WO2013150757A1 - 投写用ズームレンズおよび投写型表示装置 - Google Patents

投写用ズームレンズおよび投写型表示装置 Download PDF

Info

Publication number
WO2013150757A1
WO2013150757A1 PCT/JP2013/002173 JP2013002173W WO2013150757A1 WO 2013150757 A1 WO2013150757 A1 WO 2013150757A1 JP 2013002173 W JP2013002173 W JP 2013002173W WO 2013150757 A1 WO2013150757 A1 WO 2013150757A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
group
projection
projection zoom
Prior art date
Application number
PCT/JP2013/002173
Other languages
English (en)
French (fr)
Inventor
賢 天野
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2014509048A priority Critical patent/JP5727669B2/ja
Priority to CN201390000361.5U priority patent/CN204129321U/zh
Publication of WO2013150757A1 publication Critical patent/WO2013150757A1/ja
Priority to US14/501,086 priority patent/US9423599B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/177Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/009Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras having zoom function
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/16Optical objectives specially designed for the purposes specified below for use in conjunction with image converters or intensifiers, or for use with projectors, e.g. objectives for projection TV
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1435Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative
    • G02B15/143507Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative arranged -++
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1445Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative
    • G02B15/144515Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative arranged -+++
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • H04N5/7416Projection arrangements for image reproduction, e.g. using eidophor involving the use of a spatial light modulator, e.g. a light valve, controlled by a video signal
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present invention relates to a zoom lens, and more particularly to a projection zoom lens applied to a projection display device.
  • the present invention also relates to a projection display device equipped with such a projection zoom lens.
  • a light valve that performs light modulation to convert a video signal or an image signal into an optical signal is used.
  • a transmissive liquid crystal display element is known.
  • a cross dichroic prism is usually used for color synthesis, and the reduction side of the projection zoom lens is made telecentric in order to improve the synthesis characteristics. .
  • DMD digital micromirror device
  • the zoom lens for projection is also required to be capable of zooming at a high zoom ratio.
  • Patent Document 1 As projection zoom lenses that can satisfy the above-described requirements to some extent, those described in Patent Document 1 and Patent Document 2 have been known.
  • the zoom lens for projection described in Patent Document 1 has not only a small zoom ratio of about 1.3 times, but also a poor power balance of the third group and a large curvature of field.
  • the projection zoom lens disclosed in Patent Document 2 has a large zoom ratio of about 1.6 times, but the cost is low because five lenses are used for the first lens unit having a large lens diameter. It is expensive.
  • the present invention has been made in view of the above circumstances, and provides a projection zoom lens that is small and inexpensive and that can favorably correct various aberrations while ensuring a high zoom ratio of about 1.5 times. With the goal.
  • Another object of the present invention is to provide a projection display device that includes the projection zoom lens as described above and can display a high-quality image with a high zoom ratio.
  • the projection zoom lens according to the present invention includes: In a projection zoom lens that performs zooming operation by moving the third to fourth lens groups as a moving group,
  • the most magnified lens group is composed of a moving group having negative refractive power
  • the most reducing lens group is composed of a moving group having a positive refractive power
  • the most magnified lens group substantially consists of two lenses
  • the most magnified lens group includes an aspherical lens having at least one aspherical surface and a biconcave lens in order from the magnified side. It is desirable to be configured.
  • substantially ... arranged and configured means an optical element other than a lens, such as a lens having substantially no power, a diaphragm, a cover glass, and the like other than the lenses listed therein.
  • a mechanism portion such as a lens flange, a lens barrel, an image sensor, a camera shake correction mechanism, or the like is included is also included.
  • the term “substantially” is also used below, but its meaning is the same as described above.
  • the surface shape of the lens and the sign of the refractive power are considered in the paraxial region when an aspheric surface is included.
  • the aspheric lens is made of a plastic material
  • the biconcave lens is made of a glass material.
  • the focal length of the entire system at the wide angle end is fw
  • the focal length of the lens unit on the most reduction side is fr
  • the lens group on the most reduction side includes a biconcave lens, a positive lens, and a negative lens having a concave surface facing the enlargement side in order from the enlargement side.
  • the projection zoom lens of the present invention is more specifically, A negative first lens group, a positive second lens group, and a positive third lens group are arranged in order from the magnification side, When zooming, the first lens group, the second lens group, and the third lens group move independently as a moving group, It is desirable that the first lens group move to the reduction side and the second lens group and the third lens group move to the enlargement side when zooming from the wide-angle end to the telephoto end.
  • the zoom lens for projection according to the present invention is more specifically, A negative first lens group, a positive second lens group, a positive third lens group, and a positive fourth lens group are arranged in sequence from the magnification side, When zooming, the first lens group, the second lens group, the third lens group, and the fourth lens group move independently as a moving group, When zooming from the wide-angle end to the telephoto end, the first lens group moves to the reduction side, and the second lens group, the third lens group, and the fourth lens group move to the enlargement side. May be.
  • each of the second lens group and the third lens group is configured by a single lens.
  • the focal length of the entire system at the wide-angle end is fw
  • the back focus (air conversion distance) of the entire system at the wide-angle end is Bfw.
  • the maximum effective luminous flux height on the lens surface on the most reduction side is smaller than the maximum image height on the reduction side.
  • the projection display device of the present invention includes the projection zoom lens according to the present invention described above in addition to the light source, the light valve, and the illumination optical unit that guides the light beam from the light source to the light valve.
  • the light beam from the light source is optically modulated by the light valve and projected onto a screen by the projection zoom lens.
  • the most enlarged lens group has a negative refractive power.
  • the first lens group G1 which is the most magnified lens group, is substantially composed of two lenses.
  • the most demagnifying lens group is composed of a moving group having a positive refractive power.
  • the zoom lens for projection can be formed at low cost by configuring the lens group on the most enlarged side having a large lens diameter with a small number of lenses of two.
  • the projection zoom lens of the present invention is as follows.
  • the conditional expression (1) since the conditional expression (1) is satisfied, it is possible to satisfactorily correct off-axis aberrations such as distortion caused by the reduction in the number of lenses, and further, on the reduction side. It is possible to improve the power balance of the lens group and correct the field curvature and the like.
  • the lens group on the most enlargement side is configured by arranging an aspherical lens having at least one aspherical surface and a biconcave lens in order from the enlargement side.
  • the following effects can be obtained. That is, by disposing an aspheric lens at the most magnified position of the most magnified lens group, it is possible to effectively correct off-axis aberrations, particularly distortion. Further, by arranging a negative biconcave lens at the reduction side position of this lens group, it is possible to give an appropriate negative power as a whole, and it is possible to effectively correct off-axis aberrations such as astigmatism. It becomes like this.
  • the aspheric lens is a plastic lens
  • the biconcave lens is a glass lens
  • the following effects can be obtained.
  • the aberration correction function can be assigned to the aspheric plastic lens, and the necessary power can be assigned to the glass lens, thereby making the lens system less susceptible to thermal changes while fully exhibiting the aberration correction function. It becomes possible to build. Further, forming one lens from a plastic material is advantageous in terms of productivity and cost.
  • the conditional expression (2) defines a condition for satisfactorily correcting the curvature of field (particularly the curvature of the sagittal image surface), and even if the value of fr / fw becomes 2.0 or less, Even if it becomes 50.0 or more, it becomes difficult to correct the curvature of field well.
  • the conditional expression (2) is satisfied, the above problems can be prevented and the field curvature can be corrected well.
  • the lens group on the most reduction side has a biconcave lens, a positive lens, and a negative lens with a concave surface directed toward the enlargement side in order from the enlargement side, the above is described. Further, the function and effect obtained by satisfying the conditional expression (2) can be made more remarkable, and further, the fluctuation of spherical aberration due to zooming can be suppressed to a small value.
  • the projection zoom lens according to the present invention has a negative first lens group, a positive second lens group, and a positive third lens group, which are substantially arranged in order from the enlargement side.
  • the first lens group, the second lens group, and the third lens group move independently as a moving group, and when zooming from the wide angle end to the telephoto end, the first lens group moves to the reduction side, and the first lens group
  • the two lens group and the third lens group are configured to move to the enlargement side, it is possible to ensure a high zoom ratio without increasing the size of the entire lens system.
  • a negative first lens group, a positive second lens group, a positive third lens group, and a positive fourth lens group are arranged in order from the magnification side.
  • the first lens group, the second lens group, the third lens group, and the fourth lens group move independently as a moving group, and when zooming from the wide-angle end to the telephoto end, Even when one lens group is moved to the reduction side and the second lens group, the third lens group, and the fourth lens group are moved to the enlargement side, the entire lens system is not enlarged. In addition, a high zoom ratio can be ensured.
  • the projection zoom lens according to the present invention has the four-group configuration as described above, the number of lenses can be reduced particularly when each of the second lens group and the third lens group is composed of one single lens. In particular, it is possible to obtain a higher cost reduction effect with a small amount.
  • conditional expression (3) when the value of Bfwf / fw is 1.0 or less, it is difficult to place an illumination optical system that is placed close to the normal projection zoom lens. However, if conditional expression (3) is satisfied, Such an inconvenience is prevented, and the arrangement of the illumination optical system is facilitated.
  • the zoom lens for projection according to the present invention in particular, when the maximum effective luminous flux height on the lens surface on the most reduction side is smaller than the maximum image height on the reduction side, a sufficient lens back can be secured and the most reduction can be achieved. It is also possible to reduce the lens diameter of the lens group on the side.
  • the projection display apparatus of the present invention can display a high-quality image with a high zoom ratio.
  • Sectional drawing which shows the lens structure of the zoom lens for projection which concerns on Example 1 of this invention Sectional drawing which shows the lens structure of the zoom lens for projection which concerns on Example 2 of this invention. Sectional drawing which shows the lens structure of the zoom lens for projection which concerns on Example 3 of this invention. Sectional drawing which shows the lens structure of the zoom lens for projection which concerns on Example 4 of this invention. Sectional drawing which shows the lens structure of the zoom lens for projection which concerns on Example 5 of this invention. Sectional drawing which shows the lens structure of the zoom lens for projection which concerns on Example 6 of this invention.
  • (A) to (L) are aberration diagrams of the projection zoom lens according to Example 1 described above.
  • (A) to (L) are aberration diagrams of the projection zoom lens according to Example 2 described above.
  • FIG. 1 is a schematic configuration diagram of a projection display device according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing the movement position of each lens group at the wide-angle end and the telephoto end when the zooming lens for projection according to an embodiment of the present invention is operated for zooming.
  • FIG. 2 to 6 are also sectional views showing other configuration examples according to the embodiment of the present invention, and correspond to projection zoom lenses of Examples 2 to 6, which will be described later, respectively.
  • the moving direction of the lens group when changing from the wide-angle end to the telephoto end is schematically shown by arrows between the positions.
  • the projection zoom lenses of Examples 1 and 2 shown in FIGS. 1 and 2 each have a three-group configuration, whereas the projection zoom lenses of Examples 3 to 6 shown in FIGS. It is a group structure.
  • FIG. 1 an embodiment of a projection zoom lens having a three-group configuration will be described mainly using the configuration shown in FIG. 1 as an example.
  • the projection zoom lens of the present embodiment can be used as a projection lens that projects image information displayed on a light valve onto a screen, for example.
  • the left side of the drawing is the enlarged side
  • the right side is the reduced side
  • the parallel plate PP is also shown assuming that it is mounted on a projection display device. That is, the image display surface of the light valve is usually arranged on the reduction side surface of the parallel plate PP.
