WO2013150698A1 - 映像信号送信装置及び受信装置 - Google Patents

映像信号送信装置及び受信装置 Download PDF

Info

Publication number
WO2013150698A1
WO2013150698A1 PCT/JP2013/000492 JP2013000492W WO2013150698A1 WO 2013150698 A1 WO2013150698 A1 WO 2013150698A1 JP 2013000492 W JP2013000492 W JP 2013000492W WO 2013150698 A1 WO2013150698 A1 WO 2013150698A1
Authority
WO
WIPO (PCT)
Prior art keywords
video signal
converted
signal
horizontal
period
Prior art date
Application number
PCT/JP2013/000492
Other languages
English (en)
French (fr)
Inventor
生島 剛
柴田 修
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013150698A1 publication Critical patent/WO2013150698A1/ja
Priority to US14/493,656 priority Critical patent/US9288418B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/38Transmitter circuitry for the transmission of television signals according to analogue transmission standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/08Systems for the simultaneous or sequential transmission of more than one television signal, e.g. additional information signals, the signals occupying wholly or partially the same frequency band, e.g. by time division
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/003Details of a display terminal, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • G09G5/005Adapting incoming signals to the display format of the display terminal
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/003Details of a display terminal, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • G09G5/006Details of the interface to the display terminal
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/18Timing circuits for raster scan displays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
    • H04N7/0102Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving the resampling of the incoming video signal
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/04Changes in size, position or resolution of an image
    • G09G2340/0407Resolution change, inclusive of the use of different resolutions for different screen areas
    • G09G2340/0435Change or adaptation of the frame rate of the video stream
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2350/00Solving problems of bandwidth in display systems
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/12Use of DVI or HDMI protocol in interfaces along the display data pipeline
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/436Interfacing a local distribution network, e.g. communicating with another STB or one or more peripheral devices inside the home
    • H04N21/4363Adapting the video stream to a specific local network, e.g. a Bluetooth® network
    • H04N21/43632Adapting the video stream to a specific local network, e.g. a Bluetooth® network involving a wired protocol, e.g. IEEE 1394
    • H04N21/43635HDMI

