WO2013150723A1 - 静圧気体軸受及びこの静圧気体軸受を用いた直動案内装置 - Google Patents

静圧気体軸受及びこの静圧気体軸受を用いた直動案内装置 Download PDF

Info

Publication number
WO2013150723A1
WO2013150723A1 PCT/JP2013/001616 JP2013001616W WO2013150723A1 WO 2013150723 A1 WO2013150723 A1 WO 2013150723A1 JP 2013001616 W JP2013001616 W JP 2013001616W WO 2013150723 A1 WO2013150723 A1 WO 2013150723A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
gas bearing
annular
recess
static pressure
Prior art date
Application number
PCT/JP2013/001616
Other languages
English (en)
French (fr)
Inventor
佐藤 光
Original Assignee
オイレス工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オイレス工業株式会社 filed Critical オイレス工業株式会社
Priority to CN201380017525.XA priority Critical patent/CN104204571A/zh
Priority to KR1020147027482A priority patent/KR101608361B1/ko
Publication of WO2013150723A1 publication Critical patent/WO2013150723A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • F16C32/0614Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings
    • F16C32/0622Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings via nozzles, restrictors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap

Definitions

  • the present invention relates to a static pressure gas bearing and a linear motion guide device using the static pressure gas bearing.
  • a linear motion guide device using a static pressure gas bearing with little friction is used for a positioning device for a work table.
  • a lubricating film of compressed air is interposed between a movable table as a work table and a guide rail as a guide member. It is configured to be moved by contact.
  • the throttle type of the air outlet of the static pressure gas bearing used in this linear motion guide device there are a porous throttle, a surface throttle, an orifice throttle, a self-contained throttle, etc., and a static pressure gas bearing equipped with these throttle types Are used while adjusting the load capacity, bearing rigidity and the like according to each application.
  • Patent Document 1 a static body is fixed to either a supported body or a support body, and the support body is movably supported by pressurized air supplied to the bearing surface via the bearing member.
  • a pressurized gas bearing pad as a bearing member, a type of carbon graphite-based material has been proposed in which the diameter of material particles is substantially uniform and the uniformity of open pores can be obtained.
  • Patent Document 2 discloses a porous material produced by adjusting the diameter and distribution of through-holes so that a desired amount of air permeation can be obtained by joining a porous material and a preform on the preform.
  • a static pressure gas bearing that includes a surface constriction layer made of a plate, ejects gas through the surface constriction layer, and supports the supported body by the static pressure.
  • the present applicant has firstly provided a plurality of air outlets having a self-contained throttle shape or an orifice throttle shape on the upper surface, and a lower surface.
  • a synthetic resin bearing member having an air supply groove communicating with the plurality of air outlets, and an air supply port joined to the lower surface of the bearing member so as to cover the air supply groove and communicated with the air supply groove
  • Patent Document 3 A hydrostatic gas bearing in which a bearing base having a diameter is integrated has been proposed (Patent Document 3).
  • a synthetic resin bearing member constituting the hydrostatic gas bearing can be formed by injection molding using a mold, and machining is unnecessary.
  • the bearing base structure can be assembled simply by forming an air supply port communicating with the bearing body, and the hydrostatic gas bearing can be assembled simply by joining the bearing body and the bearing base. Is possible.
  • the air outlet in the static pressure gas bearing described in Patent Document 3 is formed by injection molding using a mold, it has a relatively large diameter of about 0.2 to 0.4 mm. There is a risk that it will be in the shape of an orifice throttle or an orifice throttle, and there is a risk that self-excited vibration will occur due to the excessive amount of air supply from the air outlet. There is a need for improvement.
  • the present invention has been made in view of the above-described points, and an object of the present invention is to provide an inexpensive hydrostatic gas bearing capable of stably supporting a supported body without causing self-excited vibration, and this An object of the present invention is to provide a linear motion guide device using a static pressure gas bearing.
  • the hydrostatic gas bearing of the present invention has an annular recess formed on one surface and opened on one surface, an annular recess formed on the other surface and opened on the other surface, and an annular groove on one end.
  • a synthetic resin bearing body having a plurality of air blowing holes as a self-contained aperture that is open in the groove and at the other end with an annular recess, and at one end faces one surface of the bearing body
  • One end is open and communicates with the annular recess at one end, while the other end is provided with an air supply passage for supplying gas and is integrated with the bearing body.
  • a self-excited vibration damping mechanism comprising a bearing body or an air chamber formed in the bearing base and, at one end, the center of the other surface of the bearing body. And at least one throttle hole opened in the air chamber at the other end.
  • a self-excited vibration having an air chamber and at least one throttle hole opened at one end of the bearing body at one end and opened at the other end in the air chamber. Since the occurrence of self-excited vibration can be suppressed by the damping mechanism, the supported body can be supported stably.
  • the annular recess includes an annular inner small-diameter outer peripheral surface, an annular inner large-diameter outer peripheral surface that is expanded with respect to the inner small-diameter outer peripheral surface, and an inner small-diameter outer periphery at the inner peripheral edge.
  • the outer peripheral edge is defined by an annular stepped surface connected to the upper edge of the inner large-diameter outer peripheral surface, while being connected to the lower edge of the surface.
  • An annular seal member that is in contact with the outer peripheral surface and the annular stepped portion surface and that is disposed in the annular recess and elastically contacts with one surface of the bearing base may be further provided.
  • the bearing base and the bearing body can be integrally coupled with high sealing performance.
  • the annular recess may also be defined by a frustoconical surface formed so as to expand toward the other surface from one surface of the bearing body.
  • the annular groove is preferably at least 0.3 mm wide, more preferably 0.3 to 0.1 mm wide, and preferably at least 0.01 mm deep, more preferably.
  • the air blowing hole preferably has a diameter of at least 30 ⁇ m at one end thereof, more preferably a diameter of 30 to 120 ⁇ m, and an annular recess and an annular shape.
  • a self-contained diaphragm may be formed between the grooves.
  • the air chamber may be formed in the bearing body, or alternatively, may be formed in the bearing base.
  • the air chamber is one of the bearing bodies.
  • a concave portion formed in the bearing body that is open at the surface, and the opening at one surface of the bearing body of the concave portion is one surface of the bearing base facing the one surface of the bearing body
  • the recess may be formed in a mortar shape that is defined by a frustoconical surface that spreads from the other surface to the one surface of the bearing body.
  • the at least one throttle hole preferably has a diameter of 0.8 to 1.2 mm, more preferably 1 mm, and the self-excited vibration damping mechanism has a plurality of throttle holes.
  • Each of the plurality of throttle holes may have a diameter of 50 to 65 ⁇ m, and the self-excited vibration damping mechanism includes at least one throttle hole having a diameter of 0.8 to 1.2 mm and a diameter of It may have at least one throttle hole of 50 to 65 ⁇ m.
  • Each of the annular concave groove, the air blowing hole, and the throttle hole is preferably formed by laser processing with a processing laser selected from a carbon dioxide laser, a YAG laser, a UV laser, an excimer laser, and the like.
  • each of the annular groove, air blowout hole, and multiple throttle holes are formed by laser processing, they can be formed instantaneously compared to machining such as cutting, and mass production is possible as well as low cost. Can be produced.
  • the bearing body is formed on the other surface and encloses the annular groove outside the annular groove, and one end portion of the bearing body is annular.
  • a plurality of first radial grooves having an opening in the groove and the other end opening in the large-diameter annular groove, and the annular groove formed on the other surface and inside the annular groove.
  • a small-diameter annular groove surrounded by the groove, and a plurality of second radial grooves having one end opening in the annular groove and the other end opening in the small-diameter groove.
  • each of the first radial groove and the second radial groove may be formed by laser processing.
  • the hydrostatic gas bearing of the present invention may further include a sphere receiving means provided on the bearing base and having a sphere receiving recess, and the sphere receiving means opens on the other surface of the bearing base. And may have a frustoconical recess or hemispherical recess formed in the bearing base as a spherical body receiving portion, and a cylindrical recess formed in the bearing base that is open on the other surface of the bearing base.
  • the sphere of the ball stud may be slidably in contact with the bearing base or the piece and arranged in the sphere receiving recess.
  • An automatic alignment function around the sphere is added to the pressurized gas bearing.
  • the static pressure gas bearing to which such an automatic alignment function is added is suitable for use in a linear motion guide device as a positioning device for a work table.
  • a linear motion guide apparatus having a static pressure gas bearing includes a guide member having an upper surface guide surface and both side guide surfaces, an upper plate disposed on the outer side of the guide member and facing the upper surface guide surface, and both sides.
  • a movable table provided with a pair of side plates facing the guide surface, and a spherical body standing on the guide member on at least one of the lower surface of the upper plate of the movable table and the inner surfaces of the pair of side plates.
  • a ball stud, and the above-mentioned hydrostatic gas bearing having a ball receiving means and disposed between a ball guide ball and a top guide surface and both guide surfaces facing the at least one surface; Upper surface guides facing the lower surface of the upper plate of the movable table other than one surface and the inner surfaces of the pair of side plates and the lower surface of the upper plate of the movable table other than the at least one surface and the inner surfaces of the pair of side plates.
  • the above-mentioned static pressure gas bearing which does not necessarily have a spherical body receiving means arranged between the guide surfaces on both sides, and the ball stud sphere has the above-mentioned static pressure gas bearing having the spherical body receiving means.
  • the bearing base is received in each of the sphere receiving portions of the sphere receiving means of the static pressure gas bearing so that the bearing base is swingable with respect to the ball stud around the sphere, and the sphere receiving means is not necessarily provided.