  • FIGS the other configurations shown in FIGS.
  • a light beam given image information on the image display surface of the light valve enters the projection zoom lens via the parallel plate PP.
  • the projection zoom lens projects and displays an image based on the image information on a screen (not shown) arranged in the left direction of the drawing.
  • the image display surface of the light valve may be arranged away from the reduction side surface of the parallel plate PP.
  • the light beam from the light source is separated into three primary colors by a color separation optical system, and three light valves are used for each primary color. May be arranged so that a full-color image can be displayed.
  • the projection zoom lens according to this embodiment includes a first lens group G1 disposed closest to the enlargement side, a second lens group G2 disposed closer to the reduction side than the first lens group G1, and disposed closest to the reduction side. Only the third lens group G3 is provided as a substantial lens group.
  • the first lens group G1 has a negative refractive power
  • the second lens group G2 and the third lens group G3 each have a positive refractive power.
  • the first lens group G1, the second lens group G2, and the third lens group G3 are configured to move independently during zooming.
  • the first lens group G1 includes two lenses (first lens L1 and second lens L2), and the second lens group G2 includes two lenses (third lens L3 and fourth lens). L4), and the third lens group G3 includes four lenses (fifth lens L5 to eighth lens L8).
  • the example shown in FIG. 2 is different from the example of FIG. 1 in that the third lens group G3 includes five lenses (fifth lens L5 to ninth lens L9) with respect to the number of lenses.
  • the projection zoom lens is configured to perform focusing by moving the first lens group G1.
  • the first lens group G1 which is the most magnified lens group, is substantially composed of two lenses.
  • the zoom lens for projection can be formed at low cost by configuring the lens group on the most enlarged side having a large lens diameter with a small number of lenses of two.
  • the values of the conditions defined by the conditional expression (1) are shown in Table 19 together with the values of the conditions defined by the conditional expressions (2) and (3) described later for each example. Are shown together.
  • Table 19 since the focal length fw of the entire system is shown as 1.00, the values of fm, fr and Bfw are values of fm / fw, fr / fw and Bfw / fw, respectively.
  • the power of the first lens group G1 becomes too weak, leading to an increase in the size of the lens system.
  • the value of fm / fw is ⁇ 1.0 or more, which is the upper limit value
  • the power of the first lens group G1 becomes too strong, and it becomes difficult to correct various aberrations such as distortion.
  • the first lens group G1 which is the lens group closest to the magnification side, in order from the magnification side, an aspherical lens (first lens L1) having at least one aspheric surface, and Since the biconcave lens (second lens L2) is arranged, the following effects can be obtained. That is, by disposing an aspheric lens at the most magnified position of the most magnified lens group, it is possible to effectively correct off-axis aberrations, particularly distortion. Further, by arranging a negative biconcave lens at the reduction side position of this lens group, it is possible to give an appropriate negative power as a whole, and it is possible to effectively correct off-axis aberrations such as astigmatism. It becomes like this.
  • the first lens L1 that is an aspherical lens is a plastic lens
  • the second lens L2 that is a biconcave lens is a glass lens.
  • the focal length of the entire system at the wide-angle end is fw
  • the focal length of the third lens group G3, which is the most reducing lens group is fr. Is satisfied.
  • This conditional expression (2) defines the conditions for satisfactorily correcting the curvature of field (particularly the curvature of the sagittal image plane), and even if the value of fr / fw is 2.0 or less, Even if it becomes 50.0 or more, it becomes difficult to correct the curvature of field well.
  • the conditional expression (2) is satisfied, the above problems can be prevented and the field curvature can be corrected well.
  • the third lens group G3, which is the most reducing lens group, is arranged in order from the enlargement side, a biconcave lens (fifth lens L5), a positive lens (sixth lens L6), A negative lens (seventh lens L7) having a concave surface on the enlargement side is provided.
  • the following conditional expression (3) is satisfied, where the focal length of the entire system at the wide-angle end is fw and the back focus (air conversion distance) of the entire system at the wide-angle end is Bfw. ing.
  • the lens surface on the most reduction side (the eighth lens L8 in the example of FIG. 1 and the ninth lens L9 in the example of FIG. 2).
  • the maximum effective luminous flux height on each reduction side lens surface is smaller than the maximum image height on the reduction side. Thereby, a sufficient lens back can be secured, and the lens diameter of the lens group on the most reduction side can be reduced.
  • the three lens groups G1, G2, and G3 each move independently as a moving group during zooming, and the first lens when zooming from the wide-angle end to the telephoto end.
  • the group G1 moves to the reduction side
  • the second lens group G2 and the third lens group G3 move to the enlargement side.
  • FIGS. 3 to 6 ⁇ Embodiment with a four-group configuration
  • FIGS. 3 to 6 an embodiment of the projection zoom lens having a four-group configuration shown in FIGS. 3 to 6 will be described mainly by taking the configuration of FIG. 3 as an example.
  • the application of the projection zoom lens of the present embodiment to the projection display device is basically the same as the case of applying the projection zoom lens having the three-group configuration described above. A duplicate description is omitted.
  • the projection zoom lens according to the present embodiment includes a first lens group G1 that is disposed closest to the enlargement side, a second lens group G2 that is disposed closer to the reduction side than the first lens group G1, and the second lens group G2. Only the third lens group G3 disposed on the reduction side and the fourth lens group G4 disposed on the most reduction side are provided as substantial lens groups.
  • the first lens group G1 has a negative refractive power
  • the second lens group G2, the third lens group G3, and the fourth lens group G4 each have a positive refractive power.
  • the first lens group G1, the second lens group G2, the third lens group G3, and the fourth lens group G4 are configured to move independently during zooming.
  • the first lens group G1 includes two lenses (first lens L1 and second lens L2), and the second lens group G2 includes one lens (third lens L3).
  • the third lens group G3 includes one lens (fourth lens L4).
  • the fourth lens group G4 includes four lenses (fifth lens L5 to eighth lens L8) in the example shown in FIG. 3, and five lenses (fifth lens L5 to ninth lens L8) in the example shown in FIG. Lens L9), and in the example shown in FIG. 5 and FIG. 6, it consists of six lenses (fifth lens L5 to tenth lens L10).
  • the projection zoom lens is configured to perform focusing by moving the first lens group G1.
  • the first lens group G1 which is the most magnified lens group, is substantially composed of two lenses.
  • the zoom lens for projection can be formed at low cost by configuring the lens group on the most enlarged side having a large lens diameter with a small number of lenses of two.
  • the first lens group G1 which is the lens group closest to the magnification side, in order from the magnification side, an aspherical lens (first lens L1) having at least one aspherical surface and Since the biconcave lens (second lens L2) is arranged, off-axis aberrations, particularly distortion aberrations are effectively corrected, and off-axis aberrations such as astigmatism are effectively corrected.
  • first lens L1 which is the lens group closest to the magnification side
  • second lens L2 Since the biconcave lens (second lens L2) is arranged, off-axis aberrations, particularly distortion aberrations are effectively corrected, and off-axis aberrations such as astigmatism are effectively corrected.
  • the first lens L1 that is an aspheric lens is a plastic lens
  • the second lens L2 that is a biconcave lens is a glass lens. It is possible to construct a lens system that is less susceptible to thermal changes while fully exhibiting the above. Further, forming one lens from a plastic material is advantageous in terms of productivity and cost.
  • the lens group on the most reduction side is the fourth lens group G4. If the focal length is fr and the focal length of the entire system at the wide angle end is fw, the above conditions are also satisfied. Equation (2) is satisfied (see Table 19). Therefore, also in the present embodiment, the field curvature can be favorably corrected for the same reason as in the above-described three-group configuration embodiment.
  • the fourth lens group G4 which is the lens group closest to the reduction side, is arranged in order from the enlargement side, a biconcave lens (fifth lens L5), a positive lens (sixth lens L6), A negative lens (seventh lens L7) having a concave surface on the enlargement side is provided.
  • the above-mentioned conditional expression (3) is satisfied, assuming that the focal length of the entire system at the wide-angle end is fw and the back focus (air conversion distance) of the entire system at the wide-angle end is Bfw. Has been. Thereby, the arrangement of the illumination optical system is facilitated.
  • the lens surface closest to the reduction side (the eighth lens L8 in the example of FIG. 3 and the ninth lens L9 in the example of FIG. 4).
  • the maximum effective luminous flux height on each reduction side lens surface of the tenth lens L10 is smaller than the maximum image height on the reduction side. Thereby, a sufficient lens back can be secured, and the lens diameter of the lens group on the most reduction side can be reduced.
  • the four lens groups G1, G2, G3, and G4 each move independently as a moving group, and when zooming from the wide-angle end to the telephoto end.
  • the first lens group G1 moves to the reduction side
  • the second lens group G2, the third lens group G3, and the fourth lens group G4 move to the enlargement side.
  • the projection zoom lens according to the present embodiment can keep the cost low.
  • FIG. 13 schematically shows a part of a projection display apparatus according to an embodiment of the present invention.
  • the projection display apparatus 100 includes a light source 101, an illumination optical system 102, a DMD 103 as a light valve, and a projection zoom lens 104 according to an embodiment of the present invention.
  • the light beam emitted from the light source 104 is selectively converted into each light of the three primary colors (R, G, B) in time series by a color wheel (not shown), and the illumination optical system 102.
  • the light quantity distribution in the cross section perpendicular to the optical axis of the light beam is made uniform, and the DMD 103 is irradiated.
  • modulation switching to the color light is performed according to the color switching of the incident light.
  • the light modulated by the DMD 103 enters the projection zoom lens 104.
  • the projection zoom lens 104 projects an optical image by light modulated by the DMD 103 onto the screen 105.
  • the projection display device of the present invention can be modified in various ways from that shown in FIG.
  • RGB colors may be modulated simultaneously by three DMDs corresponding to each color light.
  • a color separation / synthesis prism (not shown) is disposed between the projection zoom lens 104 and the DMD 103.
  • other light valves such as a transmissive liquid crystal display element and a reflective liquid crystal display element can be used.
  • the projection zoom lenses of Examples 1 and 2 described below have a three-group configuration
  • the projection zoom lenses of Examples 3 to 6 have a four-group configuration.
  • FIG. 1 shows the arrangement of lens groups at the wide-angle end and the telephoto end of the projection zoom lens according to the first embodiment. Since the detailed description of FIG. 1 is as described above, the redundant description is omitted here unless otherwise required.
  • the projection zoom lens of Example 1 includes, in order from the magnification side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens having a positive refractive power.
  • the lens group G3 is arranged.
  • the first lens group G1 includes a first lens L1 which is an aspherical lens whose both surfaces are aspherical and a second lens L2 which is a biconcave lens in order from the magnification side.
  • the second lens group G2 includes a third lens L3, which is a biconvex lens, and a fourth lens L4, which is also a biconvex lens, in order from the magnification side.
  • the third lens unit L3 includes, in order from the magnification side, a fifth lens L5 that is a biconcave lens, a sixth lens L6 that is a biconvex lens, a seventh lens L7 that is a negative meniscus lens, and an eighth lens L8 that is a biconvex lens. It is arranged and configured.
  • the maximum image height on the reduction side is 0.555.
  • the maximum effective light beam height on the lens surface on the reduction side of the eighth lens L8 arranged on the most reduction side is 0.409, which is smaller than the maximum image height. Therefore, a sufficient lens back can be secured, and the lens diameter of the third lens group G3 arranged on the most reduction side can be reduced.
  • Table 1 shows basic lens data of the projection zoom lens of Example 1.
  • the parallel plate PP described above is also included.
  • the Ri column indicates the radius of curvature of the i-th surface
  • the Di column indicates the surface spacing on the optical axis Z between the i-th surface and the i + 1-th surface.
  • the d-line (wavelength 587.6 nm) of the j-th (j 1, 2, 3,.
  • the ⁇ dj column indicates the Abbe number of the j-th component with respect to the d-line.
  • the values of the radius of curvature R and the surface interval D in Table 1 are values normalized by setting the focal length of the entire system of the projection zoom lens at the wide angle end to 1.00. In Table 1, values rounded to a predetermined digit are shown. The sign of the radius of curvature is positive when the surface shape is convex on the enlargement side and negative when the surface shape is convex on the reduction side.
  • the distance between the first lens group G1 and the second lens group G2, the distance between the second lens group G2 and the third lens group G3, and the distance between the third lens group G3 and the parallel plate PP. are variable intervals that change at the time of zooming. In the columns corresponding to these intervals, D4, D8, and D16 are indicated by adding “D” to the front surface number of the interval.
