WO2013150244A1 - Systeme de commande de vehicule en mode autonome et vehicule comprenant un tel systeme de commande. - Google Patents

Systeme de commande de vehicule en mode autonome et vehicule comprenant un tel systeme de commande. Download PDF

Info

Publication number
WO2013150244A1
WO2013150244A1 PCT/FR2013/050739 FR2013050739W WO2013150244A1 WO 2013150244 A1 WO2013150244 A1 WO 2013150244A1 FR 2013050739 W FR2013050739 W FR 2013050739W WO 2013150244 A1 WO2013150244 A1 WO 2013150244A1
Authority
WO
WIPO (PCT)
Prior art keywords
autonomous
vehicle
control
block
signal
Prior art date
Application number
PCT/FR2013/050739
Other languages
English (en)
Inventor
Nicoleta MINOIU-ENACHE
Original Assignee
Renault S.A.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S. filed Critical Renault S.A.S.
Priority to KR1020147031056A priority Critical patent/KR102050937B1/ko
Priority to US14/390,141 priority patent/US9399472B2/en
Priority to JP2015503923A priority patent/JP6320991B2/ja
Priority to ES13719980.8T priority patent/ES2663385T3/es
Priority to EP13719980.8A priority patent/EP2834119B1/fr
Publication of WO2013150244A1 publication Critical patent/WO2013150244A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/035Bringing the control units into a predefined state, e.g. giving priority to particular actuators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0055Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements
    • G05D1/0061Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements for transition from automatic pilot to manual pilot and vice versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0004In digital systems, e.g. discrete-time systems involving sampling
    • B60W2050/0006Digital architecture hierarchy