Definitions

  • the present disclosure relates to a video signal transmitting apparatus and method and a video signal receiving apparatus and method using a non-compressed transmission method of a video signal such as HDMI (High-Definition Multimedia Interface).
  • HDMI High-Definition Multimedia Interface
  • HDMI has been widely used as an uncompressed transmission method for video signals.
  • processing is performed to convert a 3-channel video signal (RGB signal or luminance signal and color difference signal) into an 8-bit width signal as necessary. Is called.
  • the speed of the pixel clock is also converted in accordance with the video signal.
  • transmission data is generated from the video signal, the horizontal and vertical synchronization signals, and the audio signal.
  • encryption is also performed as necessary.
  • encoding and parallel / serial conversion are performed and transmitted.
  • serial / parallel conversion and decoding are performed on the received signal, and then the video signal and the audio signal are restored. Further, conversion is performed so that the number of bits of the video signal becomes the original value as necessary.
  • An object of the present disclosure is to solve the above-described problems, a video signal transmitting apparatus and method capable of reducing a transmission speed by reducing a blanking period without significantly increasing a circuit scale, a video signal receiving apparatus, and It is to provide a method.
  • the video signal transmission device reduces a part of the blanking period based on a video signal including an active period including video data and a blanking period not including video data.
  • a video signal transmission device for transmitting as a converted video signal, A frequency dividing unit that divides a pixel clock synchronized with the video signal by a predetermined transmission division ratio, and outputs the divided clock as a converted pixel clock; First storage means for storing the video signal; The first storage means is controlled to write the video signal during the active period of the video signal, read out the video signal during the active period of the converted video signal, and output the video signal as the converted video signal.
  • the transmission frequency division ratio is equal to the ratio between the number of horizontal pixels of the converted video signal and the number of horizontal pixels of the video signal.
  • a video signal receiving apparatus is a video signal receiving apparatus that receives the converted video signal generated by the video signal transmitting apparatus, restores the video signal, and outputs the restored video signal.
  • Multiplying means for multiplying the converted pixel clock by a predetermined reception multiplication ratio and outputting it as a pixel clock;
  • Second storage means for storing the converted video signal;
  • the converted video signal is written to the second storage means during the active period of the converted video signal, and the converted video signal is read from the second storage means during the active period of the video signal and output as the video signal.
  • a second control means for controlling the second storage means,
  • the reception multiplication ratio is a ratio between the number of horizontal pixels of the video signal and the number of horizontal pixels of the converted video signal.
  • the video signal transmitting apparatus only the horizontal blanking period is reduced without reducing the vertical blanking period, so that the necessary storage capacity of the buffer memory can be greatly reduced.
  • the video signal receiving apparatus of the present disclosure it is possible to receive a signal with a reduced blanking period, restore the signal format of the same transmission data as before, and output it.
  • FIG. 2 is a block diagram illustrating a configuration of a video signal transmission device 1100 according to Embodiment 1 of the present disclosure.
  • FIG. It is a figure which shows the format of the conversion video signal used with the video signal transmission apparatus 1100 of FIG. 7 is a table showing a method of setting a transmission frequency division ratio for each transmission data signal format according to the first embodiment.
  • It is a block diagram which shows the structure of the video signal receiver 2100 which concerns on Embodiment 1 of this indication.
  • It is a block diagram which shows the structure of the video signal transmission apparatus 1200 which concerns on Embodiment 2 of this indication.
  • FIG. 4B is a circuit diagram showing a configuration of a memory control signal generation circuit 1203 in FIG. 4A.
  • FIG. 6B is a circuit diagram showing a configuration of the memory control signal generation circuit 2203 of FIG. 6A. It is a timing chart of each signal which shows operation
  • 10 is a table showing a method of setting a transmission frequency division ratio for each transmission data signal format according to Embodiment 3 of the present disclosure. It is a figure which shows the signal format of general transmission data. It is a figure which shows the signal format of another general transmission data.
  • FIG. 9 is a diagram showing a signal format of general transmission data.
  • transmission data is transmitted line by line in the vertical direction from the top to the bottom of the screen in synchronization with the video signal.
  • Hactive is a horizontal active period
  • Hblank is a horizontal blanking period
  • Vactive is a vertical active period
  • Vblank is a vertical blanking period. All the lines in the range of Vblank are blanking periods.
  • the line in the active period includes both the pixels included in the active period and the pixels included in the blanking period in the horizontal direction.
  • Video data is transmitted during the active period.
  • audio data or the like is transmitted using a part of the blanking period of the video signal. The remaining period of the blanking period does not contribute to data transmission.
  • this period is not essential for data transmission because the synchronization signal can be transmitted simultaneously with the audio data.
  • the ratio of the blanking period in the video signal reaches 20% in the case of full high-definition (1080p), and remains 10% even if the necessary amount for audio signal transmission is excluded from here. Therefore, as the transmission speed increases as the video becomes higher in definition, the amount of signals in the blanking period that do not contribute to data transmission also increases. Therefore, a method for reducing the transmission rate by reducing the blanking period has been studied.
  • FIG. 10 is a diagram showing a signal format of another transmission data.
  • the transmission frame is composed only of video data, audio data, and control data, and all periods during which no data is transmitted are deleted from the blanking period. Thereby, compared with the original video data, the amount of data that needs to be transmitted is reduced, so that the transmission speed is reduced.
  • a video signal including a blanking period is input to the video signal transmission device according to the embodiment of the present disclosure.
  • the blanking period there are a vertical blanking period (hereinafter referred to as a vertical blanking period) Vblank and a horizontal blanking period (hereinafter referred to as a horizontal blanking period) Hblank. Only the horizontal blanking period Hblank is reduced. Accordingly, since it is only necessary to hold the video data using the buffer memory only during a period corresponding to the horizontal blanking period Hblank at the maximum, the storage capacity of the buffer memory can be reduced as compared with the conventional technique. Also, not all of the blanking period in the horizontal direction is deleted, but a part is left. Thereby, the horizontal data length after deletion of the blanking period can be set flexibly. Specific methods for reducing the blanking period will be described in the following embodiments.
  • FIG. 1 is a block diagram illustrating a configuration of a video signal transmission device 1100 according to Embodiment 1 of the present disclosure.
  • a video signal transmission apparatus 1100 includes a video signal transmission unit 1100A and a transmission data generation unit 1105.
  • the video signal transmission unit 1100A includes a frequency divider 1101, a buffer memory 1102, and the like. It is configured with.
  • a pixel clock having the same speed as the video signal is input to the frequency divider 1101, and the frequency divider 1101 divides the input pixel clock at a predetermined transmission frequency division ratio, which will be described in detail later.
  • the pixel clock after frequency division is output to the buffer memory 1102 and the transmission data generation unit 1105 as a converted pixel clock.
  • the buffer memory 1102 receives a video signal, a write permission signal, a read permission signal, a pixel clock, and a conversion pixel clock.
  • the buffer memory 1102 writes the video signal in synchronization with the pixel clock (write ⁇ ⁇ ⁇ clock) when the write permission signal is “1”, and stores the written data when the read permission signal is “1”. Reading is performed in synchronization with the conversion pixel clock (read clock), and the read data signal is output to the transmission data generation unit 1105 as a converted video signal.
  • the transmission data generation unit 1105 synthesizes and encodes the input converted video signal and audio signal using the converted pixel clock in the same manner as in the first conventional example, and performs parallel / serial conversion. Predetermined transmission data and a transmission clock are generated and output to a predetermined transmission line. That is, the transmission data generation unit 1105 performs conversion data generation, encoding, parallel / serial conversion, for example, after converting the converted video signal to an 8-bit width and converting the conversion pixel clock speed as necessary. Processing is performed. When the bit width of the video signal and the converted video signal is 8 bits, the number of pixels of the video signal and the converted video signal matches the number of bits in the time direction. In FIG. 1A, it is described that the transmission clock is output from the transmission data generation unit 1105. However, the transmission data may be encoded suitable for clock recovery, such as 8B10B, and the clock may not be transmitted. .
  • a buffer memory 1102 is also prepared for each of the three channel video signals.
  • the number of video signal channels may be reduced to 1 or 2, or conversely, increased to 4 or more.
  • FIG. 2A is a diagram showing a format of a converted video signal used in the video signal transmitting apparatus 1100 of FIG.
  • the input video signal is a signal including a vertical blanking period Vblank and a horizontal blanking period Hblank shown in FIG.
  • the converted video signal to be output includes a horizontal active period (hereinafter referred to as a horizontal active period), the number of active horizontal pixels, and a vertical active period (hereinafter referred to as a vertical active period).
  • the number of vertical lines of Vactive is the same as the input video signal.
  • the number of lines in the vertical blanking period Vblank is also the same as that of the input video signal.
  • the number of vertical lines which is the sum of the vertical active period Vactive and the vertical blanking period Vblank
  • the number of pixels in the horizontal blanking period Hblank ' is set smaller than the input video signal.
  • the number of horizontal pixels which is the sum of the number of pixels in the horizontal active period Hactive and the number of pixels in the horizontal blanking period Hblank ', is smaller than the input video signal.
  • the ratio between the video signal speed f and the converted video signal speed f ′ is equal to the ratio between the horizontal pixel number Nt of the video signal and the horizontal pixel number Nt ′ of the converted video signal. That is, it sets so that the relationship of following Formula may be satisfy
  • the transmission frequency division ratio of the frequency divider 1101 and the number of horizontal pixels of the converted video signal are set so as to satisfy the following conditions.
  • the transmission frequency division ratio is equal to the ratio of the number of horizontal pixels of the video signal and the converted video signal.
  • the transmission frequency division ratio is expressed as a fraction with the horizontal pixel number of the video signal and a divisor of the horizontal pixel number other than 1 as the denominator and the natural number as the numerator.
  • the number of horizontal pixels of the converted video signal is larger than the number of pixels in the horizontal active period Hactive.
  • the horizontal pixel number of the converted video signal can be a natural number.
  • the frequency divider 1101 can be easily configured.
  • the configuration of the frequency divider 1101 can be further simplified by setting the denominator as small as possible within the range that satisfies the above conditions.
  • the reduction rate of the blanking period can be increased by making the molecule as small as possible.
  • FIG. 2B is a table showing a method of setting a transmission frequency division ratio for each transmission data signal format according to the first embodiment.
  • FIG. 2B shows an example of setting the transmission frequency division ratio in the case of the 4K2K format that satisfies the above conditions. In this case, the frequency division ratio is 20/22, and the transmission rate is reduced by about 9%.
  • the write permission signal is set to be “1” in the horizontal active period Hactive in FIG. 9 and “0” in the horizontal blanking period Hblank.
  • the read permission signal is set to be “1” in the horizontal active period Hactive in FIG. 2A and “0” in the horizontal blanking period Hblank ′.
  • the video signal transmitting apparatus 1100 unlike the second conventional example, only the horizontal blanking period Hblank is reduced without reducing the vertical blanking period Vblank. . Therefore, the storage capacity of the buffer memory 1102 only needs to secure a storage capacity corresponding to the horizontal blanking period Hblank, and can be greatly reduced as compared with the second conventional example.
  • the circuit subsequent to the blanking period reduction process can use the configuration of the video signal transmission device of the first conventional example as it is, it is easy to share the video signal transmission circuit with HDMI. Therefore, it is possible to reduce the blanking period while minimizing the increase in circuit scale.
  • FIG. 3 is a block diagram illustrating a configuration of the video signal receiving device 2100 according to the first embodiment of the present disclosure.
  • the video signal receiving apparatus 2100 according to Embodiment 1 restores the original video signal by performing processing reverse to that of the video signal transmitting apparatus 1100.
  • the video signal receiving device 2100 includes a transmission data demodulating unit 2105 and a video signal receiving unit 2100A.
  • the video signal receiving unit 2100 ⁇ / b> A includes a multiplier 2101 and a buffer memory 2102.
  • the transmission data demodulator 2105 receives transmission data and a transmission clock transmitted from the video signal receiver 1100 of FIG. 1 via a predetermined transmission path, and the transmission data demodulator 2105 receives the transmission data.