  • the bearing base of at least one of the static pressure gas bearings is fixed to the lower surface of the upper plate of the movable table and the inner surfaces of the pair of side plates other than the at least one surface.
  • the linear motion guide device of the present invention it is formed between one surface of the bearing body and the guide surface by injecting compressed air from the plurality of air blowing holes of the bearing body onto the guide surface of the guide member.
  • the movable table can be held in a non-contact state with respect to the guide surface by a lubricating film of air.
  • the static pressure gas bearing is connected to one surface of the bearing body and the guide surface via the throttle hole. Since the air chambers communicating between them exhibit vibration damping action, the occurrence of self-excited vibration can be suppressed, and there is a bearing gap (approximately several ⁇ m to several tens of ⁇ m) between one surface of the bearing body and the guide surface.
  • the bearing body is preferably formed from a thermoplastic synthetic resin such as polyacetal resin, polyamide resin, polyphenylene sulfide resin
  • the bearing base is composed of polyacetal resin, polyamide resin, polyphenylene.
  • a thermoplastic synthetic resin such as sulfide resin, a thermoplastic synthetic resin containing reinforcing filler containing 30 to 50% by mass of glass fiber, glass powder, carbon fiber or inorganic filler in these thermoplastic synthetic resins, or aluminum or aluminum alloy
  • These synthetic resin bearing bodies and bearing bases may be formed by machining a synthetic resin material or by injection molding using a mold.
  • FIG. 1 is an explanatory plan view of a preferred example of an embodiment of the present invention.
  • FIG. 2 is a cross-sectional explanatory view taken along the line II-II in the example shown in FIG.
  • FIG. 3 is an explanatory bottom view of the example shown in FIG.
  • FIG. 4 is an explanatory bottom view of the bearing body shown in FIG.
  • FIG. 5 is a cross-sectional explanatory view taken along the line VV of the bearing body shown in FIG.
  • FIG. 6 is a partially enlarged cross-sectional explanatory view of the bearing body shown in FIG.
  • FIG. 9 is a cross-sectional explanatory view of an assembly of a bearing body material and a bearing base for explaining the manufacturing method of the example shown in FIG.
  • FIG. 10 is an explanatory plan view of another preferred example of the embodiment of the present invention.
  • FIG. 11 is a cross-sectional explanatory view taken along the line XI-XI in the example shown in FIG. 12 is a cross-sectional explanatory view of an assembly of a bearing body material and a bearing base for explaining the manufacturing method of the example shown in FIG.
  • FIG. 13 is an explanatory plan view of still another preferred example of the embodiment of the present invention.
  • FIG. 14 is an explanatory bottom view of a preferred example of another embodiment of the bearing base.
  • FIG. 15 is a cross-sectional explanatory view taken along the line XV-XV of the bearing base of the example shown in FIG.
  • FIG. 16 is an explanatory cross-sectional view of an example of an embodiment of the present invention in which an automatic alignment function is added to the example shown in FIG.
  • FIG. 17 is an explanatory bottom view of a preferred example of still another embodiment of the bearing base.
  • 18 is a cross-sectional explanatory view taken along the line XVIII-XVIII of the bearing base of the example shown in FIG.
  • FIG. 19 is a cross-sectional explanatory diagram of an example of an embodiment of the present invention in which an automatic alignment function is added to the example shown in FIG. FIG.
  • FIG. 20 is an explanatory bottom view of a preferred example of still another embodiment of the bearing base.
  • FIG. 21 is a cross-sectional explanatory view taken along the line XXI-XXI of the bearing base of the example shown in FIG. 22 is a perspective view of the bearing base shown in FIG.
  • FIG. 23 is a cross-sectional explanatory diagram of a preferable example of the embodiment of the piece.
  • FIG. 24 is a cross-sectional explanatory view of a preferred example of the bearing base to which the piece shown in FIG. 23 is fitted and fixed.
  • FIG. 25 is a cross-sectional explanatory view of another preferred example of the static pressure gas bearing of the present invention in which an automatic alignment function is added to the example shown in FIG. FIG.
  • FIG. 26 is a cross-sectional explanatory diagram of a preferred example of another embodiment of the piece.
  • FIG. 27 is a cross-sectional explanatory view of a preferred example of the bearing base to which the piece shown in FIG. 26 is fitted and fixed.
  • FIG. 28 is a cross-sectional explanatory view of still another preferred example of the static pressure gas bearing of the present invention in which an automatic alignment function is added to the example shown in FIG.
  • FIG. 29 is a cross-sectional explanatory view of a preferred example of a linear guide device using a static pressure gas bearing.
  • a static pressure gas bearing 1 includes a synthetic resin bearing body 2, a bearing base 4 integrally joined to the bearing body 2 by a fastening member 3, and an integrally joined bearing.
  • An annular seal member 5 mounted on the bearing body 2 and a self-excited vibration damping mechanism 6 are provided so as to prevent leakage of compressed air (gas) from the gap between the body 2 and the bearing base 4.
  • the bearing body 2 includes an annular recess 12 formed in one surface 11 of the circular bearing body 2 in plan view and an opening at the surface 11, and a circular bearing in plan view.
  • An annular groove 14 formed by opening the other surface 13 of the body 2 at the surface 13, and one end 15 opening to the annular groove 14, while the other end 16 opening to the annular recess 12.
  • a plurality of air blowing holes 17 as self-contained throttles formed at equal intervals in the circumferential direction R, and formed at the surface 11 and arranged at equal intervals in the circumferential direction R.
  • a plurality of female screw holes 18 are provided.
  • the annular recess 12 includes an annular inner small-diameter outer peripheral surface 21 of the bearing body 2, an annular inner large-diameter outer peripheral surface 22 of the bearing body 2 whose diameter is larger than the inner small-diameter outer peripheral surface 21, and an inner peripheral edge. Is connected to the lower edge of the inner small-diameter outer peripheral surface 21, while the outer peripheral edge is connected to the upper edge of the inner large-diameter outer peripheral surface 22 and the annular stepped surface 23 of the bearing body 2, The ceiling surface 24 of the bearing body 2 connected to the upper edge and the bearing body connected to the inner peripheral edge of the ceiling surface 24 at the upper edge and gradually increasing in diameter from the surface 11 to the surface 13 and extending to the upper edge.
  • annular recess 12 is defined by the frusto-conical surface 25 formed so as to extend from the surface 11 toward the surface 13.
  • An annular thin portion 26 formed between the ceiling surface 24 and the annular surface without being elongated in the radial direction. The volume of the part 12 can be increased, it does not cause a reduction in strength in the bearing body 2 having an annular thin portion 26.
  • the annular groove 14 defined by the annular surface 27 of the bearing body 2 and the pair of cylindrical surfaces 28 of the bearing body 2 facing each other has a width W of at least 0.3 mm and at least 0, as shown in FIG.
  • the air blowing hole 17 has a diameter D of at least 30 ⁇ m as a whole from one end 15 to the other end 16 in this example.
  • a self-formed diaphragm is formed between the annular recess 12 and the annular recess 12.
  • the bearing base 4 opens at one end 32 of the bearing base 4 facing the surface 11 at one end 31 and has a circular recess 12 at the one end 31.
  • the other end 33 opens at the outer peripheral surface 34 of the bearing base 4, and the other end 33 is supplied with compressed air (gas).
  • a plurality of bolt insertion holes which are open at one surface 32 and open at the other surface 38 at the other end 37 and are arranged at equal intervals along the circumferential direction R. 39.
  • the air supply passage 35 includes a vertical air supply hole 41 having one end 31, and a horizontal air supply hole 43 that communicates with the vertical air supply hole 41 at one end 42 and has the other end 33.
  • the bearing base 4 in the lateral air supply hole 43 on the 33 side is formed with a female screw 44 to which an air supply plug (not shown) is screwed.
  • Each bolt insertion hole 39 is reduced in diameter on one end 36 side through the annular step portion 46, and is expanded on the other end 37 side. Each bolt insertion hole 39 is screwed into the female screw hole 18.
  • a hexagon socket head bolt as the combined fastening member 3 is inserted, and the bearing base 4 is integrally joined to the bearing body 2 by the hexagon socket head bolt.
  • An O-ring as an annular seal member 5 disposed in the annular recess 12 with a crushing margin so as to contact the inner large-diameter outer peripheral surface 22 and the annular stepped surface 23 and protrude from the surface 11 is particularly shown in FIG. Thus, it is crushed and elastically pressed into contact with the surface 32 to seal the gap between the surfaces 11 and 32.
  • the self-excited vibration damping mechanism 6 has an air chamber 51 formed by the cooperation of the bearing body 2 and the bearing base 4 and opens to the outside at the center of the surface 13 at one end 52 and opens to the air chamber 51 at the other end 53. And a throttle hole 54 having a diameter of 1 mm.
  • the air chamber 51 includes a mortar-shaped recess 55 formed in the bearing body 2 so as to open at the surface 11, and the opening of the recess 55 on the surface 11 of the bearing body 2 faces the surface 11. Closed at face 32.
  • the concave portion 55 opened at the center of the surface 11 has a circular ceiling surface 56 in a plan view of the bearing body 2, and a frustoconical surface 57 that is connected to the outer edge of the ceiling surface 56 and extends from the surface 13 to the surface 11.
  • the other end 53 of the throttle hole 54 opens into the recess 55 at the ceiling surface 56, and communicates the outside with the air chamber 51.
  • FIGS. 1 to 8 An example of a manufacturing method of the hydrostatic gas bearing 1 shown in FIGS. 1 to 8 will be described.
  • the synthetic resin bearing body 2 as shown in FIGS. 14 and the bearing base material 2a having no air blowing hole 17 and a bearing base 4 as shown in FIGS. 7 and 8 are prepared.
  • the annular seal member 5 disposed in the annular recess 12 is provided.
  • the opening end of the annular recess 12 of the bearing body material 2a is made to coincide with one end 31 of the vertical air supply hole 41 of the bearing base 4 and the opening end of the female screw hole 18 of the bearing body material 2a is placed on the bearing base.
  • the hexagon socket head bolt as the fastening member 3 is inserted into the bolt insertion hole 39 and the male screw portion of the hexagon socket head bolt is inserted into the female screw hole 18 of the bearing body material 2a.
  • the bearing base 4 and the bearing body material 2a are fixed by screwing. To form an assembly 61 which entered into integrated.
  • the surface 13 of the bearing body material 2a in the assembly 61 shown in FIG. 9 is irradiated with a laser by a laser processing machine, and an annular groove having a width W of 0.3 to 1.0 mm and a depth of d 0.01 to 0.05 mm.