Definitions

  • Vehicle control system in autonomous mode and vehicle comprising such a control system.
  • the invention relates to a vehicle control system in autonomous mode and to a vehicle comprising such a control system.
  • the invention is particularly applicable to a standard vehicle usually intended to operate conventionally in manual mode, in other words can be driven by a human being.
  • the invention makes it possible to build vehicles in series with a second so-called autonomous mode of operation in which the vehicle, such as a robot, is capable of evolving without a human driver.
  • These two modes of operation allow the realization of many services such as an automated parking service, a valet service, an automatic battery charging service for a vehicle with electric propulsion or even a fuel filling for a vehicle with thermal propulsion when c
  • a driverless mobility service for persons with reduced mobility a service of rebalancing fleets of rental vehicles by setting the peloton.
  • the document US5469356 discloses an automatic control system on the one hand autonomous operation of the vehicle in response to a speed setpoint and a steering angle from a browser, and on the other hand manual operation.
  • the control system receives alternating information between automatic mode and manual mode from a button located in the cabin and a button located outside the cab of the vehicle.
  • Document US8078349 discloses an autonomous vehicle comprising a control module for putting the vehicle in autonomous mode by executing an autonomous mode switching instruction based on reference data associated with a vehicle location marker detector.
  • the object of the invention is to respond to the problems posed by the prior art, particularly in terms of security in the event of an unforeseen situation.
  • the subject of the invention is a control system of a vehicle comprising:
  • an automatic control module generating autonomous control signals for the actuators of the vehicle
  • a switching module arranged to select the manual control signals in a manual operation mode and the autonomous control signals in a stand-alone operation mode.
  • the control system is notable in that the automatic control module comprises:
  • a security block arranged to transmit to the switching module at least the autonomous control signal calculated in a case of normal autonomous operation and an emergency autonomous control signal in a case of abnormal autonomous operation.
  • the automatic control module comprises a supervision block which houses a global finite state machine comprising a first global state associated with the manual operating mode and a second global state associated with the autonomous operating mode so as to send to the switching module at least one signal for selecting the manual and autonomous control signals.
  • the global finite state machine comprises a third global state associated with the case of abnormal autonomous operation so as to send to the security block at least one emergency braking signal.
  • the automatic control module includes a diagnostic block arranged to detect any event associated with a case of abnormal autonomous operation and to send at least one signal to the supervisory block representative of the cases of normal and abnormal autonomous operation.
  • the automatic generation block comprises a control / command sub-block which houses a local finite state machine comprising a first local state associated with an autonomous start and a second local state associated with an autonomous immobilization.
  • control system comprises a navigation module and / or location arranged to send in real time to the automatic development block, trajectory coordinates expressed in a local coordinate system to the vehicle.
  • control system also relates to a method for controlling a vehicle comprising:
  • the method is remarkable in that the autonomous mode steps include:
  • a normal autonomous mode step executed in a case of normal autonomous operation and in which the autonomous control signals comprise at least one computed autonomous control signal;
  • an autonomous standby mode step executed in a case of abnormal autonomous operation and in which the autonomous control signals comprise at least one emergency autonomous control signal.
  • control method comprises:
  • the invention further relates to a computer program product which comprises instructions for implementing the method according to the invention when executed by a computer.
  • the invention finally relates to a motor vehicle which comprises a control system according to the invention.
  • FIG. 1 is a system diagram according to the invention
  • FIG. 2 shows a control module according to the invention
  • Figure 1 illustrates a control system of a vehicle 11 according to the invention.
  • a set of human control members comprising a steering wheel 6, a speed lever 7 to at least three recoil positions, neutral, displacement, an accelerator pedal 9, a brake pedal 5 and a button 8 parking brake.
  • Each of the human control members here represented for purely illustrative and by no means exhaustive, generates one or more manual control signals for at least one of several actuators 25 to 29 of the vehicle 11.
  • the steering wheel 6 is provided in known manner with a rotation sensor (not shown) to generate a manual control signal 556 for a power steering servomotor 26 which steers the wheels according to a steering torque reference. given by the manual control signal 556 in digital or analog form.
  • the accelerator pedal 9 is provided in a known manner with a travel sensor (not shown) to generate a continuous type manual control signal 559 in digital or analog form intended for a powertrain 29.
  • the manual control signal 559 is more specifically intended for the electronic injection device.
  • the manual control signal 559 is more specifically intended for the electronic control device for supplying electrical power.
  • the speed lever 7 is provided in known manner with a position sensor (not shown) for generating a manual control signal 557 for a mechanical coupling device 27.
  • the coupling device Mechanical 27 is purely illustrative automatic gearbox or at least robotic.
  • the mechanical coupling device 27 is purely illustrative of a simple gear reducer which then does not receive the signal 557.
  • the manual control signal 557 is sent to an EVC computer (electrical acronym vehicle control in English) which manages the electric motor adequately in a manner known per se.
  • the manual control signal 557 is typically with discrete values R, N, D, each corresponding to one of at least three positions recoil, neutral, displacement.
  • the brake pedal 5 is provided in a known manner with a stroke sensor (not shown) for generating a continuous type manual control signal 555 in digital or analog form for communicating a clamping pressure value to a hydraulic braking device. 25.
  • the parking brake button 8 generates a typically binary discrete type manual control signal 558 for communicating a parking brake device clamping command 28.
  • An automatic control module 1 generates autonomous control signals 455, 456, 457, 458, 459 respectively of the same nature as the control signals manual 555, 556, 557, 558, 559 for controlling the actuators 25, 26, 27, 28, 29 of the vehicle.
  • a switching module 500 comprises a switch 505, respectively 506, 507, 508, 509 for switching the manual control signal 555, respectively 556, 557, 558, 559 on a bimodal control signal 655, respectively 656, 657, 658, 659 in manual operation and to switch the autonomous control signal 455, respectively 456, 457, 458, 459 on the bimodal control signal 655, respectively 656, 657, 658, 659 in autonomous operation.
  • Each of the bimodal control signals 655, 656, 657, 658, 659 is connected to the corresponding actuator 25, 26, 27, 28, 29.
  • controlled switches such as relays or transistors allow a controlled switching of the manual operation mode to the autonomous mode of operation and vice versa.
  • the switches 505 to 509 are made by a computer addressing mechanism, a first set of memory cells being assigned to the signals 555 to 559, a second a set of memory cells being assigned to the signals 455 to 459 and a third set of memory cells being assigned to the signals 655 to 659.
  • the switching module 500 is advantageously an electronic device of the calculator or electronic card type which, by electronic and wired controls, programmed or wired to execute commutations between the commands that can come from the driver and the commands coming from a computer which hosts the automatic control module 1 and vice versa. These commands are intended for the actuators of the car including in particular those relating to the steering column 26, the brake 25, the acceleration 29, the parking brake assisted 28, the gear lever 7 provided in this case with a servomotor and various accessories not shown.
  • the switching module 500 has the effect of imposing on the actuators of the car to have a certain behavior when the commands coming from the computer which hosts the module 1, are active.
  • the signal exchanges between the various modules are shown in wire form in FIGS. 1 and 2. However, it is advantageous to dedicate a communication bus, for example of the CAN or other type, specifically dedicated to communication between different computers or electronic devices. which host the automatic control module 1, the switching module 500 and other modules for implementing the autonomous operation of the motor vehicle such as, for example, a navigation / location module 30.
  • the dedicated communication bus does not interfere with the usual vehicle communication bus 10 which then does not need to be modified to bring the invention to a standard vehicle.
  • the vehicle communication bus 10 also allows the automatic control module 1, housed in a computer or in any other electronic device, to read access to various data of the vehicle which circulates in the usual manner on the bus 10, in particular the speed vehicle, the actual steering angle of the wheels.
  • a block 2 for automatically generating calculated autonomous control signals 64, 74, 84, 94, 95 comprises at least one component 60, 70, 80, 90 for calculating an autonomous control signal.
  • the component 60 is arranged to calculate the signal
  • the component 60 receives a signal 56 an angle command from a trajectory control-command sub-block 50 and an angle measurement signal 16 flown by an existing angle sensor at the steering column 6, 26 and sent on the CAN 10 bus, or an added angle sensor on the 6.26 steering column.
  • the component 60 calculates in a manner known in terms of regulation, a steering torque which, applied to the actuator 26, cancels an angle error between the values of the signals 16 and 56.
  • the real-time calculated steering torque is then that which achieves and maintain a desired steering angle of the wheels.
  • the value of the calculated torque is reported in real time in the control signal 64.
  • the steering column 6, 26 comprises a rotation servo on an angle setpoint
  • the component reports in real time an angle value in the control signal 64 which is in this case calculated from the signal 56 without having to read the signal 16 on the bus 10.
  • the component 70 is arranged to calculate the signal 74 which allows the actuator 27 to position itself so as to transmit or not to transmit a power from the powertrain 29 to the wheels so as to advance the vehicle in reverse, while moving forward. or freewheeling.
  • the signal 74 is for example a ternary signal whose each of the three values R, N, D is calculated in a logical order from a signal 57 from the traffic control-command sub-block 50.
  • the component 80 is arranged to calculate the signal 84 which allows the actuator 28 to tighten and release the parking brake.
  • the signal 84 is for example a binary signal logically calculated from a signal 58 coming from the sub-block 50 of command-control trajectory.
  • the component 90 is arranged to calculate a signal
  • the component 90 receives a signal 59 which gives in real time a speed reference value v * from the sub-block 50 of trajectory control-command.
  • the component 90 also reads on the CAN bus 10 of the vehicle an actual speed value measured in real time and available in a signal 19 on the CAN bus of the vehicle.
  • the component 90 calculates in real time an acceleration and braking torque to reach the speed reference v *.
  • the component 90 also calculates in real time a signal 95 for hydraulic braking of the wheels, for example as soon as the speed of the vehicle is zero to secure the vehicle despite a possible slope.
  • the sub-block 50 receives a signal 35 from the navigation / location module 30.
  • the signal 35 contains a trajectory setpoint, for example in three-component vector form comprising two spatial coordinates x *, y * and a speed v *.
  • the coordinates of spatial coordinates x *, y * and velocity v * are expressed in a reference linked to the vehicle.
  • the sub-block 50 calculates in real time the angle of the wheels and the speed necessary to follow the trajectory setpoint received from the module 30.
  • the sub-block 50 accesses also read on the bus 10 to receive in a message frame or signal 15 vehicle data necessary or useful for calculating the signals 56 to 59.
  • vehicle data necessary or useful for calculating the signals 56 to 59.
  • the navigation / location module 30 is an external electronic device to the module 1, preferably a computer which contains a program for calculating the vehicle trajectory setpoint and which communicates with the module 1 by means of the dedicated CAN bus. In order to calculate the vehicle trajectory setpoint, the navigation / location module 30 also has, in a known manner, a cartography of the vehicle environment, an eudiometric mechanism for modeling the evolution of the vehicle in real time. position of the vehicle, sensors and / or one or more cameras.
  • Sub-block 3 is supervised by a control / command sub-block 40 by means of one or more calculation sequencing signals 46.
  • the control / command sub-block 40 hosts a local finite state machine, now explained with reference to FIG.
  • An initial step 341 is activated by powering on the module 1.
  • a transition 342 is validated by a combination of two conditions.
  • a first condition is linked to a signal 34 coming from a supervision block 300 when its value indicates an autonomous start instruction, especially after a prolonged stop.
  • a second condition is related to a non-zero value of the speed reference v * from the navigation / location module 30.
  • a validation of the transition 342 activates a succession of three steps 343 to 345.
  • Step 343 essentially consists in ordering a hydraulic brake clamping sub-block 3 for calculating values of autonomic steering signals of the vehicle.
  • Step 344 essentially consists of ordering a handbrake release to sub-block 3 for calculating values of autonomic steering signals of the vehicle.
  • the step 345 essentially consists in ordering a passage of the actuator 27 from the neutral position N to the displacement position D to the sub-block 3 for calculating values of autonomous steering signals of the vehicle.
  • the local finite state machine then returns to the initial step 341, leaving the hand to the sub-block 3 for calculating autonomous driving signal values to accelerate the vehicle and make it follow the trajectory setpoint.
  • This sequence guarantees that the vehicle is always in a safe situation and does not move without authorization, because of the slope for example.
  • a transition 346 is validated by a combination of two other conditions.
  • a first other condition is related to the signal 34 from the supervision block 300 when its value indicates an autonomous immobilization instruction or safety of the vehicle, especially with a view to a prolonged stop.
  • a second other condition is related to a zero value of the speed setpoint v * from the navigation / location module 30 and the stopped state of the vehicle (zero measured speed).
  • a validation of the transition 346 activates a succession of three steps 347 to 349.
  • the step 347 essentially consists in ordering a passage of the actuator 27 from the displacement position D to the neutral position N to the sub-block 3 for calculating values of autonomous steering signals of the vehicle.
  • the step 348 essentially consists in ordering a handbrake tightening sub-block 3 for calculating values of autonomic control signals of the vehicle.
  • the step 349 essentially consists in ordering a hydraulic brake release to the sub-block 3 for calculating values of autonomic steering signals of the vehicle.
  • the local state machine then returns to the initial step 341, waiting for a new start command.
  • This sequence further ensures that the vehicle is always in a safe situation and does not move without authorization, for example because of the slope.
  • Block 2 sends the computed autonomous control signals 64, 74, 84, 94, 95 to a security block 400 that we are now describing.
  • the security block 400 is supervised by the supervision block by means of one or more signals 340 for selecting autonomous control signals to be transmitted to the switching module 500.
  • the security block 400 transmits to the switching module 500 one or more autonomous control signals 455 to 459 which retranscribe each one a signal of autonomous autonomous control.
  • the autonomous control signal 456 retranscribes the signal 64 as it is delivered by the component 60 of to maintain the steering angle value as it results from the navigation.
  • the autonomous control signal 457 retranscribes a forcing at the neutral position N of the actuator 27 so as not to transmit power from the powertrain 29 to the wheels.
  • the autonomous control signal 458 transcribes a forcing contained for example in memory which requires the actuator 28 to tighten the parking brake.
  • the autonomous control signals 459, 455 retranscribe a forcing values contained for example in memory that reproduce a zero acceleration value of the vehicle and which require the actuator 25 to brake the vehicle.
  • the security block 400 transmits to the switching module 500 the autonomous control signals 456, 457, 458, 459, 455 which retranscribe respectively the autonomous control signals 64, 74, 84, 94, 95 from the block 2.
  • the security block 400 is arranged to transmit to the switching module 500 the autonomic control signals calculated in the case of normal autonomous operation and the emergency autonomous control signals in the case of abnormal autonomous operation.
  • the security block 400 is the guardian of the outputs of the module 1. All the outputs pass through the security block 400 before being sent, for example by the CAN bus dedicated to the switching module 500.
  • At the first function of the security block 400 described above can be added a second function which relates to a complete separation of manual operation modes relating to manual driving and autonomous operation relating to automatic driving.
  • the signals 459, 455, 456, 458, 457 respectively relating to the outputs for the acceleration actuators, braking, steering, brake and RND are positioned on non-defined values, in other words on values that can not be interpreted by the actuators, for example a value outside the operating range of one actuator. In this way, the switching module 500 can not be wrong and control automatic operation outside the expected cases.
  • the switching module erroneously reproduces one of the signals 455 to 459 on one of the signals 655 to 659 while the module 1 is not in an autonomous operating mode, the value of the signal thus incompatible with the operation of one respective actuator, is detected to be invalidated or preferably to trigger a stop of extreme urgency, until the vehicle crush.
  • the switching module 500 is controlled by a selection signal 250 coming from the automatic control module 1, more particularly from a supervision block 300 which houses a global finite state machine now explained with reference to FIG. 4.
  • the automatic control module 1 positions the global machine in an initial step 301.
  • the automatic control module 1 is in a sleeping state.
  • An activation transition 302 is enabled when a signal 130 from a diagnostic block 100 indicates a good state of health of devices and control means constantly monitored by the diagnostic block 100 and when the master module 20 asks for this transition.
  • the monitored devices essentially comprise the CAN bus 10 for communication with the remainder of the vehicle, the link or connections with the switching module 500, the actuators that carry out the movement of the vehicle (brake, acceleration, steering system, assisted parking brake). .
  • the monitored control means essentially include those relating to the steering angle (required steering angle vis-à-vis the measured steering angle), those relating to the speed (desired speed vis-à-vis the speed measured) and those relating to the trajectory (desired trajectory vis-à-vis the real trajectory)
  • the global machine triggers an emergency state of the automatic control module 1, for example made by a step 311 explained later in the description. description.
  • a validation of the transition 302 activates a standby step 303 of the automatic control module 1.
  • the steps 301 and 303 correspond to a state of the overall machine, associated a priori with the manual operating mode.
  • An autonomous mode transition 304 is enabled when a signal 236 from an automatic control enable authorization block 200 indicates that the control module 1 is in established communication, for example by a signal 120, with each of the other modules 20, 30 necessary for the autonomous mode of operation, that the vehicle is stationary, handbrake tightened and if possible shift lever in the neutral position and when the master module 20 requests this transition.
  • the conditions of zero vehicle speed, tight parking brake, transmission neutral position, and engine ready state, as verified by the automatic control activation authorization block 200, are required to activate the autonomous control of the vehicle. If at least one of these conditions is not satisfied, the autonomous control of the vehicle can not be activated.
  • the block 300 receives information from the automatic control activation authorization block 200 which, depending on the state of the vehicle obtained by the signal 120 and the diagnosis obtained by a signal 12 from the block 100, can prevent the activation of the autonomous control.
  • a validation of the transition 304 activates a step 305 for preparing the control module 1 to start the autonomous control of the vehicle.
  • the step 305 for preparing the control module 1 essentially consists of sending the signal 250 to the switching module 500 so as to select the manual control signals 455 to 459 to switch them on the control signals of the actuators 655 to 659, to send the signal 340 to the security block 400 so as to reproduce the calculated autonomous control signals 64, 74, 84, 94, 95 on the autonomous control signals 456, 457, 458, 459, 455 and, if not already the case to put the gear lever in neutral position N.
  • a transition 306 is validated when the control module 1 is prepared and, in the exemplary implementation of the invention illustrated in FIG. more a master module 20 sends to the supervision block 300 a signal 235 of operation (working) of the control module 1 to perform the autonomous control of the vehicle.
  • the master module is for example a computer that manages the life phases of those computers that allow the operation of the vehicle 11 bimodal.
  • a validation of the transition 306 activates an autonomous start step 307 which essentially consists in sending the signal 34 to the control / command sub-block 40 so as, in other words with a value specific to, validating the transition 342 of the local finite state machine.
  • a transition 308 is validated when the master module 20 sends the signal 235 to the supervision block 300 positioned to an out of working value of the control module 1 so as to stop the autonomous control of the vehicle, thereby other terms to be ironed in manual mode.
  • Step 309 essentially consists in verifying that the speed of the vehicle is zero, if possible a tight hydraulic brake, and sending the signal 34 to the control / command sub-block 40 so that, in other words with a proper eigenvalue to, validate the transition 346 of the local finite state machine.
  • Steps 307 and 309 correspond to a state of the global machine, associated with the autonomous operating mode, more specifically with the normal autonomous operating mode.
  • An alarm transition 310 is enabled when the master module 20 sends to the supervision block 300, an emergency stop request signal 234, and / or when the diagnostic block 100 sends to the supervision block 300, diagnostic information that can trigger a degraded state of Exception.
  • a validation of the transition 310 from step 307 or step 309 activates a step 311 which essentially consists, if no internal error is detected, in generating the signal 340 with a value that commands the block 400 to transmit to the switching module 500 an emergency autonomous control signal, ie, if an internal error is detected, to give the hand to the master module 20 to request the module 500 an emergency autonomous control signal.
  • Step 311 in emergency mode corresponds to a state of the global machine, associated with the autonomous mode of operation, more specifically to an abnormal autonomous mode of operation.
  • an emergency stop command from the master 20 outside the module 1 is executed without delay by short-circuiting internal calculation blocks of the control module.
  • the diagnostic block 100 internal to the module 1, continuously monitors the state of health so as to report malfunctions to the master module 20 outside and put the module 1 in exceptional condition.
  • a transition 312 is enabled following step 309 or step 311 when the vehicle is stationary, in other words when the vehicle speed is detected zero.
  • a validation of the transition 312 activates a step 313 of switching to manual mode.
  • the supervision block 300 sets the value of the signal 340 so as to command the sub-block 3 to put values out of the definition interval in the control signals 64, 74, 84, 94, 95.
  • the outputs of the module 1 are allocated on fixed or variable values in a manner that ensures non-interference of manual and autonomous mode.
  • the supervision block 300 sets the value of the signal 250 so as to command the switching module 500 to switch the signals 555 to 559 on the signals 505 to 509. It will be noted that in the absence of a signal 250, for example where the module 1 is off, the signals 555 to 559 are switched by default on the signals 505 to 509.
  • Step 313 corresponds to a state of the global machine associated with the manual operation mode.
  • the global finite state machine receives commands from the master module 20 to sequence the operation of the control module 1 and the switching of the control signals in the module 500 to switch from the manual driving mode to an automated or autonomous driving mode and reciprocally.
  • the operation of the automatic control module 1 is sequenced by the master module 20 external to the control module and by the supervision unit 300 internal to the control module.
  • the first safe way is to allow to start an automatic vehicle control provided that all the data providers necessary for the autonomous mode are prepared.
  • the automatic control of the vehicle 11 is used in particular in autonomous mode to operate the vehicle from data from digital processing units such as the master module 20, the communication bus 10 for example CAN type (acronym for Controller Area Network), or the navigation / location module 30 without human intervention.
  • digital processing units such as the master module 20, the communication bus 10 for example CAN type (acronym for Controller Area Network), or the navigation / location module 30 without human intervention.
  • the second safe way is to allow manual to autonomous mode passes and vice versa only when the vehicle is safe, in other words to stop in a stable and deterministic state.
  • the third safe way is to start and stop the vehicle safely by the sequence shown in Figure 3.
  • steps 301 to 313 and / or 341 to 349 can be considered as control process steps implemented by means of a computer program installed in the system described above or in another system with a different physical architecture under the sole condition of being compatible with the system according to the invention.
  • the automatic control module that we have just described for a bimodal vehicle, allows to receive desired trajectories and develop the controls for the actuators of the vehicle so as to follow these trajectories in autonomous driving.
  • the automatic control module makes it possible to respond to dependability and cost constraints, in particular by coordinating with the other modules outside it, by switching the actuators between the manual mode and the autonomous mode under automatic control, by coordinating the internal operations of the module and ensuring overall safety of the vehicle, operational safety in a nominal or normal autonomous mode and in an autonomous standby mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

