の過給空気によって加熱されて過熱蒸気となる。すなわち、第3加熱部2Cでは、第1加熱部2Aにて作動媒体と熱交換する前の過給空気により、第2加熱部2Bにおいて加熱された後の作動媒体が加熱される。過熱蒸気となった作動媒体は膨張機3に流入する。
 第2実施形態では、エンジン200に供給される過給空気およびエコノマイザ300において生成される水蒸気の2つの気相の熱媒体と作動媒体との熱交換がなされる。このため、船舶Y1のエンジン200が低負荷運転される場合であっても、エネルギー回収装置X1において十分な熱エネルギーを回収できる。
 エネルギー回収装置X1では、熱交換器本体21の内部に第1ないし第3加熱部2A~2Cが一体に形成されることにより、熱交換器2を小型化することができる。
 以上、本発明の実施形態について説明したが、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。例えば、上記実施形態では、貯留部52および接続配管53を省略して凝縮器51のみにて凝縮部5が形成されてもよい。この場合、凝縮器51内に液相の作動媒体が貯留される部位が設けられる。
 上記実施形態では、第1加熱部2A、第2加熱部2B、および第3加熱部2Cをそれぞれ有する複数の熱交換器が設けられてもよい。
 上記実施形態では、熱交換器2から膨張機3に至る途上において、作動媒体が液化しないのであれば、作動媒体は飽和蒸気として熱交換器2から流出してもよい。膨張機3の動力を回収する動力回収機として発電機4以外に圧縮機などの回転機械が利用されてもよい。
 ここで、上記の第1実施形態および第2実施形態について概説する。
 上記の熱交換器は、エンジン、前記エンジンに過給空気を供給する過給機、および前記エンジンの排熱を回収して蒸気を生成するエコノマイザを備えた船舶に搭載され、過給空気及び蒸気の熱をエネルギー回収装置の膨張機の駆動に利用される作動媒体に与える熱交換器であって、過給空気により作動媒体を加熱する第1加熱部と、前記エコノマイザにおいて生成された蒸気により前記第1加熱部に流入する前の過給空気を加熱する第2加熱部と、前記第2加熱部にて加熱される前の過給空気により前記第1加熱部において加熱された後の作動媒体を加熱する第3加熱部と、を備える。
 上記の熱交換器では、第3加熱部において作動媒体を加熱することにより温度が下がった過給空気を、第2加熱部において蒸気により加熱し、これにより温度が上昇した過給空気によって作動媒体をさらに加熱することができる。このため、船舶のエンジンを低負荷運転する場合であっても、エネルギー回収装置において十分な熱エネルギーを回収できる。
 上記の熱交換器は、作動媒体が流れる作動媒体配管と、前記エコノマイザにて生成された蒸気が流れる蒸気配管と、前記作動媒体配管および前記蒸気配管を内部に収容するとともに前記作動媒体配管および前記蒸気配管の外側の空間を過給空気が流れるように形成された熱交換器本体と、を有することが好ましい。この場合、前記作動媒体配管の上流部および前記外側の空間により前記第1加熱部が形成され、前記作動媒体配管の下流部および前記外側の空間により前記第3加熱部が形成され、前記蒸気配管及び前記外側の空間により前記第2加熱部が形成されることが好ましい。
 上記の熱交換器では、熱交換器本体内に第1加熱部、第2加熱部、および第3加熱部が一体に形成されることにより熱交換器を小型化することができる。
 上記の熱交換器は、エンジン、前記エンジンに過給空気を供給する過給機、および前記エンジンの排熱を回収して蒸気を生成するエコノマイザを備えた船舶に搭載され、過給空気及び蒸気の熱をエネルギー回収装置の膨張機の駆動に利用される作動媒体に与える熱交換器であって、過給空気により作動媒体を加熱する第1加熱部と、前記エコノマイザにおいて生成された蒸気により前記第1加熱部において加熱された作動媒体を加熱する第2加熱部と、前記第1加熱部にて作動媒体と熱交換する前の過給空気により前記第2加熱部において加熱された後の作動媒体を加熱する第3加熱部と、を備える。
 上記の熱交換器では、エンジンに供給される過給空気およびエコノマイザにおいて生成される蒸気の2つの熱媒体と作動媒体との熱交換がなされるため、船舶のエンジンを低負荷運転する場合であっても、エネルギー回収装置において十分な熱エネルギーを回収できる。
 上記の熱交換器は、過給空気が流れる過給空気配管と、前記エコノマイザにて生成された蒸気が流れる蒸気配管と、前記過給空気配管および前記蒸気配管を内部に収容するとともに前記過給空気配管および前記蒸気配管の外側の空間を作動媒体が流れるように形成された熱交換器本体と、を有することが好ましい。この場合、前記過給空気配管の下流部および前記外側の空間により前記第1加熱部が形成され、前記過給空気配管の上流部および前記外側の空間により前記第3加熱部が形成され、前記蒸気配管および前記外側の空間により前記第2加熱部が形成されることが好ましい。
 上記の熱交換器では、熱交換器本体内に第1加熱部、第2加熱部、および第3加熱部が一体に形成されることにより、熱交換器を小型化することができる。
 上記の熱交換器は、前記第3加熱部が作動媒体を過熱蒸気とすることが好ましい。
 上記の熱交換器では、当該熱交換器から流出した後の作動媒体の一部が液化してしまうことを防止することができる。
 上記のエネルギー回収装置は、水よりも低沸点の有機流体である作動媒体と、本発明に係る熱交換器と、前記熱交換器の前記第1加熱部に液相の作動媒体を供給するポンプと、前記第3加熱部から流出した気相の作動媒体が流入する膨張機と、前記膨張機に接続されるとともに前記膨張機の動力を回収する動力回収機と、前記膨張機から流出した作動媒体を凝縮する凝縮部と、を備える。
 上記のエネルギー回収装置では、低沸点有機流体のランキンサイクルを利用したエネルギー回収装置を利用することにより、船舶に搭載された際にエンジンが低負荷運転される場合であっても、十分な熱エネルギーを回収することができる。
 上記の船舶は、本発明に係るエネルギー回収装置と、エンジンと、前記エンジンに過給空気を供給する過給機と、前記エンジンの排熱を回収して蒸気を生成するエコノマイザと、を備える。
 上記の船舶は、本発明に係るエネルギー回収装置を備えているため、エンジンが低負荷運転される場合であっても当該エネルギー回収装置において十分な熱エネルギーを回収することができる。