  • the interval between the first lens group G1 and the second lens group G2, the second lens group G2 and the second 4 shows the distance between the third lens group G3, the distance between the third lens group G3 and the fourth lens group G4, and the distance between the fourth lens group G4 and the parallel plate PP.
  • the number following “D” varies depending on the number of components in each embodiment, but the surface number on the front side of the interval is assigned. The same is true for all tables.
  • Table 2 shows the focal length f of the entire system at the wide-angle end, the intermediate focal position, and the telephoto end when the projection zoom lens of Example 1 is zoomed, and the values of the variable intervals D4, D8, and D16. These numerical values are also values in the case where the projection distance is 151.087 (the same standardized value) normalized by setting the focal length of the entire system at the wide angle end to 1.00. As shown here, in this embodiment, the zoom ratio is as high as 1.50 times.
  • Table 3 shows aspherical data of the projection zoom lens of Example 1.
  • E indicates that the subsequent numerical value is a “power exponent” with a base of 10
  • the numerical value represented by an exponential function with the base 10 is “ Indicates that the value before E ′′ is multiplied.
  • “1.0E-02” indicates “1.0 ⁇ 10 ⁇ 2 ”.
  • Table 3 described above is the same in Tables 6, 9, 12, 15 and 18 described later.
  • the aspheric coefficients for the surface numbers S1 and S2 are shown.
  • FIGS. 7A to 7D respectively show spherical aberration, astigmatism, distortion (distortion aberration), and lateral chromatic aberration (chromatic aberration of magnification) at the wide-angle end of the projection zoom lens of Example 1.
  • the figure is shown.
  • (E) to (H) of the same figure show respective aberration diagrams of spherical aberration, astigmatism, distortion, and lateral chromatic aberration at the intermediate focal position of the projection zoom lens of Example 1.
  • (I) to (L) in the same figure show aberration diagrams of spherical aberration, astigmatism, distortion, and lateral chromatic aberration at the telephoto end of the projection zoom lens of Example 1, respectively.
  • FIG. 7 shows the F number Fno. At the wide angle end, the intermediate focal position, and the telephoto end of the first embodiment. The total angle of view 2 ⁇ (in degrees) is also shown.
  • the aberration diagrams in FIGS. 7A to 7L are based on the d-line, but in the spherical aberration diagram, the F-line (wavelength wavelength 486.1 nm) and the C-line (wavelength 656.3 nm). Are also shown, and the chromatic aberration diagram for magnification shows aberrations for the F-line and C-line.
  • aberrations in the sagittal direction and the tangential direction are indicated by a solid line and a broken line, respectively.
  • Example 1 The symbols, meanings, and description methods of the lens group arrangement diagram, table, and aberration diagram of Example 1 described above are basically the same for the following Examples 2 to 6 unless otherwise specified.
  • the lens group arrangement diagram (FIG. 1) of Example 1 described above is at the wide-angle end and the telephoto end, and the aberration diagram is at the wide-angle end, the intermediate focal position, and the telephoto end. The same applies to 2-6.
  • FIG. 2 shows the arrangement of lens groups at the wide-angle end and the telephoto end of the projection zoom lens according to the second embodiment.
  • the projection zoom lens of Example 2 includes, in order from the magnification side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens having a positive refractive power.
  • the lens group G3 is arranged.
  • the first lens group G1 includes a first lens L1 that is an aspherical lens whose both surfaces are aspherical and a second lens L2 that is a biconcave lens in order from the magnification side.
  • the second lens group G2 includes a third lens L3, which is a biconvex lens, and a fourth lens L4, which is also a biconvex lens, in order from the magnification side.
  • the third lens group G3 includes, in order from the magnification side, a fifth lens L5 that is a biconcave lens, a sixth lens L6 that is a biconvex lens, a seventh lens L7 that is a biconcave lens, an eighth lens L8 that is a positive meniscus lens, and A ninth lens L9, which is a biconvex lens, is arranged.
  • the maximum image height on the reduction side is 0.554.
  • the maximum effective light beam height on the reduction-side lens surface of the ninth lens L9 arranged on the most reduction side is 0.407, which is smaller than the maximum image height (note that these values are also at the wide-angle end). This is standardized with the focal length of the entire system as 1.00 (hereinafter the same). Therefore, a sufficient lens back can be secured, and the lens diameter of the third lens group G3 arranged on the most reduction side can be reduced.
  • Table 4 shows basic lens data of the projection zoom lens of Example 2.
  • Table 5 shows the focal length f of the entire system at the wide-angle end, the intermediate focal position, and the telephoto end, and the values of the variable intervals D4, D8, and D18 when the projection zoom lens of Example 2 is zoomed. As shown here, in this embodiment, the zoom ratio is as high as 1.50 times. These numerical values are values when the projection distance is 151.073.
  • Table 6 shows aspherical data of the projection zoom lens of Example 2.
  • FIGS. 8A to 8L show aberration diagrams of the projection zoom lens of Example 2, respectively. Each aberration shown here is obtained when the projection distance is 151.073 described above.
  • FIG. 3 shows the arrangement of lens groups at the wide-angle end and the telephoto end of the projection zoom lens according to the third embodiment.
  • the projection zoom lens of Example 3 includes, in order from the enlargement side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group having a positive refractive power. G3 and a fourth lens group G4 having a positive refractive power are arranged.
  • the first lens group G1 includes a first lens L1 which is an aspherical lens whose both surfaces are aspherical and a second lens L2 which is a biconcave lens in order from the magnification side.
  • the second lens group G2 includes a third lens L3 that is a single biconvex lens.
  • the third lens group G3 is also composed of a fourth lens L4 which is a single biconvex lens.
  • the fourth lens group G4 includes, in order from the magnification side, a fifth lens L5 that is a biconcave lens, a sixth lens L6 that is a biconvex lens, a seventh lens L7 that is a negative meniscus lens, and an eighth lens L8 that is a biconvex lens. Configured.
  • the maximum image height on the reduction side is 0.555.
  • the maximum effective luminous flux height on the lens surface on the reduction side of the eighth lens L8 arranged on the most reduction side is 0.414, which is smaller than the maximum image height. Therefore, a sufficient lens back can be secured, and the lens diameter of the fourth lens group G4 arranged on the most reduction side can be reduced.
  • Table 7 shows basic lens data of the projection zoom lens of Example 3.
  • Table 8 shows the focal length f of the entire system at the wide-angle end, the intermediate focal position, and the telephoto end, and the values of the variable intervals D4, D6, D8, and D16 when the projection zoom lens of Example 3 is zoomed. .
  • the zoom ratio is as high as 1.50 times. These numerical values are values when the projection distance is 151.121.
  • Table 9 shows aspherical data of the projection zoom lens of Example 3.
  • FIGS. 9A to 9L show aberration diagrams of the projection zoom lens of Example 3, respectively. Each aberration shown here is obtained when the projection distance is 151.121 described above.
  • FIG. 4 shows the arrangement of lens groups at the wide-angle end and the telephoto end of the projection zoom lens of Example 4.
  • the projection zoom lens of Example 4 includes, in order from the magnification side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group having a positive refractive power. G3 and a fourth lens group G4 having a positive refractive power are arranged.
  • the first lens group G1 includes a first lens L1 which is an aspherical lens whose both surfaces are aspherical and a second lens L2 which is a biconcave lens in order from the magnification side.
  • the second lens group G2 includes a third lens L3 that is a single biconvex lens.
  • the third lens group G3 is also composed of a fourth lens L4 which is a single biconvex lens.
  • the fourth lens group G4 includes, in order from the magnifying side, a fifth lens L5 that is a biconcave lens, a sixth lens L6 that is a biconvex lens, a seventh lens L7 that is a biconcave lens, an eighth lens L8 that is a positive meniscus lens, and both A ninth lens L9, which is a convex lens, is arranged.
  • the maximum image height on the reduction side is 0.554.
  • the maximum effective luminous flux height on the lens surface on the reduction side of the ninth lens L9 arranged on the most reduction side is 0.401, which is smaller than the maximum image height. Therefore, a sufficient lens back can be secured, and the lens diameter of the fourth lens group G4 arranged on the most reduction side can be reduced.
  • Table 10 shows basic lens data of the projection zoom lens of Example 4.
  • Table 11 shows the focal length f of the entire system at the wide-angle end, the intermediate focal position, and the telephoto end, and the values of the variable intervals D4, D6, D8, and D18 when the zoom lens for projection of Example 4 is zoomed. .
  • the zoom ratio is as high as 1.50 times. These numerical values are values when the projection distance is 151.078.
  • Table 12 shows aspherical data of the projection zoom lens of Example 4.
  • FIGS. 10A to 10L show aberration diagrams of the projection zoom lens of Example 4, respectively. Each aberration shown here is obtained when the projection distance is 151.078 described above.
  • FIG. 5 shows the arrangement of lens groups at the wide-angle end and the telephoto end of the projection zoom lens according to the fifth embodiment.
  • the projection zoom lens of Example 5 includes, in order from the magnification side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group having a positive refractive power. G3 and a fourth lens group G4 having a positive refractive power are arranged.
  • the first lens group G1 includes a first lens L1 which is an aspherical lens whose both surfaces are aspherical and a second lens L2 which is a biconcave lens in order from the magnification side.
  • the second lens group G2 includes a third lens L3 that is a single biconvex lens.
  • the third lens group G3 is also composed of a fourth lens L4 which is a single biconvex lens.
  • the fourth lens group G4 includes, in order from the magnifying side, a fifth lens L5 that is a biconcave lens, a sixth lens L6 that is a biconvex lens, a seventh lens L7 that is a biconcave lens, an eighth lens L8 that is a positive meniscus lens, and a biconvex lens. And a tenth lens L10 which is a biconvex lens.
  • the maximum image height on the reduction side is 0.553.
  • the maximum effective luminous flux height on the lens surface on the reduction side of the tenth lens L10 arranged on the most reduction side is 0.415, which is smaller than the maximum image height. Therefore, a sufficient lens back can be secured, and the lens diameter of the fourth lens group G4 arranged on the most reduction side can be reduced.
  • Table 13 shows basic lens data of the projection zoom lens of Example 5.
  • Table 14 shows the focal length f of the entire system at the wide-angle end, the intermediate focal position, and the telephoto end, and the values of the variable intervals D4, D6, D8, and D20 when the zoom lens for projection of Example 5 is zoomed. .
  • the zoom ratio is as high as 1.50 times. These numerical values are values when the projection distance is 120.516.
  • Table 15 shows aspherical data of the projection zoom lens of Example 5.
  • FIGS. 11A to 11L show respective aberration diagrams of the projection zoom lens of Example 5.
  • FIG. Each aberration shown here is obtained when the projection distance is 120.516 described above.
  • FIG. 6 shows the arrangement of lens groups at the wide-angle end and the telephoto end of the projection zoom lens according to the sixth embodiment.
  • the projection zoom lens of Example 6 includes, in order from the magnification side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group having a positive refractive power. G3 and a fourth lens group G4 having a positive refractive power are arranged.
  • the first lens group G1 includes a first lens L1 which is an aspherical lens whose both surfaces are aspherical and a second lens L2 which is a biconcave lens in order from the magnification side.
  • the second lens group G2 includes a third lens L3 that is a single biconvex lens.
  • the third lens group G3 is also composed of a fourth lens L4 which is a single biconvex lens.
  • the fourth lens group G4 includes, in order from the magnifying side, a fifth lens L5 that is a biconcave lens, a sixth lens L6 that is a biconvex lens, a seventh lens L7 that is a biconcave lens, an eighth lens L8 that is a positive meniscus lens, and a biconvex lens. And a tenth lens L10 which is a biconvex lens.
  • the maximum image height on the reduction side is 0.553.
  • the maximum effective light beam height on the lens surface on the reduction side of the tenth lens L10 arranged on the most reduction side is 0.408, which is smaller than the maximum image height. Therefore, a sufficient lens back can be secured, and the lens diameter of the fourth lens group G4 arranged on the most reduction side can be reduced.
  • Table 16 shows basic lens data of the projection zoom lens of Example 6.
  • Table 17 shows the focal length f of the entire system at the wide-angle end, the intermediate focal position, and the telephoto end, and the values of the variable intervals D4, D6, D8, and D20 when the zoom lens for projection of Example 6 is zoomed. .
  • the zoom ratio is as high as 1.64 times. These numerical values are values when the projection distance is 120.472.
  • Table 18 shows aspherical data of the projection zoom lens of Example 6.
  • FIGS. 12A to 12L show aberration diagrams of the projection zoom lens of Example 6.
  • FIG. Each aberration shown here is obtained when the projection distance is 120.472 as described above.
  • Table 19 shows values of conditions defined by the conditional expressions (1) to (3) (that is, character expression portions). As described above, since the focal length fw of the entire system is shown as 1.00, the values of fm, fr and Bfw are values of fm / fw, fr / fw and Bfw / fw, respectively.
  • the projection zoom lens according to the present invention is not limited to the above examples, and various modifications can be made. It is possible to appropriately change the radius of curvature, the surface spacing, the refractive index, and the Abbe number.
  • the projection display device of the present invention is not limited to the above-described configuration.
  • the light valve used and the optical member used for light beam separation or light beam synthesis are not limited to the above-described configuration. Various modifications can be made.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lenses (AREA)