  • the reverse processing of the transmission data generation unit 1105 in FIG. 1 is performed on the transmission data and the transmission clock, that is, the audio signal is separated from the input transmission data using the transmission clock, and is decoded, serial / parallel. Conversion is performed to generate and output a converted video signal and audio signal.
  • the transmission clock is not received separately from the transmission data, but can be obtained from the transmission data by clock recovery.
  • the multiplier 2101 receives a converted pixel clock having the same speed as the converted video signal, and the multiplier 2101 is equal to the ratio of the number of horizontal pixels of the converted video signal and the video signal with respect to the input converted pixel clock ( That is, multiplication is performed with a reception multiplication ratio (equal to the reciprocal of the transmission division ratio in the frequency divider 1101 in FIG. 1), and the multiplied clock is output as a pixel clock. Note that it is easy to configure the multiplier 2101 by setting the denominator and numerator of the reception multiplication ratio to even numbers.
  • the converted video signal, the write permission signal, the read permission signal, the converted pixel clock, and the pixel clock are input to the buffer memory 2102.
  • the buffer memory 2102 writes the converted video signal in synchronization with the conversion pixel clock when the write permission signal is “1”, and writes in synchronization with the pixel clock when the read permission signal is “1”.
  • the read data is read out and output as a video signal.
  • the write permission signal is generated so as to be “1” in the horizontal active period Hactive in FIG. 9 and “0” in the horizontal blanking period Hblank.
  • the read permission signal is generated so as to be “1” in the horizontal active period Hactive and “0” in the horizontal blanking period Hblank in FIG. 2A.
  • the video signal and the converted video signal are shown with only one channel for the sake of simplicity, but actually there are a three-channel video signal and a converted video signal as in the configuration of FIG. Therefore, the buffer memory 2102 is also prepared for each of the three channel video signals.
  • the number of video signal channels may be reduced to 1 or 2, or conversely, may be increased to 4 or more.
  • transmission data generated using video signal transmitting apparatus 1100 is received and restored to the same video signal signal format as the conventional example. Can be output.
  • FIG. 4A is a block diagram illustrating a configuration of a video signal transmission device 1200 according to Embodiment 2 of the present disclosure.
  • the video signal transmission apparatus 1200 includes a video signal transmission unit 1200A and a transmission data generation unit 1205.
  • the video signal transmission unit 1200A includes a frequency divider 1201, a buffer memory 1202, a memory control signal generation circuit 1203, and a conversion synchronization signal generation circuit 1204.
  • Each of the frequency divider 1201 and the buffer memory 1202 basically operates in the same manner as the frequency divider 1101 and the buffer memory 1102 according to the first embodiment.
  • a transmission clock is output from the transmission data generation unit 1205.
  • the transmission data may be encoded suitable for clock recovery, such as 8B10B, and the clock may not be transmitted.
  • the configuration of the video signal transmission apparatus 1200 differences from the video signal transmission apparatus 1100 of FIG. 1A will be described.
  • the horizontal synchronization signal HSYNC, the pixel clock, and the conversion pixel clock are input to the memory control signal generation circuit 1203, and the memory control signal generation circuit 1203 displays “in the horizontal active period Hactive ′” of the converted video signal. 1 ”, a read permission signal that becomes“ 0 ”in the horizontal blanking period Hblank ′ is generated and output to the buffer memory 1202.
  • a data enable signal may be input instead of the horizontal synchronization signal HSYNC. A method for generating the read permission signal will be described later in detail.
  • FIG. 4B is a circuit diagram showing a configuration of the memory control signal generation circuit 1203 of FIG. 4A.
  • the memory control signal generation circuit 1203 includes delay flip-flops 1211 and 1221, AND gates 1212 and 1222, counters 1213 and 1223, and an AND gate 1214.
  • the delay flip-flop 1211 and the AND gate 1212 extract the rising timing of the horizontal synchronization signal HSYNC.
  • the counter 1213 resets the count value to 0 when a high level signal is input, and counts a write clock (write clock) that is a pixel clock when a low level signal is input.
  • write clock write clock
  • the delay flip-flop 1221 and the AND gate 1222 extract the rising timing of the output signal of the counter 1213.
  • the counter 1223 resets the count value to 0 when a high level signal is input, and counts a read clock (read clock) that is a conversion pixel clock when a low level signal is input, which will be described later.
  • the memory control signal generation circuit 1203 generates and outputs a read permission signal from the horizontal synchronization signal HSYNC using the pixel clock and the converted pixel clock.
  • the converted horizontal synchronizing signal generation circuit 1204 Since the format of the horizontal synchronizing signal input together with the video signal is defined based on the predetermined number of horizontal pixels, it cannot be transmitted as it is when the horizontal blanking period Hblank is reduced. Therefore, the converted horizontal synchronizing signal generation circuit 1204 generates a converted horizontal synchronizing signal HSYNC 'that can be transmitted from the horizontal synchronizing signal HSYNC even when the horizontal blanking period Hblank is reduced. Then, the converted horizontal synchronization signal HSYNC 'is transmitted instead of the horizontal synchronization signal HSYNC, and the horizontal synchronization signal HSYNC is restored on the receiving side.
  • the buffer memory 1202 receives a data enable signal that is input together with the video signal as a write enable signal, and is “1” during the horizontal active period Hactive of the video signal and “0” during the horizontal blanking period Hblank.
  • FIG. 5 is a timing chart of each signal showing the operation of the video signal transmitting apparatus 1200 of FIG. 4A.
  • the number of bits Nt constituting one line of the video signal is the sum of the number of bits Na in the horizontal active period Hactive and the number of bits Nb in the horizontal blanking period Hblank.
  • the number of bits of the horizontal active period Hactive is the same as that of the video signal. If the number of bits of the horizontal blanking period Hblank is Nb ′, the number of bits Nt ′ constituting one line is the sum of these. It becomes.
  • the read permission signal is generated so as to be “1” only during the Na bit period at the speed f′bps and then “0” only during the Nb ′ bit period. To do.
  • the rising edge of the read permission signal is matched with the video signal and the data enable signal.
  • the rise timing of the read permission signal is detected directly from the data enable signal or, based on the rise of the horizontal synchronization signal HSYNC, the number of bits (Nhsync + Nhback) from the rise of the horizontal synchronization signal HSYNC to the start timing of the video signal active period Hactive.
  • FIG. 5 is an example of an ideal case where there is no delay in each block of FIG. 4A. In practice, the timing is set in consideration of the delay time of each block.
  • the converted horizontal synchronization signal HSYNC ′ is generated by the converted horizontal synchronization signal generation circuit 1204 so as to satisfy the following condition. (1) It has the same period as the period required for transmission of one horizontal line of the converted video signal. (2) One pulse exists in one cycle. (3) The pulse period corresponds to a part or all (that is, at least a part) of the horizontal blanking period Hblank of the converted video signal.
  • the start of the horizontal blanking period Hblank coincides with the rising edge of the pulse of the converted horizontal synchronization signal HSYNC ′.
  • the pulse of the converted horizontal synchronization signal HSYNC ′ is limited to this timing. Instead, it only needs to be within the horizontal blanking period Hblank.
  • the video signal transmission apparatus of this embodiment it is possible to easily generate a buffer memory control signal using a synchronization signal (horizontal synchronization signal or data enable signal) attached to the video signal. Further, even when the horizontal blanking period Hblank is reduced, it is possible to transmit the converted horizontal synchronization signal HSYNC 'representing the horizontal line period.
  • a synchronization signal horizontal synchronization signal or data enable signal
  • the memory control signal generation circuit 1203 and the converted horizontal synchronization signal generation circuit 1204 constitute a control circuit that controls the operation of the buffer memory 1202.
  • FIG. 6A is a block diagram showing a configuration of a video signal receiving device 2200 according to Embodiment 2 of the present disclosure.
  • the video signal receiving device 2200 includes a transmission data demodulating unit 2205 and a video signal receiving unit 2200A.
  • the video signal receiving unit 2200A includes a multiplier 2201, a buffer memory 2202, a memory control signal generation circuit 2203, and a horizontal synchronization signal restoration circuit 2204.
  • the multiplier 2201 and the buffer memory 2202 basically operate in the same manner as the multiplier 2101 and the buffer memory 1202 in FIG. 4A.
  • differences between the video signal receiving apparatus 2200 and the video signal receiving apparatus 1200 of FIG. 3 will be described.
  • the converted video signal is replaced with the horizontal synchronization signal instead of the video signal.
  • a converted horizontal synchronizing signal is obtained, and a converted pixel clock is obtained instead of the pixel clock, and these signals are input to the video signal receiving unit 2200A.
  • the transmission data demodulator 2205 is described so as to receive the transmission clock, but the clock may be recovered from the transmission data without receiving the transmission clock, and the converted pixel clock may be obtained therefrom.
  • the memory control signal generation circuit 2203 receives the converted horizontal synchronization signal HSYNC ′, the converted pixel clock, and the pixel clock, and is “1” in the horizontal active period Hactive of the converted video signal and “0” in the horizontal blanking period Hblank. And a read permission signal that becomes “1” during the horizontal active period Hactive of the video signal and “0” during the horizontal blanking period Hblank.
  • the horizontal synchronization signal restoration circuit 2204 receives the converted horizontal synchronization signal HSYNC ', the conversion pixel clock, and the pixel clock, and restores the horizontal synchronization signal HSYNC in the same manner as the horizontal synchronization signal restoration circuit 1204 in FIG.
  • FIG. 6B is a circuit diagram showing a configuration of the memory control signal generation circuit 2203 of FIG. 6A.
  • the memory control signal generation circuit 2203 includes delay flip-flops 2211, 2221, 2241, AND gates 2212, 2214, 2222, 2232, 2242, and counters 2213, 2223, 2231, 2243.
  • the delay flip-flop 2211 and the AND gate 2212 extract the rising timing of the converted horizontal synchronization signal HSYNC.
  • the counter 2213 resets the count value to 0 when a high level signal is input, and counts a write clock (write clock) that is a conversion pixel clock when a low level signal is input, which will be described later.
  • the delay flip-flop 2221 and the AND gate 2222 extract the rising timing of the output signal of the counter 2213.
  • the counter 2223 resets the count value to 0, and when the low level signal is input, the counter 2223 counts the write clock (write clock) and counts the Na bit described later.
  • the output signal is changed from low level to high level.
  • the counter 2231 resets the count value to 0, and when the low level signal is input, the counter 2231 counts the write clock (write clock) and counts the Nb bit described later.
  • the output signal is changed from low level to high level.
  • the delay flip-flop 2241 and the AND gate 2242 extract the rising timing of the output signal of the counter 2231.
  • the counter 2243 resets the count value to 0 when a high level signal is input, and counts a read clock (read clock) that is a pixel clock when a low level signal is input. When the bits are counted, the output signal is changed from the low level to the high level.
  • the memory control signal generation circuit 2203 generates and outputs a write permission signal and a read permission signal from the converted horizontal synchronization signal HSYNC 'using the converted pixel clock and the pixel clock.
  • FIG. 7 is a timing chart of each signal showing the operation of the video signal receiving apparatus 2200 of FIG. 6A. With reference to FIG. 7, the timing relationship of each signal inputted to and outputted from the video signal receiving device 2200 will be described below.
  • the length and speed of the horizontal active period Hactive and the horizontal blanking period Hblank of the converted video signal and video signal are the same as those in FIG.
  • the pulse width, rise timing, and speed of the converted horizontal synchronizing signal are the same as in FIG. That is, the start timing of the horizontal blanking period Hblank 'of the converted video signal coincides with the rising timing of the pulse of the converted horizontal synchronization signal HSYNC'.
  • the write permission signal is generated according to the following procedure.
  • the start timing of the horizontal blanking period Hblank ′ of the converted video signal is extracted from the converted horizontal synchronization signal HSYNC ′.
  • a converted pixel clock (write clock) corresponding to the bit number Nb ′ of the horizontal blanking period Hblank ′ of the converted video signal is shown in FIG. 6B.
  • the counter 2213 is used to detect the end timing of the horizontal blanking period Hblank ′.
  • the write permission signal is determined by counting the converted pixel clock (write clock) by the Na 2 bits of the converted video signal by the counter 2223 of FIG. 6B. Thereby, a write permission signal can be generated.
  • the read permission signal is generated according to the following procedure.
  • the start timing of the horizontal blanking period Hblank of the video signal is determined. That is, in the example of FIG. 7, the start timing of the horizontal blanking period Hblank ′ of the converted video signal is extracted from the converted horizontal sync signal HSYNC ′, and coincides with the rising edge of the converted horizontal sync signal HSYNC ′. Is the start timing of the horizontal blanking period Hblank of the video signal.
  • the pixel clock (read clock) is counted by the counter 2231 of FIG. 6B by the number of bits Nb of the horizontal blanking period Hblank of the video signal with reference to the start timing of the horizontal blanking period Hblank of the video signal. The end timing of the horizontal blanking period Hblank is detected. Further, the read permission signal is determined by counting the pixel clock (read clock) by the counter 2243 in FIG. 6B by Na bits of the converted video signal. Thereby, a read permission signal can be generated.