Claims (7)

  1.  エンジン、前記エンジンに過給空気を供給する過給機、および前記エンジンの排熱を回収して蒸気を生成するエコノマイザを備えた船舶に搭載され、過給空気及び蒸気の熱をエネルギー回収装置の膨張機の駆動に利用される作動媒体に与える熱交換器であって、
     過給空気により作動媒体を加熱する第1加熱部と、
     前記エコノマイザにおいて生成された蒸気により前記第1加熱部に流入する前の過給空気を加熱する第2加熱部と、
     前記第2加熱部にて加熱される前の過給空気により前記第1加熱部において加熱された後の作動媒体を加熱する第3加熱部と、を備える熱交換器。
  2.  作動媒体が流れる作動媒体配管と、
     前記エコノマイザにて生成された蒸気が流れる蒸気配管と、
     前記作動媒体配管および前記蒸気配管を内部に収容するとともに前記作動媒体配管および前記蒸気配管の外側の空間を過給空気が流れるように形成された熱交換器本体と、
    を有し、
     前記作動媒体配管の上流部および前記外側の空間により前記第1加熱部が形成され、前記作動媒体配管の下流部および前記外側の空間により前記第3加熱部が形成され、前記蒸気配管及び前記外側の空間により前記第2加熱部が形成される、請求項1に記載の熱交換器。
  3.  エンジン、前記エンジンに過給空気を供給する過給機、および前記エンジンの排熱を回収して蒸気を生成するエコノマイザを備えた船舶に搭載され、過給空気及び蒸気の熱をエネルギー回収装置の膨張機の駆動に利用される作動媒体に与える熱交換器であって、
     過給空気により作動媒体を加熱する第1加熱部と、
     前記エコノマイザにおいて生成された蒸気により前記第1加熱部において加熱された作動媒体を加熱する第2加熱部と、
     前記第1加熱部にて作動媒体と熱交換する前の過給空気により前記第2加熱部において加熱された後の作動媒体を加熱する第3加熱部と、を備える熱交換器。
  4.  過給空気が流れる過給空気配管と、
     前記エコノマイザにて生成された蒸気が流れる蒸気配管と、
     前記過給空気配管および前記蒸気配管を内部に収容するとともに前記過給空気配管および前記蒸気配管の外側の空間を作動媒体が流れるように形成された熱交換器本体と、
    を有し、
     前記過給空気配管の下流部および前記外側の空間により前記第1加熱部が形成され、前記過給空気配管の上流部および前記外側の空間により前記第3加熱部が形成され、前記蒸気配管および前記外側の空間により前記第2加熱部が形成される、請求項3に記載の熱交換器。
  5.  前記第3加熱部が作動媒体を過熱蒸気とする、請求項1~4のいずれか一項に記載の熱交換器。
  6.  水よりも低沸点の有機流体である作動媒体と、
     請求項1~4のいずれか一項に記載の熱交換器と、
     前記熱交換器の前記第1加熱部に液相の作動媒体を供給するポンプと、
     前記第3加熱部から流出した気相の作動媒体が流入する膨張機と、
     前記膨張機に接続されるとともに前記膨張機の動力を回収する動力回収機と、
     前記膨張機から流出した作動媒体を凝縮する凝縮部と、
    を備えるエネルギー回収装置。
  7.  請求項6に記載のエネルギー回収装置と、
     エンジンと、
     前記エンジンに過給空気を供給する過給機と、
     前記エンジンの排熱を回収して蒸気を生成するエコノマイザと、を備える船舶。
PCT/JP2016/053024 2015-02-13 2016-02-02 熱交換器、エネルギー回収装置、および船舶 WO2016129451A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16749095.2A EP3258094A4 (en) 2015-02-13 2016-02-02 Heat exchanger, energy recovery device, and ship
KR1020177022365A KR101940436B1 (ko) 2015-02-13 2016-02-02 열 교환기, 에너지 회수 장치 및 선박
CN201680009762.5A CN107208572B (zh) 2015-02-13 2016-02-02 换热器、能量回收装置以及船舶
US15/549,017 US10408092B2 (en) 2015-02-13 2016-02-02 Heat exchanger, energy recovery system, and vessel
KR1020187019810A KR20180083444A (ko) 2015-02-13 2016-02-02 열 교환기, 에너지 회수 장치 및 선박