Abstract

 投写用ズームレンズにおいて、小型化および低コスト化を実現した上で、諸収差を良好に補正可能とする。 移動群として3群ないし4群のレンズ群を移動させて変倍動作を行う投写用ズームレンズにおいて、最も拡大側のレンズ群である第1レンズ群(G1)を負の屈折力を有する移動群から構成し、最も縮小側のレンズ群(3群のレンズ群を移動させる投写用ズームレンズの場合、第3レンズ群(G3))を正の屈折力を有する移動群から構成し、最も拡大側のレンズ群である第1レンズ群(G1)を実質的に2枚のレンズ(L1およびL2)から構成する。その上で、広角端における全系の焦点距離をfw とし、最も拡大側のレンズ群の焦点距離をfm として、下記条件式(1)を満足させる。 -3.5< fm/fw <-1.0・・・(1)

Description

投写用ズームレンズおよび投写型表示装置
 本発明はズームレンズに関し、特に、投写型表示装置に適用される投写用ズームレンズに関するものである。
 また本発明は、そのような投写用ズームレンズを備えた投写型表示装置に関するものである。
 近年、パソコンの普及等と相俟って投写型表示装置(プロジェクタ)の需要が高まっており、その市場は大きく拡大しつつある。
 投写型表示装置には、映像信号や画像信号を光信号に変える光変調を行うライトバルブが使用されるが、その一つとして透過型液晶表示素子が知られている。透過型液晶表示素子が適用される光学系においては、通常、色合成のためにクロスダイクロイックプリズムが用いられており、その合成特性を向上させるために投写用ズームレンズの縮小側がテレセントリックとされている。
 また、より高精細で、コントラスト比の大きい投影画像を得たいという要求の高まりから、近時、ライトバルブとしてDMD(デジタル・マイクロミラー・デバイス:登録商標)素子を搭載した投写型表示装置が注目されている。反射型ライトバルブであるDMD素子を用いる場合は、投写用ズームレンズの縮小側をテレセントリックにする必要がないことから、縮小側の瞳をパネルに近い位置に設定できるので、縮小側のレンズ部分を小型化することが可能になる。
 他方、投写型表示装置の設置性の観点から、投写用ズームレンズには高いズーム比で変倍可能であることも求められる。
 上述したような要求をある程度満たし得る投写用ズームレンズとして、従来、特許文献1および特許文献2に記載されたものが公知となっている。
特開2004-77950号公報 特開2007-271697号公報
 しかし、特許文献1に記載された投写用ズームレンズは、ズーム比が1.3倍程度と小さいばかりか、第3群のパワーバランスが悪く、像面湾曲が大きいものとなっている。また特許文献2に示された投写用ズームレンズは、ズーム比が1.6倍程度と大きいものの、レンズ径の大きい第1群に5枚のレンズを使用していることもあって、コストが高いものとなっている。
 本発明は上記の事情に鑑みてなされたものであり、1.5倍程度の高いズーム比を確保しながら、小型かつ安価で、しかも諸収差を良好に補正できる投写用ズームレンズを提供することを目的とする。
 また本発明は、上述のような投写用ズームレンズを備えて、高いズーム比で高画質の画像を表示できる投写型表示装置を提供することを目的とする。
 本発明による投写用ズームレンズは、 
 移動群として3群ないし4群のレンズ群を移動させて変倍動作を行う投写用ズームレンズにおいて、
 最も拡大側のレンズ群は負の屈折力を有する移動群から構成され、
 最も縮小側のレンズ群は正の屈折力を有する移動群から構成され、
 前記最も拡大側のレンズ群は実質的に2枚のレンズからなり、
 広角端における全系の焦点距離をfwとし、最も拡大側のレンズ群の焦点距離をfmとして、下記条件式(1)
  -3.5< fm/fw <-1.0・・・(1)
を満たすことを特徴とするものである。
 なお、上記構成を有する本発明の投写用ズームレンズにおいては、上記最も拡大側のレンズ群が実質的に、拡大側より順に、少なくとも1面が非球面である非球面レンズおよび、両凹レンズを配置して構成されていることが望ましい。
 ここで、上記の「実質的に・・・配置して構成され」とは、そこに挙げられたレンズ以外に、実質的にパワーを有さないレンズ、絞りやカバーガラス等レンズ以外の光学要素、レンズフランジ、レンズバレル、撮像素子、手振れ補正機構等の機構部分等を持つ場合も含むものとする。この「実質的に」との用語は以下でも用いられているが、その意味するところは全て上に述べたものと同じである。
 なお、本発明の投写用ズームレンズにおけるレンズの面形状、屈折力の符号は、非球面が含まれているものについては近軸領域で考えるものとする。
 また、上記の非球面レンズはプラスチック材から形成され、上記の両凹レンズはガラス材から形成されていることが好ましい。
 また、本発明の投写用ズームレンズにおいては、広角端における全系の焦点距離をfwとし、最も縮小側のレンズ群の焦点距離をfrとして、下記条件式(2)
  2.0< fr/fw <50.0・・・(2)
が満たされていることが望ましい。
 さらに本発明の投写用ズームレンズにおいては、前記最も縮小側のレンズ群が拡大側より順に、両凹レンズ、正レンズ、拡大側に凹面を向けた負レンズを有していることが望ましい。
 また、本発明の投写用ズームレンズはより具体的に、
 拡大側より順に実質的に、負の第1レンズ群、正の第2レンズ群および正の第3レンズ群が配列されてなり、
 変倍に際し前記第1レンズ群、第2レンズ群および第3レンズ群が移動群として各々独立して移動し、
 広角端から望遠端まで変倍する際に前記第1レンズ群は縮小側に移動し、前記第2レンズ群および前記第3レンズ群は拡大側へ移動するように構成されていることが望ましい。
 あるいは、本発明の投写用ズームレンズはより具体的に、
 拡大側より順に実質的に、負の第1レンズ群、正の第2レンズ群、正の第3レンズ群および正の第4レンズ群が配列されてなり、
 変倍に際し前記第1レンズ群、第2レンズ群、第3レンズ群および第4レンズ群が移動群として各々独立して移動し、
 広角端から望遠端まで変倍する際に前記第1レンズ群は縮小側に移動し、前記第2レンズ群、前記第3レンズ群および前記第4レンズ群は拡大側へ移動するように構成されてもよい。
 なお、本発明の投写用ズームレンズが上述のように4群構成とされる場合、第2レンズ群や第3レンズ群はそれぞれ1枚の単レンズで構成されることが望ましい。
 さらに、本発明の投写用ズームレンズにおいては、広角端における全系の焦点距離をfwとし、広角端における全系のバックフォーカス(空気換算距離)をBfwとして、下記条件式(3)
  1.0<Bfw /fw  ・・・(3)
が満たされていることが望ましい。
 また、本発明の投写用ズームレンズにおいては、最も縮小側のレンズ面における最大有効光束高が、縮小側の最大像高より小さいことが望ましい。
 他方、本発明の投写型表示装置は、光源と、ライトバルブと、前記光源からの光束を前記ライトバルブへ導く照明光学部とに加えて、以上説明した本発明による投写用ズームレンズを備え、前記光源からの光束を前記ライトバルブで光変調し、前記投写用ズームレンズによりスクリーンに投写する構成を有することを特徴とするものである。
 本発明の投写用ズームレンズにおいては、移動群として3群ないし4群のレンズ群を移動させて変倍動作を行う投写用ズームレンズにおいて、最も拡大側のレンズ群は負の屈折力を有する移動群から構成され、最も縮小側のレンズ群は正の屈折力を有する移動群から構成された上で、最も拡大側のレンズ群である第1レンズ群G1が実質的に2枚のレンズから構成されている。このように、一般にレンズ径が大きくなる最も拡大側のレンズ群を、2枚という少ないレンズ枚数で構成することにより、投写用ズームレンズを安価に形成可能となる。
 しかし、そのようにしてコストメリットが得られる半面、レンズ枚数を少なく抑えたことにより、歪曲収差などの軸外収差が大きくなる可能性があるが、本発明の投写用ズームレンズは、以下の通りにして大きな収差の発生が防止されている。すなわち本発明の投写用ズームレンズにおいては、前記条件式(1)が満足されていることから、レンズ枚数削減により発生する歪曲収差などの軸外収差を良好に補正可能になり、さらに、縮小側のレンズ群のパワーバランスを向上させて像面湾曲なども良好に補正可能となる。
 より詳しく説明すると、fm/fwの値が下限値の-3.5以下の場合は、最も拡大側のレンズ群のパワーが弱くなり過ぎることから、レンズ系の大型化につながる。逆にfm/fwの値が上限値の-1.0以上の場合は、最も拡大側のレンズ群のパワーが強くなり過ぎることから、歪曲収差などの諸収差の補正が困難になる。条件式(1)が満足されている場合は以上の不具合を防止して、高いズーム比を確保しながら、レンズ系の小型化および低コスト化を実現し、また諸収差、特に軸外収差を良好に補正可能となる。
 また、本発明の投写用ズームレンズにおいて特に、最も拡大側のレンズ群が拡大側より順に、少なくとも1面が非球面である非球面レンズおよび、両凹レンズを配置して構成されている場合は、以下の効果を得ることができる。すなわち、最も拡大側のレンズ群の最も拡大側位置に非球面レンズを配置することで、軸外収差、特に歪曲収差の補正が効果的になされるようになる。また、このレンズ群の縮小側位置に負の両凹レンズを配置することで、全体として適切な負のパワーを持たせることができ、非点収差などの軸外収差の補正が効果的になされるようになる。
 そして、特に上記非球面レンズがプラスチックレンズとされる一方、上記両凹レンズがガラスレンズとされた場合は、以下の効果を得ることができる。すなわちこの構成により、収差補正機能は非球面プラスチックレンズに、必要なパワーはガラスレンズに各々分担させることができ、これにより収差補正機能を十分発揮させつつ、熱的な変化に影響され難いレンズ系を構築することが可能になる。また、1つのレンズをプラスチック材から形成することで、生産性およびコストの点で有利となる。
 また、本発明の投写用ズームレンズにおいて特に前記条件式(2)が満足されている場合は、以下の効果を得ることができる。すなわち条件式(2)は、像面湾曲(特にサジタル像面の湾曲)を良好に補正するための条件を規定したものであり、fr/fwの値が2.0以下になっても、また50.0以上になっても像面湾曲を良好に補正することが困難になる。条件式(2)が満足されている場合は、以上の不具合を防止して、像面湾曲を良好に補正可能となる。
 また、本発明の投写用ズームレンズにおいて特に、最も縮小側のレンズ群が拡大側より順に、両凹レンズ、正レンズ、拡大側に凹面を向けた負レンズを有している場合は、上に述べた条件式(2)を満足することで得られる作用、効果をさらに顕著なものとすることができ、さらには、ズーミングによる球面収差の変動を小さく抑えることも可能になる。
 また、本発明の投写用ズームレンズが特に、拡大側より順に実質的に、負の第1レンズ群、正の第2レンズ群および正の第3レンズ群が配列されてなり、変倍に際し前記第1レンズ群、第2レンズ群および第3レンズ群が移動群として各々独立して移動し、広角端から望遠端まで変倍する際に前記第1レンズ群は縮小側に移動し、前記第2レンズ群および前記第3レンズ群は拡大側へ移動するように構成されている場合は、レンズ系全体を大型化せずに、高いズーム比を確保することが可能になる。
 また、本発明の投写用ズームレンズが特に、拡大側より順に実質的に、負の第1レンズ群、正の第2レンズ群、正の第3レンズ群および正の第4レンズ群が配列されてなり、変倍に際し前記第1レンズ群、第2レンズ群、第3レンズ群および第4レンズ群が移動群として各々独立して移動し、広角端から望遠端まで変倍する際に前記第1レンズ群は縮小側に移動し、前記第2レンズ群、前記第3レンズ群および前記第4レンズ群は拡大側へ移動するように構成されている場合も、レンズ系全体を大型化せずに、高いズーム比を確保することが可能になる。
 また、本発明の投写用ズームレンズが上述のような4群構成とされる場合において、特に第2レンズ群や第3レンズ群がそれぞれ1枚の単レンズで構成されていれば、レンズ枚数を特に少なく抑えて、より高いコストダウン効果が得られる。