  • the restoration of the horizontal sync signal is performed according to the following procedure based on the predetermined timing defined in each video format of the video signal.
  • the rise timing of the pulse is determined by counting the pixel clock by the number of bits Nhfront until the rise of the horizontal synchronization signal pulse with reference to the start of the horizontal blanking period Hblank.
  • the falling timing of the pulse is determined by counting the pixel clock by the number of bits Nhsync of the pulse width.
  • the start of the horizontal blanking period Hblank ′ of the converted video signal coincides with the rising edge of the pulse of the converted horizontal synchronization signal HSYNC ′, but the pulse of the converted horizontal synchronization signal HSYNC ′ is at this timing.
  • the start timing of the horizontal blanking period Hblank ′ of the converted video signal is determined by counting the converted pixel clock by the number of bits Nhfront from the rise of the pulse of the converted horizontal synchronization signal HSYNC ′ to the start of the horizontal blanking period Hblank. Extract.
  • the video signal receiver 2200 By using the video signal receiver 2200 according to the present embodiment configured as described above, it is possible to easily generate a control signal for the buffer memory using the converted horizontal synchronization signal HSYNC ′ transmitted from the video signal transmitter. And the horizontal sync signal can be restored. Accordingly, transmission data generated using the video signal transmission device 2100 can be received, restored to the same video signal format as that of the conventional example, and output.
  • the memory control signal generation circuit 2203 and the converted horizontal synchronization signal restoration circuit 2204 constitute a control circuit that controls the operation of the buffer memory 2202.
  • FIG. 8 is a table showing a transmission frequency division ratio setting method for each transmission data signal format according to Embodiment 3 of the present disclosure.
  • the third embodiment will be described in order to handle a plurality of transmission data signal formats having different resolutions by the same video signal transmitting apparatus and video signal receiving apparatus.
  • the configuration of the video signal transmitting apparatus according to the present embodiment is the same as that of the second embodiment, and is characterized by a method for setting the number of horizontal pixels of the converted video signal and the transmission frequency division ratio of frequency divider 1201.
  • a method for setting the number of horizontal pixels and the transmission division ratio in the present embodiment will be described with reference to the example shown in the table of FIG.
  • FIG. 8 is an example in the case of transmitting three types of video format schemes of 720p, 1080p, and 4K2K.
  • the configuration of the video signal transmission device can be used in common.
  • the transmission division ratio is set based on the following procedure.
  • these common divisors are obtained.
  • the 720p video format format is 1650 pixels
  • the 1080p video format format is 2200 pixels
  • the 4K2K video format format is 4400 pixels. Therefore, these common divisors are 2, 5, 10, 11 and 22. , 25, 50, 55, 110, 275, 550.
  • this transmission division ratio is equal to the ratio of the number of horizontal pixels of the converted video signal and the video signal, the number of horizontal pixels of the converted video signal is larger than the number of pixels in the active period for all video signal format methods to be transmitted.
  • the transmission frequency division ratio is set so as to ensure the length of the horizontal blanking period Hblank required for that purpose.
  • the horizontal pixel number of the converted video signal becomes a natural number for all formats to be transmitted. be able to.
  • the frequency divider 1201 can be easily configured by setting both the denominator and the numerator to an even number.
  • the configuration of the frequency divider 1201 can be further simplified by setting the denominator as small as possible within the range that satisfies the above conditions.
  • the reduction rate of the horizontal blanking period Hblank can be increased by making the numerator as small as possible.
  • the horizontal blanking period Hblank can be reduced by the same method for a plurality of video formats having different resolutions, and therefore the configuration of the video signal transmission device is commonly used. It becomes possible.
  • the configuration of the video signal receiving device in the third embodiment is the same as that in the second embodiment.
  • the reception multiplication ratio of the multiplier 2201 is the reciprocal of the transmission frequency division ratio in the video signal transmitting apparatus 1200, that is, the numerator is the number of horizontal pixels in each format and the common divisor of the number of horizontal pixels other than 1, Set to a natural number. Note that by setting both the denominator and numerator of the reception multiplication ratio to an even number, the multiplier 2201 can be easily configured. As a result, the horizontal blanking period Hblank can be restored by the same method for a plurality of video format methods having different resolutions, so that the configuration of the video signal receiving device 2200 can be used in common.
  • the vertical blanking period periodically present for each frame in the blanking period of the video signal has the same length as the horizontal blanking period to be reduced for each horizontal line.
  • the buffer memory 1102 may be controlled so as to delete these signals.
  • “1” when each signal is “1” may be a predetermined first value such as a high level, for example, and when each signal is “0”. “0” may be a predetermined second value such as a low level, for example. Note that the first value and the second value may be interchanged.
  • the buffer memories 1102, 1202, 2102, 2202 in the above embodiments may be storage means such as various memories.
  • the video signal transmitting apparatus is based on a video signal composed of an active period including video data and a blanking period not including video data.
  • a video signal transmission device that transmits a converted video signal with a reduced number of parts,
  • a frequency dividing unit that divides a pixel clock synchronized with the video signal by a predetermined transmission division ratio, and outputs the divided clock as a converted pixel clock;
  • First storage means for storing the video signal;
  • the first storage means is controlled to write the video signal during the active period of the video signal, read out the video signal during the active period of the converted video signal, and output the video signal as the converted video signal.
  • the transmission frequency division ratio is equal to the ratio between the number of horizontal pixels of the converted video signal and the number of horizontal pixels of the video signal.
  • the video signal transmission device is the video signal transmission device according to the first aspect, in which the first control unit includes: First control signal generation means for generating a read permission signal having a predetermined value in a period corresponding to the product of the number of pixels included in the active period of the video signal and one clock period of the converted pixel clock; Based on the horizontal synchronization signal of the video signal, it has the same period as that required to transmit one horizontal line of the converted video signal, has one pulse in one period, and the period of the pulse is Conversion horizontal synchronization signal generating means for generating and outputting a converted horizontal synchronization signal corresponding to at least a part of the blanking period of the converted video signal, The first control unit writes the video signal to the first storage unit during an active period of the video signal, and the video signal from the first storage unit during a period when the value of the read permission signal is a predetermined value. Is read out and output as the converted video signal.
  • First control signal generation means for generating a read permission signal having a predetermined value in a period
  • the video signal transmission device is the video signal transmission device according to the first or second aspect, in which the first control unit is configured to control a blanking period of the video signal.
  • the first storage means is configured to delete, for each horizontal line, a signal having the same length as that of the reduced horizontal blanking period with respect to a vertical blanking period periodically present for each frame. Control.
  • the video signal transmission device is the video signal transmission device according to any one of the first to third aspects, in which the transmission division ratio is: It is a number obtained by dividing a natural number by a divisor of the number of horizontal pixels of the video signal and the number of horizontal pixels other than 1.
  • the video signal transmission device is the video signal transmission device according to any one of the first to fourth aspects, in which the video signal transmission device is a horizontal
  • the transmission division ratio corresponds to the signal format of a plurality of transmission data having different numbers of pixels, and the transmission division ratio is a common divisor of the number of horizontal pixels of the signal format of the plurality of transmission data and the number of horizontal pixels other than 1, and the natural number is divided. It is a number.
  • the video signal transmission device is the video signal transmission device according to any one of the first to fifth aspects, wherein the transmission frequency division ratio is a denominator. And a fraction in which both numerators are even numbers.
  • the transmission division ratio is 20/22.
  • a video signal receiving device receives a converted video signal generated by the video signal transmitting device according to any one of the first to seventh aspects, and A video signal receiving device for restoring and outputting a video signal, Multiplying means for multiplying the converted pixel clock by a predetermined reception multiplication ratio and outputting it as a pixel clock; Second storage means for storing the converted video signal; The converted video signal is written to the second storage means during the active period of the converted video signal, and the converted video signal is read from the second storage means during the active period of the video signal and output as the video signal. And a second control means for controlling the second storage means, The reception multiplication ratio is a ratio between the number of horizontal pixels of the video signal and the number of horizontal pixels of the converted video signal.
  • the video signal receiving device is the video signal receiving device according to the eighth aspect, wherein the second control means includes: A write permission signal is generated in the active period of the converted video signal, and a read permission signal is generated in a period corresponding to the product of the number of pixels included in the active period of the video signal and one clock period of the pixel clock.
  • Control signal generating means A horizontal synchronization signal restoring means for generating a horizontal synchronization signal in a predetermined period within the blanking period of the video signal, which has the same period as the period of one line of the video signal based on the converted horizontal synchronization signal
  • the second control unit writes the converted video signal to the second storage unit during the period of the write permission signal, and reads the converted video signal from the second storage unit during the period of the read permission signal.
  • the second storage means is controlled to output as the video signal.
  • the video signal transmission method reduces a part of the blanking period based on a video signal configured by an active period including video data and a blanking period not including video data.
  • the video signal is written to the first storage means during the active period of the video signal, and the video signal is read from the first storage means and output as the converted video signal during the active period of the converted video signal.
  • the first storage means is controlled so as to reduce a part of signals included in a horizontal blanking period periodically present for each horizontal line in the blanking period of the video signal. Controlling step,
  • the transmission frequency division ratio is equal to the ratio between the number of horizontal pixels of the converted video signal and the number of horizontal pixels of the video signal.
  • a video signal receiving method is a video that receives the converted video signal generated by the video signal transmission method according to the tenth aspect, and restores and outputs the video signal.
  • a signal receiving method Multiplying the converted pixel clock by a predetermined reception multiplication ratio and outputting as a pixel clock;
  • the converted video signal is written to the second storage means during the active period of the converted video signal, and the converted video signal is read from the second storage means during the active period of the video signal and output as the video signal.
  • the reception multiplication ratio is a ratio between the number of horizontal pixels of the video signal and the number of horizontal pixels of the converted video signal.
  • the vertical blanking period is not reduced, but only the horizontal blanking period is reduced, so that the necessary storage capacity of the buffer memory is greatly increased. Can be reduced.
  • the video signal receiving apparatus and method of the present disclosure it is possible to receive a signal with a reduced blanking period, restore the signal format of transmission data as in the prior art, and output it.
  • control signal of the buffer memory can be easily generated by using the synchronizing signal input together with the video signal. Further, the horizontal synchronization signal can be transmitted even after the blanking period is deleted.
  • the transmission frequency division ratio can be set to a number obtained by dividing the natural number by the divisor of the number of horizontal pixels other than 1 and the number of horizontal pixels other than 1, the blanking period can be obtained without performing special signal processing.
  • the number of horizontal pixels of the signal with reduced can be a natural number.
  • a plurality of video formats having different resolutions are obtained by setting a transmission division ratio to a number obtained by dividing a natural number by the number of horizontal pixels of the signal format of the plurality of transmission data and a common divisor of the number of horizontal pixels other than 1.
  • the blanking period can be reduced with the configuration of the common video signal transmission apparatus.
  • the video signal transmission device and method, the video signal reception device and method according to the present disclosure are useful as a transmission device or the like used between devices that handle video signals or within devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Television Systems (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

 映像データを含むアクティブ期間と映像データを含まないブランキング期間とから構成される映像信号に基づいて、ブランキング期間の一部を削減して変換映像信号として送信する映像信号送信装置及び方法であって、映像信号のアクティブ期間において映像信号を記憶手段に書き込み、変換映像信号のアクティブ期間において映像信号を記憶手段から読み出して変換映像信号として出力するように記憶手段を制御し、映像信号のブランキング期間のうち、水平ライン毎に周期的に存在する水平ブランキング期間に含まれる信号の一部を削減するように記憶手段を制御する。

Description

映像信号送信装置及び受信装置
 本開示は、例えばHDMI(High-Definition Multimedia Interface)などの映像信号の非圧縮伝送方式を用いた映像信号送信装置及び方法、並びに映像信号受信装置及び方法に関する。
 従来、映像信号の非圧縮伝送方式として、HDMIが広く用いられてきた。HDMIの映像信号送信装置では、入力される信号のうち、3チャンネルの映像信号(RGB信号、もしくは輝度信号と色差信号)に対し、必要に応じてそれぞれ8ビット幅の信号に変換する処理が行われる。その際、ピクセルクロックも映像信号にあわせて速度が変換される。その後、映像信号及び水平、垂直同期信号と音声信号から伝送データが生成される。ここで、必要に応じて暗号化も行われる。その後、符号化、パラレル/シリアル変換が行われ、送信される。映像信号受信装置では、受信信号に対してシリアル/パラレル変換、復号化が行われた後、映像信号及び音声信号の復元が行われる。また、必要に応じて映像信号のビット数が元の値となるように変換される。
特開2005-102161号公報
 昨今、ブランキング期間を削減して伝送速度を低減するための方式(例えば、特許文献1参照。)が検討されているが、垂直方向のブランキング期間を削除するために、最大でこれに相当する期間、バッファメモリを用いて映像データを保持する必要がある。そのためには大きなバッファメモリが必要となり、回路規模が増大するという課題があった。
 本開示の目的は以上の問題点を解決し、回路規模を大幅に増大することなく、ブランキング期間削減により伝送速度を低減することが可能な映像信号送信装置及び方法、並びに映像信号受信装置及び方法を提供することにある。
 本開示の第1の態様に係る映像信号送信装置は、映像データを含むアクティブ期間と映像データを含まないブランキング期間とから構成される映像信号に基づいて、ブランキング期間の一部を削減して変換映像信号として送信する映像信号送信装置であって、
 前記映像信号と同期したピクセルクロックを所定の送信分周比で分周し、分周後のクロックを変換ピクセルクロックとして出力する分周手段と、
 前記映像信号を記憶する第1の記憶手段と、
 前記映像信号のアクティブ期間において映像信号を書き込み、前記変換映像信号のアクティブ期間において前記映像信号を読み出して前記変換映像信号として出力するように上記第1の記憶手段を制御し、前記映像信号のブランキング期間のうち、水平ライン毎に周期的に存在する水平ブランキング期間に含まれる信号の一部を削減するように前記第1の記憶手段を制御する第1の制御手段を備え、
 前記送信分周比は、前記変換映像信号の水平ピクセル数と、前記映像信号の水平ピクセル数の比に等しい。
 本開示の第2の態様に係る映像信号受信装置は、上記映像信号送信装置により生成された変換映像信号を受信し、前記映像信号を復元して出力する映像信号受信装置であって、
 前記変換ピクセルクロックを所定の受信逓倍比で逓倍し、ピクセルクロックとして出力する逓倍手段と、
 前記変換映像信号を記憶する第2の記憶手段と、
 前記変換映像信号のアクティブ期間において前記変換映像信号を前記第2の記憶手段に書き込み、前記映像信号のアクティブ期間において前記第2の記憶手段から前記変換映像信号を読み出して前記映像信号として出力するように前記第2の記憶手段を制御する第2の制御手段とを備え、
 前記受信逓倍比は、前記映像信号の水平ピクセル数と、前記変換映像信号の水平ピクセル数の比である。
 これらの概括的かつ特定の態様は、システム、方法、コンピュータプログラム並びにシステム、方法及びコンピュータプログラムの任意の組み合わせにより実現してもよい。
 従って、本開示に係る映像信号送信装置によれば、垂直ブランキング期間は削減せずに、水平ブランキング期間のみを削減するため、必要なバッファメモリの記憶容量を大幅に削減できる。また、ブランキング期間を削減しない場合との映像信号送信装置の共通化も容易である。従って、回路規模の増大を最小限に抑えつつ、ブランキング期間の削減により伝送速度を低減することが可能である。また、本開示の映像信号受信装置によれば、ブランキング期間を削減した信号を受信し、従来と同じ伝送データの信号フォーマットに復元して出力することが可能になる。
本開示の実施の形態1に係る映像信号送信装置1100の構成を示すブロック図である。 図1の映像信号送信装置1100で用いる変換映像信号のフォーマットを示す図である。 実施の形態1に係る各伝送データの信号フォーマットに対する送信分周比の設定方法を示す表である。 本開示の実施の形態1に係る映像信号受信装置2100の構成を示すブロック図である。 本開示の実施の形態2に係る映像信号送信装置1200の構成を示すブロック図である。 図4Aのメモリ制御信号生成回路1203の構成を示す回路図である。 図4Aの映像信号送信装置1200の動作を示す各信号のタイミングチャートである。 本開示の実施の形態2に係る映像信号受信装置2200の構成を示すブロック図である。 図6Aのメモリ制御信号生成回路2203の構成を示す回路図である。 図6Aの映像信号受信装置2200の動作を示す各信号のタイミングチャートである。 本開示の実施の形態3に係る各伝送データの信号フォーマットに対する送信分周比の設定方法を示す表である。 一般的な伝送データの信号フォーマットを示す図である。 一般的な別の伝送データの信号フォーマットを示す図である。
 以下、本開示に係る実施の形態について図面を参照して説明する。なお、以下の各実施の形態において、同様の構成要素については同一の符号を付している。
1.概要
 図9は一般的な伝送データの信号フォーマットを示す図である。図9において、伝送データは、映像信号に同期して、画面の上から下への垂直方向で1ラインずつ伝送される。ここで、Hactiveは水平方向のアクティブ期間、Hblankは水平方向のブランキング期間、Vactiveは垂直方向のアクティブ期間、Vblankは垂直方向のブランキング期間を示す。Vblankの範囲のラインは、1ラインが全てブランキング期間である。一方、Vactiveの期間のラインには、アクティブ期間に含まれるピクセルと、水平方向のブランキング期間に含まれるピクセルの両方が含まれる。アクティブ期間には、映像データが伝送される。一方、映像信号のブランキング期間の一部を用いて、音声データ等が伝送される。ブランキング期間の残りの期間は、データ伝送には寄与しない。なお、正確には同期信号の値のみ伝送されているが、同期信号は音声データと同時に伝送することが可能であるため、この期間はデータ伝送のために必須ではない。
 ところで、映像信号におけるブランキング期間の割合は、フルハイビジョン(1080p)の場合で20%弱にも達し、ここから音声信号伝送に必要な分を除いても10%弱が残る。よって、映像の高精細化に伴い伝送速度が増大することにより、データ伝送に寄与しないブランキング期間の信号の量も増大する。そのため、ブランキング期間を削減して伝送速度を低減するための方式が検討されてきた。
 図10は、別の伝送データの信号フォーマットを示す図である。図10の例では、伝送フレームは映像データ、音声データ、制御データのみから構成され、ブランキング期間のうち、データを伝送しない期間は全て削除されている。これにより、元の映像データと比較して、伝送する必要のあるデータ量が削減されるため、伝送速度が低減される。
 図9に示した信号フォーマットの映像信号を、図10に示したフォーマットに変換して伝送する場合、以下の課題があった。
(1)垂直方向のブランキング期間を削除するために、最大でこれに相当する期間、バッファメモリを用いて映像データを保持する必要がある。そのためには大きなバッファメモリが必要となり、回路規模が増大する。しかもこの問題は、映像が高精細化するに従ってより顕著になる。
(2)HDMIとの信号フォーマットの違いが大きいため、従来のHDMI伝送信号フォーマットと図10のフォーマットを共存(例えば、解像度によって使い分ける)するためには、送受信回路を個別に用意する必要があり、回路規模が増大する。
(3)伝送速度と、元の映像信号の速度の比が、小さな自然数の比で表せないため、映像信号送信装置及び映像信号受信装置内部におけるクロックの逓倍器及び分周器の構成が複雑になり、場合によっては実現が困難になる。
 前記課題を解決するために、本開示の実施の形態に係る映像信号送信装置においては、ブランキング期間を含む映像信号が入力される。ブランキング期間には垂直方向のブランキング期間(以下、垂直ブランキング期間という。)Vblankと水平方向のブランキング期間(以下、水平ブランキング期間という。)Hblankがあるが、本実施の形態では、水平ブランキング期間Hblankのみを削減する。これにより、最大で水平ブランキング期間Hblankに相当する期間だけ、バッファメモリを用いて映像データを保持すればよいため、従来技術と比較してバッファメモリの記憶容量を小さくすることができる。また、水平方向のブランキング期間も全てを削除するのではなく、一部を残す。これにより、ブランキング期間削除後の水平方向のデータ長を柔軟に設定できる。ブランキング期間を削減する具体的な方法は、以下の各実施の形態について説明する。
2.実施の形態1
2-1.映像信号送信装置1100
 図1は本開示の実施の形態1に係る映像信号送信装置1100の構成を示すブロック図である。図1において、映像信号送信装置1100は、映像信号送信部1100Aと、伝送データ生成部1105とを備えて構成され、ここで、映像信号送信部1100Aは、分周器1101と、バッファメモリ1102とを備えて構成される。
 図1において、分周器1101には、映像信号と同じ速度を持つピクセルクロックが入力され、分周器1101は、入力されるピクセルクロックに対し、詳細後述する所定の送信分周比で分周を行い、分周後のピクセルクロックを変換ピクセルクロックとしてバッファメモリ1102及び伝送データ生成部1105に出力する。バッファメモリ1102には、映像信号と、書き込み許可信号と、読み出し許可信号と、ピクセルクロックと、変換ピクセルクロックが入力される。そして、バッファメモリ1102は、書き込み許可信号が“1”のときに映像信号の書き込みをピクセルクロック(write clock)と同期して行い、読み出し許可信号が“1”のときに、書き込まれたデータの読み出しを変換ピクセルクロック(read clock)と同期して行い、読み出されたデータ信号を変換映像信号として伝送データ生成部1105に出力する。
 次いで、伝送データ生成部1105は、第1の従来例と同様の方法で、入力される変換映像信号及び音声信号を、変換ピクセルクロックを用いて合成し、符号化し、パラレル/シリアル変換を行って所定の伝送データ及び伝送クロックを生成して所定の伝送路に出力する。すなわち、伝送データ生成部1105では、必要に応じて、例えば変換映像信号の8ビット幅への変換及び変換ピクセルクロックの速度変換を行った後で、伝送データ生成、符号化、パラレル/シリアル変換の処理が行われる。映像信号及び変換映像信号のビット幅が8ビットの場合、映像信号及び変換映像信号のピクセル数と、時間方向のビット数は一致する。なお、図1Aでは伝送データ生成部1105から伝送クロックを出力するように記載しているが、伝送データに8B10B等のクロック再生に適した符号化を行い、クロックを伝送しない構成とすることもできる。
 図1において、映像信号及び変換映像信号は簡単のため1系統のみ記載しているが、実際には図9の構成と同様に、3チャンネルの各映像信号が存在する。よって、バッファメモリ1102も3チャンネルの映像信号のそれぞれについて用意される。これは、以下の実施の形態についても同様である。なお、必要に応じて映像信号のチャンネル数を1又は2に減らしたり、逆に4以上に増やしたりしてもよい。
 図2Aは図1の映像信号送信装置1100で用いる変換映像信号のフォーマットを示す図である。入力される映像信号は、図9に示す垂直ブランキング期間Vblank及び水平ブランキング期間Hblankを含む信号である。これに対し、出力される変換映像信号は、図2Aに示すように、水平方向のアクティブ期間(以下、水平アクティブ期間という。)Hactiveの水平ピクセル数、垂直方向のアクティブ期間(以下、垂直アクティブ期間という。)Vactiveの垂直ライン数はいずれも入力される映像信号と同じである。また、垂直ブランキング期間Vblankのライン数も入力される映像信号と同じである。よって、垂直アクティブ期間Vactiveと垂直ブランキング期間Vblankの和である垂直ライン数は、入力される映像信号と同じである。一方、水平ブランキング期間Hblank’のピクセル数は、入力される映像信号より小さくする。これにより、水平アクティブ期間Hactiveのピクセル数と水平ブランキング期間Hblank’のピクセル数の和である水平ピクセル数は、入力される映像信号より小さくなる。
 以上説明したように、入力される映像信号と、出力される変換映像信号との間で、1フレームの映像を伝送するのに必要な時間が同じとすると、1ライン分のデータの伝送を行うのに必要な時間も等しくなる。よって、映像信号の速度fと変換映像信号の速度f‘の比は、映像信号の水平ピクセル数Ntと変換映像信号の水平ピクセル数Nt’の比に等しくなる。すなわち、次式の関係を満たすように設定する。
[数1]
Nt/Nt’=f/f’   (1)
 従って、分周器1101の送信分周比と、変換映像信号の水平ピクセル数は、下記の条件を満たすように、設定する。
(1)送信分周比は、映像信号と変換映像信号の水平ピクセル数の比に等しい。
(2)送信分周比は、映像信号の水平ピクセル数及び1以外の当該水平ピクセル数の約数を分母、自然数を分子とした分数で表される。
(3)変換映像信号の水平ピクセル数は、水平アクティブ期間Hactiveのピクセル数より大きい。
 映像信号の水平ピクセル数及び1以外の当該水平ピクセル数の約数を送信分周比の分母とすることにより、変換映像信号の水平ピクセル数が自然数となるようにすることができる。また、分母及び分子を共に偶数とすることで、分周器1101を構成するのが容易になる。さらに、前記の条件を満たす範囲で、分母を極力小さな値とすることにより、分周器1101の構成をさらに簡略化することができる。一方、分子を極力小さくすることにより、ブランキング期間の削減率を高めることができる。また、音声信号を伝送する場合は、図2Aに示すブランキング期間を用いてパケット化して伝送される。なお、この場合、図2Aの水平ブランキング期間Hblank’の長さは、音声信号の伝送に必要なビット数を確保できるように設定する。
 図2Bは実施の形態1に係る各伝送データの信号フォーマットに対する送信分周比の設定方法を示す表である。図2Bにおいて、前記の条件を満たす、4K2Kフォーマットの場合の送信分周比の設定例を示しており、この場合において分周比は20/22であり、伝送レートは約9%削減される。
 また、書き込み許可信号は図9における水平アクティブ期間Hactiveに“1”、水平ブランキング期間Hblankに“0”となるように設定される。一方、読み出し許可信号は図2Aにおける水平アクティブ期間Hactiveに“1”、水平ブランキング期間Hblank’に“0”となるように設定される。
 以上のように構成された実施の形態1に係る映像信号送信装置1100によれば、第2の従来例と異なり、垂直ブランキング期間Vblankは削減せずに、水平ブランキング期間Hblankのみを削減する。よって、バッファメモリ1102の記憶容量は、水平ブランキング期間Hblankに相当する記憶容量を確保すればよく、第2の従来例と比較して大幅に削減できる。また、ブランキング期間削減処理の後段の回路は、第1の従来例の映像信号送信装置の構成をそのまま流用できるため、HDMIとの映像信号送信回路の共通化も容易である。従って、回路規模の増大を最小限に抑えつつ、ブランキング期間の削減を実現することが可能である。
2-2.映像信号受信装置2100
 図3は本開示の実施の形態1に係る映像信号受信装置2100の構成を示すブロック図である。実施の形態1に係る映像信号受信装置2100は、映像信号送信装置1100と逆の処理を行うことにより、元の映像信号を復元する。図3において、映像信号受信装置2100は、伝送データ復調部2105と、映像信号受信部2100Aとを備えて構成される。ここで、映像信号受信部2100Aは、逓倍器2101と、バッファメモリ2102とを備えて構成される。
 図3において、伝送データ復調部2105には、図1の映像信号受信装置1100から所定の伝送路を介して伝送される伝送データ及び伝送クロックが入力され、伝送データ復調部2105は、入力される伝送データ及び伝送クロックに対し図1の伝送データ生成部1105と逆の処理が実行され、すなわち、入力される伝送データに対し、伝送クロックを用いて音声信号を分離し、復号化、シリアル/パラレル変換を行って変換映像信号及び音声信号を生成して出力する。なお、伝送クロックは伝送データとは別途受信するのではなく、伝送データからクロック再生により得ることも可能である。
 逓倍器2101には、変換映像信号と同じ速度を持つ変換ピクセルクロックが入力され、逓倍器2101は、入力される変換ピクセルクロックに対し、変換映像信号と映像信号の水平ピクセル数の比に等しい(すなわち、図1の分周器1101における送信分周比の逆数に等しい)受信逓倍比で逓倍を行い、逓倍後のクロックをピクセルクロックとして出力する。なお、受信逓倍比の分母、分子をいずれも偶数とすることで、逓倍器2101を構成するのが容易になる。バッファメモリ2102には、変換映像信号と、書き込み許可信号と、読み出し許可信号と、変換ピクセルクロックと、ピクセルクロックが入力される。そして、バッファメモリ2102は、書き込み許可信号が“1”のときに変換ピクセルクロックと同期して変換映像信号の書き込みを行い、読み出し許可信号が“1”のときに、ピクセルクロックと同期して書き込まれたデータの読み出しを行い、映像信号として出力する。ここで、書き込み許可信号は図9における水平アクティブ期間Hactiveに“1”、水平ブランキング期間Hblankに“0”となるように生成される。一方、読み出し許可信号は図2Aにおける水平アクティブ期間Hactiveに“1”、水平ブランキング期間Hblankに“0”となるように生成される。
 図3において、映像信号及び変換映像信号は簡単のため1チャンネルのみ記載しているが、実際には図10の構成と同様に、3チャンネルの映像信号及び変換映像信号が存在する。よって、バッファメモリ2102も3チャンネルの映像信号のそれぞれについて用意する。これは、以下の実施の形態においても同様である。なお、必要に応じて映像信号のチャンネル数を1又は2に減らしたり、逆に4以上に増やしたりしてもよい。
 以上のように構成された実施の形態1に係る映像信号受信装置2100によれば、映像信号送信装置1100を用いて生成された伝送データを受信し、従来例と同じ映像信号の信号フォーマットに復元して出力することが可能になる。
3.実施の形態2
3-1.映像信号送信装置1200
 図4Aは本開示の実施の形態2に係る映像信号送信装置1200の構成を示すブロック図である。図4Aにおいて、映像信号送信装置1200は、映像信号送信部1200Aと、伝送データ生成部1205とを備えて構成される。ここで、映像信号送信部1200Aは、分周器1201と、バッファメモリ1202と、メモリ制御信号生成回路1203と、変換同期信号生成回路1204とを備えて構成される。分周器1201と、バッファメモリ1202とはそれぞれ、基本的に実施の形態1に係る分周器1101及びバッファメモリ1102と同様に動作する。なお、図4Aでは伝送データ生成部1205から伝送クロックを出力するように記載しているが、伝送データに8B10B等のクロック再生に適した符号化を行い、クロックを伝送しない構成とすることもできる。以下、映像信号送信装置1200の構成に関して、図1Aの映像信号送信装置1100との相違点について説明する。
 図4において、メモリ制御信号生成回路1203には、水平同期信号HSYNCと、ピクセルクロックと、変換ピクセルクロックとが入力され、メモリ制御信号生成回路1203は、変換映像信号の水平アクティブ期間Hactive’に“1”、水平ブランキング期間Hblank’に“0”となる読み出し許可信号を生成してバッファメモリ1202に出力する。ここで、水平同期信号HSYNCの代わりに、データイネーブル信号を入力してもよい。読み出し許可信号の生成方法については詳細後述する。
 図4Bは図4Aのメモリ制御信号生成回路1203の構成を示す回路図である。図4Bにおいて、メモリ制御信号生成回路1203は、遅延型フリップフロップ1211,1221と、アンドゲート1212,1222と、カウンタ1213,1223と、アンドゲート1214とを備えて構成される。ここで、遅延型フリップフロップ1211及びアンドゲート1212は、水平同期信号HSYNCの立ち上りタイミングを抽出する。また、カウンタ1213は、ハイレベル信号が入力されるときは計数値を0にリセットし、ローレベル信号が入力されるときはピクセルクロックであるライトクロック(write clock)を計数して、後述する(Nhsync+Nhback)ビットを計数すると、出力信号をローレベルからハイレベルに変化させる。次に、遅延型フリップフロップ1221及びアンドゲート1222は、カウンタ1213の出力信号の立ち上りタイミングを抽出する。また、カウンタ1223は、ハイレベル信号が入力されるときは計数値を0にリセットし、ローレベル信号が入力されるときは変換ピクセルクロックであるリードクロック(read clock)を計数して、後述するNaビットを計数すると、出力信号をローレベルからハイレベルに変化させる。そして、メモリ制御信号生成回路1203は、水平同期信号HSYNCから、ピクセルクロック及び変換ピクセルクロックを用いて読み出し許可信号を生成して出力する。
 映像信号と共に入力される水平同期信号のフォーマットは、あらかじめ定められた水平ピクセル数に基づき定義されているため、水平ブランキング期間Hblankを削減した場合はそのままでは伝送することができない。そこで、変換水平同期信号生成回路1204で、水平同期信号HSYNCから、水平ブランキング期間Hblankを削減した場合でも伝送可能な変換水平同期信号HSYNC’を生成する。そして、変換水平同期信号HSYNC’を水平同期信号HSYNCの代わりに伝送し、受信側で水平同期信号HSYNCを復元する。
 バッファメモリ1202には、書き込み許可信号として、映像信号と共に入力され、映像信号の水平アクティブ期間Hactiveで“1”、水平ブランキング期間Hblankで“0”となるデータイネーブル信号が入力される。
 図5は図4Aの映像信号送信装置1200の動作を示す各信号のタイミングチャートである。図5を参照して、映像信号送信装置1200に入出力される各信号のタイミングの関係について、映像信号及び変換映像信号のビット幅が8ビットの場合を例にとり説明する。映像信号の1ラインを構成するビット数Ntは、水平アクティブ期間Hactiveのビット数Naと、水平ブランキング期間Hblankのビット数Nbの和となる。一方、変換映像信号は、水平アクティブ期間Hactiveのビット数が映像信号と同じNaであり、水平ブランキング期間Hblankのビット数をNb’とすると、1ラインを構成するビット数Nt’はこれらの和となる。
 前記のような変換映像信号を出力するためには、読み出し許可信号は、速度f’bpsでNaビットの期間だけ“1”となり、続いてNb’ビットの期間だけ“0”となるように生成する。バッファメモリ1102の必要な記憶容量を最小にするためには、読み出し許可信号の立ち上がりを映像信号及びデータイネーブル信号と一致させる。読み出し許可信号の立ち上がりタイミングは、データイネーブル信号から直接検出するか、もしくは水平同期信号HSYNCの立ち上がりを基準に、水平同期信号HSYNCの立ち上がりから映像信号のアクティブ期間Hactiveの開始タイミングまでのビット数(Nhsync+Nhback)ビットだけ図4Bのカウンタ1213によりピクセルクロック(write clock)を計数することで検出する。また、読み出し許可信号の立ち下がりタイミングは、前記立ち上がりタイミングから映像信号のアクティブ期間Hactiveの終了タイミングまでのビット数(Na)ビットだけ図4Bのカウンタ1223により変換ピクセルクロック(read clock)を計数することで検出する。これにより、読み出し許可信号を生成できる。
 この場合において、映像信号の水平アクティブ期間Hactiveが終了した時点で、変換映像信号はNa×f’/fビット読み出されているため、変換映像信号のアクティブ期間Hactiveの残りはNa×(1-f’/f)ビットとなり、これが最低限必要なバッファメモリ1202の記憶容量となる。なお、図5は図4Aの各ブロックにおける遅延が無い理想的な場合の例であり、実際には各ブロックの遅延時間を考慮してタイミングを設定する。
 変換水平同期信号HSYNC’は、下記の条件を満たすように、変換水平同期信号生成回路1204により生成される。
(1)変換映像信号の1本の水平ラインの伝送に必要な期間と同じ周期を持つ。
(2)1周期に1つのパルスが存在する。
(3)前記パルスの期間は、変換映像信号の水平ブランキング期間Hblankの一部又は全部(すなわち、少なくとも一部)に相当する。
 図5の各信号の動作タイミング例では、水平ブランキング期間Hblankの開始と変換水平同期信号HSYNC’のパルスの立ち上がりを一致させているが、変換水平同期信号HSYNC’のパルスはこのタイミングに限定されず、水平ブランキング期間Hblankに収まっていればよい。
 本実施の形態の映像信号送信装置を用いることにより、映像信号に付随する同期信号(水平同期信号もしくはデータイネーブル信号)を用いて、容易にバッファメモリの制御信号を生成することができる。また、水平ブランキング期間Hblankを削減した場合においても、水平ラインの周期を表す変換水平同期信号HSYNC’を伝送することが可能となる。
 なお、図4Aの映像信号送信装置1200において、メモリ制御信号生成回路1203及び変換水平同期信号生成回路1204は、バッファメモリ1202の動作を制御する制御回路を構成する。
3-2.映像信号受信装置2200
 図6Aは本開示の実施の形態2に係る映像信号受信装置2200の構成を示すブロック図である。図6Aにおいて、映像信号受信装置2200は、伝送データ復調部2205と、映像信号受信部2200Aとを備えて構成される。映像信号受信部2200Aは、逓倍器2201と、バッファメモリ2202と、メモリ制御信号生成回路2203と、水平同期信号復元回路2204とを備えて構成される。ここで、逓倍器2201とバッファメモリ2202とはそれぞれ、基本的に図4Aの逓倍器2101及びバッファメモリ1202と同様に動作する。以下、映像信号受信装置2200の構成に関して、図3の映像信号受信装置1200との相違点について説明する。
 図6Aにおいて、映像信号送信装置1200から送信された伝送データを、伝送データ復調部2205によって第1の従来例と同様の方法で復調すると、映像信号の代わりに変換映像信号が、水平同期信号の代わりに変換水平同期信号が、ピクセルクロックの代わりに変換ピクセルクロックが得られ、これらの信号が映像信号受信部2200Aに入力される。なお、図6Aでは伝送データ復調部2205で伝送クロックも受信するように記載しているが、伝送クロックを受信せずに伝送データからクロックを再生し、ここから変換ピクセルクロックを得てもよい。
 メモリ制御信号生成回路2203には、変換水平同期信号HSYNC’と、変換ピクセルクロックと、ピクセルクロックが入力され、変換映像信号の水平アクティブ期間Hactiveに“1”、水平ブランキング期間Hblankに“0”となる書き込み許可信号と、映像信号の水平アクティブ期間Hactiveに“1”、水平ブランキング期間Hblankに“0”となる読み出し許可信号を生成する。水平同期信号復元回路2204には、変換水平同期信号HSYNC’と、変換ピクセルクロックと、ピクセルクロックが入力され、図3の水平同期信号復元回路1204と同様に水平同期信号HSYNCを復元する。
 図6Bは図6Aのメモリ制御信号生成回路2203の構成を示す回路図である。図6Bにおいて、メモリ制御信号生成回路2203は、遅延型フリップフロップ2211,2221,2241と、アンドゲート2212,2214,2222,2232,2242と、カウンタ2213,2223,2231,2243とを備えて構成される。ここで、遅延型フリップフロップ2211及びアンドゲート2212は、変換水平同期信号HSYNCの立ち上りタイミングを抽出する。また、カウンタ2213は、ハイレベル信号が入力されるときは計数値を0にリセットし、ローレベル信号が入力されるときは変換ピクセルクロックであるライトクロック(write clock)を計数して、後述するNb’ビットを計数すると、出力信号をローレベルからハイレベルに変化させる。次に、遅延型フリップフロップ2221及びアンドゲート2222は、カウンタ2213の出力信号の立ち上りタイミングを抽出する。また、カウンタ2223は、ハイレベル信号が入力されるときは計数値を0にリセットし、ローレベル信号が入力されるときはライトクロック(write clock)を計数して、後述するNaビットを計数すると、出力信号をローレベルからハイレベルに変化させる。一方、カウンタ2231は、ハイレベル信号が入力されるときは計数値を0にリセットし、ローレベル信号が入力されるときはライトクロック(write clock)を計数して、後述するNbビットを計数すると、出力信号をローレベルからハイレベルに変化させる。次に、遅延型フリップフロップ2241及びアンドゲート2242は、カウンタ2231の出力信号の立ち上りタイミングを抽出する。また、カウンタ2243は、ハイレベル信号が入力されるときは計数値を0にリセットし、ローレベル信号が入力されるときはピクセルクロックであるリードクロック(read clock)を計数して、後述するNaビットを計数すると、出力信号をローレベルからハイレベルに変化させる。そして、メモリ制御信号生成回路2203は、変換水平同期信号HSYNC’から、変換ピクセルクロック及びピクセルクロックを用いて書き込み許可信号及び読み出し許可信号を生成して出力する。
 図7は図6Aの映像信号受信装置2200の動作を示す各信号のタイミングチャートである。図7を参照して、映像信号受信装置2200に入出力される各信号のタイミングの関係について以下説明する。
 変換映像信号及び映像信号の水平アクティブ期間Hactiveと水平ブランキング期間Hblankの長さ、及び速度は図5と同じである。変換水平同期信号のパルス幅、立ち上がりタイミング、速度も図5と同じである。すなわち、変換映像信号の水平ブランキング期間Hblank’の開始タイミングと、変換水平同期信号HSYNC’のパルスの立ち上がりタイミングは一致している。書き込み許可信号の生成は、下記の手順で行う。
(1)変換水平同期信号HSYNC’から、変換映像信号の水平ブランキング期間Hblank’の開始タイミングを抽出する。
(2)抽出された変換映像信号の水平ブランキング期間Hblank’の開始タイミングを基準にして、変換映像信号の水平ブランキング期間Hblank’のビット数Nb’だけ変換ピクセルクロック(write clock)を図6Bのカウンタ2213により計数することで、水平ブランキング期間Hblank’の終了タイミングを検出する。また、変換映像信号のNaビットだけ変換ピクセルクロック(write clock)を図6Bのカウンタ2223により計数することにより書き込み許可信号を確定する。これにより、書き込み許可信号を生成できる。
 一方、読み出し許可信号の生成は、下記の手順で行う。
(1)映像信号の水平ブランキング期間Hblankの開始タイミングを決定する。すなわち、図7の例では変換水平同期信号HSYNC’の立ち上がりに一致させており、変換水平同期信号HSYNC’から、変換映像信号の水平ブランキング期間Hblank’の開始タイミングを抽出し、これと同じタイミングを映像信号の水平ブランキング期間Hblankの開始タイミングとする。
(2)映像信号の水平ブランキング期間Hblankの開始タイミングを基準にして、映像信号の水平ブランキング期間Hblankのビット数Nbだけピクセルクロック(read clock)を図6Bのカウンタ2231により計数することで、水平ブランキング期間Hblankの終了タイミングを検出する。また、変換映像信号のNaビットだけピクセルクロック(read clock)を図6Bのカウンタ2243により計数することにより読み出し許可信号を確定する。これにより、読み出し許可信号を生成できる。
 水平同期信号の復元は、映像信号の各映像フォーマットにおいて定義されている所定のタイミングに基づき、以下の手順で行う。
(1)水平ブランキング期間Hblankの開始を基準として、水平同期信号パルスの立ち上がりまでのビット数Nhfrontだけピクセルクロックを計数することで、パルスの立ち上がりタイミングを決定する。
(2)さらに、パルス幅のビット数Nhsyncだけピクセルクロックを計数することで、パルスの立ち下がりタイミングを決定する。これにより、変換水平同期信号HSYNC’から水平同期信号HSYNCを生成することができる。
 なお、図7の例では、変換映像信号の水平ブランキング期間Hblank’の開始と変換水平同期信号HSYNC’のパルスの立ち上がりを一致させているが、変換水平同期信号HSYNC’のパルスはこのタイミングに限定されず、水平ブランキング期間Hblankに収まっていればよい。この場合、変換水平同期信号HSYNC’のパルスの立ち上がりから水平ブランキング期間Hblankの開始までのビット数Nhfrontだけ変換ピクセルクロックを計数することにより、変換映像信号の水平ブランキング期間Hblank’の開始タイミングを抽出する。
 以上のように構成された本実施の形態に係る映像信号受信装置2200を用いることにより、映像信号送信装置から伝送される変換水平同期信号HSYNC’を用いて、容易にバッファメモリの制御信号の生成、及び水平同期信号の復元を行うことができる。従って、映像信号送信装置2100を用いて生成された伝送データを受信し、従来例と同じ映像信号の信号フォーマットに復元して出力することが可能になる。
 なお、図6Aの映像信号送信装置2200において、メモリ制御信号生成回路2203及び変換水平同期信号復元回路2204は、バッファメモリ2202の動作を制御する制御回路を構成する。
4.実施の形態3
4-1.映像信号送信装置
 図8は本開示の実施の形態3に係る各伝送データの信号フォーマットに対する送信分周比の設定方法を示す表である。実施の形態3は、解像度の異なる複数の伝送データの信号フォーマットを同一の映像信号送信装置及び映像信号受信装置で扱うために説明される。本実施の形態における映像信号送信装置の構成は実施の形態2と同じであり、変換映像信号の水平ピクセル数及び分周器1201の送信分周比の設定方法に特徴がある。以下、図8の表に示す例を参照しながら、本実施の形態における水平ピクセル数及び送信分周比の設定方法について説明する。
 図8は、720p、1080p、4K2Kの3種類の映像フォーマット方式を伝送する場合の例である。本実施の形態では、異なる映像フォーマットに対して共通の送信分周比を設定することにより、映像信号送信装置の構成を共通に使用することを可能とする。そのために、以下の手順に基づき送信分周比を設定する。
 まず、各フォーマットにおける水平ブランキング期間Hblankの削減前の映像信号の水平ピクセル数について、これらの公約数(当該水平ピクセル数及び1を除く。)を求める。図8の例では、720pの映像フォーマット方式では1650ピクセル、1080pの映像フォーマット方式では2200ピクセル、4K2Kの映像フォーマット方式では4400ピクセルであるため、これらの公約数は2,5,10,11,22,25,50,55,110,275,550となる。
 次に、求めた公約数の1つを分母、自然数を分子として得られる分数を送信分周比とする。この送信分周比は、変換映像信号と映像信号の水平ピクセル数の比に等しいため、伝送する全ての映像信号フォーマット方式について、変換映像信号の水平ピクセル数がアクティブ期間のピクセル数より大きくなるように、送信分周比の分母及び分子の値を選択する。
 また、音声データを伝送する場合は、そのために必要な水平ブランキング期間Hblankの長さを確保できるように、送信分周比を設定する。映像信号の水平ピクセル数及び1以外の当該水平ピクセル数の公約数を送信分周比の分母とすることにより、伝送する全てのフォーマットについて、変換映像信号の水平ピクセル数が自然数となるようにすることができる。また、前記条件に加え、分母及び分子を共に偶数とすることで、分周器1201を構成するのが容易になる。さらに、前記の条件を満たす範囲で、分母を極力小さな値とすることにより、分周器1201の構成をさらに簡略化することができる。また、分子を極力小さくすることにより、水平ブランキング期間Hblankの削減率を高めることができる。
 本実施の形態の映像信号送信装置を用いることにより、解像度の異なる複数の映像フォーマットに対して同一の方法で水平ブランキング期間Hblankの削減を行えるため、映像信号送信装置の構成を共通に使用することが可能となる。
4-2.映像信号受信装置
 実施の形態3における映像信号受信装置の構成は、実施の形態2と同じである。この映像信号受信装置では、逓倍器2201の受信逓倍比を映像信号送信装置1200における送信分周比の逆数、すなわち分子を各フォーマットの水平ピクセル数及び1以外の当該水平ピクセル数の公約数、分母を自然数に設定する。なお、受信逓倍比の分母、分子をいずれも偶数とすることで、逓倍器2201を構成するのが容易になる。これにより、解像度の異なる複数の映像フォーマット方式に対して、同一の方法で水平ブランキング期間Hblankの復元を行えるため、映像信号受信装置2200の構成を共通に使用することが可能となる。
5.変形例
 以上の実施の形態において、映像信号のブランキング期間のうち、フレーム毎に周期的に存在する垂直ブランキング期間に対して、水平ライン毎に、削減される水平ブランキング期間と同じ長さの信号を削除するように、バッファメモリ1102を制御してもよい。
 以上の実施の形態においては、各信号が“1”であるときの“1”は、例えばハイレベルなどの所定の第1の値であってもよく、各信号が“0”であるときの“0”は、例えばローレベルなどの所定の第2の値であってもよい。なお、第1の値と第2の値を入れ替えてもよい。
 以上の実施の形態におけるバッファメモリ1102,1202,2102,2202は種々のメモリなどの記憶手段であってもよい。
6.本開示の要旨
 本開示の第1の態様に係る映像信号送信装置は、映像データを含むアクティブ期間と映像データを含まないブランキング期間とから構成される映像信号に基づいて、ブランキング期間の一部を削減して変換映像信号として送信する映像信号送信装置であって、
 前記映像信号と同期したピクセルクロックを所定の送信分周比で分周し、分周後のクロックを変換ピクセルクロックとして出力する分周手段と、
 前記映像信号を記憶する第1の記憶手段と、
 前記映像信号のアクティブ期間において映像信号を書き込み、前記変換映像信号のアクティブ期間において前記映像信号を読み出して前記変換映像信号として出力するように上記第1の記憶手段を制御し、前記映像信号のブランキング期間のうち、水平ライン毎に周期的に存在する水平ブランキング期間に含まれる信号の一部を削減するように前記第1の記憶手段を制御する第1の制御手段とを備え、
 前記送信分周比は、前記変換映像信号の水平ピクセル数と、前記映像信号の水平ピクセル数の比に等しい。
 また、本開示の第2の態様に係る映像信号送信装置は、前記第1の態様に記載の映像信号送信装置において、前記第1の制御手段は、
 前記映像信号のアクティブ期間に含まれるピクセル数と、前記変換ピクセルクロックの1クロック期間の積に相当する期間において所定値を有する読み出し許可信号を生成する第1の制御信号生成手段と、
 前記映像信号の水平同期信号に基づいて、前記変換映像信号の1本の水平ラインを伝送するのに要する期間と同じ周期を有し、1周期に1つのパルスを有し、前記パルスの期間が変換映像信号のブランキング期間の少なくとも一部に相当する変換水平同期信号を生成して出力する変換水平同期信号生成手段とを備え、
 前記第1の制御手段は、前記映像信号のアクティブ期間において映像信号を前記第1の記憶手段に書き込み、前記読み出し許可信号の値が所定値となる期間において前記第1の記憶手段から前記映像信号を読み出して前記変換映像信号として出力するように制御する。
 さらに、本開示の第3の態様に係る映像信号送信装置は、前記第1又は第2の態様に記載の映像信号送信装置において、前記第1の制御手段は、前記映像信号のブランキング期間のうち、フレーム毎に周期的に存在する垂直ブランキング期間に対して、水平ライン毎に、前記削減される水平ブランキング期間と同じ長さの信号を削除するように、前記第1の記憶手段を制御する。
 またさらに、本開示の第4の態様に係る映像信号送信装置は、前記第1から第3までの態様のうちのいずれか1つに記載の映像信号送信装置において、前記送信分周比は、前記映像信号の水平ピクセル数及び1以外の当該水平ピクセル数の約数で、自然数を除した数である。
 また、本開示の第5の態様に係る映像信号送信装置は、前記第1から第4までの態様のうちのいずれか1つに記載の映像信号送信装置において、前記映像信号送信装置は、水平ピクセル数の異なる複数の伝送データの信号フォーマットに対応し、前記送信分周比は、前記複数の伝送データの信号フォーマットの水平ピクセル数及び1以外の当該水平ピクセル数の公約数で、自然数を除した数である。
 さらに、本開示の第6の態様に係る映像信号送信装置は、前記第1から第5までの態様のうちのいずれか1つに記載の映像信号送信装置において、前記送信分周比は、分母及び分子がいずれも偶数である分数である。
 またさらに、本開示の第7の態様に係る映像信号送信装置は、前記第6の態様に記載の映像信号送信装置において、前記送信分周比は、20/22である。
 本開示の第8の態様に係る映像信号受信装置は、前記第1から第7までの態様のうちのいずれか1つに記載の映像信号送信装置により生成された変換映像信号を受信し、前記映像信号を復元して出力する映像信号受信装置であって、
 前記変換ピクセルクロックを所定の受信逓倍比で逓倍し、ピクセルクロックとして出力する逓倍手段と、
 前記変換映像信号を記憶する第2の記憶手段と、
 前記変換映像信号のアクティブ期間において前記変換映像信号を前記第2の記憶手段に書き込み、前記映像信号のアクティブ期間において前記第2の記憶手段から前記変換映像信号を読み出して前記映像信号として出力するように前記第2の記憶手段を制御する第2の制御手段とを備え、
 前記受信逓倍比は、前記映像信号の水平ピクセル数と、前記変換映像信号の水平ピクセル数の比である。
 また、本開示の第9の態様に係る映像信号受信装置は、前記第8の態様に記載の映像信号受信装置において、前記第2の制御手段は、
 前記変換映像信号のアクティブ期間において書き込み許可信号を生成し、前記映像信号のアクティブ期間に含まれるピクセル数と、前記ピクセルクロックの1クロック期間の積に相当する期間において読み出し許可信号を生成する第2の制御信号生成手段と、
 前記変換水平同期信号に基づいて、前記映像信号の1ライン分の期間と同じ周期を有し、前記映像信号のブランキング期間内における所定の期間において、水平同期信号を生成する水平同期信号復元手段とを備え、
 前記第2の制御手段は、前記書き込み許可信号の期間において前記変換映像信号を前記第2の記憶手段に書き込み、前記読み出し許可信号の期間において前記第2の記憶手段から前記変換映像信号を読み出して前記映像信号として出力するように前記第2の記憶手段を制御する。
 本開示の第10の態様に係る映像信号送信方法は、映像データを含むアクティブ期間と映像データを含まないブランキング期間とから構成される映像信号に基づいて、ブランキング期間の一部を削減して変換映像信号として送信する映像信号送信方法であって、
 前記映像信号と同期したピクセルクロックを所定の送信分周比で分周し、分周後のクロックを変換ピクセルクロックとして出力するステップと、
 前記映像信号のアクティブ期間において映像信号を第1の記憶手段に書き込み、前記変換映像信号のアクティブ期間において前記映像信号を前記第1の記憶手段から読み出して前記変換映像信号として出力するように上記第1の記憶手段を制御し、前記映像信号のブランキング期間のうち、水平ライン毎に周期的に存在する水平ブランキング期間に含まれる信号の一部を削減するように前記第1の記憶手段を制御するステップとを含み、
 前記送信分周比は、前記変換映像信号の水平ピクセル数と、前記映像信号の水平ピクセル数の比に等しい。
 また、本開示の第11の態様に係る映像信号受信方法は、前記第10の態様に記載の映像信号送信方法により生成された変換映像信号を受信し、前記映像信号を復元して出力する映像信号受信方法であって、
 前記変換ピクセルクロックを所定の受信逓倍比で逓倍し、ピクセルクロックとして出力するステップと、
 前記変換映像信号のアクティブ期間において前記変換映像信号を第2の記憶手段に書き込み、前記映像信号のアクティブ期間において前記第2の記憶手段から前記変換映像信号を読み出して前記映像信号として出力するように前記第2の記憶手段を制御するステップとを含み、
 前記受信逓倍比は、前記映像信号の水平ピクセル数と、前記変換映像信号の水平ピクセル数の比である。
 以上詳述したように、本開示に係る映像信号送信装置及び方法によれば、垂直ブランキング期間は削減せずに、水平ブランキング期間のみを削減するため、必要なバッファメモリの記憶容量を大幅に削減できる。また、ブランキング期間を削減しない場合との映像信号送信装置の共通化も容易である。従って、回路規模の増大を最小限に抑えつつ、ブランキング期間の削減により伝送速度を低減することが可能である。また、本開示の映像信号受信装置及び方法によれば、ブランキング期間を削減した信号を受信し、従来と同じ伝送データの信号フォーマットに復元して出力することが可能になる。
 さらに、映像信号と共に入力される同期信号を用いることにより、容易にバッファメモリの制御信号を生成できる。また、ブランキング期間の削除後も水平同期信号を伝送することができる。
 さらに、送信分周比を、前記映像信号の水平ピクセル数及び1以外の当該水平ピクセル数の約数で、自然数を除した数とすることにより、特殊な信号処理を行うことなく、ブランキング期間を削減した信号の水平ピクセル数を自然数とすることができる。
 さらに、送信分周比を、前記複数の伝送データの信号フォーマットの水平ピクセル数及び1以外の当該水平ピクセル数の公約数で、自然数を除した数とすることにより、解像度の異なる複数の映像フォーマットに対して、共通の映像信号送信装置の構成でブランキング期間を削減することが可能となる。
 さらに、送信分周比の分子及び分母をいずれも偶数とすることにより、ピクセルクロックを分周する分周器を容易に構成することが可能となる。
 本開示に係る映像信号送信装置及び方法、映像信号受信装置及び方法は、映像信号を扱う機器間もしくは機器内で用いる伝送装置等として有用である。
1100,1200…映像信号送信装置、
1100A,1200A…映像信号送信部、
1101,1201…分周器、
1102,1202…バッファメモリ、
1203…メモリ制御信号生成回路、
1204…変換水平同期信号生成回路、
1211,1221…遅延型フリップフロップ、
1212,1214,1222…アンドゲート、
1213,1223…カウンタ、
1105,1205…伝送データ生成部、
2100,2200…映像信号受信装置、
2100A,2200A…映像信号受信部、
2101,2201…逓倍器、
2102,2202…バッファメモリ、
2105,2205…伝送データ復調部、
2203…メモリ制御信号生成回路、
2204…水平同期信号復元回路、
2211,2221,2241…遅延型フリップフロップ、
2212,2222,2242…アンドゲート、
2213,2223,2231,2243…カウンタ、
2214,2232…アンドゲート。

Claims (11)

  1.  映像データを含むアクティブ期間と映像データを含まないブランキング期間とから構成される映像信号に基づいて、ブランキング期間の一部を削減して変換映像信号として送信する映像信号送信装置であって、
     前記映像信号と同期したピクセルクロックを所定の送信分周比で分周し、分周後のクロックを変換ピクセルクロックとして出力する分周手段と、
     前記映像信号を記憶する第1の記憶手段と、
     前記映像信号のアクティブ期間において映像信号を書き込み、前記変換映像信号のアクティブ期間において前記映像信号を読み出して前記変換映像信号として出力するように上記第1の記憶手段を制御し、前記映像信号のブランキング期間のうち、水平ライン毎に周期的に存在する水平ブランキング期間に含まれる信号の一部を削減するように前記第1の記憶手段を制御する第1の制御手段とを備え、
     前記送信分周比は、前記変換映像信号の水平ピクセル数と、前記映像信号の水平ピクセル数の比に等しい映像信号送信装置。
  2.  前記第1の制御手段は、
     前記映像信号のアクティブ期間に含まれるピクセル数と、前記変換ピクセルクロックの1クロック期間の積に相当する期間において所定値を有する読み出し許可信号を生成する第1の制御信号生成手段と、
     前記映像信号の水平同期信号に基づいて、前記変換映像信号の1本の水平ラインを伝送するのに要する期間と同じ周期を有し、1周期に1つのパルスを有し、前記パルスの期間が変換映像信号のブランキング期間の少なくとも一部に相当する変換水平同期信号を生成して出力する変換水平同期信号生成手段とを備え、
     前記第1の制御手段は、前記映像信号のアクティブ期間において映像信号を前記第1の記憶手段に書き込み、前記読み出し許可信号の値が所定値となる期間において前記第1の記憶手段から前記映像信号を読み出して前記変換映像信号として出力するように制御する請求項1に記載の映像信号送信装置。
  3.  前記第1の制御手段は、前記映像信号のブランキング期間のうち、フレーム毎に周期的に存在する垂直ブランキング期間に対して、水平ライン毎に、前記削減される水平ブランキング期間と同じ長さの信号を削除するように、前記第1の記憶手段を制御する請求項1又は2に記載の映像信号送信装置。
  4.  前記送信分周比は、前記映像信号の水平ピクセル数及び1以外の当該水平ピクセル数の約数で、自然数を除した数である請求項1乃至3のうちのいずれか1つに記載の映像信号送信装置。
  5.  前記映像信号送信装置は、水平ピクセル数の異なる複数の伝送データの信号フォーマットに対応し、前記送信分周比は、前記複数の伝送データの信号フォーマットの水平ピクセル数及び1以外の当該水平ピクセル数の公約数で、自然数を除した数である請求項1乃至4のうちのいずれか1つに記載の映像信号送信装置。
  6.  前記送信分周比は、分母及び分子がいずれも偶数である分数である請求項1乃至5のうちのいずれか1つに記載の映像信号送信装置。
  7.  前記送信分周比は、20/22である請求項6に記載の映像信号送信装置。
  8.  請求項1乃至7のうちのいずれか1つに記載の映像信号送信装置により生成された変換映像信号を受信し、前記映像信号を復元して出力する映像信号受信装置であって、
     前記変換ピクセルクロックを所定の受信逓倍比で逓倍し、ピクセルクロックとして出力する逓倍手段と、
     前記変換映像信号を記憶する第2の記憶手段と、
     前記変換映像信号のアクティブ期間において前記変換映像信号を前記第2の記憶手段に書き込み、前記映像信号のアクティブ期間において前記第2の記憶手段から前記変換映像信号を読み出して前記映像信号として出力するように前記第2の記憶手段を制御する第2の制御手段とを備え、
     前記受信逓倍比は、前記映像信号の水平ピクセル数と、前記変換映像信号の水平ピクセル数の比である映像信号受信装置。
  9.  前記第2の制御手段は、
     前記変換映像信号のアクティブ期間において書き込み許可信号を生成し、前記映像信号のアクティブ期間に含まれるピクセル数と、前記ピクセルクロックの1クロック期間の積に相当する期間において読み出し許可信号を生成する第2の制御信号生成手段と、
     前記変換水平同期信号に基づいて、前記映像信号の1ライン分の期間と同じ周期を有し、前記映像信号のブランキング期間内における所定の期間において、水平同期信号を生成する水平同期信号復元手段とを備え、
     前記第2の制御手段は、前記書き込み許可信号の期間において前記変換映像信号を前記第2の記憶手段に書き込み、前記読み出し許可信号の期間において前記第2の記憶手段から前記変換映像信号を読み出して前記映像信号として出力するように前記第2の記憶手段を制御する請求項8に記載の映像信号受信装置。
  10.  映像データを含むアクティブ期間と映像データを含まないブランキング期間とから構成される映像信号に基づいて、ブランキング期間の一部を削減して変換映像信号として送信する映像信号送信方法であって、
     前記映像信号と同期したピクセルクロックを所定の送信分周比で分周し、分周後のクロックを変換ピクセルクロックとして出力するステップと、
     前記映像信号のアクティブ期間において映像信号を第1の記憶手段に書き込み、前記変換映像信号のアクティブ期間において前記映像信号を前記第1の記憶手段から読み出して前記変換映像信号として出力するように上記第1の記憶手段を制御し、前記映像信号のブランキング期間のうち、水平ライン毎に周期的に存在する水平ブランキング期間に含まれる信号の一部を削減するように前記第1の記憶手段を制御するステップとを含み、
     前記送信分周比は、前記変換映像信号の水平ピクセル数と、前記映像信号の水平ピクセル数の比に等しい映像信号送信方法。
  11.  請求項10に記載の映像信号送信方法により生成された変換映像信号を受信し、前記映像信号を復元して出力する映像信号受信方法であって、
     前記変換ピクセルクロックを所定の受信逓倍比で逓倍し、ピクセルクロックとして出力するステップと、
     前記変換映像信号のアクティブ期間において前記変換映像信号を第2の記憶手段に書き込み、前記映像信号のアクティブ期間において前記第2の記憶手段から前記変換映像信号を読み出して前記映像信号として出力するように前記第2の記憶手段を制御するステップとを含み、
     前記受信逓倍比は、前記映像信号の水平ピクセル数と、前記変換映像信号の水平ピクセル数の比である映像信号受信方法。
PCT/JP2013/000492 2012-04-03 2013-01-30 映像信号送信装置及び受信装置 WO2013150698A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/493,656 US9288418B2 (en) 2012-04-03 2014-09-23 Video signal transmitter apparatus and receiver apparatus using uncompressed transmission system of video signal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012084788 2012-04-03
JP2012-084788 2012-04-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/493,656 Continuation US9288418B2 (en) 2012-04-03 2014-09-23 Video signal transmitter apparatus and receiver apparatus using uncompressed transmission system of video signal

Publications (1)

Publication Number Publication Date
WO2013150698A1 true WO2013150698A1 (ja) 2013-10-10

Family

ID=49300208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000492 WO2013150698A1 (ja) 2012-04-03 2013-01-30 映像信号送信装置及び受信装置

Country Status (3)

Country Link
US (1) US9288418B2 (ja)
JP (1) JPWO2013150698A1 (ja)
WO (1) WO2013150698A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017077745A1 (ja) * 2015-11-05 2017-05-11 ソニー株式会社 フレーム生成装置、フレーム生成方法、信号抽出装置、信号抽出方法、画像伝送システムおよび画像伝送方法
JP2018194807A (ja) * 2017-05-17 2018-12-06 株式会社ソニー・インタラクティブエンタテインメント 映像出力装置、変換装置、映像出力方法及び変換方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150015782A1 (en) * 2013-07-12 2015-01-15 Vixs Systems, Inc. Video processing device for reformatting an audio/video signal and methods for use therewith
US9769417B1 (en) * 2014-11-05 2017-09-19 Lattice Semiconductor Corporation Metadata transfer in audio video systems
WO2016196138A1 (en) * 2015-05-29 2016-12-08 Lattice Semiconductor Corporation Communication of sideband data for videos
KR102568911B1 (ko) * 2016-11-25 2023-08-22 삼성디스플레이 주식회사 표시 장치 및 이의 구동 방법
CN110636219B (zh) * 2019-09-03 2020-12-01 北京三快在线科技有限公司 一种视频数据流的传输方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08182020A (ja) * 1994-12-22 1996-07-12 Matsushita Electric Ind Co Ltd 映像信号送信装置と映像信号受信装置
JPH09244611A (ja) * 1996-03-08 1997-09-19 Hitachi Ltd 映像信号の処理装置及びこれを用いた表示装置
JP2000152121A (ja) * 1998-11-13 2000-05-30 Sony Corp クロック生成回路、画像表示装置及び方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576771A (en) * 1994-06-13 1996-11-19 Philips Electronics North America Corporation Horizontal picture compression in widescreen television receivers
JP4487675B2 (ja) 2003-08-27 2010-06-23 日本ビクター株式会社 伝送システム
KR100586669B1 (ko) 2003-08-27 2006-06-08 닛뽕빅터 가부시키가이샤 전송 시스템
US7864247B2 (en) * 2006-08-18 2011-01-04 Himax Technologies Limited Method and apparatus for image scaling
JP5242320B2 (ja) * 2008-09-29 2013-07-24 富士通テン株式会社 発振回路、及び映像表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08182020A (ja) * 1994-12-22 1996-07-12 Matsushita Electric Ind Co Ltd 映像信号送信装置と映像信号受信装置
JPH09244611A (ja) * 1996-03-08 1997-09-19 Hitachi Ltd 映像信号の処理装置及びこれを用いた表示装置
JP2000152121A (ja) * 1998-11-13 2000-05-30 Sony Corp クロック生成回路、画像表示装置及び方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017077745A1 (ja) * 2015-11-05 2017-05-11 ソニー株式会社 フレーム生成装置、フレーム生成方法、信号抽出装置、信号抽出方法、画像伝送システムおよび画像伝送方法
JP2018194807A (ja) * 2017-05-17 2018-12-06 株式会社ソニー・インタラクティブエンタテインメント 映像出力装置、変換装置、映像出力方法及び変換方法

Also Published As

Publication number Publication date
US20150009408A1 (en) 2015-01-08
JPWO2013150698A1 (ja) 2015-12-17
US9288418B2 (en) 2016-03-15

Similar Documents

Publication Publication Date Title
WO2013150698A1 (ja) 映像信号送信装置及び受信装置
TWI529656B (zh) Image display system and image processing method
JP4434267B2 (ja) インターフェース回路
US9258603B2 (en) Method and system for achieving higher video throughput and/or quality
KR100374605B1 (ko) 그래픽 신호의 광 전송장치 및 방법
WO2013042264A1 (ja) 映像処理装置および映像処理方法
EP2785053B1 (en) Transmission device and reception device for baseband video data, and transmission/reception system
JP5914884B2 (ja) デジタルビデオ信号出力装置および表示装置、デジタルビデオ信号出力方法および受信方法
CA2888926A1 (en) Method and device for processing video image
JP2017520939A (ja) Ledテレビ用のデータ処理方法、装置及びledテレビ
TWI532374B (zh) 訊號傳輸裝置及其傳送器與接收器
KR101787424B1 (ko) 패킷화된 통신 네트워크를 통해 통신되는 스트리밍 콘텐츠를 위한 클럭 복원 메커니즘
KR20100042456A (ko) 멀티미디어 소스에서의 클록 생성 방법 및 데이터 전송 방법
KR100819439B1 (ko) 멀티미디어신호 직렬 전송장치
JP2009047698A (ja) シリアル・データ・コミュニケーションのチャネル間スキュー測定方法及び装置
JP2014140110A (ja) 変換回路、画像処理装置および変換方法
CN105007444B (zh) 一种单像素视频显示装置及显示方法
US20050027893A1 (en) Method of controlling high-speed DVI using compression technique and DVI transmitter and receiver using the same
TW201444372A (zh) 用於傳達具有非壓縮視頻的邊帶資料的方法、設備及系統
CN111355914B (zh) 一种视频制式信号生成装置和方法
JP2005318490A (ja) 伝送システム
US7233366B2 (en) Method and apparatus for sending and receiving and for encoding and decoding a telop image
Xiong et al. Research and design of data transmission system based on HDMI
CN102035994A (zh) 一种无损改变输出视频格式的电路及方法
JP2017011686A (ja) ビデオ信号伝送装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13772975

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014509006

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13772975

Country of ref document: EP

Kind code of ref document: A1