  • 14 and an annular surface 27 defining the annular groove 14 through the thin annular portion 26 of the bearing body material 2a and opening at the ceiling surface 24 defining the annular recess 12 has a diameter D of at least 30 ⁇ m, preferably 30 to A plurality of self-drawn air blowing holes 17 having a diameter of 120 ⁇ m are formed, whereby the hydrostatic gas bearing 1 shown in FIGS. 1 to 8 having the bearing body 2 and the bearing base 4 is obtained.
  • the processing laser used is selected from a carbon dioxide laser, a YAG laser, a UV laser, an excimer laser, and the like, and preferably a carbon dioxide laser.
  • the bearing body 2 and the bearing base 4 are fastened and integrated by a hexagon socket head bolt as a fastening member 3 through an O-ring as an annular seal member 5. Therefore, the gap of the joint surface formed by the surfaces 11 and 32 of the bearing body 2 and the bearing base 4 is firmly sealed with respect to the annular recess 12, the air supply passage 35 and the air chamber 51, and the surface 13 of the bearing body 2.
  • the annular groove 14 and the plurality of self-drawn air blowing holes 17 formed in the laser beam are formed by laser processing, so that the manufacturing cost is remarkably reduced, and the self-excited vibration damping mechanism 6 Since generation
  • the self-excited vibration damping mechanism 6 includes the air chamber 51 and one throttle hole 54, but instead of this, as shown in FIGS.
  • Each end 52 opens to the outside around the center portion of the surface 13 and the center portion, and each other end 53 opens to the air chamber 51.
  • each of the four to 24 pieces has a diameter of 50 ⁇ m to 50 ⁇ m.
  • a 65 ⁇ m aperture 54 may be provided.
  • throttle holes 54 are the same as the synthetic resin bearing body 2 shown in FIGS. 4 and 5 as shown in FIG. 12, but the throttle holes 54 are formed in addition to the annular concave groove 14 and the air blowing hole 17.
  • the annular groove 14 and the air blowing hole 17 are formed on the surface 13 of the bearing body material 2a by a laser processing machine. When forming, you may form similarly by the same laser processing machine.
  • the joint surface comprising the surfaces 11 and 32 of the bearing body 2 and the bearing base 4. Is tightly sealed with respect to the annular recess 12, the air supply passage 35, and the air chamber 51, and its manufacturing cost is remarkably reduced, and the supported body by the hydrostatic gas bearing 1 is stably supported. Will be.
  • the bearing body 2 of the hydrostatic gas bearing 1 includes one annular groove 14.
  • the annular groove 14 is formed on the surface 13 as shown in FIG. 13.
  • a large-diameter annular groove 65 that surrounds the annular groove 14 outside the annular groove 14 and one end 66 opens into the annular groove 14 and the other end 67 is large.
  • a plurality of radial concave grooves 68 are formed in the annular ring groove 65 and arranged in the circumferential direction R at equal intervals along the circumferential direction R, and are formed concentrically with the annular groove 14 on the surface 13.
  • the large-diameter annular groove 65, the small-diameter annular groove 69, and the radial grooves 68 and 72 may be similarly formed by the laser processing machine when the annular groove 14 is formed by the laser processing machine. .
  • the air supplied to the annular groove 14 is passed through the radial grooves 68 and 72, and the large-diameter annular groove 65 and the small-diameter annular groove 69.
  • the supply area of air to the supported body is increased, the supported body can be stably levitated, and the surfaces of the bearing body 2 and the bearing base 4 are the same as described above.
  • annular seal member 5 with respect to the annular recess 12, the air supply passage 35 and the air chamber 51, and the manufacturing price thereof is the annular recess 14, the radial recess 68 and 72 and the large-diameter annular groove 65 and the small-diameter annular groove 69 can be significantly reduced by a laser processing machine, and the supported body by the hydrostatic gas bearing 1 has a self-excited vibration having a throttle hole 54. Stable support by damping mechanism 6 Is will be.
  • the hydrostatic gas bearing 1 is also formed on the surface 38 of the bearing base 4 and provided on the bearing base 4, and the center portion of the surface 38 of the bearing base 4 as a spherical body receiving recess. It may further comprise a sphere receiving means 76 having a mortar-shaped frustoconical recess 75 that is open at.
  • the truncated conical recess 75 is defined by a circular ceiling surface 81 formed in the bearing base 4 and a truncated cone surface 82 that extends from the ceiling surface 81 to the surface 38 and spreads toward the end.
  • the static pressure gas bearing 1 having the sphere receiving means 76 has a sphere 86 of a ball stud 85 having a diameter smaller than the opening diameter of the truncated cone recess 75 on the truncated cone surface 82.
  • the spherical body receiving means 76 is formed on the surface 38 of the bearing base 4 so as to open at the center of the surface 38 of the bearing base 4, instead of the truncated conical recess 75.
  • a hemispherical recess 91 defined by the concave spherical surface 90 may be provided as a spherical body receiving recess.
  • the spherical body receiving means 76 has a frustoconical concave portion 75 or a hemispherical concave portion 91 formed directly on the surface 38 of the bearing base 4 as a spherical portion receiving concave portion, as shown in FIGS.
  • a piece 100 fitted and fixed to the cylindrical recess 95 may be provided.
  • the columnar recess 95 is defined by a circular ceiling surface 101 formed on the bearing base 4 and a cylindrical surface 102 connected to the ceiling surface 101 and formed on the bearing base 4.
  • the conical concavity 97 is defined by a frustoconical surface 103 that is formed in the piece 100 and expands in a divergent shape in the direction from the surface 98 to the surface 96, and the cylindrical concavity 99 has a surface 98 at one end 104.
  • the other end 105 communicates with the truncated conical recess 97, and the piece 100 having the cylindrical outer peripheral surface 106 has the outer peripheral surface 106 as the cylindrical surface 102 and the surface 98 as the ceiling surface.
  • the surface 96 is flush with the surface 38 and is fitted and fixed to the cylindrical recess 95.
  • the static pressure gas bearing 1 having the truncated conical recess 97 formed in the piece 100 as a spherical body receiving recess has a diameter smaller than the opening diameter of the truncated cone recess 97 as described above.
  • the spherical body 86 of the ball stud 85 having the slidable contact with the frustoconical surface 103 is arranged in the frustoconical concave portion 97, so that an automatic alignment function is added.
  • the sphere receiving means 76 shown in FIGS. 20 to 25 is an example in which the truncated cone concavity 97 is provided as a sphere receiving recess in the piece 100, but instead of this, as shown in FIGS.
  • a hemispherical concave portion 110 may be provided as a spherical body receiving concave portion, and the hemispherical concave portion 110 is defined by a concave spherical surface 111 formed in the piece 100 that opens at the center of the surface 96 of the piece 100 in the same manner as described above. Yes.
  • the hydrostatic gas bearing 1 having the spherical body receiving means 76 having 100 is the same diameter as the opening diameter of the hemispherical recess 110 or the opening diameter of the hemispherical recess 110, as described above.
  • the spherical body 86 of the ball stud 85 having a smaller diameter is slidably contacted with the concave spherical surface 111 and disposed in the hemispherical concave portion 110, so that an automatic alignment function is added.
  • the piece 100 is provided with a spherical receiving recess using the piece 100 separate from the bearing base 4, and the piece 100 is made of a material having excellent sliding properties, such as a thermoplastic resin such as polyacetal resin, polyamide resin, or polyester resin.
  • a thermoplastic resin such as polyacetal resin, polyamide resin, or polyester resin.
  • the above self-aligning function may be added to the static pressure gas bearing 1 shown in FIG.
  • the static pressure gas bearing 1 may be used in a linear motion guide device 120 as shown in FIG. 29.
  • the linear motion guide device 120 shown in FIG. 29 includes an upper surface guide surface 121 and both side guide surfaces as guide surfaces.
  • a guide member 123 having 122, an upper plate 124 facing the upper surface guide surface 121, and a pair of side plates 125 facing both side guide surfaces 122.
  • a movable table 126 having a U-shaped cross section and at least one of the lower surface 127 of the upper plate 124 of the movable table 126 and the inner surface 128 of the side plate 125, in this example, the inner surface 128 of the side plate 125.
  • the hydrostatic gas bearing 1 shown in FIG. 2 disposed between the upper surface guide surface 121 and the opposite surface is provided.
  • each of the spheres 86 of the ball stud 85 is arranged so that each bearing base 4 of the static pressure gas bearing 1 can swing with respect to the ball stud 85 around the sphere 86.
  • Each of the frustoconical recesses 97 of the receiving means 76 is received so as to slidably contact the frustoconical surface 103.
  • the bearing base 4 of the hydrostatic gas bearing 1 shown in FIG. 2 disposed between the lower surface 127 of the upper plate 124 and the upper surface guide surface 121 facing the lower surface 127 is fixed to the lower surface 127 of the upper plate 124 of the movable table 126. Has been.
  • compressed air supplied to each of the air supply passages 35 is transferred from the plurality of air blowing holes 17 of the bearing body 2 to the upper surface guide surface 121 and the both side guide surfaces 122 of the guide member 123.
  • the movable table 126 is moved to the upper surface guide surface 121 and the both side guide surfaces by the lubricating film of air formed in the bearing gap between the surface 13 of the bearing body 2 and the upper surface guide surface 121 and the both side guide surfaces 122.
  • 122 can be maintained in a non-contact state.
  • the bearing gap between the surface 13 of the bearing body 2 and the guide surfaces 122 on both sides is non-uniform, a pressure difference is generated in each part of the bearing gap, but in the direction in which the bearing gap becomes uniform due to the pressure difference. Since the static pressure gas bearing 1 is automatically aligned and kept parallel to the guide surfaces 122 on both sides, the accuracy of parts such as the parallelism and perpendicularity of the guide member 123 and the movable table 126 is relatively coarse. In addition to the low cost of the static pressure gas bearing 1 itself, the linear motion guide device 120 can be easily manufactured and the cost can be reduced.
  • the air pressure in the bearing gap between the surface 13 of the bearing body 2 and the upper surface guide surface 121 and the both side guide surfaces 122 can be transmitted to the air chamber 51 through the throttle hole 54.
  • the self-excited vibration of the static pressure gas bearing 1 can be suppressed, and the movable table 126 as a supported body can be supported stably.
  • the static pressure gas bearing 1 shown in FIGS. 16, 19, and 28 may be used as a static pressure gas bearing to which an automatic alignment function is added.
  • the hydrostatic gas bearing 1 shown in FIG. 11 may be used in any hydrostatic gas bearing.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Pivots And Pivotal Connections (AREA)