Le système de commande de véhicule comporte des organes de commande humaine générant des signaux de pilotage manuel d'actionneurs du véhicule, un module de commande automatique(1)générant des signaux de pilotage autonome (455-459) des actionneurs du véhicule et un module de commutation (500) agencé pour sélectionner les signaux de pilotage manuel dans un mode de fonctionnement manuel et les signaux de pilotage autonome dans un mode de fonctionnement autonome. Le module de commande automatique (1) comprend un bloc (2) d'élaboration automatique d'au moins un signa lde pilotage autonome calculé (64, 74, 84, 94, 95)et un bloc de sécurisation (400) agencé pour transmettre au module de commutation (500) un signal de pilotage autonome calculé dans un cas de fonctionnement autonome normal et un signal de pilotage autonome d'urgence dans un cas de fonctionnement autonome anormal.

Description

Système de commande de véhicule en mode autonome et véhicule comprenant un tel système de commande.
L' invention concerne un système de commande de véhicule en mode autonome et un véhicule comprenant un tel système de commande.
L' invention est notamment applicable à un véhicule de série habituellement prévu pour fonctionner conventionnellement en mode manuel, en d'autres termes pouvant être conduit par un être humain. L'invention permet de construire des véhicules en série avec un deuxième mode de fonctionnement dit autonome dans lequel le véhicule, tel un robot est capable d'évoluer sans conducteur humain. Ces deux modes de fonctionnement permettent la réalisation de nombreux services comme par exemple un service de parking automatisé, un service voiturier, un service de recharge automatique de batterie pour un véhicule à propulsion électrique voire de remplissage en carburant pour un véhicule à propulsion thermique lorsque c'est possible, un service de déplacement sans conducteur de personnes à mobilité réduite, un service de rééquilibrage de flottes de véhicules de location par la mise en peloton.
De nombreux pré-requis techniques sont présents aujourd'hui pour mettre en service des véhicules autonomes avec un haut niveau d'automatisation ou bimodaux, c'est-à-dire autonomes et manuels. Cependant, un usage public ou une commercialisation de tels véhicules reste difficile notamment en raison des contraintes de sûreté de fonctionnement et de prix.
Parmi les connaissances de l'état antérieur de la technique, le document US5469356 divulgue un système de contrôle automatique d'une part de fonctionnement autonome de véhicule en réponse à une consigne de vitesse et un angle de braquage en provenance d'un navigateur, et d'autre part de fonctionnement manuel. Le système de contrôle reçoit une information d' alternance entre mode automatique et mode manuel en provenance d'un bouton situé dans la cabine et d'un bouton situé à l'extérieur de la cabine de conduite du véhicule.
Le document US8078349 divulgue un véhicule autonome comprenant un module de contrôle pour mettre le véhicule en mode autonome en exécutant une instruction de passage en mode autonome basée sur une donnée de référence associée à un détecteur de repère de localisation du véhicule .
Aucun de ces deux documents connus ne prévoit de comportement à mettre en œuvre en cas de situation imprévue. Cette absence de prise en compte de situation imprévue pose un problème de sécurité et un problème de sûreté de fonctionnement lorsque le véhicule est en mode de marche autonome.
L' invention a pour but de répondre aux problèmes posés par l'état antérieur de la technique, notamment en termes de sécurité en cas de situation imprévue.
Dans ce but, l'invention a pour objet un système de commande d'un véhicule comportant :
des organes de commande humaine générant des signaux de pilotage manuel d' actionneurs du véhicule ;
- un module de commande automatique générant des signaux de pilotage autonome des actionneurs du véhicule ;
un module de commutation agencé pour sélectionner les signaux de pilotage manuel dans un mode de fonctionnement manuel et les signaux de pilotage autonome dans un mode de fonctionnement autonome.
Le système de commande est remarquable en ce que le module de commande automatique comprend :
- un bloc d'élaboration automatique d'au moins un signal de pilotage autonome calculé ; - un bloc de sécurisation agencé pour transmettre au module de commutation au moins le signal de pilotage autonome calculé dans un cas de fonctionnement autonome normal et un signal de pilotage autonome d'urgence dans un cas de fonctionnement autonome anormal.
Avantageusement, le module de commande automatique comporte un bloc de supervision qui héberge une machine globale à états finis comprenant un premier état global associé au mode de fonctionnement manuel et un deuxième état global associé au mode de fonctionnement autonome de façon à envoyer au module de commutation au moins un signal de sélection des signaux de pilotage manuel et autonome .
Particulièrement, la machine globale à états finis comprend un troisième état global associé au cas de fonctionnement autonome anormal de façon à envoyer au bloc de sécurisation au moins un signal de freinage d' urgence .
Particulièrement aussi, le module de commande automatique comporte un bloc de diagnostic agencé pour détecter tout événement associé à un cas de fonctionnement autonome anormal et pour envoyer au moins un signal au bloc de supervision représentatif des cas de fonctionnement autonome normal et anormal.
De manière particulièrement avantageuse, le bloc d'élaboration automatique comporte un sous-bloc de contrôle/commande qui héberge une machine locale à états finis comprenant un premier état local associé à un démarrage autonome et un deuxième état local associé à une immobilisation autonome.
De préférence, le système de commande comporte un module de navigation et/ou de localisation agencé pour envoyer en temps réel au bloc d'élaboration automatique, des coordonnées de trajectoire exprimées dans un repère local au véhicule. L'invention a aussi pour objet un procédé de commande d'un véhicule comportant :
une ou plusieurs étapes de mode manuel dans laquelle ou lesquelles des organes de commande humaine génèrent des signaux de pilotage manuel d' actionneurs du véhicule ;
- une ou plusieurs étapes de mode autonome dans laquelle ou lesquelles, sont générés des signaux de pilotage autonome qui sont commutés vers lesdits actionneurs du véhicule à la place des signaux de pilotage manuel.
Le procédé est remarquable en ce que les étapes de mode autonome comprennent :
- une étape de mode autonome normal exécutée dans un cas de fonctionnement autonome normal et dans laquelle les signaux de pilotage autonome comprennent au moins un signal de pilotage autonome calculé ;
une étape de mode autonome d'urgence exécutée dans un cas de fonctionnement autonome anormal et dans laquelle les signaux de pilotage autonome comprennent au moins un signal de pilotage autonome d'urgence.
De manière avantageuse, le procédé de commande comprend :
au moins une première étape pour effectuer un démarrage autonome ;
- au moins une deuxième étape pour effectuer une immobilisation autonome.
L'invention a encore pour objet un produit programme d'ordinateur qui comprend des instructions pour mettre en œuvre le procédé selon l'invention lorsqu'elles sont exécutées par un ordinateur.
L'invention a enfin pour objet un véhicule automobile qui comprend un système de commande selon 1 ' invention .
D'autres caractéristiques et avantages apparaîtront à la lecture de la description qui suit, en référence aux dessins annexés dans lesquels :
la figure 1 est un schéma de système conforme à 1 ' invention,
- la figure 2 montre un module de commande conforme à 1 ' invention,
- les figures 3 et 4 montrent chacune une machine à états finis à l'intérieur du module de commande représenté en figure 2.
La figure 1 illustre un système de commande d'un véhicule 11 conforme à l'invention.
On y observe un ensemble d' organes de commande humaine comprenant un volant de direction 6, un levier de vitesse 7 à au moins trois positions recul, neutre, déplacement, une pédale 9 d'accélérateur, une pédale 5 de frein et un bouton 8 de frein de parking. Chacun des organes de commande humaine ici représentés à titre purement illustratif et nullement exhaustif génère un ou plusieurs signaux de pilotage manuel d'au moins l'un de plusieurs actionneurs 25 à 29 du véhicule 11.
Le volant de direction 6 est muni de manière connue d'un capteur de rotation (non représenté) pour générer un signal de pilotage manuel 556 destiné à un servomoteur 26 de direction assistée qui braque les roues en fonction d'une référence de couple de braquage donné par le signal de pilotage manuel 556 sous forme numérique ou analogique .
La pédale 9 d' accélérateur est munie de manière connue d'un capteur de course (non représenté) pour générer un signal de pilotage manuel 559 de type continu sous forme numérique ou analogique destiné à un groupe motopropulseur 29. Dans un exemple de groupe motopropulseur thermique, le signal de pilotage manuel 559 est plus précisément destiné au dispositif d'injection électronique. Dans un exemple de groupe motopropulseur électrique, le signal de pilotage manuel 559 est plus précisément destiné au dispositif de commande électronique d'alimentation en puissance électrique .
Le levier de vitesse 7 est muni de manière connue d'un capteur de position (non représenté) pour générer un signal de pilotage manuel 557 destiné à un dispositif de couplage mécanique 27. Dans l'exemple de groupe motopropulseur thermique, le dispositif de couplage mécanique 27 est à titre purement illustratif une boîte de vitesse automatique ou au moins robotisée. Dans l'exemple de groupe motopropulseur électrique, le dispositif de couplage mécanique 27 est à titre purement illustratif un simple réducteur à engrenage qui alors ne reçoit pas le signal 557. Le signal de pilotage manuel 557 est envoyé à un calculateur EVC (acronyme de electrical vehicle control en anglais) qui gère le moteur électrique de façon adéquate de manière connue en soi. Le signal de pilotage manuel 557 est typiquement à valeurs discrètes R, N, D, chacune correspondant à l'une des au moins trois positions recul, neutre, déplacement.
La pédale 5 de frein est munie de manière connue d'un capteur de course (non représenté) pour générer un signal de pilotage manuel 555 de type continu sous forme numérique ou analogique destiné à communiquer une valeur de pression de serrage à dispositif de freinage hydraulique 25.
Le bouton 8 de frein de parking génère un signal de pilotage manuel 558 de type discret typiquement binaire destiné à communiquer un ordre de serrage à dispositif de frein de parking 28.
Un module de commande automatique 1 génère des signaux de pilotage autonome 455, 456, 457, 458, 459 respectivement de même nature que les signaux de pilotage manuel 555, 556, 557, 558, 559 pour piloter les actionneurs 25, 26, 27, 28, 29 du véhicule.
Un module de commutation 500 comprend un commutateur 505, respectivement 506, 507, 508, 509 pour commuter le signal de pilotage manuel 555, respectivement 556, 557, 558, 559 sur un signal de pilotage bimodal 655, respectivement 656, 657, 658, 659 en fonctionnement manuel et pour commuter le signal de pilotage autonome 455, respectivement 456, 457, 458, 459 sur le signal de pilotage bimodal 655, respectivement 656, 657, 658, 659 en fonctionnement autonome. Chacun des signaux de pilotage bimodal 655, 656, 657, 658, 659 est connecté à l'actionneur 25, 26, 27, 28, 29 correspondant. De préférence à des commutateurs manuels qui permettent déjà d'agencer le module 500 pour sélectionner manuellement les signaux de pilotage manuel dans un mode de fonctionnement manuel et les signaux de pilotage autonome dans un mode de fonctionnement autonome, des commutateurs commandés tels que des relais ou des transistors permettent une commutation contrôlée du mode de fonctionnement manuel au mode de fonctionnement autonome et réciproquement. Lorsque les signaux 455 à 459 sont transmis au module de commutation 500 par le bus CAN dédié, les commutateurs 505 à 509 sont réalisés par un mécanisme d'adressage informatique, un premier ensemble de cellules mémoires étant affecté aux signaux 555 à 559, un deuxième ensemble de cellules mémoires étant affecté aux signaux 455 à 459 et un troisième ensemble de cellules mémoires étant affecté aux signaux 655 à 659.
Le module de commutation 500 est avantageusement un dispositif électronique de type calculateur ou carte électronique qui, par des commandes électroniques et filaires, programmé ou câblé pour exécuter des commutations entre les commandes pouvant venir du conducteur et les commandes venant d'un calculateur qui héberge le module de commande automatique 1 et vice- versa. Ces commandes sont destinées aux actionneurs de la voiture comprenant notamment ceux relatifs à la colonne de direction 26, au frein 25, à l'accélération 29, au frein de parking assisté 28, au levier de vitesse 7 muni dans ce cas d'un servomoteur et à divers accessoires non représentés .
Ainsi le module de commutation 500 a pour effet d' imposer aux actionneurs de la voiture d' avoir un certain comportement quand les commandes venant du calculateur qui héberge le module 1, sont actives.
Les échanges de signaux entre les différents modules sont représentés sous forme filaire sur les figures 1 et 2. Cependant il est intéressant de dédier un bus de communication, par exemple de type CAN ou autre, spécifiquement dédié à la communication entres différents calculateurs ou dispositifs électroniques qui hébergent le module de commande automatique 1, le module de commutation 500 et d'autres modules de mis en œuvre du fonctionnement autonome du véhicule automobile tels que par exemple un module 30 de navigation/localisation.
Ainsi le bus de communication dédié n' interfère pas avec le bus de communication véhicule 10 usuel qui ne nécessite alors pas d'être modifié pour porter l'invention sur un véhicule standard. Le bus de communication véhicule 10 permet par ailleurs au module de commande automatique 1, hébergé dans un calculateur ou dans tout autre dispositif électronique, d'accéder en lecture à différentes données du véhicule qui circulent de manière habituelle sur le bus 10, notamment la vitesse effective du véhicule, l'angle de braquage effectif des roues .
Le module de commande automatique 1 est décrit maintenant plus en détails en référence à la figure 2. Un bloc 2 d'élaboration automatique de signaux de pilotage autonome calculés 64, 74, 84, 94, 95, comprend au moins un composant 60, 70, 80, 90 de calcul d'un signal de pilotage autonome.
Le composant 60 est agencé pour calculer le signal
64 qui permet à l'actionneur 26 de braquer les roues directrices en fonction d'une consigne d'angle, par exemple d'une consigne d'angle de rotation du volant 6. Pour calculer le signal 64, le composant 60 reçoit un signal 56 de consigne d'angle en provenance d'un sous- bloc 50 de contrôle-commande de trajectoire et un signal 16 de mesure d'angle volant par un capteur d'angle existant au niveau de la colonne de direction 6, 26 et envoyé sur le bus CAN 10, ou d'un capteur d'angle ajouté sur la colonne de direction 6,26. Le composant 60 calcule alors de manière connue en termes de régulation, un couple de braquage qui, appliqué à l'actionneur 26, annule une erreur d'angle entre les valeurs des signaux 16 et 56. Le couple de braquage calculé en temps réel est alors celui qui permet d' atteindre et de maintenir un angle de braquage souhaité des roues. La valeur du couple calculé est reportée en temps réel dans le signal de pilotage 64. Lorsque la colonne de direction 6, 26, comprend un asservissement de rotation sur une consigne d'angle, le composant reporte en temps réel une valeur d'angle dans le signal de pilotage 64 qui est dans ce cas calculée à partir du signal 56 sans avoir à lire le signal 16 sur le bus 10.
Le composant 70 est agencé pour calculer le signal 74 qui permet à l'actionneur 27 de se positionner de manière à transmettre ou ne pas transmettre une puissance du groupe motopropulseur 29 aux roues de façon à faire progresser le véhicule en marche arrière, en marche avant ou en roue libre. Le signal 74 est par exemple un signal ternaire dont chacune des trois valeurs R, N, D est calculée dans un ordre logique à partir d'un signal 57 en provenance du sous-bloc 50 de contrôle-commande de traj ectoire .
Le composant 80 est agencé pour calculer le signal 84 qui permet à l'actionneur 28 de serrer et de desserrer le frein à main. Le signal 84 est par exemple un signal binaire calculé logiquement à partir d'un signal 58 en provenance du sous-bloc 50 de contrôle-commande de traj ectoire .
Le composant 90 est agencé pour calculer un signal
94 qui permet à l'actionneur 29 d'accélérer et de décélérer le véhicule et un signal 95 qui permet à l'actionneur 25 de freiner le véhicule. Le composant 90 reçoit un signal 59 qui donne en temps réel une valeur de consigne de vitesse v* en provenance du sous-bloc 50 de contrôle-commande de trajectoire. Le composant 90 lit d'autre part sur le bus CAN 10 du véhicule une valeur de vitesse effective mesurée en temps réel et disponible dans un signal 19 sur le bus CAN du véhicule. Le composant 90 calcule en temps réel un couple d'accélération et de freinage pour atteindre la consigne de vitesse v* . Le composant 90 calcule également en temps réel un signal 95 de freinage hydraulique des roues, par exemple dès que la vitesse du véhicule est nulle pour mettre en sécurité le véhicule malgré une pente possible.
Le sous-bloc 50 reçoit un signal 35 en provenance du module 30 de navigation/localisation. Le signal 35 contient une consigne de trajectoire, par exemple sous forme vectorielle à trois composantes comprenant deux coordonnées spatiales x*, y* et une vitesse v* . Les consignes de coordonnées spatiales x*, y* et de vitesse v* sont exprimées dans un repère lié au véhicule. Le sous-bloc 50 calcule en temps réel l'angle des roues et la vitesse nécessaire pour suivre la consigne de trajectoire reçue du module 30. Le sous-bloc 50 accède aussi en lecture au bus 10 pour recevoir dans une trame de message ou de signal 15 des données du véhicule nécessaires ou utiles pour calculer les signaux 56 à 59. A titre purement illustratif et non exhaustif, on peut citer les données relatives au diamètre des roues, à une détection d'obstacle, à un rapport de pente de la chaussée, au rapport de boîte de vitesse dans le cas particulier d'un moteur thermique ou au flux d'excitation dans le cas d'un moteur électrique.
Le module 30 de navigation/localisation est un dispositif électronique extérieur au module 1, de préférence un calculateur qui contient un programme de calcul de la consigne de trajectoire du véhicule et qui communique avec le module 1 au moyen du bus CAN dédié. Pour calculer la consigne de trajectoire du véhicule, le module 30 de navigation/localisation dispose de manière connue par ailleurs, d'une cartographie de l'environnement du véhicule, d'un mécanisme eudiométrique de modélisation en temps réel de l'évolution de la position du véhicule, de capteurs et/ou d'une ou plusieurs caméras.
Les composants 60, 70, 80, 90 sont regroupés dans un sous-bloc 3 de calcul de valeurs de signaux de pilotage autonome du véhicule. Le sous-bloc 3 est supervisé par un sous-bloc 40 de contrôle/commande au moyen d'un ou plusieurs signaux 46 de séquençage des calculs .
Le sous-bloc 40 de contrôle/commande héberge une machine locale d'états finis expliquée à présent en référence à la figure 3.
Une étape initiale 341 est activée par mise sous tension du module 1.
Une transition 342 est validée par une combinaison de deux conditions. Une première condition est liée à un signal 34 en provenance d'un bloc de supervision 300 lorsque sa valeur indique une instruction de démarrage autonome, notamment après un arrêt prolongé. Une deuxième condition est liée à une valeur non nulle de la consigne de vitesse v* en provenance du module 30 de navigation/localisation.
Une validation de la transition 342 active une succession de trois étapes 343 à 345.
L'étape 343 consiste essentiellement à ordonner un serrage de frein hydraulique au sous-bloc 3 de calcul de valeurs de signaux de pilotage autonome du véhicule.
L'étape 344 consiste essentiellement à ordonner un desserrage de frein à main au sous-bloc 3 de calcul de valeurs de signaux de pilotage autonome du véhicule.
L'étape 345 consiste essentiellement à ordonner un passage de l'actionneur 27 de la position neutre N à la position de déplacement D au sous-bloc 3 de calcul de valeurs de signaux de pilotage autonome du véhicule.
La machine locale d'états finis revient ensuite à l'étape initiale 341, laissant la main au sous-bloc 3 de calcul de valeurs de signaux de pilotage autonome pour accélérer le véhicule et lui faire suivre la consigne de trajectoire. Cet enchaînement garantit que le véhicule est tout le temps dans une situation sûre et ne se déplace pas sans autorisation, à cause de la pente par exemple.
Une transition 346 est validée par une combinaison de deux autres conditions. Une première autre condition est liée au signal 34 en provenance du bloc de supervision 300 lorsque sa valeur indique une instruction d' immobilisation autonome ou de mise en sécurité du véhicule, notamment en vue d'un arrêt prolongé. Une deuxième autre condition est liée à une valeur nulle de la consigne de vitesse v* en provenance du module 30 de navigation/localisation et à l'état arrêté du véhicule (vitesse mesurée nulle) . Une validation de la transition 346 active une succession de trois étapes 347 à 349.
L'étape 347 consiste essentiellement à ordonner un passage de l'actionneur 27 de la position de déplacement D à la position neutre N au sous-bloc 3 de calcul de valeurs de signaux de pilotage autonome du véhicule.
L'étape 348 consiste essentiellement à ordonner un serrage de frein à main au sous-bloc 3 de calcul de valeurs de signaux de pilotage autonome du véhicule.
L'étape 349 consiste essentiellement à ordonner un desserrage de frein hydraulique au sous-bloc 3 de calcul de valeurs de signaux de pilotage autonome du véhicule.
La machine locale d'états finis revient ensuite à l'étape initiale 341, en attente d'une nouvelle instruction de démarrage.
Cet enchaînement garantit encore que le véhicule est tout le temps dans une situation sûre et ne se déplace pas sans autorisation, par exemple à cause de la pente .
Le bloc 2 envoie les signaux de pilotage autonome calculés 64, 74, 84, 94, 95 à un bloc de sécurisation 400 que nous décrivons à présent.
Le bloc de sécurisation 400 est supervisé par le bloc de supervision au moyen d'un ou plusieurs signaux 340 de sélection de signaux de pilotage autonome à transmettre au module de commutation 500.
Lorsqu'une valeur de signal 340 de sélection indique un arrêt d'urgence automatique, généralement lié à un cas de fonctionnement autonome anormal, le bloc de sécurisation 400 transmet au module de commutation 500 un ou plusieurs signaux de pilotage autonome 455 à 459 qui retranscrivent chacun un signal de pilotage autonome d' urgence .
Le signal de pilotage autonome 456 retranscrit le signal 64 tel qu' il est délivré par le composant 60 de façon à maintenir la valeur d'angle de braquage tel qu'il résulte de la navigation.
Le signal de pilotage autonome 457 retranscrit un forçage à la position neutre N de l'actionneur 27 de manière à ne pas transmettre de puissance du groupe motopropulseur 29 aux roues.
Le signal de pilotage autonome 458 retranscrit un forçage contenu par exemple en mémoire qui impose à l'actionneur 28 de serrer le frein à main.
Les signaux de pilotage autonome 459, 455 retranscrivent un forçage de valeurs contenues par exemple en mémoire qui reproduisent une valeur nulle d'accélération du véhicule et qui imposent à l'actionneur 25 de freiner le véhicule.
Lorsque la valeur de signal 340 de sélection n'indique pas un arrêt d'urgence automatique qui est représentatif d'un cas de fonctionnement autonome anormal mais un ordre de marche qui est représentatif d'un cas de fonctionnement autonome normal, le bloc de sécurisation 400 transmet au module de commutation 500 les signaux de pilotage autonome 456, 457, 458, 459, 455 qui retranscrivent respectivement les signaux de pilotage autonome 64, 74, 84, 94, 95 en provenance du bloc 2.
Ainsi, le bloc de sécurisation 400 est agencé pour transmettre au module de commutation 500 les signaux de pilotage autonome calculés dans le cas de fonctionnement autonome normal et les signaux de pilotage autonome d'urgence dans le cas de fonctionnement autonome anormal.
On remarquera que le bloc de sécurisation 400 est le gardien des sorties du module 1. Toutes les sorties passent par le bloc de sécurisation 400 avant d'être envoyées, à titre d'exemple par le bus CAN dédié au module de commutation 500.
A la première fonction du bloc de sécurisation 400 décrite ci-dessus peut s'ajouter une deuxième fonction qui porte sur une séparation complète des modes de fonctionnement manuel relatif à la conduite manuelle et de fonctionnement autonome relatif à la conduite automatique .
Lorsque la valeur de signal 340 de sélection n'indique ni un arrêt d'urgence automatique, ni un ordre de marche en mode autonome, les signaux 459, 455, 456, 458, 457 relatifs respectivement aux sorties pour les actionneurs d'accélération, freinage, direction, frein et RND sont positionnés sur des valeurs non-définies, en d' autres termes sur des valeurs non interprétables par les actionneurs, par exemple une valeur hors intervalle de fonctionnement de 1 ' actionneur . De cette façon, le module de commutation 500 ne peut pas se tromper et commander un fonctionnement automatique en dehors des cas prévus. En d'autres termes, même si le module de commutation reproduit par erreur l'un des signaux 455 à 459 sur l'un des signaux 655 à 659 alors que le module 1 n'est pas en mode de fonctionnement autonome, la valeur du signal ainsi incompatible avec le fonctionnement de 1' actionneur respectif, est détectée pour être invalidée ou de préférence pour déclencher un arrêt d'extrême urgence, jusqu'à faire piler le véhicule.
Dans le mode de mise en œuvre de l'invention illustré par la figure 2, le module de commutation 500 est commandé par un signal 250 de sélection en provenance du module de commande automatique 1, plus particulièrement d'un bloc de supervision 300 qui héberge une machine globale à états finis expliquée à présent en référence à la figure 4.
La mise sous tension du module de commande automatique 1 positionne la machine globale dans une étape initiale 301. Dans l'étape initiale 301, le module de commande automatique 1 est dans un état endormi (sleeping) . Une transition 302 d' activation est validée lorsqu'un signal 130 en provenance d'un bloc de diagnostic 100 indique un bon état de santé de dispositifs et de moyens de contrôle surveillés en permanence par le bloc de diagnostic 100 et lorsque le module maître 20 demande cette transition.
Les dispositifs surveillés comprennent essentiellement le bus CAN 10 de communication avec le reste du véhicule, la ou les liaisons avec le module de commutation 500, les actionneurs qui effectuent le déplacement du véhicule (frein, accélération, système de direction, frein de parking assisté) .
Les moyens de contrôle surveillés comprennent essentiellement ceux relatifs à l'angle de braquage (angle de braquage demandé vis-à-vis de l'angle de braquage mesuré) , ceux relatifs à la vitesse (vitesse souhaitée vis-à-vis de la vitesse mesurée) et ceux relatifs à la trajectoire (trajectoire souhaitée vis-à- vis la trajectoire réelle)
En cas de dysfonctionnement constaté par le bloc de diagnostic 100 dans un des dispositifs ou des moyens de contrôle mentionnés, la machine globale déclenche un état d'exception du module de commande automatique 1, réalisé par exemple par une étape 311 expliquée plus loin dans la description.
Une validation de la transition 302 active une étape 303 de mise en veille (standby) du module de commande automatique 1. Les étapes 301 et 303 correspondent à un état de la machine globale, associé a priori au mode de fonctionnement manuel.
Une transition 304 de mode autonome est validée lorsqu'un signal 236 en provenance d'un bloc d'autorisation d' activation de contrôle automatique 200 indique que le module de commande 1 est en communication établie, par exemple par un signal 120, avec chacun des autres modules 20, 30 nécessaires au mode de fonctionnement autonome, que le véhicule est à l'arrêt, frein à main serré et si possible levier de vitesse en position neutre et lorsque le module maître 20 demande cette transition.
Les conditions de vitesse nulle du véhicule, de frein de parking assisté serré, de position neutre de la transmission et d'état prêt à démarrer du moteur vérifiées par le bloc d'autorisation d' activation de contrôle automatique 200, sont nécessaires pour pouvoir activer le contrôle autonome du véhicule. Si au moins une parmi ces conditions n'est pas satisfaite, le contrôle autonome du véhicule ne peut pas être activé.
Par ailleurs, le bloc 300 reçoit des informations en provenance du bloc d'autorisation d' activation de contrôle automatique 200 qui, en fonction de l'état du véhicule obtenu par le signal 120 et du diagnostic obtenu par un signal 12 en provenance du bloc 100, peuvent empêcher l' activation du contrôle autonome.
Une validation de la transition 304 active une étape 305 de préparation du module de commande 1 pour commencer le contrôle autonome du véhicule. L'étape 305 de préparation du module de commande 1 consiste essentiellement à envoyer le signal 250 au module de commutation 500 de façon à sélectionner les signaux de pilotage manuel 455 à 459 pour les commuter sur les signaux de pilotage des actionneurs 655 à 659, à envoyer le signal 340 au bloc de sécurisation 400 de façon à reproduire les signaux de pilotage autonome calculés 64, 74, 84, 94, 95 sur les signaux de pilotage autonome 456, 457, 458, 459, 455 et, si ce n'est déjà le cas à mettre le levier de vitesse en position neutre N.
Une transition 306 est validée lorsque le module de commande 1 est préparé et, dans l'exemple de mise en œuvre de l'invention illustré par la figure 2, lorsque de plus un module maitre 20 envoie au bloc de supervision 300 un signal 235 de mise en fonctionnement (working) du module de commande 1 pour effectuer le contrôle autonome du véhicule. Le module maître est par exemple un calculateur qui gère les phases de vie de ceux des calculateurs qui permettent le fonctionnement du véhicule 11 bimodal .
Une validation de la transition 306 active une étape 307 de démarrage autonome qui consiste essentiellement à envoyer le signal 34 au sous-bloc 40 de contrôle/commande de façon à, en d'autres termes avec une valeur propre à, valider la transition 342 de la machine locale à états finis.
Une transition 308 est validée lorsque le module maitre 20 envoie au bloc de supervision 300 le signal 235 positionné à une valeur de mise hors fonctionnement (out of working) du module de commande 1 de façon à arrêter le contrôle autonome du véhicule, en d'autres termes à repasser en mode manuel.
Une validation de la transition 308 active une étape 309 de vérification avant passage et de mise en condition de passage en mode manuel. L'étape 309 consiste essentiellement à vérifier que la vitesse du véhicule est nulle, si possible frein hydraulique serré, et à envoyer le signal 34 au sous-bloc 40 de contrôle/commande de façon à, en d'autres termes avec une valeur propre à, valider la transition 346 de la machine locale à états finis .
Les étapes 307 et 309 correspondent à un état de la machine globale, associé au mode de fonctionnement autonome, plus précisément au mode de fonctionnement autonome normal .
Une transition 310 d'alarme est validée lorsque le module maitre 20 envoie au bloc de supervision 300, un signal 234 de requête d'arrêt d'urgence, et/ou lorsque le bloc de diagnostic 100 envoie au bloc de supervision 300, des informations de diagnostic qui peuvent déclencher un état dégradé d'Exception.
Une validation de la transition 310 à partir de l'étape 307 ou de l'étape 309 active une étape 311 qui consiste essentiellement soit, si aucune erreur interne n'est détectée, à générer le signal 340 avec une valeur qui commande au bloc 400 de transmettre au module de commutation 500 un signal de pilotage autonome d'urgence, soit, si une erreur interne est détectée, à donner la main au module maitre 20 pour demander au module 500 un signal de pilotage autonome d'urgence. Cette approche couvre la situation dans laquelle une erreur apparue empêche le sous-bloc 50 d'exercer ces fonctions. L'étape 311 en mode d'urgence correspond à un état de la machine globale, associé au mode de fonctionnement autonome, plus précisément à un mode de fonctionnement autonome anormal.
Ainsi, une commande d'arrêt d'urgence venant du maître 20 à l'extérieur du module 1, est exécutée sans retard en court-circuitant des blocs de calcul interne du module de commande. Le bloc de diagnostic 100, interne au module 1, en surveille en permanence l'état de santé de manière à pouvoir signaler des dysfonctionnements au module maitre 20 à l'extérieur et mettre le module 1 en état d'exception.
Une transition 312 est validée à la suite de l'étape 309 ou de l'étape 311 lorsque le véhicule est immobilisé, en d'autres termes lorsque la vitesse du véhicule est détectée nulle.
Une validation de la transition 312 active une étape 313 de passage en mode manuel. Dans l'étape 313, le bloc de supervision 300 positionne la valeur du signal 340 de manière à commander au sous-bloc 3 de mettre des valeurs hors intervalle de définition dans les signaux de pilotage 64, 74, 84, 94, 95. Ainsi, les sorties du module 1 sont allouées sur des valeurs fixes ou variables d'une manière qui garantit une non-interférence de mode manuel et autonome.
D'autre part, le bloc de supervision 300 positionne la valeur du signal 250 de manière à commander au module de commutation 500 de commuter les signaux 555 à 559 sur les signaux 505 à 509. On notera qu'en absence de signal 250, au cas par exemple où le module 1 est hors tension, les signaux 555 à 559 sont commutés par défaut sur les signaux 505 à 509.
L'étape 313 correspond à un état de la machine globale associé au mode de fonctionnement manuel.
Ainsi, la machine globale à états finis reçoit des ordres du module maître 20 pour séquencer le fonctionnement du module de commande 1 et la commutation des signaux de pilotage dans le module 500 pour passer du mode de conduite manuelle vers un mode de conduite automatisé ou autonome et réciproquement.
De la sorte, le fonctionnement du module de commande automatique 1 est séquencé par le module maitre 20 externe au module de commande et par le bloc de supervision 300 interne au module de commande.
Il résulte de la description donnée ci-dessus que le fonctionnement du module de commande automatique 1 est séquencé de façon à procurer au moins trois moyens sécuritaires .
Le premier moyen sécuritaire est celui de permettre de démarrer un contrôle automatique du véhicule à condition que tous les fournisseurs de données nécessaires au mode autonome soient préparés. Le contrôle automatique du véhicule 11 est utilisé notamment en mode autonome pour faire fonctionner le véhicule à partir de données en provenance d'unités de traitement numérique tels que le module maitre 20, le bus 10 de communication par exemple de type C.A.N. (acronyme de Controller Area Network), ou le module 30 de navigation/localisation sans intervention humaine.
Le deuxième moyen sécuritaire consiste à permettre de faire des passages de mode manuel vers mode autonome et vice-versa seulement quand le véhicule est en sécurité, en d'autres termes à l'arrêt dans un état stable et déterministe.
Le troisième moyen sécuritaire consiste à démarrer et arrêter le véhicule en sécurité par l'enchaînement présenté dans la figure 3.
On notera que les étapes 301 à 313 et/ou 341 à 349 peuvent être considérées comme des étapes de procédé de commande mis en œuvre au moyen d'un programme d'ordinateur installé dans le système décrit ci-dessus ou dans un autre système avec une architecture physique différente sous la seule condition d'être compatible avec le système selon l'invention.
Le module de commande automatique que nous venons de décrire pour un véhicule bimodal, permet de recevoir des trajectoires souhaitées et d'élaborer les commandes pour les actionneurs du véhicule de façon à suivre ces trajectoires en conduite autonome. Le module de commande automatique permet de répondre aux contraintes de sûreté de fonctionnement et de cout, notamment en assurant la coordination avec les autres modules qui lui sont extérieurs, en assurant la commutation des actionneurs entre le mode manuel et le mode autonome sous contrôle automatique, en assurant la coordination des opérations internes au module et en assurant au niveau global du véhicule, la sûreté de fonctionnement dans un mode autonome nominal ou normal et dans un mode autonome de secours .

Claims

REVENDICATIONS
1. Système de commande d'un véhicule comportant :
- des organes de commande humaine (5-9) générant des signaux de pilotage manuel (555-559) d' actionneurs
(25-29) du véhicule ;
- un module de commande automatique (1) générant des signaux de pilotage autonome (455-459) desdits actionneurs du véhicule ;
- un module de commutation (500) agencé pour sélectionner lesdits signaux de pilotage manuel dans un mode de fonctionnement manuel et lesdits signaux de pilotage autonome dans un mode de fonctionnement autonome ;
caractérisé en ce que le module de commande automatique (1) comprend :
- un bloc (2) d'élaboration automatique d'au moins un signal de pilotage autonome calculé (64, 74, 84, 94, 95) ;
- un bloc de sécurisation (400) agencé pour transmettre au module de commutation (500) ledit au moins un signal de pilotage autonome calculé dans un cas de fonctionnement autonome normal et un signal de pilotage autonome d'urgence dans un cas de fonctionnement autonome anormal .
2. Système de commande selon la revendication 1, caractérisé en ce que le module de commande automatique (1) comporte un bloc de supervision (300) qui héberge une machine globale à états finis comprenant un premier état global associé au mode de fonctionnement manuel et un deuxième état global associé au mode de fonctionnement autonome de façon à envoyer au module de commutation (500) au moins un signal (250) de sélection des signaux de pilotage manuel et autonome.
3. Système de commande selon la revendication 2, caractérisé en ce que ladite machine globale à états finis comprend un troisième état global associé au cas de fonctionnement autonome anormal de façon à envoyer au bloc de sécurisation (400) au moins un signal (340) de freinage d'urgence.
4. Système de commande selon l'une des revendications 2 ou 3, caractérisé en ce que le module de commande automatique (1) comporte un bloc de diagnostic (100) agencé pour détecter tout événement associé à un cas de fonctionnement autonome anormal et pour envoyer au moins un signal (130) au bloc de supervision (300) représentatif des cas de fonctionnement autonome normal et anormal .
5. Système de commande selon l'une des revendications précédentes, caractérisée en ce que le bloc (2) d'élaboration automatique comporte un sous-bloc (40) de contrôle/commande qui héberge une machine locale à états finis comprenant un premier état local associé à un démarrage autonome et un deuxième état local associé à une immobilisation autonome.
6. Système de commande selon l'une des revendications précédentes, caractérisée en ce qu'il comporte un module (30) de navigation et/ou de localisation agencé pour envoyer en temps réel au bloc (2) d'élaboration automatique, des coordonnées de trajectoire (x*,y*,v*) exprimées dans un repère local au véhicule .
7. Procédé de commande d'un véhicule comportant - une ou plusieurs étapes (303, 313) de mode manuel dans laquelle ou lesquelles des organes de commande humaine génèrent des signaux de pilotage manuel d' actionneurs du véhicule ;
- une ou plusieurs étapes de mode autonome dans laquelle ou lesquelles sont générés des signaux de pilotage autonome qui sont commutés vers lesdits actionneurs du véhicule à la place des signaux de pilotage manuel ;
caractérisé en ce que les étapes de mode autonome comprennent :
- une étape (307) de mode autonome normal exécutée dans un cas de fonctionnement autonome normal et dans laquelle les signaux de pilotage autonome comprennent au moins un signal de pilotage autonome calculé ;
une étape (311) de mode autonome d'urgence exécutée dans un cas de fonctionnement autonome anormal et dans laquelle les signaux de pilotage autonome comprennent au moins un signal de pilotage autonome d'urgence.
8. Procédé de commande selon la revendication 7, caractérisée en ce qu' il comprend :
- au moins une première étape (343, 344, 345) pour effectuer un démarrage autonome ;
- au moins une deuxième étape (347, 348, 349) pour effectuer une immobilisation autonome.
9. Produit programme d'ordinateur caractérisé en ce qu' il comprend des instructions pour mettre en œuvre le procédé selon l'une des revendications 7 ou 8 lorsqu'elles sont exécutées par un ordinateur.
10. Véhicule automobile, caractérisé en ce qu'il comprend un système de commande selon l'une des revendications 1 à 6 et/ou un produit programme d'ordinateur selon la revendication 9.
PCT/FR2013/050739 2012-04-05 2013-04-04 Systeme de commande de vehicule en mode autonome et vehicule comprenant un tel systeme de commande. WO2013150244A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147031056A KR102050937B1 (ko) 2012-04-05 2013-04-04 자율 모드 차량 제어 시스템 및 그 제어 시스템을 포함하는 차량
US14/390,141 US9399472B2 (en) 2012-04-05 2013-04-04 Autonomous mode vehicle control system and vehicle comprising such a control system
JP2015503923A JP6320991B2 (ja) 2012-04-05 2013-04-04 自律モード車両制御システム及びこのような制御システムを備える車両
ES13719980.8T ES2663385T3 (es) 2012-04-05 2013-04-04 Sistema de mando de vehículo en modo autónomo y vehículo que comprende tal sistema de mando
EP13719980.8A EP2834119B1 (fr) 2012-04-05 2013-04-04 Systeme de commande de vehicule en mode autonome et vehicule comprenant un tel systeme de commande.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1253128A FR2989047B1 (fr) 2012-04-05 2012-04-05 Systeme de commande de vehicule en mode autonome et vehicule comprenant un tel systeme de commande
FR1253128 2012-04-05

Publications (1)

Publication Number Publication Date
WO2013150244A1 true WO2013150244A1 (fr) 2013-10-10

Family

ID=48237128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/050739 WO2013150244A1 (fr) 2012-04-05 2013-04-04 Systeme de commande de vehicule en mode autonome et vehicule comprenant un tel systeme de commande.

Country Status (7)

Country Link
US (1) US9399472B2 (fr)
EP (1) EP2834119B1 (fr)
JP (1) JP6320991B2 (fr)
KR (1) KR102050937B1 (fr)
ES (1) ES2663385T3 (fr)
FR (1) FR2989047B1 (fr)
WO (1) WO2013150244A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015071052A1 (fr) 2013-11-18 2015-05-21 Renault S.A.S Procede et dispositif de pilotage automatique d'un vehicule
WO2015197251A1 (fr) * 2014-06-27 2015-12-30 Robert Bosch Gmbh Dispositif et procédé pour faire fonctionner un véhicule
FR3031406A1 (fr) * 2015-01-05 2016-07-08 Valeo Schalter & Sensoren Gmbh Architecture pour systeme d'aide a la conduite a automatisation conditionnelle
CN108372859A (zh) * 2017-02-01 2018-08-07 丰田自动车株式会社 运行控制设备和控制方法
WO2019002784A1 (fr) 2017-06-29 2019-01-03 Compagnie Generale Des Etablissements Michelin Système de commande d'un chariot élévateur a fourche a plusieurs modes de fonctionnement
WO2019002783A1 (fr) 2017-06-29 2019-01-03 Compagnie Generale Des Etablissements Michelin Systeme de commande d'un chariot elevateur a fourche autonome, et procede de pilotage d'un tel chariot
EP3533682A1 (fr) * 2018-01-15 2019-09-04 Toyota Jidosha Kabushiki Kaisha Appareil de commande pour véhicule
CN110874098A (zh) * 2019-10-16 2020-03-10 深圳一清创新科技有限公司 控制模块、智能车控制方法及其控制系统
FR3086075A1 (fr) * 2018-09-19 2020-03-20 Transdev Group Systeme electronique de supervision d'un vehicule autonome, procede et programme d'ordinateur associes
FR3086073A1 (fr) * 2018-09-19 2020-03-20 Transdev Group Dispositif electronique de determination d'une trajectoire d'arret d'urgence d'un vehicule autonome, vehicule et procede associes
FR3119147A1 (fr) * 2021-01-22 2022-07-29 Transdev Group Innovation Contrôleur embarqué à bord d’un véhicule automobile autonome et véhicule automobile autonome correspondant

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10331136B2 (en) 2006-02-27 2019-06-25 Perrone Robotics, Inc. General purpose robotics operating system with unmanned and autonomous vehicle extensions
DE102014213959A1 (de) * 2014-07-17 2016-01-21 Continental Automotive Gmbh Verfahren zum Überwachen eines automatisierten Fahrens
CA2940808C (fr) * 2014-09-30 2018-07-10 Hitachi Construction Machinery Co., Ltd. Vehicule de livraison
US9471062B1 (en) * 2014-12-30 2016-10-18 Daniel Theobald Vehicle operating method and system
US10216196B2 (en) * 2015-02-01 2019-02-26 Prosper Technology, Llc Methods to operate autonomous vehicles to pilot vehicles in groups or convoys
JP6552316B2 (ja) * 2015-07-29 2019-07-31 修一 田山 車輌の自動運転システム
US9869560B2 (en) 2015-07-31 2018-01-16 International Business Machines Corporation Self-driving vehicle's response to a proximate emergency vehicle
US9483948B1 (en) 2015-08-07 2016-11-01 International Business Machines Corporation Automated control of interactions between self-driving vehicles and pedestrians
US9785145B2 (en) 2015-08-07 2017-10-10 International Business Machines Corporation Controlling driving modes of self-driving vehicles
US9721397B2 (en) 2015-08-11 2017-08-01 International Business Machines Corporation Automatic toll booth interaction with self-driving vehicles
US9718471B2 (en) 2015-08-18 2017-08-01 International Business Machines Corporation Automated spatial separation of self-driving vehicles from manually operated vehicles
US9481366B1 (en) 2015-08-19 2016-11-01 International Business Machines Corporation Automated control of interactions between self-driving vehicles and animals
US9896100B2 (en) 2015-08-24 2018-02-20 International Business Machines Corporation Automated spatial separation of self-driving vehicles from other vehicles based on occupant preferences
JP6639835B2 (ja) 2015-09-01 2020-02-05 株式会社クボタ 走行作業機
US9731726B2 (en) 2015-09-02 2017-08-15 International Business Machines Corporation Redirecting self-driving vehicles to a product provider based on physiological states of occupants of the self-driving vehicles
US9513632B1 (en) 2015-09-16 2016-12-06 International Business Machines Corporation Driving mode alerts from self-driving vehicles
US9566986B1 (en) 2015-09-25 2017-02-14 International Business Machines Corporation Controlling driving modes of self-driving vehicles
US9481367B1 (en) 2015-10-14 2016-11-01 International Business Machines Corporation Automated control of interactions between self-driving vehicles and animals
US9834224B2 (en) 2015-10-15 2017-12-05 International Business Machines Corporation Controlling driving modes of self-driving vehicles
US9881427B2 (en) 2015-10-20 2018-01-30 International Business Machines Corporation Vehicle maintenance analytics and notifications
US9944291B2 (en) 2015-10-27 2018-04-17 International Business Machines Corporation Controlling driving modes of self-driving vehicles
US9751532B2 (en) 2015-10-27 2017-09-05 International Business Machines Corporation Controlling spacing of self-driving vehicles based on social network relationships
US10607293B2 (en) 2015-10-30 2020-03-31 International Business Machines Corporation Automated insurance toggling for self-driving vehicles
US10176525B2 (en) 2015-11-09 2019-01-08 International Business Machines Corporation Dynamically adjusting insurance policy parameters for a self-driving vehicle
US9791861B2 (en) 2015-11-12 2017-10-17 International Business Machines Corporation Autonomously servicing self-driving vehicles
US10061326B2 (en) 2015-12-09 2018-08-28 International Business Machines Corporation Mishap amelioration based on second-order sensing by a self-driving vehicle
DE102016209783A1 (de) * 2015-12-10 2017-06-14 Continental Teves Ag & Co. Ohg Elektrisches Trommelbremssystem mit rationalisiertem elektrischem Feststellbremsaktuator
US9836973B2 (en) 2016-01-27 2017-12-05 International Business Machines Corporation Selectively controlling a self-driving vehicle's access to a roadway
US9796421B1 (en) * 2016-04-07 2017-10-24 GM Global Technology Operations LLC Autonomous vehicle lateral control for path tracking and stability
US10685391B2 (en) 2016-05-24 2020-06-16 International Business Machines Corporation Directing movement of a self-driving vehicle based on sales activity
US10073460B2 (en) * 2016-06-10 2018-09-11 Trimble Inc. Providing auto-guidance of a mobile machine without requiring a graphical interface display
US11092446B2 (en) 2016-06-14 2021-08-17 Motional Ad Llc Route planning for an autonomous vehicle
US10126136B2 (en) 2016-06-14 2018-11-13 nuTonomy Inc. Route planning for an autonomous vehicle
US10309792B2 (en) 2016-06-14 2019-06-04 nuTonomy Inc. Route planning for an autonomous vehicle
US10829116B2 (en) 2016-07-01 2020-11-10 nuTonomy Inc. Affecting functions of a vehicle based on function-related information about its environment
EP3500940A4 (fr) * 2016-08-22 2020-03-18 Peloton Technology, Inc. Architecture de système de commande de véhicules connectés automatisée
US10438493B2 (en) * 2016-08-24 2019-10-08 Uber Technologies, Inc. Hybrid trip planning for autonomous vehicles
US10093322B2 (en) 2016-09-15 2018-10-09 International Business Machines Corporation Automatically providing explanations for actions taken by a self-driving vehicle
US10643256B2 (en) 2016-09-16 2020-05-05 International Business Machines Corporation Configuring a self-driving vehicle for charitable donations pickup and delivery
US9905133B1 (en) 2016-09-30 2018-02-27 Allstate Insurance Company Controlling autonomous vehicles to provide automated emergency response functions
CN107953330A (zh) * 2016-10-18 2018-04-24 珠海格力智能装备有限公司 机器人及其控制方法和装置
US10681513B2 (en) 2016-10-20 2020-06-09 nuTonomy Inc. Identifying a stopping place for an autonomous vehicle
US10857994B2 (en) 2016-10-20 2020-12-08 Motional Ad Llc Identifying a stopping place for an autonomous vehicle
US10331129B2 (en) 2016-10-20 2019-06-25 nuTonomy Inc. Identifying a stopping place for an autonomous vehicle
US10473470B2 (en) 2016-10-20 2019-11-12 nuTonomy Inc. Identifying a stopping place for an autonomous vehicle
US10395441B2 (en) 2016-12-14 2019-08-27 Uber Technologies, Inc. Vehicle management system
US10671063B2 (en) 2016-12-14 2020-06-02 Uatc, Llc Vehicle control device
US9811086B1 (en) 2016-12-14 2017-11-07 Uber Technologies, Inc. Vehicle management system
DE102016015544A1 (de) * 2016-12-27 2018-06-28 Lucas Automotive Gmbh Kraftfahrzeug-Steuergerät für eine elektrische Parkbremse
US10259452B2 (en) 2017-01-04 2019-04-16 International Business Machines Corporation Self-driving vehicle collision management system
US10529147B2 (en) 2017-01-05 2020-01-07 International Business Machines Corporation Self-driving vehicle road safety flare deploying system
US10363893B2 (en) 2017-01-05 2019-07-30 International Business Machines Corporation Self-driving vehicle contextual lock control system
US10254121B2 (en) 2017-01-23 2019-04-09 Uber Technologies, Inc. Dynamic routing for self-driving vehicles
JP2018134949A (ja) * 2017-02-21 2018-08-30 アイシン精機株式会社 運転支援装置
US10220857B2 (en) 2017-02-23 2019-03-05 Uber Technologies, Inc. Vehicle control system
WO2018154862A1 (fr) * 2017-02-23 2018-08-30 本田技研工業株式会社 Système de commande de véhicule, et procédé de commande
CN110290999B (zh) 2017-02-23 2022-10-14 本田技研工业株式会社 车辆用控制系统及控制方法
JP6901279B2 (ja) * 2017-02-23 2021-07-14 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 情報処理装置及びプログラム
US10152060B2 (en) 2017-03-08 2018-12-11 International Business Machines Corporation Protecting contents of a smart vault being transported by a self-driving vehicle
US10732627B1 (en) * 2017-05-25 2020-08-04 State Farm Mutual Automobile Insurance Company Driver re-engagement system
CN109229102A (zh) * 2017-07-04 2019-01-18 百度在线网络技术(北京)有限公司 无人驾驶车辆控制系统、方法和装置
WO2019028464A1 (fr) * 2017-08-04 2019-02-07 Chase Arnold Régulateur de mode de véhicule autonome
JP6735715B2 (ja) * 2017-08-08 2020-08-05 日立オートモティブシステムズ株式会社 車両制御装置
US11460842B2 (en) 2017-08-28 2022-10-04 Motional Ad Llc Mixed-mode driving of a vehicle having autonomous driving capabilities
US11112793B2 (en) 2017-08-28 2021-09-07 Motional Ad Llc Mixed-mode driving of a vehicle having autonomous driving capabilities
US10416677B2 (en) 2017-11-14 2019-09-17 Uber Technologies, Inc. Autonomous vehicle routing using annotated maps
WO2019107176A1 (fr) * 2017-11-28 2019-06-06 株式会社クボタ Moissonneuse
US10962973B2 (en) 2018-01-30 2021-03-30 Uatc, Llc Autonomous vehicle safe stop
EP3885213A4 (fr) * 2019-03-28 2021-12-08 SZ DJI Technology Co., Ltd. Système de commande de véhicule et véhicule
US20220204007A1 (en) * 2019-04-23 2022-06-30 Hitachi Astemo, Ltd. Vehicle control device and computer program
CN110316204A (zh) * 2019-07-09 2019-10-11 威马智慧出行科技(上海)有限公司 车辆驾驶模式的控制方法、网关和汽车
JP2021022042A (ja) * 2019-07-25 2021-02-18 株式会社東海理化電機製作所 自動運転装置
US11513517B2 (en) 2020-03-30 2022-11-29 Uatc, Llc System and methods for controlling state transitions using a vehicle controller
DE102021003154A1 (de) * 2021-06-18 2022-12-22 Mercedes-Benz Group AG Verfahren zum Betrieb eines für einen automatisierten Fahrbetrieb eingerichteten Fahrzeugs
KR102394465B1 (ko) * 2021-09-07 2022-05-06 주식회사 라이드플럭스 자율주행 차량에 대한 핸들 각도 제어명령 검증방법, 서버 및 컴퓨터프로그램
DE102021129193A1 (de) * 2021-11-10 2023-05-11 Zf Cv Systems Global Gmbh Fahrzeugsteuersystem mit Schnittstelleneinheit
DE102022203353A1 (de) * 2022-04-05 2023-10-05 Volkswagen Aktiengesellschaft Verfahren zum Betreiben eines Fahrzeugs und Steuermodul für ein Fahrzeug
FR3138097A1 (fr) * 2022-07-19 2024-01-26 Renault S.A.S Procédé pour transporter un conducteur de véhicule à déposer utilisant un véhicule autonome

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5469356A (en) 1994-09-01 1995-11-21 Caterpillar Inc. System for controlling a vehicle to selectively allow operation in either an autonomous mode or a manual mode
EP1143314A1 (fr) * 2000-04-03 2001-10-10 Toyota Jidosha Kabushiki Kaisha Méthode de détection d'anomalies dans plusieurs processeurs ou des unités de commandes
DE10357922A1 (de) * 2002-12-23 2004-07-01 Daimlerchrysler Ag Verfahren zum Ansteuern von Stellern in Fahrzeugen
FR2927596A3 (fr) * 2008-02-18 2009-08-21 Renault Sas Procede de commande d'un systeme de controle d'un groupe motopropulseur de vehicule et systeme de controle correspondant
US8078349B1 (en) 2011-05-11 2011-12-13 Google Inc. Transitioning a mixed-mode vehicle to autonomous mode

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1035516A (ja) * 1996-07-23 1998-02-10 Nissan Motor Co Ltd 操舵制御装置
DE19710082A1 (de) * 1997-03-12 1998-10-01 Deere & Co Antriebssystem für Nutzfahrzeuge
JP3617407B2 (ja) * 2000-04-03 2005-02-02 トヨタ自動車株式会社 原動機を用いた移動体の制御装置におけるcpuの異常監視
US20070243505A1 (en) * 2006-04-13 2007-10-18 Honeywell International Inc. System and method for the testing of air vehicles
EP1967931A3 (fr) * 2007-03-06 2013-10-30 Yamaha Hatsudoki Kabushiki Kaisha Véhicule
JP4973687B2 (ja) * 2009-05-13 2012-07-11 トヨタ自動車株式会社 走行支援装置
US9272724B2 (en) * 2009-09-08 2016-03-01 Golomb Mercantile Company Llc Integrated vehicle control system and apparatus
KR101248868B1 (ko) * 2010-02-18 2013-04-02 자동차부품연구원 주행이력정보 기반의 차량 자율주행 시스템
DE102011121454A1 (de) * 2011-12-16 2013-06-20 Audi Ag Steuervorrichtung für einen Kraftwagen, Kraftwagen sowie Verfahren zum Konfigurieren der Steuervorrichtung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5469356A (en) 1994-09-01 1995-11-21 Caterpillar Inc. System for controlling a vehicle to selectively allow operation in either an autonomous mode or a manual mode
EP1143314A1 (fr) * 2000-04-03 2001-10-10 Toyota Jidosha Kabushiki Kaisha Méthode de détection d'anomalies dans plusieurs processeurs ou des unités de commandes
DE10357922A1 (de) * 2002-12-23 2004-07-01 Daimlerchrysler Ag Verfahren zum Ansteuern von Stellern in Fahrzeugen
FR2927596A3 (fr) * 2008-02-18 2009-08-21 Renault Sas Procede de commande d'un systeme de controle d'un groupe motopropulseur de vehicule et systeme de controle correspondant
US8078349B1 (en) 2011-05-11 2011-12-13 Google Inc. Transitioning a mixed-mode vehicle to autonomous mode

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015071052A1 (fr) 2013-11-18 2015-05-21 Renault S.A.S Procede et dispositif de pilotage automatique d'un vehicule
WO2015197251A1 (fr) * 2014-06-27 2015-12-30 Robert Bosch Gmbh Dispositif et procédé pour faire fonctionner un véhicule
US10481603B2 (en) 2014-06-27 2019-11-19 Robert Bosch Gmbh Device and method for operating a vehicle
FR3031406A1 (fr) * 2015-01-05 2016-07-08 Valeo Schalter & Sensoren Gmbh Architecture pour systeme d'aide a la conduite a automatisation conditionnelle
WO2016110464A1 (fr) * 2015-01-05 2016-07-14 Valeo Schalter Und Sensoren Gmbh Architecture pour système d'aide à la conduite à automatisation conditionnelle
CN107428247A (zh) * 2015-01-05 2017-12-01 法雷奥开关和传感器有限责任公司 用于具有附条件自动的驾驶辅助系统的架构
CN108372859A (zh) * 2017-02-01 2018-08-07 丰田自动车株式会社 运行控制设备和控制方法
WO2019002784A1 (fr) 2017-06-29 2019-01-03 Compagnie Generale Des Etablissements Michelin Système de commande d'un chariot élévateur a fourche a plusieurs modes de fonctionnement
FR3068345A1 (fr) * 2017-06-29 2019-01-04 Compagnie Generale Des Etablissements Michelin Systeme de commande d'un chariot elevateur a fourche a plusieurs modes de fonctionnement
FR3068344A1 (fr) * 2017-06-29 2019-01-04 Compagnie Generale Des Etablissements Michelin Systeme de commande d'un chariot elevateur a fourche autonome, et procede de pilotage d'un tel chariot.
WO2019002783A1 (fr) 2017-06-29 2019-01-03 Compagnie Generale Des Etablissements Michelin Systeme de commande d'un chariot elevateur a fourche autonome, et procede de pilotage d'un tel chariot
CN110799444B (zh) * 2017-06-29 2021-03-23 米其林集团总公司 用于自动叉车的控制系统及用于操纵这种搬运车的方法
CN110799444A (zh) * 2017-06-29 2020-02-14 米其林集团总公司 用于自动叉车的控制系统及用于操纵这种搬运车的方法
US11635756B2 (en) 2017-06-29 2023-04-25 Compagnie Generale Des Etablissements Michelin Autonomous forklift truck control system and method for drivng the forklift truck
US11518659B2 (en) 2017-06-29 2022-12-06 Compagnie Generale Des Etablissements Michelin System for controlling a forklift truck having several modes of operation
EP3533682A1 (fr) * 2018-01-15 2019-09-04 Toyota Jidosha Kabushiki Kaisha Appareil de commande pour véhicule
US11061400B2 (en) 2018-01-15 2021-07-13 Toyota Jidosha Kabushiki Kaisha Control apparatus for vehicle
EP3627270A1 (fr) * 2018-09-19 2020-03-25 Transdev Group Dispositif électronique de détermination d'une trajectoire d'arrêt d'urgence d'un véhicule autonome, véhicule et procédé associés
FR3086073A1 (fr) * 2018-09-19 2020-03-20 Transdev Group Dispositif electronique de determination d'une trajectoire d'arret d'urgence d'un vehicule autonome, vehicule et procede associes
US11511713B2 (en) 2018-09-19 2022-11-29 Transdev Group Innovation Electronic device for determining an emergency stopping trajectory of an autonomous vehicle, related vehicle and method
FR3086075A1 (fr) * 2018-09-19 2020-03-20 Transdev Group Systeme electronique de supervision d'un vehicule autonome, procede et programme d'ordinateur associes
CN110874098A (zh) * 2019-10-16 2020-03-10 深圳一清创新科技有限公司 控制模块、智能车控制方法及其控制系统
FR3119147A1 (fr) * 2021-01-22 2022-07-29 Transdev Group Innovation Contrôleur embarqué à bord d’un véhicule automobile autonome et véhicule automobile autonome correspondant

Also Published As

Publication number Publication date
US20150134178A1 (en) 2015-05-14
EP2834119A1 (fr) 2015-02-11
KR102050937B1 (ko) 2019-12-02
JP2015518447A (ja) 2015-07-02
FR2989047B1 (fr) 2014-04-11
US9399472B2 (en) 2016-07-26
ES2663385T3 (es) 2018-04-12
FR2989047A1 (fr) 2013-10-11
EP2834119B1 (fr) 2018-01-17
JP6320991B2 (ja) 2018-05-09
KR20140144267A (ko) 2014-12-18

Similar Documents

Publication Publication Date Title
EP2834119B1 (fr) Systeme de commande de vehicule en mode autonome et vehicule comprenant un tel systeme de commande.
US20220185337A1 (en) Systems and methods for driving mode switching in autonomous driving
WO2019116870A1 (fr) Véhicule et systѐme de commande et procédé de commande associés
US11220273B2 (en) Vehicle control apparatus and vehicle control method
US20210229667A1 (en) Vehicle control apparatus and vehicle control method
RU2692415C1 (ru) Система и способ для управления рулением и торможением
WO2019043915A1 (fr) Véhicule, dispositif de commande et procédé de commande associés
US11524694B2 (en) Vehicle control apparatus, vehicle, vehicle control method, and non-transitory computer-readable storage medium
JP6982108B2 (ja) 車両制御装置、車両制御方法およびプログラム
US11535273B2 (en) Vehicle control interface and vehicle system
US20230331200A1 (en) Supplemental braking control system in autonomous vehicles
US11884284B2 (en) Braking control architectures for autonomous vehicles
FR2843341A1 (fr) Systeme de controle distribue pour un dispositif de direction et un dispositif de freinage electriques, notamment pour vehicules
FR2962959A1 (fr) Systeme d'assistance de conduite avec commande des freins
CN111086515A (zh) 机动车辆制动备用系统的运行方法
JP7009436B2 (ja) 車両用表示装置及び駐車支援システム
US20210229683A1 (en) Vehicle control apparatus, vehicle, vehicle control method, and non transitory computer readable storage medium
JP7200829B2 (ja) 車両システム
US11897519B2 (en) Hybrid drive by wire system for track vehicle operation
JP7041118B2 (ja) 駐車支援システム
US20230130452A1 (en) Vehicle, vehicle platform, vehicle control interface box, autonomous driving kit, control method of vehicle, and control method of vehicle platform
US20160185368A1 (en) Method of remotely resetting locomotive control systems
JP2022121997A (ja) 遠隔運転システム及び遠隔運転方法
FR3119147A1 (fr) Contrôleur embarqué à bord d’un véhicule automobile autonome et véhicule automobile autonome correspondant
CN116661414A (zh) 自动驾驶车辆的故障处理方法、装置、存储介质和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13719980

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013719980

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015503923

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147031056

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14390141

Country of ref document: US