 また、本発明の投写用ズームレンズにおいて、特に前述の条件式(3)が満足されている場合は、以下の効果を得ることができる。すなわち、Bfw /fwの値が1.0以下になると、通常投写用ズームレンズに近接させて配置される照明光学系の配置が困難になるが、条件式(3)が満足されている場合はそのような不具合を防止して、照明光学系の配置が容易化される。
 また、本発明の投写用ズームレンズにおいて特に、最も縮小側のレンズ面における最大有効光束高が、縮小側の最大像高より小さくなっている場合は、十分なレンズバックを確保でき、また最も縮小側のレンズ群のレンズ径を小型化することも可能になる。
 他方、本発明の投写型表示装置は、投写用ズームレンズとして以上述べた通りの本発明のズームレンズが適用されたものであるので、高いズーム比で高画質の画像を表示可能となる。
本発明の実施例1に係る投写用ズームレンズのレンズ構成を示す断面図 本発明の実施例2に係る投写用ズームレンズのレンズ構成を示す断面図 本発明の実施例3に係る投写用ズームレンズのレンズ構成を示す断面図 本発明の実施例4に係る投写用ズームレンズのレンズ構成を示す断面図 本発明の実施例5に係る投写用ズームレンズのレンズ構成を示す断面図 本発明の実施例6に係る投写用ズームレンズのレンズ構成を示す断面図 (A)~(L)は上記実施例1に係る投写用ズームレンズの各収差図 (A)~(L)は上記実施例2に係る投写用ズームレンズの各収差図 (A)~(L)は上記実施例3に係る投写用ズームレンズの各収差図 (A)~(L)は上記実施例4に係る投写用ズームレンズの各収差図 (A)~(L)は上記実施例5に係る投写用ズームレンズの各収差図 (A)~(L)は上記実施例6に係る投写用ズームレンズの各収差図 本発明の一実施形態に係る投写型表示装置の概略構成図
 以下、本発明の実施形態について図面を参照して詳細に説明する。まず、図1~図6を参照して、本発明の投写用ズームレンズの実施形態について説明する。
 図1は、本発明の一実施形態に係る投写用ズームレンズを変倍操作させたときの広角端および望遠端における、各レンズ群の移動位置を示す断面図であり、後述する実施例1の投写用ズームレンズに対応している。また図2~6も、同様にして本発明の実施形態に係る別の構成例を示す断面図であり、それぞれ後述する実施例2~6の投写用ズームレンズに対応している。なおこれらの図では、広角端から望遠端へ変化する際のレンズ群の移動方向を、各位置間の矢印で概略的に示している。
 図1、2に各々示す実施例1、2の投写用ズームレンズは3群構成とされたものであり、それに対して図3~6に各々示す実施例3~6の投写用ズームレンズは4群構成とされたものである。
 <3群構成の実施形態>
 まず、主に図1に示す構成を例に取って、3群構成とされた投写用ズームレンズの実施形態について説明する。本実施形態の投写用ズームレンズは、例えばライトバルブに表示された画像情報をスクリーンへ投写する投写レンズとして使用可能である。図1では、図の左側を拡大側、右側を縮小側とし、投写型表示装置に搭載される場合を想定して、平行平板PPも合わせて示してある。すなわち、通常はこの平行平板PPの縮小側の面に、ライトバルブの画像表示面が配置される。これは、他の図2~図6の構成においても同様である。
 投写型表示装置においては、ライトバルブの画像表示面で画像情報を与えられた光束が、平行平板PPを介して投写用ズームレンズに入射する。そして、この投写用ズームレンズにより、紙面左側方向に配置される図示外のスクリーン上に、上記画像情報に基づく画像が投写表示される。
 なおライトバルブの画像表示面は、平行平板PPの縮小側の面から離して配置されても構わない。また、上述のように投写用ズームレンズに対して1つのライトバルブの画像表示面を配置する他、光源からの光束を色分離光学系により3原色に分離し、各原色用に3つのライトバルブを配設して、フルカラー画像を表示できるように構成してもよい。
 本実施形態に係る投写用ズームレンズは、最も拡大側に配置された第1レンズ群G1、この第1レンズ群G1よりも縮小側に配置された第2レンズ群G2および、最も縮小側に配置された第3レンズ群G3のみを実質的なレンズ群として備えて構成されている。ここで、第1レンズ群G1は負の屈折力を有するものとされ、第2レンズ群G2および第3レンズ群G3は各々正の屈折力を有するものとされている。そして第1レンズ群G1、第2レンズ群G2および第3レンズ群G3は、変倍の際にそれぞれ独立して移動するように構成されている。
 図1に示す例では、第1レンズ群G1は2枚のレンズ(第1レンズL1および第2レンズL2)からなり、第2レンズ群G2は2枚のレンズ(第3レンズL3および第4レンズL4)からなり、第3レンズ群G3は4枚のレンズ(第5レンズL5~第8レンズL8)からなる。図2に示す例は、レンズ枚数に関しては、第3レンズ群G3が5枚のレンズ(第5レンズL5~第9レンズL9)からなる点において図1の例と相違している。
 そしてこの投写用ズームレンズは、第1レンズ群G1を移動させてフォーカシングを行うように構成されている。
 本実施形態の投写用ズームレンズにおいては上述の通り、最も拡大側のレンズ群である第1レンズ群G1が実質的に2枚のレンズから構成されている。このように、一般にレンズ径が大きくなる最も拡大側のレンズ群を、2枚という少ないレンズ枚数で構成することにより、投写用ズームレンズを安価に形成可能となる。
 しかし、そのようにしてコストメリットが得られる半面、レンズ枚数を少なく抑えたことにより、歪曲収差などの軸外収差が大きくなる可能性がある。この点に鑑みて本実施形態においては、広角端における全系の焦点距離をfw、第1レンズ群G1の焦点距離をfmとしたとき、下記条件式(1)が満足されている。
  -3.5< fm/fw <-1.0・・・(1)
 ここで、条件式(1)が規定する条件(つまり文字式の部分)の値を、後述する条件式(2)、(3)が各々規定する条件の値と共に、表19において、実施例毎にまとめて示してある。なお表19では、全系の焦点距離fwを1.00として示してあるので、fm、frおよびBfwの値がすなわち、各々fm/fw、fr/fwおよびBfw /fwの値となる。
 上記の条件式(1)が満足されていることから、レンズ枚数削減により発生する歪曲収差などの軸外収差を良好に補正可能になり、さらに、縮小側のレンズ群のパワーバランスを向上させて像面湾曲なども良好に補正可能となる。
 より詳しく説明すると、fm/fwの値が下限値の-3.5以下の場合は、第1レンズ群G1のパワーが弱くなり過ぎることから、レンズ系の大型化につながる。逆にfm/fwの値が上限値の-1.0以上の場合は、第1レンズ群G1のパワーが強くなり過ぎることから、歪曲収差などの諸収差の補正が困難になる。条件式(1)が満足されている場合は以上の不具合を防止して、高いズーム比を確保しながら、レンズ系の小型化および低コスト化を実現し、また諸収差、特に軸外収差を良好に補正可能となる。
 さらに、本実施形態の投写用ズームレンズにおいては、最も拡大側のレンズ群である第1レンズ群G1が拡大側より順に、少なくとも1面が非球面である非球面レンズ(第1レンズL1)および、両凹レンズ(第2レンズL2)を配置して構成されているので、以下の効果が得られる。すなわち、最も拡大側のレンズ群の最も拡大側位置に非球面レンズを配置することで、軸外収差、特に歪曲収差の補正が効果的になされるようになる。また、このレンズ群の縮小側位置に負の両凹レンズを配置することで、全体として適切な負のパワーを持たせることができ、非点収差などの軸外収差の補正が効果的になされるようになる。
 また、本実施形態の投写用ズームレンズにおいては、非球面レンズである第1レンズL1がプラスチックレンズとされる一方、両凹レンズである第2レンズL2はガラスレンズとされており、それにより以下の効果が得られる。すなわちこの構成により、収差補正機能は非球面プラスチックレンズに、必要なパワーはガラスレンズに各々分担させることができ、これにより収差補正機能を十分発揮させつつ、熱的な変化に影響され難いレンズ系を構築することが可能になる。また、1つのレンズをプラスチック材から形成することで、生産性およびコストの点で有利となる。
 また、本実施形態の投写用ズームレンズにおいては、広角端における全系の焦点距離をfw、最も縮小側のレンズ群である第3レンズ群G3の焦点距離をfrとして、下記条件式(2)が満足されている。
  2.0< fr/fw <50.0・・・(2)
 この条件式(2)は、像面湾曲(特にサジタル像面の湾曲)を良好に補正するための条件を規定したものであり、fr/fwの値が2.0以下になっても、また50.0以上になっても像面湾曲を良好に補正することが困難になる。条件式(2)が満足されている場合は、以上の不具合を防止して、像面湾曲を良好に補正可能となる。
 また、本実施形態の投写用ズームレンズにおいては、最も縮小側のレンズ群である第3レンズ群G3が拡大側より順に、両凹レンズ(第5レンズL5)、正レンズ(第6レンズL6)、拡大側に凹面を向けた負レンズ(第7レンズL7)を有している。このようなレンズ配列とすることにより、上に述べた条件式(2)を満足することで得られる作用、効果をさらに顕著なものとすることができ、さらには、ズーミングによる球面収差の変動を小さく抑えることも可能になる。
 また、本実施形態の投写用ズームレンズにおいては、広角端における全系の焦点距離をfw、広角端における全系のバックフォーカス(空気換算距離)をBfwとして、下記条件式(3)が満足されている。
  1.0<Bfw /fw  ・・・(3)
 このBfw /fwの値が1.0以下になると、通常投写用ズームレンズに近接させて配置される照明光学系の配置が困難になるが、条件式(3)が満足されている場合はそのような不具合を防止して、照明光学系の配置が容易化される。
 また、本実施形態の投写用ズームレンズにおいては、後に具体的な数値を示す通り、最も縮小側のレンズ面(図1の例では第8レンズL8の、そして図2の例では第9レンズL9の各縮小側のレンズ面)における最大有効光束高が、縮小側の最大像高より小さくなっている。それにより、十分なレンズバックを確保でき、また最も縮小側のレンズ群のレンズ径を小型化することも可能になる。
 また、本実施形態の投写用ズームレンズは、変倍に際して3つのレンズ群G1、G2およびG3が移動群として各々独立して移動し、そして広角端から望遠端まで変倍する際に第1レンズ群G1は縮小側に移動し、第2レンズ群G2および第3レンズ群G3は拡大側へ移動するように構成されている。このような構成とすることにより、レンズ系全体を大型化せずに、高いズーム比を確保することが可能になる。
 以上、<3群構成の実施形態>の項の中で説明したことは、第3レンズ群G3を構成するレンズ枚数の相違を除いて、基本的に、図1および2の構成の双方について言えるものである。
 <4群構成の実施形態>
 次に、図3~図6に示す4群構成の投写用ズームレンズの実施形態について、主に図3の構成を例に取って説明する。なお、本実施形態の投写用ズームレンズを投写型表示装置に適用することに関しては、前述した3群構成の投写用ズームレンズを適用する場合と基本的に同じことが言えるので、その点についての重複した説明は省略する。
 本実施形態に係る投写用ズームレンズは、最も拡大側に配置された第1レンズ群G1、この第1レンズ群G1よりも縮小側に配置された第2レンズ群G2、この第2レンズ群G2よりも縮小側に配置された第3レンズ群G3および、最も縮小側に配置された第4レンズ群G4のみを実質的なレンズ群として備えて構成されている。ここで、第1レンズ群G1は負の屈折力を有するものとされ、第2レンズ群G2、第3レンズ群G3および第4レンズ群G4は各々正の屈折力を有するものとされている。そして第1レンズ群G1、第2レンズ群G2、第3レンズ群G3および第4レンズ群G4は、変倍の際にそれぞれ独立して移動するように構成されている。