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015026648A JP6382127B2 (ja) 2015-02-13 2015-02-13 熱交換器、エネルギー回収装置、および船舶
JP2015-026648 2015-02-13

Publications (1)

Publication Number Publication Date
WO2016129451A1 true WO2016129451A1 (ja) 2016-08-18

Family

ID=56614706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053024 WO2016129451A1 (ja) 2015-02-13 2016-02-02 熱交換器、エネルギー回収装置、および船舶

Country Status (6)

Country Link
US (1) US10408092B2 (ja)
EP (1) EP3258094A4 (ja)
JP (1) JP6382127B2 (ja)
KR (2) KR20180083444A (ja)
CN (1) CN107208572B (ja)
WO (1) WO2016129451A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018159375A (ja) * 2017-03-23 2018-10-11 株式会社神戸製鋼所 過給空気冷却ユニット
KR102027905B1 (ko) * 2017-12-14 2019-10-02 삼성중공업 주식회사 선박용 열전발전 시스템
JP2020183725A (ja) * 2019-05-08 2020-11-12 株式会社神戸製鋼所 加熱部ユニット、加熱部ユニットの取付方法、加熱部ユニットを備えているバイナリ装置及びバイナリ装置を備えている船舶

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080022684A1 (en) * 2006-07-31 2008-01-31 Caterpillar Inc. Segmented heat exchanger
JP2011074897A (ja) * 2009-10-02 2011-04-14 Miura Co Ltd 流体機械駆動システム
JP2011106302A (ja) * 2009-11-13 2011-06-02 Mitsubishi Heavy Ind Ltd エンジン廃熱回収発電ターボシステムおよびこれを備えた往復動エンジンシステム
JP2013068137A (ja) * 2011-09-21 2013-04-18 Toyota Industries Corp 廃熱利用装置
JP2013181571A (ja) * 2012-02-29 2013-09-12 Mitsubishi Heavy Ind Ltd 磁気カップリング