Abstract

 静圧気体軸受1は、合成樹脂製の軸受体2と、軸受体2に締結部材3により一体的に接合されている軸受基体4と、一体的に接合された軸受体2及び軸受基体4間の隙間からの圧縮空気の漏出を防止するように、軸受体2に装着された環状シール部材5と、自励振動減衰機構6とを具備している。 

Description

静圧気体軸受及びこの静圧気体軸受を用いた直動案内装置
 本発明は、静圧気体軸受及びこの静圧気体軸受を用いた直動案内装置に関する。
 精密工作機械や半導体露光装置等においては、加工工具や基板等の被加工物を高精度で位置決めすることが要求されている。そのため、被加工物の載置台の位置決め装置に摩擦の殆んどない静圧気体軸受を用いた直動案内装置が用いられている。このような直動案内装置では、被加工物の載置台としての可動テーブルと、案内部材としてのガイドレールとの間に圧縮空気の潤滑膜が介在され、この可動テーブルがガイドレールに対して非接触で移動されるように構成されている。
 この直動案内装置に用いられる静圧気体軸受の空気吹出口の絞り形式としては、多孔質絞り、表面絞り、オリフィス絞り、自成絞り等があり、これらの絞り形式を備えた静圧気体軸受は、それぞれの用途に応じて負荷容量及び軸受剛性等を調整しながら使用されている。
 例えば、特許文献1には、被支持体又は支持体のいずれか一方に固定され、その軸受部材を介して軸受面に供給される加圧空気により支持体を移動自在に支承するようにした静圧気体軸受パッドにおいて、軸受部材として、素材粒子の径がほぼ均一で開気孔の均等性が得られる種類のカーボングラファイト系の材料が提案されている。
 また、特許文献2には、多孔質体からなる母材と、この母材上に接合され、予め所望の空気透過量になるように、貫通孔の径及び分布を調整して作製された多孔板からなる表面絞り層とを備え、表面絞り層を介して気体を噴出させ、その静圧によって被支持体を支持する静圧気体軸受が提案されている。
特開昭63-231020号公報 特開2001-56027号公報 特開2008-82449号公報
 上記従来の静圧気体軸受は、超低摩擦、超高精度及び超高速運動を実現できるものの、軸受材料として、主に、高強度の金属やセラミックスが用いられると共にこれら軸受材料からなる軸受面に高精度の研削仕上げ等を施す必要があるため、必然的に高価となるという問題がある。
 しかしながら、上記した超低摩擦、超高精度及び超高速運動までは要求されないが、例えば、液晶スクリーン等の物品を非接触で搬送したり、温度変化を生じさせることなく物品を水平移動させたりする用途においては、静圧気体軸受を用いると装置の構成が簡略化される等の利点を有する反面、静圧気体軸受自体が高価なため、当該用途には広く活用されていないのが実情である。
 上記実情に鑑み、種々の分野で活用可能な安価な静圧気体軸受を提供するべく本出願人は先に、上面に自成絞り形状又はオリフィス絞り形状の複数個の空気吹出口を、下面に該複数個の空気吹出口と連通する給気溝を有する合成樹脂製の軸受部材と、該軸受部材の下面に前記給気溝を覆うように接合され、該給気溝と連通する給気口を有する軸受基体とが一体化された静圧気体軸受を提案した(特許文献3)。
 この特許文献3に記載された静圧気体軸受によれば、静圧気体軸受を構成する合成樹脂製の軸受部材を、金型を用いて射出成形によって形成することができ、機械加工を不要とすることができると共に軸受基体の構造も該軸受体と連通する給気口を形成するのみで、軸受体と軸受基体とを接合するだけで静圧気体軸受を組み立てることができ、安価に大量生産が可能となる。
 しかしながら、特許文献3に記載された静圧気体軸受における空気吹出口は、金型を用いた射出成形で形成されるため、その直径が0.2~0.4mm程度の比較的大きな直径の自成絞り又はオリフィス絞り形状となり、当該空気吹出口からの給気吹出量が多すぎて自励振動を生じる虞があり、静圧気体軸受による被支持体の支持が不安定となり、やはり実用化するには改良が必要とされる。
 本発明は、上記諸点に鑑みてなされたものであり、その目的とするところは、自励振動を起こすことなく被支持体の支持を安定的に行うことができる安価な静圧気体軸受及びこの静圧気体軸受を用いた直動案内装置を提供することにある。
 本発明の静圧気体軸受は、一方の面に当該一方の面で開口して形成された円環状凹部、他方の面に当該他方の面で開口して形成された環状凹溝及び一端では環状凹溝に開口していると共に他端では円環状凹部で開口した自成絞りとしての複数個の空気吹出孔を有した合成樹脂製の軸受体と、一端では該軸受体の一方の面に対面している一方の面で開口して当該一端で円環状凹部に連通している一方、他端に気体が供給されるようになっている給気通路を備えていると共に該軸受体に一体的に結合された軸受基体と、自励振動減衰機構とを具備しており、自励振動減衰機構は、軸受体若しくは軸受基体に形成された空気室と、一端では軸受体の他方の面の中央部で開口すると共に他端では空気室に開口した少なくとも一つの絞り孔とを具備している。
 本発明の静圧気体軸受によれば、空気室と、一端では軸受体の一方の面の中央部で開口すると共に他端では空気室に開口した少なくとも一つの絞り孔とを有した自励振動減衰機構でもって自励振動の発生を抑制できるので、被支持体の支持を安定的に行わせることができる。
 本発明の好ましい例では、円環状凹部は、円環状の内側小径外周面と、この内側小径外周面に対して拡径している円環状の内側大径外周面と、内周縁では内側小径外周面の下縁に連接する一方、外周縁では内側大径外周面の上縁に連接した円環状段部面とにより規定されており、この場合、本発明の静圧気体軸受は、内側大径外周面及び円環状段部面に接触して円環状凹部に配されていると共に軸受基体の一方の面に弾性的に接触した環状シール部材を更に具備していてもよく、斯かる環状シール部材を具備していると、軸受基体と軸受体とを高い密閉性をもって一体的に結合することができる。
 円環状凹部はまた、軸受体の一方の面から他方の面に向かうに連れて末広がりに形成された截頭円錐面で規定されていてもよい。
 本発明の静圧気体軸受において、環状凹溝は、好ましくは、少なくとも0.3mmの幅、より好ましくは0.3~0.1mmの幅と、好ましくは少なくとも0.01mmの深さ、より好ましくは0.01~0.05mmの深さとを有しており、空気吹出孔は、その一端で好ましくは少なくとも30μmの直径、より好ましくは30~120μmの直径を有して、円環状凹部と環状凹溝との間で自成絞りを形成しているとよい。
 本発明の静圧気体軸受において、空気室は、軸受体に形成されていても、これに代えて、軸受基体に形成されていてもよく、好ましい例では、空気室は、軸受体の一方の面で開口して当該軸受体に形成された凹部を具備しており、この凹部の軸受体の一方の面での開口は、軸受体の一方の面に対面している軸受基体の一方の面で閉塞されており、この例の場合には、凹部は、軸受体の他方の面から一方の面にかけて末広がりの截頭円錐面で規定されてすり鉢状に形成されていてもよい。
 少なくとも一つの絞り孔は、好ましくは、0.8~1.2mmの直径、より好ましくは、1mmの直径を有しており、また、自励振動減衰機構が複数個の絞り孔を有する場合には、複数個の絞り孔の夫々は、50~65μmの直径を有していてもよく、また、自励振動減衰機構は、直径0.8~1.2mmの少なくとも一つの絞り孔と、直径50~65μmの少なくとも一つの絞り孔とを有していてもよい。
 環状凹溝、空気吹出孔及び絞り孔の夫々は、好ましくは、炭酸ガスレーザー、YAGレーザー、UVレーザー及びエキシマレーザー等から選択される加工用レーザーをもってレーザー加工により形成されている。
 環状凹溝、空気吹出孔及び複数個の絞り孔の夫々をレーザー加工により形成すると、切削等の機械加工に比較して、瞬時にこれらを形成でき、大量生産が可能となるばかりでなく、安価に製作することができる。
 本発明の静圧気体軸受において、軸受体は、その他方の面に形成されていると共に該環状凹溝の外側で当該環状凹溝を囲む大径環状凹溝と、一方の端部が該環状凹溝に開口すると共に他方の端部が大径環状凹溝に開口する複数個の第一の放射状凹溝と、その他方の面に形成されていると共に該環状凹溝の内側で当該環状凹溝に囲まれた小径環状凹溝と、一方の端部が環状凹溝に開口すると共に他方の端部が小径環状凹溝に開口する複数個の第二の放射状凹溝とを更に具備していてもよく、斯かる第一の放射状凹溝及び第二の放射状凹溝の夫々も、レーザー加工により形成されているとよい。
 本発明の静圧気体軸受は、軸受基体に設けられていると共に球体受容凹部を有する球体受容手段を更に具備していてもよく、斯かる球体受容手段は、軸受基体の他方の面で開口して当該軸受基体に形成された截頭円錐凹部又は半球凹部を球体受容部として有していてもよく、また、軸受基体の他方の面で開口して当該軸受基体に形成された円柱状凹部と、一方の面で開口した截頭円錐凹部を球体受容凹部として有すると共に円柱状凹部に嵌合固定された駒とを具備していても、軸受基体の他方の面で開口して当該軸受基体に形成された円柱状凹部と、一方の面で開口した半球凹部を球体受容凹部をして有すると共に円柱状凹部に嵌合固定された駒とを具備していてもよい。
 斯かる球体受容手段を備えた静圧気体軸受においては、例えばボールスタッドの球体が軸受基体又は駒に摺動自在に接して球体受容凹部に配されていてもよく、斯かる場合においては、静圧気体軸受に球体回りの自動調芯機能が付加される。
 斯かる自動調芯機能が付加された静圧気体軸受は、被加工物の載置台の位置決め装置としての直動案内装置に用いられて好適である。
 本発明の静圧気体軸受を具備した直動案内装置は、上面案内面及び両側案内面を有する案内部材と、この案内部材の外側に配されていると共に上面案内面に対面する上板及び両側案内面に対面する一対の側板を備えた可動テーブルと、この可動テーブルの上板の下面及び一対の側板の夫々の内面のうちの少なくとも一つの面に球体を案内部材に向けて立設されたボールスタッドと、このボールスタッドの球体と該少なくとも一つの面に対面する上面案内面及び両側案内面との間に配されていると共に球体受容手段を有した上記の静圧気体軸受と、該少なくとも一つの面以外の可動テーブルの上板の下面及び一対の側板の夫々の内面と当該少なくとも一つの面以外の可動テーブルの上板の下面及び一対の側板の夫々の内面に対面する上面案内面及び両側案内面との間に配された球体受容手段を必ずしも有しない上記の静圧気体軸受とを具備しており、ボールスタッドの球体は、球体受容手段を有した上記の静圧気体軸受の軸受基体が当該球体を中心としてボールスタッドに対して揺動自在となるように、当該静圧気体軸受の球体受容手段の球体受容部の夫々に受容されており、球体受容手段を必ずしも有しない上記の静圧気体軸受のうちの少なくとも一つの静圧気体軸受の軸受基体は、該少なくとも一つの面以外の可動テーブルの上板の下面及び一対の側板の夫々の内面に固定されている。
 本発明の直動案内装置によれば、軸受体の複数個の空気吹出孔から案内部材の案内面に圧縮空気を噴射することにより、軸受体の一方の面と案内面との間に形成される空気の潤滑膜によって可動テーブルを案内面に対して非接触の状態に保持することができ、その際、静圧気体軸受は、絞り孔を介して軸受体の一方の面と案内面との間に連通する空気室が振動減衰作用を発揮するため自励振動の発生を抑制でき、そして、軸受体の一方の面と案内面との間の軸受隙間(数μm~数十μm程度)が不均一であって、軸受隙間において圧力差が発生しても、その圧力差により、軸受隙間が均一となる方向に軸受体が自動調芯され、案内面に対して平行な状態が保持されるため、案内部材及び可動テーブルの平行度、直角度等の部品精度を比較的粗い精度とすることができ、静圧気体軸受自体の低コストに加えて、安価な直動案内装置を提供することができる。
 本発明の静圧気体軸受において、軸受体は、ポリアセタール樹脂、ポリアミド樹脂、ポリフェニレンサルファイド樹脂等の熱可塑性合成樹脂から形成されているのが好ましく、また、軸受基体は、ポリアセタール樹脂、ポリアミド樹脂、ポリフェニレンサルファイド樹脂等の熱可塑性合成樹脂、これらの熱可塑性合成樹脂にガラス繊維、ガラス粉末、炭素繊維若しくは無機充填材を30~50質量%含有した補強充填材含有熱可塑性合成樹脂又はアルミニウム若しくはアルミニウム合金から形成されているのが好ましい。これら合成樹脂製の軸受体及び軸受基体は、合成樹脂素材を機械加工して形成しても、金型を用いて射出成形により形成してもよい。
 本発明によれば、自励振動の発生を抑制することができると共に大量生産が可能で安価な静圧気体軸受及びこの静圧気体軸受を用いた直動案内装置を提供することができる。
図1は、本発明の実施の形態の好ましい例の平面説明図である。 図2は、図1に示す例のII-II線矢視断面説明図である。 図3は、図1に示す例の底面説明図である。 図4は、図2に示す軸受体の底面説明図である。 図5は、図4に示す軸受体のV-V線矢視断面説明図である。 図6は、図2に示す軸受体の一部拡大断面説明図である。 図7は、図2に示す軸受基体の底面説明図である。 図8は、図7に示す軸受基体のVIII-VIII線矢視断面説明図である。 図9は、図1に示す例の製造方法の説明するための軸受体素材と軸受基体との組立体の断面説明図である。 図10は、本発明の実施の形態の好ましい他の例の平面説明図である。 図11は、図10に示す例のXI-XI線矢視断面説明図である。 図12は、図10に示す例の製造方法の説明するための軸受体素材と軸受基体との組立体の断面説明図である。 図13は、本発明の実施の形態の好ましい更に他の例の平面説明図である。 図14は、軸受基体の他の実施の形態の好ましい例の底面説明図である。 図15は、図14に示す例の軸受基体のXV-XV線矢視断面説明図である。 図16は、図14に示す例に自動調芯機能を付加した本発明の実施の形態の例の断面説明図である。 図17は、軸受基体の更に他の実施の形態の好ましい例の底面説明図である。 図18は、図17に示す例の軸受基体のXVIII-XVIII線矢視断面説明図である。 図19は、図17に示す例に自動調芯機能を付加した本発明の実施の形態の例の断面説明図である。 図20は、軸受基体の更に他の実施の形態の好ましい例の底面説明図である。 図21は、図20に示す例の軸受基体のXXI-XXI線矢視断面説明図である。 図22は、図20示す軸受基体の斜視図である。 図23は、駒の実施の形態の好ましい例の断面説明図である。 図24は、図23に示す駒を嵌合固定した軸受基体の好ましい例の断面説明図である。 図25は、図20に示す例に自動調芯機能を付加した本発明の静圧気体軸受の好ましい他の例の断面説明図である。 図26は、駒の他の実施の形態の好ましい例の断面説明図である。 図27は、図26に示す駒を嵌合固定した軸受基体の好ましい例の断面説明図である。 図28は、図27に示す例に自動調芯機能を付加した本発明の静圧気体軸受の好ましい更に他の例の断面説明図である。 図29は、静圧気体軸受を用いた直動案内装置の好ましい例の断面説明図である。
 次に本発明を、図に示す好ましい実施の形態の例に基づいて更に詳細に説明する。なお、本発明はこれらの例に何等限定されないのである。
 図1から図8において、静圧気体軸受1は、合成樹脂製の軸受体2と、軸受体2に締結部材3により一体的に接合されている軸受基体4と、一体的に接合された軸受体2及び軸受基体4間の隙間からの圧縮空気(気体)の漏出を防止するように、軸受体2に装着された環状シール部材5と、自励振動減衰機構6とを具備している。
 軸受体2は、図4から図6に特に示すように、平面視円形の軸受体2の一方の面11に当該面11で開口して形成された円環状凹部12と、平面視円形の軸受体2の他方の面13に当該面13で開口して形成された環状凹溝14と、一端15では環状凹溝14に開口している一方、他端16では円環状凹部12で開口していると共に円周方向Rに等間隔に配列して形成された自成絞りとしての複数個の空気吹出孔17と、面11で開口して円周方向Rに等間隔に配列して形成された複数個の雌ねじ穴18とを有している。
 円環状凹部12は、軸受体2の円環状の内側小径外周面21と、内側小径外周面21に対して拡径している軸受体2の円環状の内側大径外周面22と、内周縁では内側小径外周面21の下縁に連接する一方、外周縁では内側大径外周面22の上縁に連接した軸受体2の円環状段部面23と、外周縁で内側小径外周面21の上縁に連接した軸受体2の天井面24と、上縁で天井面24の内周縁に連接すると共に面11から面13に向かうに連れて徐々に拡径して上縁まで伸びた軸受体2の截頭円錐面25とで規定されており、円環状凹部12を斯かる面11から面13に向かうに連れて末広がりに形成された截頭円錐面25で規定することにより、面11と天井面24との間に形成される環状薄肉部26を径方向に長くすることなしに円環状凹部12の容積を増大することができるので、環状薄肉部26を有する軸受体2に強度低下を来たすことはない。
 軸受体2の環状面27と、互いに対面する軸受体2の対の円筒面28とによって規定された環状凹溝14は、図6に示すように、少なくとも0.3mmの幅Wと、少なくとも0.01mmの深さdとを有しており、空気吹出孔17は、その一端15で、本例では一端15から他端16にわたって全体において少なくとも30μmの直径Dを有して、環状凹溝14と円環状凹部12との間で自成絞りを形成している。
 軸受基体4は、特に図7及び図8に示すように、一端31では面11に対面している軸受基体4の平面視円形の一方の面32で開口して当該一端31で円環状凹部12に連通している一方、他端33では軸受基体4の外周面34で開口して当該他端33に圧縮空気(気体)が供給されるようになっている給気通路35と、一端36では一方の面32で開口している一方、他端37では軸受基体4の他方の面38で開口すると共に円周方向Rに沿って等間隔に配列して形成されている複数個のボルト挿通孔39とを具備している。
 給気通路35は、一端31を有した縦給気穴41と、縦給気穴41に一端42で連通すると共に他端33を有した横給気穴43とを具備しており、他端33側の横給気穴43における軸受基体4には、給気プラグ(図示せず)が螺合連結される雌ねじ44が形成されている。
 各ボルト挿通孔39は、環状段部46を介して、一端36側では縮径されている一方、他端37側では拡径されており、各ボルト挿通孔39には、雌ねじ穴18に螺合した締結部材3としての六角穴付きボルトが挿通されており、本六角穴付きボルトにより軸受基体4は、軸受体2に一体的に接合されている。
 内側大径外周面22及び円環状段部面23に接触すると共に面11から突出するようにつぶし代をもって円環状凹部12に配された環状シール部材5としてのOリングは、特に図2に示すように、潰されて面32に弾性的に押圧接触して面11及び32間の隙間を密封するようになっている。
 自励振動減衰機構6は、軸受体2及び軸受基体4の協働により形成された空気室51と、一端52では面13の中央部で外部に開口すると共に他端53では空気室51に開口した直径1mmの絞り孔54とを具備している。
 空気室51は、面11で開口して軸受体2に形成されたすり鉢状の凹部55を具備しており、凹部55の軸受体2の面11での開口は、面11に対面している面32で閉鎖されている。
 面11の中央部で開口する凹部55は、軸受体2の平面視円形の天井面56と、天井面56の外縁に連接していると共に面13から面11にかけて末広がりに伸びる截頭円錐面57とで規定されてすり鉢状に形成されており、絞り孔54は、その他端53が天井面56で凹部55に開口して、外部と空気室51とを連通している。
 次に図1から図8に示す静圧気体軸受1の製造方法の例を説明すると、まず、図4及び図5に示すような合成樹脂製の軸受体2と同様であるが、環状凹溝14及び空気吹出孔17を有しない軸受体素材2aと、図7及び図8に示すような軸受基体4とを準備し、図9に示すように、円環状凹部12に配した環状シール部材5としてのOリングを挟んで軸受体素材2aの円環状凹部12の開口端を軸受基体4の縦給気穴41の一端31に合致させると共に軸受体素材2aの雌ねじ穴18の開口端を軸受基体4のボルト挿通孔39の一端36に合致させたのち、ボルト挿通孔39に締結部材3としての六角穴付きボルトを挿通すると共に六角穴付きボルトの雄ねじ部を軸受体素材2aの雌ねじ穴18に螺合固定して軸受基体4と軸受体素材2aとを締結一体化した組立体61を形成する。
 次に、図9に示す組立体61における軸受体素材2aの面13にレーザー加工機によりレーザーを照射し、幅W0.3~1.0mm、深さd0.01~0.05mmの環状凹溝14と、環状凹溝14を規定する環状面27から軸受体素材2aの環状薄肉部26を貫通して円環状凹部12を規定する天井面24で開口する直径Dが少なくとも30μm、好ましくは30~120μmの複数個の自成絞り形状の空気吹出孔17とを形成し、これにより軸受体2と軸受基体4とを具備した図1から図8に示す静圧気体軸受1を得る。
 用いる加工用レーザーは、炭酸ガスレーザー、YAGレーザー、UVレーザー及びエキシマレーザー等から選択されるが、好ましくは、炭酸ガスレーザーである。
 このようにして作製された静圧気体軸受1において、軸受体2と軸受基体4とが環状シール部材5としてのOリングを介して締結部材3としての六角穴付きボルトによって締結一体化されているので、軸受体2と軸受基体4との面11及び32からなる接合面の隙間は、円環状凹部12、給気通路35及び空気室51に関して強固に密封され、また、軸受体2の面13に形成された環状凹溝14及び複数個の自成絞り形状の空気吹出孔17がレーザー加工により形成されているので、その製造価格は、著しく低減され、しかも、自励振動減衰機構6により自励振動の発生が抑制されるので、静圧気体軸受1による被支持体は、安定に支持されることになる。
 上記の例では、自励振動減衰機構6は、空気室51と、一つの絞り孔54とを具備しているが、これに代えて、図10及び図11に示すように、空気室51と、各一端52では面13の中央部及び中央部の周りで外部に開口すると共に各他端53では空気室51に開口した複数個、具体的には4~24個の夫々の直径が50μm~65μmの絞り孔54とを具備していてもよい。
 これらの絞り孔54は、図12に示すように、図4及び図5に示す合成樹脂製の軸受体2と同様であるが、環状凹溝14及び空気吹出孔17に加えて絞り孔54をも有しない軸受体素材2aと軸受基体4とを締結部材3により締結一体化した組立体61において、軸受体素材2aの面13に、レーザー加工機により環状凹溝14と空気吹出孔17とを形成する際に、同様に同レーザー加工機により形成されてもよい。
 複数個の絞り孔54を具備した軸受体2と軸受基体4からなる図10及び図11に示す静圧気体軸受1においても、軸受体2と軸受基体4との面11及び32からなる接合面の隙間は、円環状凹部12、給気通路35及び空気室51に関して強固に密封され、また、その製造価格は、著しく低減され、しかも、静圧気体軸受1による被支持体は、安定に支持されることになる。
 上記の静圧気体軸受1の軸受体2は、一個の環状凹溝14を具備しているが、斯かる環状凹溝14に加えて、図13に示すように、面13に環状凹溝14と同心に形成されていると共に環状凹溝14の外側で環状凹溝14を囲む大径環状凹溝65と、一方の端部66が環状凹溝14に開口すると共に他方の端部67が大径環状凹溝65に開口して円周方向Rに沿って面13に等間隔に配列して形成された複数個の放射状凹溝68と、面13に環状凹溝14と同心に形成されていると共に環状凹溝14の内側で環状凹溝14に囲まれた小径環状凹溝69と、一方の端部70が環状凹溝14に開口すると共に他方の端部71が小径環状凹溝69に開口して円周方向Rに沿って面13に等間隔に配列して形成された複数個の放射状凹溝72とを具備していてもよい。
 斯かる大径環状凹溝65及び小径環状凹溝69並びに放射状凹溝68及び72をも、環状凹溝14をレーザー加工機により形成する際に、同レーザー加工機により同様に形成されてもよい。
 図13に示す軸受体2を有した静圧気体軸受1では、環状凹溝14に給気された空気は、放射状凹溝68及び72を介して大径環状凹溝65及び小径環状凹溝69にも供給されるので、例えば被支持体への空気の供給面積が大きくなり、被支持体を安定に浮上させることができる上に、前記と同様に、軸受体2と軸受基体4との面11及び32からなる接合面の隙間は、環状シール部材5により円環状凹部12、給気通路35及び空気室51に関して強固に密封され、また、その製造価格は、環状凹溝14、放射状凹溝68及び72並びに大径環状凹溝65及び小径環状凹溝69をレーザー加工機により形成すると、著しく低減でき、しかも、静圧気体軸受1による被支持体は、絞り孔54を具備した自励振動減衰機構6により安定に支持されることになる。
 静圧気体軸受1はまた、図14及び図15に示すように、軸受基体4の面38に形成して軸受基体4に設けられていると共に球体受容凹部として軸受基体4の面38の中央部で開口したすり鉢状の截頭円錐凹部75を有した球体受容手段76を更に具備していてもよい。
 截頭円錐凹部75は、軸受基体4に形成された平面視円形の天井面81と、天井面81から面38にかけて末広がりに伸びる截頭円錐面82とで規定されている。
 球体受容手段76を具備した静圧気体軸受1には、図16に示すように、截頭円錐凹部75の開口径よりも小さな径をもったボールスタッド85の球体86が截頭円錐面82に摺接して当該截頭円錐凹部75に配されることにより、自動調芯機能が付加される。
 球体受容手段76は、截頭円錐凹部75に代えて、図17及び図18に示すように、軸受基体4の面38の中央部で開口して当該軸受基体4の面38に形成されていると共に凹球面90で規定された半球凹部91を球体受容凹部として有していてもよい。
 半球凹部91を球体受容凹部として有している球体受容手段76を具備した静圧気体軸受1でも、図19に示すように、半球凹部91の開口径と同径又は半球凹部91の開口径よりも小さな径をもったボールスタッド85の球体86が凹球面90に摺接して当該半球凹部91に配されることにより、自動調芯機能が付加される。
 球体受容手段76は、球体受容凹部として軸受基体4の面38に直接形成された截頭円錐凹部75又は半球凹部91を具備する代わりに、図20から図24に示すように、軸受基体4の面38で開口して当該軸受基体4に形成された円柱状凹部95と、一方の面96で開口した球体受容凹部としての截頭円錐凹部97及び他方の面98で開口した円柱凹部99を有すると共に円柱状凹部95に嵌合固定された駒100とを具備していてもよい。
 円柱状凹部95は、軸受基体4に形成された平面視円形の天井面101と、天井面101に連接されていると共に軸受基体4に形成された円筒状面102とで規定されており、截頭円錐凹部97は、駒100に形成されていると共に面98から面96に向かう方向において末広がり状に拡径した截頭円錐面103で規定されており、円柱凹部99は、一端104では面98で開口している一方、他端105では截頭円錐凹部97に連通しており、円筒状の外周面106を有する駒100は、当該外周面106が円筒状面102に、面98が天井面101に夫々ぴったりと接触して、面96が面38と面一になって円柱状凹部95に嵌合固定されている。
 図25に示すように、駒100に形成された截頭円錐凹部97を球体受容凹部として具備した静圧気体軸受1には、前記と同様に、截頭円錐凹部97の開口径よりも小さな径をもったボールスタッド85の球体86が截頭円錐面103に摺接して截頭円錐凹部97に配されることにより、自動調芯機能が付加される。
 図20から図25に示す球体受容手段76は、駒100に截頭円錐凹部97を球体受容凹部として設けた例であるが、これに代えて、図26及び図27に示すように、駒100に球体受容凹部として半球凹部110を設けてもよく、半球凹部110は、前記と同様に、駒100の面96の中央部で開口して当該駒100に形成された凹球面111で規定されている。
 軸受基体4の面38で開口して当該軸受基体4に形成された円柱状凹部95と、面96で開口した半球凹部110を球体受容凹部として有すると共に円柱状凹部95に嵌合固定された駒100とを具備した球体受容手段76を有してなる静圧気体軸受1には、前記と同様に、図28に示すように、半球凹部110の開口径と同径又は半球凹部110の開口径よりも小さな径をもったボールスタッド85の球体86が凹球面111に摺接して当該半球凹部110に配されることにより、自動調芯機能が付加される。
 このように軸受基体4とは別体の駒100を用いて駒100に球体受容凹部を設けて、駒100を摺動性に優れた材料、例えばポリアセタール樹脂若しくはポリアミド樹脂、ポリエステル樹脂等の熱可塑性合成樹脂又は銅若しくは銅合金等で形成することにより、駒100の截頭円錐面103又は凹球面111とボールスタッド85の球体86との摺接をより円滑に行わせることができる。
 以上の自動調芯機能は、図11に示す静圧気体軸受1に付加してもよい。
 上記の静圧気体軸受1は、図29に示すような直動案内装置120に用いられてもよく、図29に示す直動案内装置120は、案内面としての上面案内面121及び両側案内面122を有する案内部材123と、案内部材123の外側に案内部材123を跨いで配されていると共に上面案内面121に対面する上板124及び両側案内面122に対面する一対の側板125を備えた横断面コの字形の可動テーブル126と、可動テーブル126の上板124の下面127及び側板125の夫々の内面128のうちの少なくとも一つの面に、本例では、側板125の夫々の内面128に球体86を案内部材123に向けて固定されたボールスタッド85と、ボールスタッド85の球体86の夫々と該少なくとも一つの面である側板125の夫々の内面128に対面する両側案内面122の夫々との間に配された図25に示す静圧気体軸受1と、該少なくとも一つの面以外の面である上板124の下面127と下面127に対面する上面案内面121との間に配された図2に示す静圧気体軸受1とを具備している。
 直動案内装置120において、ボールスタッド85の球体86の夫々は、静圧気体軸受1の夫々の軸受基体4が当該球体86を中心としてボールスタッド85に対して揺動自在となるように、球体受容手段76の夫々の截頭円錐凹部97に、截頭円錐面103に摺動自在に接触して受容されている。
 上板124の下面127と下面127に対面する上面案内面121との間に配された図2に示す静圧気体軸受1の軸受基体4は、可動テーブル126の上板124の下面127に固定されている。
 斯かる直動案内装置120によれば、給気通路35の夫々に供給された圧縮空気を軸受体2の複数個の空気吹出孔17から案内部材123の上面案内面121及び両側案内面122に向かって噴射することにより、軸受体2の面13と上面案内面121及び両側案内面122との間の軸受隙間に形成される空気の潤滑膜によって可動テーブル126を上面案内面121及び両側案内面122に対して非接触の状態に保持することができる。そして、軸受体2の面13と両側案内面122との間の軸受隙間が不均一であると、軸受隙間各部に圧力差が発生するが、その圧力差により、軸受隙間が均一となる方向に静圧気体軸受1が自動調芯され、両側案内面122に対して平行な状態が保持されるため、案内部材123及び可動テーブル126の平行度、直角度等の部品精度を比較的粗い精度とすることができ、静圧気体軸受1自体の低コストに加えて、直動案内装置120の製作の容易化及びコストの低下を図ることができる。
 そして、直動案内装置120によれば、軸受体2の面13と上面案内面121及び両側案内面122との間の軸受隙間の空気圧を絞り孔54を介して空気室51に伝達できるので、静圧気体軸受1の自励振動を抑制でき、被支持体としての可動テーブル126の支持を安定的に行うことができる。
 直動案内装置120においては、自動調芯機能が付加された静圧気体軸受として、図16、図19及び図28に示す静圧気体軸受1を使用してもよく、また、自動調芯機能が付加に拘らずいずれの静圧気体軸受においても、図11に示す静圧気体軸受1を使用してもよい。
 1 静圧気体軸受
 2 軸受体
 3 締結部材
 4 軸受基体
 5 環状シール部材
 6 自励振動減衰機構
 11、13、32 面
 12 円環状凹部
 14 環状凹溝
 17 空気吹出孔
 51 空気室
 54 絞り孔
 

Claims (19)

  1.  一方の面に当該一方の面で開口して形成された円環状凹部、他方の面に当該他方の面で開口して形成された環状凹溝及び一端では環状凹溝に開口していると共に他端では円環状凹部で開口した自成絞りとしての複数個の空気吹出孔を有した合成樹脂製の軸受体と、一端では該軸受体の一方の面に対面している一方の面で開口して当該一端で円環状凹部に連通している一方、他端に気体が供給されるようになっている給気通路を備えていると共に該軸受体に一体的に結合された軸受基体と、自励振動減衰機構とを具備しており、自励振動減衰機構は、軸受体若しくは軸受基体に形成された空気室と、一端では軸受体の他方の面の中央部で開口すると共に他端では空気室に開口した少なくとも一つの絞り孔とを具備している静圧気体軸受。
  2.  円環状凹部は、円環状の内側小径外周面と、この内側小径外周面に対して拡径している円環状の内側大径外周面と、内周縁では内側小径外周面の下縁に連接する一方、外周縁では内側大径外周面の上縁に連接した円環状段部面とにより規定されており、静圧気体軸受は、内側大径外周面及び円環状段部面に接触して円環状凹部に配されていると共に軸受基体の一方の面に弾性的に接触した環状シール部材を更に具備している請求項1に記載の静圧気体軸受。
  3.  円環状凹部は、軸受体の一方の面から他方の面に向かうに連れて末広がりに形成された截頭円錐面で規定されている請求項1又は2に記載の静圧気体軸受。
  4.  環状凹溝は、少なくとも0.3mmの幅と、少なくとも0.01mmの深さとを有しており、空気吹出孔は、その一端で少なくとも30μmの直径を有していると共に円環状凹部と環状凹溝との間で自成絞りを形成している請求項1から3のいずれか一項に記載の静圧気体軸受。
  5.  環状凹溝は、0.3~1.0mmの幅と、0.01~0.05mmの深さとを有しており、空気吹出孔は、その一端で30~120μmの直径を有している請求項1から4のいずれか一項に記載の静圧気体軸受。
  6.  空気室は、軸受体の一方の面で開口して当該軸受体に形成された凹部を具備しており、この凹部の軸受体の一方の面での開口は、軸受体の一方の面に対面している軸受基体の一方の面で閉塞されている請求項1から5のいずれか一項に記載の静圧気体軸受。
  7.  凹部は、軸受体の他方の面から一方の面にかけて末広がりの截頭円錐面で規定されてすり鉢状に形成されている請求項6に記載の静圧気体軸受。
  8.  少なくとも一つの絞り孔は、0.8~1.2mmの直径を有している請求項1から7のいずれか一項に記載の静圧気体軸受。
  9.  自励振動減衰機構は、複数個の絞り孔を有しており、複数個の絞り孔の夫々は、50~65μmの直径を有している請求項1から7のいずれか一項に記載の静圧気体軸受。
  10.  自励振動減衰機構は、直径0.8~1.2mmの少なくとも一つの絞り孔と、直径50~65μmの少なくとも一つの絞り孔とを有している請求項1から7のいずれか一項に記載の静圧気体軸受。
  11.  環状凹溝、空気吹出孔及び絞り孔の夫々は、レーザー加工により形成されている請求項1から10のいずれか一項に記載の静圧気体軸受。
  12.  軸受体は、その他方の面に形成されていると共に該環状凹溝の外側で当該環状凹溝を囲む大径環状凹溝と、一方の端部が該環状凹溝に開口すると共に他方の端部が大径環状凹溝に開口する複数個の第一の放射状凹溝と、その他方の面に形成されていると共に該環状凹溝の内側で当該環状凹溝に囲まれた小径環状凹溝と、一方の端部が環状凹溝に開口すると共に他方の端部が小径環状凹溝に開口する複数個の第二の放射状凹溝とを更に具備している請求項1から11のいずれか一項に記載の静圧気体軸受。
  13.  第一の放射状凹溝及び第二の放射状凹溝の夫々は、レーザー加工により形成されている請求項12に記載の静圧気体軸受。
  14.  軸受基体に設けられていると共に球体受容凹部を有した球体受容手段を更に具備している請求項1から13のいずれか一項に記載の静圧気体軸受。
  15.  球体受容手段は、軸受基体の他方の面で開口して当該軸受基体に形成された截頭円錐凹部を球体受容凹部として有している請求項14に記載の静圧気体軸受。
  16.  球体受容手段は、軸受基体の他方の面で開口して当該軸受基体に形成された半球凹部を球体受容凹部として有している請求項14に記載の静圧気体軸受。
  17.  球体受容手段は、軸受基体の他方の面で開口して当該軸受基体に形成された円柱状凹部と、一方の面で開口した截頭円錐凹部を球体受容凹部として有すると共該円柱状凹部に嵌合固定された駒とを具備している請求項14に記載の静圧気体軸受。
  18.  球体受容手段は、軸受基体の他方の面で開口して当該軸受基体に形成された円柱状凹部と、一方の面で開口した半球凹部を球体受容凹部として有すると共に円柱状凹部に嵌合固定された駒とを具備している請求項14に記載の静圧気体軸受。
  19.  上面案内面及び両側案内面を有する案内部材と、この案内部材の外側に配されていると共に上面案内面に対面する上板及び両側案内面に対面する一対の側板を備えた可動テーブルと、この可動テーブルの上板の下面及び一対の側板の夫々の内面のうちの少なくとも一つの面に球体を案内部材に向けて立設されたボールスタッドと、このボールスタッドの球体と該少なくとも一つの面に対面する上面案内面及び両側案内面との間に配された請求項14から18のいずれか一項に記載の静圧気体軸受と、該少なくとも一つの面以外の可動テーブルの上板の下面及び一対の側板の夫々の内面と当該少なくとも一つの面以外の可動テーブルの上板の下面及び一対の側板の夫々の内面に対面する上面案内面及び両側案内面との間に配された請求項1から13のいずれか一項に記載の静圧気体軸受とを具備しており、ボールスタッドの球体は、請求項14から18のいずれか一項に記載の静圧気体軸受の軸受基体が当該球体を中心としてボールスタッドに対して揺動自在となるように、当該請求項14から18のいずれか一項に記載の静圧気体軸受の球体受容手段の球体受容部の夫々に受容されており、請求項1から13のいずれか一項に記載の静圧気体軸受のうちの少なくとも一つの静圧気体軸受の軸受基体は、該少なくとも一つの面以外の可動テーブルの上板の下面及び一対の側板の夫々の内面に固定されている直動案内装置。
     
PCT/JP2013/001616 2012-04-02 2013-03-12 静圧気体軸受及びこの静圧気体軸受を用いた直動案内装置 WO2013150723A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380017525.XA CN104204571A (zh) 2012-04-02 2013-03-12 静压气体轴承及使用该静压气体轴承的直动引导装置
KR1020147027482A KR101608361B1 (ko) 2012-04-02 2013-03-12 정압 기체 베어링 및 이 정압 기체 베어링을 이용한 직동 안내 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012084364A JP5924084B2 (ja) 2012-04-02 2012-04-02 静圧気体軸受及びこの静圧気体軸受を用いた直動案内装置
JP2012-084364 2012-04-02

Publications (1)

Publication Number Publication Date
WO2013150723A1 true WO2013150723A1 (ja) 2013-10-10

Family

ID=49300231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001616 WO2013150723A1 (ja) 2012-04-02 2013-03-12 静圧気体軸受及びこの静圧気体軸受を用いた直動案内装置

Country Status (5)

Country Link
JP (1) JP5924084B2 (ja)
KR (1) KR101608361B1 (ja)
CN (1) CN104204571A (ja)
TW (1) TWI513918B (ja)
WO (1) WO2013150723A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6237814B2 (ja) * 2016-04-13 2017-11-29 オイレス工業株式会社 静圧気体軸受及びこの静圧気体軸受を用いた直動案内装置
CN112059902A (zh) * 2020-08-18 2020-12-11 广州市昊志机电股份有限公司 一种气浮电主轴和磨削机床

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127927U (ja) * 1985-01-29 1986-08-11
JPH09296825A (ja) * 1996-04-30 1997-11-18 Kuroda Precision Ind Ltd 静圧気体軸受
JP2005201370A (ja) * 2004-01-15 2005-07-28 Oiles Ind Co Ltd 静圧気体軸受パッド用の隙間調節装置及びこれを用いた静圧気体軸受機構
JP2006510857A (ja) * 2002-12-18 2006-03-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 気体軸受装置
JP2008082449A (ja) * 2006-08-31 2008-04-10 Oiles Ind Co Ltd 静圧気体軸受
JP2008138783A (ja) * 2006-12-01 2008-06-19 Ntn Corp 静圧気体軸受スピンドル
JP2010060013A (ja) * 2008-09-02 2010-03-18 Ckd Corp 浮上ユニット及びそれを備えた非接触支持装置
JP2010522431A (ja) * 2007-03-20 2010-07-01 ケーエルエー−テンカー・コーポレーション 真空予圧空気軸受チャックを使用する基板の安定

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1083098B (it) * 1977-07-11 1985-05-21 Dea Spa Macchina utensile o macchina di misura con scorrimento a pattini pneumatici e magnetici
JPS61127927A (ja) * 1984-11-22 1986-06-16 Ishikawajima Harima Heavy Ind Co Ltd 複式多板クラツチ機構
JP2006322531A (ja) * 2005-05-18 2006-11-30 Oiles Ind Co Ltd 静圧気体軸受を有したエアスライド装置
DE102007058066A1 (de) * 2006-12-01 2008-06-05 Ntn Corp. Aerostatische Lagerspindel
JP2010096311A (ja) * 2008-10-17 2010-04-30 Ntn Corp 静圧軸受パッド、直動案内装置および回転案内装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127927U (ja) * 1985-01-29 1986-08-11
JPH09296825A (ja) * 1996-04-30 1997-11-18 Kuroda Precision Ind Ltd 静圧気体軸受
JP2006510857A (ja) * 2002-12-18 2006-03-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 気体軸受装置
JP2005201370A (ja) * 2004-01-15 2005-07-28 Oiles Ind Co Ltd 静圧気体軸受パッド用の隙間調節装置及びこれを用いた静圧気体軸受機構
JP2008082449A (ja) * 2006-08-31 2008-04-10 Oiles Ind Co Ltd 静圧気体軸受
JP2008138783A (ja) * 2006-12-01 2008-06-19 Ntn Corp 静圧気体軸受スピンドル
JP2010522431A (ja) * 2007-03-20 2010-07-01 ケーエルエー−テンカー・コーポレーション 真空予圧空気軸受チャックを使用する基板の安定
JP2010060013A (ja) * 2008-09-02 2010-03-18 Ckd Corp 浮上ユニット及びそれを備えた非接触支持装置

Also Published As

Publication number Publication date
JP5924084B2 (ja) 2016-05-25
CN104204571A (zh) 2014-12-10
KR20140133896A (ko) 2014-11-20
JP2013213544A (ja) 2013-10-17
TWI513918B (zh) 2015-12-21
TW201348616A (zh) 2013-12-01
KR101608361B1 (ko) 2016-04-01

Similar Documents

Publication Publication Date Title
JP5928106B2 (ja) 静圧気体軸受及びこの静圧気体軸受を用いた直動案内装置
JP5929117B2 (ja) 静圧気体軸受及びこの静圧気体軸受を用いた直動案内装置
JP6115021B2 (ja) 静圧気体軸受及びこの静圧気体軸受を用いた直動案内装置
CN104541077A (zh) 静压气体轴承单元
JP5924084B2 (ja) 静圧気体軸受及びこの静圧気体軸受を用いた直動案内装置
JP5915088B2 (ja) 静圧気体軸受及びこの静圧気体軸受を用いた直動案内装置
US9046131B2 (en) Hydrostatic gas bearing and method of manufacturing the same
JP6237814B2 (ja) 静圧気体軸受及びこの静圧気体軸受を用いた直動案内装置
JP2022157858A (ja) 直動案内装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13773071

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147027482

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13773071

Country of ref document: EP

Kind code of ref document: A1