 図3に示す例では、第1レンズ群G1は2枚のレンズ(第1レンズL1および第2レンズL2)からなり、第2レンズ群G2は1枚のレンズ(第3レンズL3)からなり、第3レンズ群G3は1枚のレンズ(第4レンズL4)からなる。以上は、図4~6に示す各例においても同様である。一方第4レンズ群G4は、図3に示す例では4枚のレンズ(第5レンズL5~第8レンズL8)からなり、図4に示す例では5枚のレンズ(第5レンズL5~第9レンズL9)からなり、図5および図6に示す例では6枚のレンズ(第5レンズL5~第10レンズL10)からなる。
 そしてこの投写用ズームレンズは、第1レンズ群G1を移動させてフォーカシングを行うように構成されている。
 本実施形態の投写用ズームレンズにおいては上述の通り、最も拡大側のレンズ群である第1レンズ群G1が実質的に2枚のレンズから構成されている。このように、一般にレンズ径が大きくなる最も拡大側のレンズ群を、2枚という少ないレンズ枚数で構成することにより、投写用ズームレンズを安価に形成可能となる。
 また本実施形態でも、広角端における全系の焦点距離をfw、第1レンズ群G1の焦点距離をfmとしたとき、前述した条件式(1)が満足されている(表19参照)。それにより本実施形態でも、レンズ枚数削減により発生する歪曲収差などの軸外収差を良好に補正可能になり、さらに、縮小側のレンズ群のパワーバランスを向上させて像面湾曲なども良好に補正可能となる。その詳しい理由は先に詳しく述べた通りである。
 また、本実施形態の投写用ズームレンズにおいても、最も拡大側のレンズ群である第1レンズ群G1が拡大側より順に、少なくとも1面が非球面である非球面レンズ(第1レンズL1)および、両凹レンズ(第2レンズL2)を配置して構成されているので、軸外収差、特に歪曲収差の補正が効果的になされ、そして非点収差などの軸外収差の補正が効果的になされる。その詳しい理由は先に詳しく述べた通りである。
 さらに、本実施形態の投写用ズームレンズにおいても、非球面レンズである第1レンズL1がプラスチックレンズとされる一方、両凹レンズである第2レンズL2はガラスレンズとされているので、収差補正機能を十分発揮させつつ、熱的な変化に影響され難いレンズ系を構築することが可能になる。また、1つのレンズをプラスチック材から形成することで、生産性およびコストの点で有利となる。
 本実施形態の投写用ズームレンズにおいて、最も縮小側のレンズ群は第4レンズ群G4となるが、その焦点距離をfrとし、広角端における全系の焦点距離をfwとすると、ここでも前記条件式(2)が満足されている(表19参照)。したがって本実施形態でも、先に述べた3群構成の実施形態におけるのと同じ理由により、像面湾曲を良好に補正可能となる。
 また、本実施形態の投写用ズームレンズにおいては、最も縮小側のレンズ群である第4レンズ群G4が拡大側より順に、両凹レンズ(第5レンズL5)、正レンズ(第6レンズL6)、拡大側に凹面を向けた負レンズ(第7レンズL7)を有している。このようなレンズ配列とすることにより、上に述べた条件式(2)を満足することで得られる作用、効果をさらに顕著なものとすることができ、さらには、ズーミングによる球面収差の変動を小さく抑えることも可能になる。
 また、本実施形態の投写用ズームレンズにおいても、広角端における全系の焦点距離をfw、広角端における全系のバックフォーカス(空気換算距離)をBfwとして、前述した条件式(3)が満足されている。それにより、照明光学系の配置が容易化される。
 また、本実施形態の投写用ズームレンズにおいては、後に具体的な数値を示す通り、最も縮小側のレンズ面(図3の例では第8レンズL8の、図4の例では第9レンズL9の、そして図5、6の例では第10レンズL10の各縮小側のレンズ面)における最大有効光束高が、縮小側の最大像高より小さくなっている。それにより、十分なレンズバックを確保でき、また最も縮小側のレンズ群のレンズ径を小型化することも可能になる。
 また、本実施形態の投写用ズームレンズは、変倍に際し上記4つのレンズ群G1、G2、G3およびG4が移動群として各々独立して移動し、そして広角端から望遠端まで変倍する際に第1レンズ群G1は縮小側に移動し、第2レンズ群G2、第3レンズ群G3および第4レンズ群G4は拡大側へ移動するように構成されている。このような構成とすることにより、レンズ系全体を大型化せずに、高いズーム比を確保することが可能になる。
 そして、上記第2レンズ群G2および第3レンズ群G3がそれぞれ1枚の単レンズから構成されているので、本実施形態の投写用ズームレンズはコストを低く抑えられるものとなる。
 以上、<4群構成の実施形態>の項の中で説明したことは、第4レンズ群G4を構成するレンズ枚数の相違を除いて、基本的に、図2~図6の構成に共通して言えるものである。
 次に、本発明に係る投写型表示装置の実施形態について、図13を用いて説明する。図13は本発明の一実施形態に係る投写型表示装置の一部を概略的に示すものである。この投写型表示装置100は、光源101と、照明光学系102と、ライトバルブとしてのDMD103と、本発明の実施形態による投写用ズームレンズ104とを備えている。
 この投写型表示装置100において、光源104より射出された光束は、不図示のカラーホイールによって、3原色光(R、G、B)の各光に時系列的に選択変換され、照明光学系102によって光束の光軸と垂直な断面における光量分布の均一化が図られてDMD103に照射される。DMD103においては、入射光の色の切り替わりに応じて、その色光用への変調切替が行われる。DMD103により変調された光は、投写用ズームレンズ104に入射する。そして投写用ズームレンズ104は、DMD103により光変調された光による光学像をスクリーン105上に投写する。
 なお、本発明の投写型表示装置は図13に示すものから種々の態様の変更が可能である。例えば、単板のDMDを設ける代わりに、各色光に応じた3枚のDMDによりRGB各色の変調を同時に行うようにしてもよい。この場合は、投写用ズームレンズ104とDMD103との間に色分離/合成プリズム(図示せず)が配置される。また、DMD103に代えてその他のライトバルブ、例えば透過型液晶表示素子や反射型液晶表示素子等を用いることも可能である。
 次に、本発明の投写用ズームレンズの具体的な実施例について説明する。なお先に述べた通り、以下に述べる実施例1および2の投写用ズームレンズは3群構成のものであり、実施例3~6の投写用ズームレンズは4群構成のものである。
 <実施例1>
 図1に、実施例1の投写用ズームレンズの広角端、望遠端におけるレンズ群の配置を示す。なお、図1についての詳細な説明は前述した通りであるので、ここでは特に必要の無い限り重複した説明は省略する。
 この実施例1の投写用ズームレンズは、拡大側から順に、負の屈折力を有する第1レンズ群G1、正の屈折力を有する第2レンズ群G2および、同じく正の屈折力を有する第3レンズ群G3を配置して構成されている。
 第1レンズ群G1は拡大側から順に、両面が非球面とされた非球面レンズである第1レンズL1、両凹レンズである第2レンズL2を配置して構成されている。第2レンズ群G2は拡大側から順に、両凸レンズである第3レンズL3、同じく両凸レンズである第4レンズL4を配置して構成されている。そして第3レンズ群L3は拡大側から順に、両凹レンズである第5レンズL5、両凸レンズである第6レンズL6、負メニスカスレンズである第7レンズL7および、両凸レンズである第8レンズL8を配置して構成されている。
 本実施例において、縮小側の最大像高は0.555である。それに対して、最も縮小側に配置された第8レンズL8の縮小側のレンズ面における最大有効光束高は、上記最大像高よりも小さい0.409である。そこで、十分なレンズバックを確保でき、また、最も縮小側に配された第3レンズ群G3のレンズ径を小型化することも可能になっている。
 表1に、実施例1の投写用ズームレンズの基本レンズデータを示す。ここでは、前述した平行平板PPも含めて示している。表1において、Siの欄には最も拡大側に有る構成要素の拡大側の面を1番目として縮小側に向かうに従い順次増加するように構成要素に面番号を付したときのi番目(i=1、2、3、…)の面番号を示す。Riの欄にはi番目の面の曲率半径を示し、Diの欄にはi番目の面とi+1番目の面との光軸Z上の面間隔を示している。また、Ndjの欄には最も拡大側の構成要素を1番目として縮小側に向かうに従い順次増加するj番目(j=1、2、3、…)の構成要素のd線(波長587.6nm)に対する屈折率を示し、νdjの欄にはj番目の構成要素のd線に対するアッベ数を示している。
 なお表1の曲率半径Rおよび面間隔Dの値は、広角端における投写用ズームレンズの全系の焦点距離を1.00として規格化した値である。また表1中では、所定の桁でまるめた数値を記載している。また曲率半径の符号は、面形状が拡大側に凸の場合を正、縮小側に凸の場合を負としている。
 そして面間隔Dのうち、第1レンズ群G1と第2レンズ群G2との間隔、第2レンズ群G2と第3レンズ群G3との間隔、および第3レンズ群G3と平行平板PPとの間隔は変倍時に変化する可変間隔であり、これらの間隔に相当する欄にはそれぞれ、「D」に当該間隔の前側の面番号を付してD4、D8、D16と記載している。
 以上は、後述する表4、7、10、13および16においても同様である。ただし、4群構成の実施例に関する表7、10、13および16では、変倍時に変化する可変間隔として、第1レンズ群G1と第2レンズ群G2との間隔、第2レンズ群G2と第3レンズ群G3との間隔、第3レンズ群G3と第4レンズ群G4との間隔および、第4レンズ群G4と平行平板PPとの間隔の4つを示している。そして、上述のような3つあるいは4つの可変レンズ群間隔について、「D」の後に続く数字は各実施例における構成要素の数に応じて変わっているが、当該間隔の前側の面番号を付して示しているのはどの表でも同じである。
 また表2に、実施例1の投写用ズームレンズが変倍する際の広角端、中間焦点位置、望遠端における全系の焦点距離fと、上記可変間隔D4、D8およびD16の値を示す。これらの数値も、広角端における全系の焦点距離を1.00として規格化した、投写距離が151.087(同様に規格化した値)の場合の値である。ここに示される通り本実施例では、ズーム比は1.50倍と高いものとなっている。
 以上述べた表2の記載の仕方は、後述する表5、8、11、14および17においても同様である。ただし、投写距離は実施例毎に固有の値であって、各表の上に示してある。
 また表3に、実施例1の投写用ズームレンズの非球面データを示す。ここでは、非球面の面番号と、その非球面に関する非球面係数を示す。なお非球面係数は、下記の数1に示す非球面式における各係数K、Ai(i=3~16)の値である。また、ここに示す数値において、記号“E”は、その次に続く数値が10を底とした“べき指数”であることを示し、その10を底とした指数関数で表される数値が“E”の前の数値に乗算されることを示す。例えば、「1.0E-02」であれば、「1.0×10-2」であることを示す。以上述べた表3の記載の仕方は、後述する表6、9、12、15および18においても同様である。またいずれの実施例でも、非球面は第1レンズL1の両面のみであるので、面番号S1およびS2に関する非球面係数を示している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-M000001
 ここで図7の(A)~(D)にそれぞれ、実施例1の投写用ズームレンズの広角端における球面収差、非点収差、ディストーション(歪曲収差)、倍率色収差(倍率の色収差)の各収差図を示す。また同図の(E)~(H)にそれぞれ、実施例1の投写用ズームレンズの中間焦点位置における球面収差、非点収差、ディストーション、倍率色収差の各収差図を示す。また同図の(I)~(L)にそれぞれ、実施例1の投写用ズームレンズの望遠端における球面収差、非点収差、ディストーション、倍率色収差の各収差図を示す。ここで各収差は、投写距離を前述の151.087としたときのものである。またこの図7には、実施例1の広角端、中間焦点位置および望遠端におけるFナンバーFno.および全画角2ω(単位は度)を併せて示してある。
 図7の(A)~(L)の各収差図は、d線を基準としたものであるが、球面収差図では、F線(波長波長486.1nm)、C線(波長656.3nm)に関する収差も示しており、倍率色収差図では、F線、C線に関する収差を示している。また、非点収差図ではサジタル方向、タンジェンシャル方向に関する収差をそれぞれ実線、破線で示している。
 上述した実施例1のレンズ群配置図、表および収差図の記号、意味、記載方法は、特に断りがない限り、以下の実施例2~6のものについても基本的に同様である。また、上述した実施例1のレンズ群配置図(図1)が広角端、望遠端におけるものである点、そして収差図が広角端、中間焦点位置、望遠端におけるものである点も、実施例2~6において同様である。
 <実施例2>
 図2に、実施例2の投写用ズームレンズの広角端、望遠端におけるレンズ群の配置を示す。この実施例2の投写用ズームレンズは、拡大側から順に、負の屈折力を有する第1レンズ群G1、正の屈折力を有する第2レンズ群G2および、同じく正の屈折力を有する第3レンズ群G3を配置して構成されている。
 第1レンズ群G1は拡大側から順に、両面が非球面とされた非球面レンズである第1レンズL1、両凹レンズである第2レンズL2を配置して構成されている。第2レンズ群G2は拡大側から順に、両凸レンズである第3レンズL3、同じく両凸レンズである第4レンズL4を配置して構成されている。そして第3レンズ群G3は拡大側から順に、両凹レンズである第5レンズL5、両凸レンズである第6レンズL6、両凹レンズである第7レンズL7、正メニスカスレンズである第8レンズL8および、両凸レンズである第9レンズL9を配置して構成されている。
 本実施例において、縮小側の最大像高は0.554である。それに対して、最も縮小側に配置された第9レンズL9の縮小側のレンズ面における最大有効光束高は、上記最大像高よりも小さい0.407である(なおこれらの値も、広角端における全系の焦点距離を1.00として規格化したものである。以下、同様)。そこで、十分なレンズバックを確保でき、また、最も縮小側に配された第3レンズ群G3のレンズ径を小型化することも可能になっている。
 表4に、実施例2の投写用ズームレンズの基本レンズデータを示す。また表5に、実施例2の投写用ズームレンズが変倍する際の広角端、中間焦点位置、望遠端における全系の焦点距離fと、可変間隔D4、D8およびD18の値を示す。ここに示される通り本実施例では、ズーム比は1.50倍と高いものとなっている。これらの数値は、投写距離が151.073の場合の値である。また表6に、実施例2の投写用ズームレンズの非球面データを示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 一方図8の(A)~(L)にそれぞれ、実施例2の投写用ズームレンズの各収差図を示す。ここに示す各収差は、投写距離を前述の151.073としたときのものである。
 <実施例3>
 図3に、実施例3の投写用ズームレンズの広角端、望遠端におけるレンズ群の配置を示す。この実施例3の投写用ズームレンズは、拡大側から順に、負の屈折力を有する第1レンズ群G1、正の屈折力を有する第2レンズ群G2、正の屈折力を有する第3レンズ群G3および、正の屈折力を有する第4レンズ群G4を配置して構成されている。
 第1レンズ群G1は拡大側から順に、両面が非球面とされた非球面レンズである第1レンズL1、両凹レンズである第2レンズL2を配置して構成されている。第2レンズ群G2は、1枚の両凸レンズである第3レンズL3から構成されている。第3レンズ群G3も、1枚の両凸レンズである第4レンズL4から構成されている。第4レンズ群G4は拡大側から順に、両凹レンズである第5レンズL5、両凸レンズである第6レンズL6、負メニスカスレンズである第7レンズL7および、両凸レンズである第8レンズL8を配置して構成されている。
 本実施例において、縮小側の最大像高は0.555である。それに対して、最も縮小側に配置された第8レンズL8の縮小側のレンズ面における最大有効光束高は、上記最大像高よりも小さい0.414である。そこで、十分なレンズバックを確保でき、また、最も縮小側に配された第4レンズ群G4のレンズ径を小型化することも可能になっている。
 表7に、実施例3の投写用ズームレンズの基本レンズデータを示す。また表8に、実施例3の投写用ズームレンズが変倍する際の広角端、中間焦点位置、望遠端における全系の焦点距離fと、可変間隔D4、D6、D8およびD16の値を示す。ここに示される通り本実施例では、ズーム比は1.50倍と高いものとなっている。これらの数値は、投写距離が151.121の場合の値である。また表9に、実施例3の投写用ズームレンズの非球面データを示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 一方図9の(A)~(L)にそれぞれ、実施例3の投写用ズームレンズの各収差図を示す。ここに示す各収差は、投写距離を前述の151.121としたときのものである。
 <実施例4>
 図4に、実施例4の投写用ズームレンズの広角端、望遠端におけるレンズ群の配置を示す。この実施例4の投写用ズームレンズは、拡大側から順に、負の屈折力を有する第1レンズ群G1、正の屈折力を有する第2レンズ群G2、正の屈折力を有する第3レンズ群G3および、正の屈折力を有する第4レンズ群G4を配置して構成されている。
 第1レンズ群G1は拡大側から順に、両面が非球面とされた非球面レンズである第1レンズL1、両凹レンズである第2レンズL2を配置して構成されている。第2レンズ群G2は、1枚の両凸レンズである第3レンズL3から構成されている。第3レンズ群G3も、1枚の両凸レンズである第4レンズL4から構成されている。第4レンズ群G4は拡大側から順に、両凹レンズである第5レンズL5、両凸レンズである第6レンズL6、両凹レンズである第7レンズL7、正メニスカスレンズである第8レンズL8および、両凸レンズである第9レンズL9を配置して構成されている。
 本実施例において、縮小側の最大像高は0.554である。それに対して、最も縮小側に配置された第9レンズL9の縮小側のレンズ面における最大有効光束高は、上記最大像高よりも小さい0.401である。そこで、十分なレンズバックを確保でき、また、最も縮小側に配された第4レンズ群G4のレンズ径を小型化することも可能になっている。
 表10に、実施例4の投写用ズームレンズの基本レンズデータを示す。また表11に、実施例4の投写用ズームレンズが変倍する際の広角端、中間焦点位置、望遠端における全系の焦点距離fと、可変間隔D4、D6、D8およびD18の値を示す。ここに示される通り本実施例では、ズーム比は1.50倍と高いものとなっている。これらの数値は、投写距離が151.078の場合の値である。また表12に、実施例4の投写用ズームレンズの非球面データを示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 一方図10の(A)~(L)にそれぞれ、実施例4の投写用ズームレンズの各収差図を示す。ここに示す各収差は、投写距離を前述の151.078としたときのものである。
 <実施例5>
 図5に、実施例5の投写用ズームレンズの広角端、望遠端におけるレンズ群の配置を示す。この実施例5の投写用ズームレンズは、拡大側から順に、負の屈折力を有する第1レンズ群G1、正の屈折力を有する第2レンズ群G2、正の屈折力を有する第3レンズ群G3および、正の屈折力を有する第4レンズ群G4を配置して構成されている。
 第1レンズ群G1は拡大側から順に、両面が非球面とされた非球面レンズである第1レンズL1、両凹レンズである第2レンズL2を配置して構成されている。第2レンズ群G2は、1枚の両凸レンズである第3レンズL3から構成されている。第3レンズ群G3も、1枚の両凸レンズである第4レンズL4から構成されている。第4レンズ群G4は拡大側から順に、両凹レンズである第5レンズL5、両凸レンズである第6レンズL6、両凹レンズである第7レンズL7、正メニスカスレンズである第8レンズL8、両凸レンズである第9レンズL9および、両凸レンズである第10レンズL10を配置して構成されている。
 本実施例において、縮小側の最大像高は0.553である。それに対して、最も縮小側に配置された第10レンズL10の縮小側のレンズ面における最大有効光束高は、上記最大像高よりも小さい0.415である。そこで、十分なレンズバックを確保でき、また、最も縮小側に配された第4レンズ群G4のレンズ径を小型化することも可能になっている。
 表13に、実施例5の投写用ズームレンズの基本レンズデータを示す。また表14に、実施例5の投写用ズームレンズが変倍する際の広角端、中間焦点位置、望遠端における全系の焦点距離fと、可変間隔D4、D6、D8およびD20の値を示す。ここに示される通り本実施例では、ズーム比は1.50倍と高いものとなっている。これらの数値は、投写距離が120.516の場合の値である。また表15に、実施例5の投写用ズームレンズの非球面データを示す。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 一方図11の(A)~(L)にそれぞれ、実施例5の投写用ズームレンズの各収差図を示す。ここに示す各収差は、投写距離を前述の120.516としたときのものである。
 <実施例6>
 図6に、実施例6の投写用ズームレンズの広角端、望遠端におけるレンズ群の配置を示す。この実施例6の投写用ズームレンズは、拡大側から順に、負の屈折力を有する第1レンズ群G1、正の屈折力を有する第2レンズ群G2、正の屈折力を有する第3レンズ群G3および、正の屈折力を有する第4レンズ群G4を配置して構成されている。
 第1レンズ群G1は拡大側から順に、両面が非球面とされた非球面レンズである第1レンズL1、両凹レンズである第2レンズL2を配置して構成されている。第2レンズ群G2は、1枚の両凸レンズである第3レンズL3から構成されている。第3レンズ群G3も、1枚の両凸レンズである第4レンズL4から構成されている。第4レンズ群G4は拡大側から順に、両凹レンズである第5レンズL5、両凸レンズである第6レンズL6、両凹レンズである第7レンズL7、正メニスカスレンズである第8レンズL8、両凸レンズである第9レンズL9および、両凸レンズである第10レンズL10を配置して構成されている。
 本実施例において、縮小側の最大像高は0.553である。それに対して、最も縮小側に配置された第10レンズL10の縮小側のレンズ面における最大有効光束高は、上記最大像高よりも小さい0.408である。そこで、十分なレンズバックを確保でき、また、最も縮小側に配された第4レンズ群G4のレンズ径を小型化することも可能になっている。
 表16に、実施例6の投写用ズームレンズの基本レンズデータを示す。また表17に、実施例6の投写用ズームレンズが変倍する際の広角端、中間焦点位置、望遠端における全系の焦点距離fと、可変間隔D4、D6、D8およびD20の値を示す。ここに示される通り本実施例では、ズーム比は1.64倍と高いものとなっている。これらの数値は、投写距離が120.472の場合の値である。また表18に、実施例6の投写用ズームレンズの非球面データを示す。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 一方図12の(A)~(L)にそれぞれ、実施例6の投写用ズームレンズの各収差図を示す。ここに示す各収差は、投写距離を前述の120.472としたときのものである。
 また表19に、前記条件式(1)~(3)が規定する条件(つまり文字式の部分)の値を示す。前述した通りここでは、全系の焦点距離fwを1.00として示してあるので、fm、frおよびBfwの値がすなわち、各々fm/fw、fr/fwおよびBfw /fwの値となる。
Figure JPOXMLDOC01-appb-T000019
 以上、実施形態および実施例を挙げて本発明を説明したが、本発明の投写用ズームレンズは、上記実施例のものに限られることなく種々の態様の変更が可能であり、例えば各レンズの曲率半径、面間隔、屈折率、アッベ数を適宜変更することが可能である。
 また、本発明の投写型表示装置も前述した構成のものに限られるものではなく、例えば、用いられるライトバルブや、光束分離または光束合成に用いられる光学部材は、既述の構成に限定されず、種々の態様の変更が可能である。

Claims (12)

  1.  移動群として3群ないし4群のレンズ群を移動させて変倍動作を行う投写用ズームレンズにおいて、
     最も拡大側のレンズ群は負の屈折力を有する移動群から構成され、
     最も縮小側のレンズ群は正の屈折力を有する移動群から構成され、
     前記最も拡大側のレンズ群は実質的に2枚のレンズからなり、
     下記条件式(1)を満たすことを特徴とする投写用ズームレンズ。
      -3.5< fm/fw <-1.0・・・(1)
    ただし、
      fw:広角端における全系の焦点距離
      fm:前記最も拡大側のレンズ群の焦点距離
  2.  前記最も拡大側のレンズ群は実質的に、拡大側より順に、少なくとも1面が非球面である非球面レンズおよび、両凹レンズを配置して構成されていることを特徴とする請求項1記載の投写用ズームレンズ。
  3.  前記非球面レンズはプラスチック材から形成され、前記両凹レンズはガラス材から形成されていることを特徴とする請求項2記載の投写用ズームレンズ。
  4.  下記条件式(2)を満たすことを特徴とする請求項1から3のうちいずれか1項記載の投写用ズームレンズ。
      2.0< fr/fw <50.0・・・(2)
    ただし、
      fw:広角端における全系の焦点距離
      fr:前記最も縮小側のレンズ群の焦点距離
  5.  前記最も縮小側のレンズ群は拡大側より順に、両凹レンズ、正レンズ、拡大側に凹面を向けた負レンズを有していることを特徴とする請求項1から4のうちいずれか1項記載の投写用ズームレンズ。
  6.  拡大側より順に実質的に、負の第1レンズ群、正の第2レンズ群および正の第3レンズ群が配列されてなり、
     変倍に際し前記第1レンズ群、第2レンズ群および第3レンズ群が移動群として各々独立して移動し、
     広角端から望遠端まで変倍する際に前記第1レンズ群は縮小側に移動し、前記第2レンズ群および前記第3レンズ群は拡大側へ移動することを特徴とする請求項1から5のうちいずれか1項記載の投写用ズームレンズ。
  7.  拡大側より順に実質的に、負の第1レンズ群、正の第2レンズ群、正の第3レンズ群および正の第4レンズ群が配列されてなり、
     変倍に際し前記第1レンズ群、第2レンズ群、第3レンズ群および第4レンズ群が移動群として各々独立して移動し、
     広角端から望遠端まで変倍する際に前記第1レンズ群は縮小側に移動し、前記第2レンズ群、前記第3レンズ群および前記第4レンズ群は拡大側へ移動することを特徴とする特徴とする請求項1から5のうちいずれか1項記載の投写用ズームレンズ。
  8.  前記第2レンズ群は1枚の単レンズで構成されていることを特徴とする請求項7記載の投写用ズームレンズ。
  9.  前記第3レンズ群は1枚の単レンズで構成されていることを特徴とする請求項7または8記載の投写用ズームレンズ。
  10.  下記条件式(3)を満たすことを特徴とする請求項1から9のうちいずれか1項記載の投写用ズームレンズ。
      1.0<Bfw /fw  ・・・(3)
    ただし、
      fw:広角端における全系の焦点距離
      Bfw :広角端における全系のバックフォーカス(空気換算距離)
  11.  最も縮小側のレンズ面における最大有効光束高が、縮小側の最大像高より小さいことを特徴とする請求項1から10のうちいずれか1項記載の投写用ズームレンズ。
  12.  光源と、ライトバルブと、前記光源からの光束を前記ライトバルブへ導く照明光学部と、請求項1から11のうちいずれか1項記載の投写用ズームレンズとを備え、前記光源からの光束を前記ライトバルブで光変調し、前記投写用ズームレンズによりスクリーンに投写する構成を有することを特徴とする投写型表示装置。
PCT/JP2013/002173 2012-04-02 2013-03-29 投写用ズームレンズおよび投写型表示装置 WO2013150757A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014509048A JP5727669B2 (ja) 2012-04-02 2013-03-29 投写用ズームレンズおよび投写型表示装置
CN201390000361.5U CN204129321U (zh) 2012-04-02 2013-03-29 投影用变焦透镜和投影型显示装置
US14/501,086 US9423599B2 (en) 2012-04-02 2014-09-30 Projection zoom lens and projection type display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012083616 2012-04-02
JP2012-083616 2012-04-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/501,086 Continuation US9423599B2 (en) 2012-04-02 2014-09-30 Projection zoom lens and projection type display device

Publications (1)

Publication Number Publication Date
WO2013150757A1 true WO2013150757A1 (ja) 2013-10-10

Family

ID=49300260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002173 WO2013150757A1 (ja) 2012-04-02 2013-03-29 投写用ズームレンズおよび投写型表示装置

Country Status (4)

Country Link
US (1) US9423599B2 (ja)
JP (1) JP5727669B2 (ja)
CN (1) CN204129321U (ja)
WO (1) WO2013150757A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019109488A (ja) * 2017-12-19 2019-07-04 リコーインダストリアルソリューションズ株式会社 投射用ズームレンズおよび投射型画像表示装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113253444B (zh) * 2020-02-11 2023-05-02 上旸光学股份有限公司 变焦投影系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004279958A (ja) * 2003-03-18 2004-10-07 Seiko Epson Corp 投映用ズームレンズ及びこれを備えたプロジェクター
JP2011017900A (ja) * 2009-07-09 2011-01-27 Fujifilm Corp 投写型可変焦点レンズおよび投写型表示装置
JP2011053506A (ja) * 2009-09-03 2011-03-17 Fujifilm Corp 投写型可変焦点レンズおよび投写型表示装置
JP2011145566A (ja) * 2010-01-16 2011-07-28 Canon Inc ズームレンズ及びそれを有する光学機器
JP2012022106A (ja) * 2010-07-14 2012-02-02 Canon Inc ズームレンズ及びそれを有する撮像装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004077950A (ja) 2002-08-21 2004-03-11 Canon Inc ズームレンズ
JP2007271697A (ja) 2006-03-30 2007-10-18 Fujinon Corp 投影用ズームレンズおよび投写型表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004279958A (ja) * 2003-03-18 2004-10-07 Seiko Epson Corp 投映用ズームレンズ及びこれを備えたプロジェクター
JP2011017900A (ja) * 2009-07-09 2011-01-27 Fujifilm Corp 投写型可変焦点レンズおよび投写型表示装置
JP2011053506A (ja) * 2009-09-03 2011-03-17 Fujifilm Corp 投写型可変焦点レンズおよび投写型表示装置
JP2011145566A (ja) * 2010-01-16 2011-07-28 Canon Inc ズームレンズ及びそれを有する光学機器
JP2012022106A (ja) * 2010-07-14 2012-02-02 Canon Inc ズームレンズ及びそれを有する撮像装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019109488A (ja) * 2017-12-19 2019-07-04 リコーインダストリアルソリューションズ株式会社 投射用ズームレンズおよび投射型画像表示装置
JP7081966B2 (ja) 2017-12-19 2022-06-07 リコーインダストリアルソリューションズ株式会社 投射用ズームレンズおよび投射型画像表示装置

Also Published As

Publication number Publication date
JPWO2013150757A1 (ja) 2015-12-17
US9423599B2 (en) 2016-08-23
JP5727669B2 (ja) 2015-06-03
CN204129321U (zh) 2015-01-28
US20150015967A1 (en) 2015-01-15

Similar Documents

Publication Publication Date Title
JP5766798B2 (ja) 投写用変倍光学系および投写型表示装置
US9557537B2 (en) Zoom lens for projection and projection-type display apparatus
JP4855024B2 (ja) 2群ズーム投影レンズおよび投写型表示装置
WO2013057909A1 (ja) 投写用ズームレンズおよび投写型表示装置
US9122043B2 (en) Projection zoom lens and projection type display device
JP5275758B2 (ja) 投写用ズームレンズおよび投写型表示装置
WO2013157237A1 (ja) 投写用レンズおよび投写型表示装置
WO2014076924A1 (ja) 投写用ズームレンズおよび投写型表示装置
WO2013171995A1 (ja) 投写用変倍光学系および投写型表示装置
WO2012160786A1 (ja) 投写用変倍光学系および投写型表示装置
JP5777182B2 (ja) 投写用変倍光学系および投写型表示装置
WO2013076931A1 (ja) 投写用ズームレンズおよび投写型表示装置
JP2007241184A (ja) ズームレンズ及び投影装置
JP2015014677A (ja) 投写用レンズおよび投写型表示装置
WO2013057910A1 (ja) 投写用ズームレンズおよび投写型表示装置
US9261687B2 (en) Variable magnification optical system for projection and projection-type display apparatus
JP5727669B2 (ja) 投写用ズームレンズおよび投写型表示装置
JP2006065249A (ja) ズームレンズおよびこれを用いた投写型表示装置
JP5642903B2 (ja) 投写用ズームレンズおよび投写型表示装置
JP5611901B2 (ja) 投写用変倍光学系および投写型表示装置
JP2015011252A (ja) 投写用変倍光学系および投写型表示装置
JP2014240909A (ja) 投写用ズームレンズおよび投写型表示装置
JP2013019985A (ja) 投写用変倍光学系および投写型表示装置
JP2015172609A (ja) 投写用レンズおよび投写型表示装置
JP2013019986A (ja) 投写用変倍光学系および投写型表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201390000361.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13772378

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014509048

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13772378

Country of ref document: EP

Kind code of ref document: A1