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE863558A (fr) * 1978-02-02 1978-08-02 Acec Perfectionnements aux installations de production d'energie comprenant des moteurs a combustion interne associes a des turbines de detente a circuit ferme entrainant des generatrices de courant electrique
CH632051A5 (de) * 1978-10-25 1982-09-15 Sulzer Ag Brennkraftmaschinenanlage.
FI101167B (fi) * 1995-06-12 1998-04-30 Waertsilae Nsd Oy Ab Matala-arvoisen lämmön hyödyntäminen ahdetussa lämpövoimakoneessa
ATE256570T1 (de) * 1998-06-22 2004-01-15 Silentor Holding As Wärmerückgewinnungssystem
DE19962391A1 (de) * 1999-12-23 2001-06-28 Behr Industrietech Gmbh & Co Ladeluftkühler
US7210467B2 (en) * 2004-06-22 2007-05-01 Gas Technology Institute Advanced high efficiency, ultra-low emission, thermochemically recuperated reciprocating internal combustion engine
DE102005048795B3 (de) * 2005-10-12 2006-12-28 Köhler & Ziegler Anlagentechnik GmbH Kraft-Wärme-Kopplungsanlage
US7669417B2 (en) * 2006-01-30 2010-03-02 Titan Research And Innovations Pty Ltd Engine after-cooling system
WO2008106774A1 (en) * 2007-03-02 2008-09-12 Victor Juchymenko Controlled organic rankine cycle system for recovery and conversion of thermal energy
DE102007026869B4 (de) * 2007-06-11 2012-07-26 Man Truck & Bus Ag Kühlvorrichtung für einen flüssigkeitsgekühlten Verbrennungsmotor eines Kraftfahrzeugs sowie Verfahren zum Betrieb einer solchen Kühlvorrichtung
US20090031999A1 (en) * 2007-08-02 2009-02-05 Donald Charles Erickson Charge air chiller
WO2010022184A2 (en) * 2008-08-19 2010-02-25 Ram Power, Inc. Solar thermal power generation using multiple working fluids in a rankine cycle
US8240149B2 (en) * 2009-05-06 2012-08-14 General Electric Company Organic rankine cycle system and method
JP5683359B2 (ja) * 2011-03-31 2015-03-11 三菱重工業株式会社 排熱回収発電装置
US8302399B1 (en) * 2011-05-13 2012-11-06 General Electric Company Organic rankine cycle systems using waste heat from charge air cooling
EP2752573A1 (en) * 2011-08-31 2014-07-09 Kabushiki Kaisha Toyota Jidoshokki Waste heat utilization device
JP2013160132A (ja) 2012-02-03 2013-08-19 Mitsubishi Heavy Ind Ltd 排熱回収利用システム
JP5465743B2 (ja) * 2012-03-02 2014-04-09 アンリツ株式会社 光パルス試験器
DE102013011477A1 (de) * 2013-07-09 2015-01-15 Volkswagen Aktiengesellschaft Antriebseinheit für ein Kraftfahrzeug
JP6315814B2 (ja) * 2014-09-17 2018-04-25 株式会社神戸製鋼所 エネルギー回収装置及び圧縮装置並びにエネルギー回収方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080022684A1 (en) * 2006-07-31 2008-01-31 Caterpillar Inc. Segmented heat exchanger
JP2011074897A (ja) * 2009-10-02 2011-04-14 Miura Co Ltd 流体機械駆動システム
JP2011106302A (ja) * 2009-11-13 2011-06-02 Mitsubishi Heavy Ind Ltd エンジン廃熱回収発電ターボシステムおよびこれを備えた往復動エンジンシステム
JP2013068137A (ja) * 2011-09-21 2013-04-18 Toyota Industries Corp 廃熱利用装置
JP2013181571A (ja) * 2012-02-29 2013-09-12 Mitsubishi Heavy Ind Ltd 磁気カップリング

Also Published As

Publication number Publication date
EP3258094A1 (en) 2017-12-20
US20180023422A1 (en) 2018-01-25
KR20180083444A (ko) 2018-07-20
EP3258094A4 (en) 2018-10-03
CN107208572A (zh) 2017-09-26
KR101940436B1 (ko) 2019-01-18
CN107208572B (zh) 2019-05-10
KR20170102988A (ko) 2017-09-12
JP2016148314A (ja) 2016-08-18
US10408092B2 (en) 2019-09-10
JP6382127B2 (ja) 2018-08-29

Similar Documents

Publication Publication Date Title
US8752382B2 (en) Dual reheat rankine cycle system and method thereof
US9816402B2 (en) Heat recovery system series arrangements
US9932862B2 (en) Method and apparatus for heating an expansion machine of a waste heat recovery apparatus
RU2673959C2 (ru) Система и способ регенерации энергии отходящего тепла
BR112013013387A2 (pt) ciclo paralelo de motores térmicos
US9038391B2 (en) System and method for recovery of waste heat from dual heat sources
JP2011106459A (ja) 統合有機ランキンサイクル装置を備えた複合サイクル発電プラント
JP2012149541A (ja) 排熱回収発電装置および船舶
JPWO2016148008A1 (ja) 吸気冷却方法、この方法を実行する吸気冷却装置、これを備える排熱回収設備及びガスタービンプラント
JP2014231738A (ja) 廃熱回生システム
JP2014034924A (ja) 内燃機関の排熱回収装置及びコジェネレーション・システム
KR20140085001A (ko) 선박의 폐열을 이용한 에너지 절감시스템
WO2016129451A1 (ja) 熱交換器、エネルギー回収装置、および船舶
JP2008255822A (ja) コンバインドサイクル発電プラント、および熱交換器
JP5527513B2 (ja) 流体機械駆動システム
WO2015019886A1 (ja) 廃熱回収装置
WO2010038288A1 (ja) コンバインドサイクル発電プラント、および熱交換器
JP2018021485A (ja) 多段ランキンサイクルシステム、内燃機関、及び多段ランキンサイクルシステムの運転方法
US9540961B2 (en) Heat sources for thermal cycles
JP5471676B2 (ja) 廃熱回生システム
JP2014218922A (ja) 原動機システム
CN111699302A (zh) 从可变温度热源产生动力的方法、设备和热力循环
JP2019007420A (ja) 熱エネルギー回収装置及び熱エネルギー回収方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16749095

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016749095

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15549017

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177022365

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE