WO2013149452A1 - 回转机构的回转角度检测方法、装置、系统与工程机械 - Google Patents

回转机构的回转角度检测方法、装置、系统与工程机械 Download PDF

Info

Publication number
WO2013149452A1
WO2013149452A1 PCT/CN2012/081663 CN2012081663W WO2013149452A1 WO 2013149452 A1 WO2013149452 A1 WO 2013149452A1 CN 2012081663 W CN2012081663 W CN 2012081663W WO 2013149452 A1 WO2013149452 A1 WO 2013149452A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
rotation angle
swing
slewing
measured
Prior art date
Application number
PCT/CN2012/081663
Other languages
English (en)
French (fr)
Inventor
易伟春
尹君
王帅
付新宇
Original Assignee
中联重科股份有限公司
湖南中联重科专用车有限责任公司
李葵芳
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中联重科股份有限公司, 湖南中联重科专用车有限责任公司, 李葵芳 filed Critical 中联重科股份有限公司
Publication of WO2013149452A1 publication Critical patent/WO2013149452A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/22Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes

Definitions

  • the present invention relates to the field of machinery, and more particularly to a method, apparatus, system and engineering machine for detecting a swing angle of a swing mechanism.
  • a swing mechanism for example, a concrete pump truck
  • the method of turning is to articulate a rotary member (for example, a boom of a concrete pump truck) to a base fixed to a swing mechanism (for example, a turntable).
  • the slewing mechanism for example, the turntable
  • the slewing mechanism is rotated by the hydraulic system of the construction machine to rotate the rotary member.
  • FIG. 1 shows a schematic view of a prior art turning angle detecting device.
  • the prior art swing angle detecting device includes an angle sensor, a zero point detecting sensor, and a controller.
  • the angle sensor is used for real-time detection of the rotation angle, and the controller is connected with the angle sensor, so that the relevant data of the rotation angle can be obtained in real time.
  • the controller parses the actual angle of rotation based on the relevant data obtained.
  • the sensor since the sensor may have a detection error, the long-term error accumulation may cause a large deviation in the measured rotation angle.
  • a zero point detection sensor is provided at the initial position of the rotary member. Therefore, when the rotating component (for example, the boom of the concrete pump truck) is swung back to the zero position (ie, the initial position), the zero detecting sensor is triggered to send a signal to the controller, and when the controller receives the signal, the turning angle is Cleared.
  • the prior art turning angle detecting device cannot judge the failure of the angle sensor.
  • the angle sensors used for the rotation angle measurement of the slewing mechanism in the construction machine are mostly absolute or incremental encoders, which are prone to damage, pulse loss or increase in use.
  • the prior art swivel angle detecting device does not have feedback information of the swivel angle, and the measurement of the angle is completely dependent on the angle sensor. Therefore, when the angle sensor fails, even if the detected rotation angle has a large deviation, the controller cannot judge that the angle sensor has failed, and further, since the rotation angle is incorrect, the rotation cannot be performed. Effective control, causing safety hazards.
  • the present invention is directed to a method, a device, a system, and a construction machine for detecting a swing angle of a swing mechanism, so as to solve the problem that the prior art can effectively judge whether the angle sensor is faulty, thereby causing a safety hazard.
  • a method for detecting a swing angle of a swing mechanism comprising: acquiring a measured swing angle of a swing mechanism; calculating a swing mechanism according to a pre-stored initial swing model of the swing mechanism The theoretical rotation angle; Calculate the difference between the measured rotation angle and the theoretical rotation angle.
  • a swing angle detecting device for a swing mechanism comprising: a control unit that acquires a measured swing angle of the swing mechanism, and calculates a theoretical swing angle of the swing mechanism according to a pre-stored initial swing model, and Calculate the difference between the measured rotation angle and the theoretical rotation angle; when the absolute value of the difference is less than the set value, take the measured rotation angle as the detection result; otherwise, use the theoretical rotation angle as the detection result.
  • a swing angle detecting system for a swing mechanism comprising: an angle sensor for detecting a measured swing angle of the swing mechanism; a swing angle detecting device connected to the angle sensor, the swing angle detecting The device is the above-described rotation angle detecting device.
  • a construction machine comprising a turning mechanism and a turning angle detecting means for detecting a turning angle of the turning mechanism, the turning angle detecting means being the above-described turning angle detecting means. The invention realizes the judgment of the failure of the angle sensor by comparing the measured rotation angle with the theoretical rotation angle, and can obtain a more accurate rotation angle in the case of the sensor failure, thereby ensuring the safety of the swing control.
  • FIG. 1 is a schematic view showing a rotation angle detecting device in the prior art
  • FIG. 2 is a flow chart schematically showing a turning angle detecting method in an embodiment of the present invention
  • 3 is a view schematically showing a relationship between a driving electric signal and a turning angular velocity of a turning mechanism in an initial turning model in the embodiment of the present invention
  • FIG. 4 is a view schematically showing an initial turning model in the embodiment of the present invention.
  • FIG. 5 is a schematic structural view showing a swing angle detecting device of a swing mechanism in an embodiment of the present invention.
  • FIG. 6 is a view schematically showing a control unit in the embodiment of the present invention performing an angle detection. flow chart. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention are described in detail below with reference to the accompanying drawings.
  • a method of detecting a swing angle is provided. As shown in FIG.
  • the method includes: acquiring a measured rotation angle ⁇ 1 of the slewing mechanism ; calculating a theoretical rotation angle ⁇ 2 of the slewing mechanism according to a pre-stored initial rotation model of the slewing mechanism ; calculating a measured rotation angle 0 1 and a theoretical rotation angle
  • ⁇ 2 when the absolute value of the difference is less than the set value ⁇ (for example, 2 degrees), the measured rotation angle 0 ⁇ is the detection result; otherwise, the theoretical rotation angle 0 2 is used as the detection result.
  • an alarm is issued when the absolute value of the difference is greater than the set value to indicate that the angle sensor for detecting the measured swivel angle of the swing mechanism has failed.
  • the angle of rotation is first detected by an angle sensor, and the measured rotation angle ⁇ 1 is obtained according to the acquired angle sensor signal ; and, according to the operation parameters of the swing mechanism (for example, the magnitude of the control electrical signal, the angular velocity of the rotation) And) and the gyro model calculate the theoretical rotation angle ⁇ 2 . Then, the difference between the measured rotation angle 0 1 and the theoretical rotation angle ⁇ 2 is compared with the set value ⁇ .
  • the measured rotation angle is 0 within a certain period of time
  • the difference between 1 and the theoretical rotation angle ⁇ 2 is not within the allowable range several times, but after the certain period of time, the difference is restored to the normal range, then the difference variation may be Due to interference and other factors, the angle sensor itself has not failed, and the measured rotation angle 0i can still be used as the detection result. Conversely, if the difference occurs more frequently within a reasonably long period of time, exceeding the set number of times M, it indicates that the angle sensor is likely to have failed.
  • the initial swing model is established based on the relationship between the drive input amount of the swing mechanism (e.g., the flow rate of the hydraulic oil flowing into the swing mechanism, the drive current and voltage for driving the swing mechanism, and the like) and the swing angular velocity.
  • the slewing mechanism rotates under the drive of a drive system (such as a hydraulic system) whose angular velocity of rotation is proportional to the drive input of the drive system.
  • the drive system can be a hydraulic system or a motor.
  • the angular velocity is proportional to the flow rate of the hydraulic system
  • the flow rate of the hydraulic system is proportional to the product of the actual control current of the electromagnetic proportional valve and the rotational speed of the oil pump. Therefore, the angular velocity is proportional to the above product. . Therefore, the gyroscopic model can be established by the relationship between the above product and the angular velocity. Theoretically, there is a linear relationship between the angular velocity and the flow rate of the hydraulic system, but due to the limitations and errors of the actual product, the angular velocity in the actual rotary model is approximately linear with the flow of the hydraulic system. In particular, in one embodiment shown in FIG.
  • the rotational speed of the oil pump is constant, and the flow rate of the hydraulic system is proportional to the hydraulic system. Under normal circumstances, the oil pump speed is fixed during the operation rotation. .
  • the vertical axis of Fig. 3 represents angular velocity, and the horizontal axis represents current.
  • A is the relationship between the actual angular velocity and current
  • B is the linear relationship curve obtained by curve fitting A.
  • the theoretical rotation angle ⁇ 2 of the swing mechanism can be obtained by the relationship between the angular velocity and time.
  • the theoretical rotation angle is calculated according to the initial rotation model of the slewing mechanism stored in advance; the method further includes: when the measured rotation angle is used as the detection result, correcting the initial rotation model according to the measured rotation angle.
  • the invention gives an initial swing model, but due to the individual differences of each bench-top construction machine (based on the same equipment, After a period of time, there will be differences from the previous state.
  • the same initial swing model does not guarantee that it is fully applicable to any device in the same construction machine. Therefore, it is possible to correct the initial rotation model in each device by using the method in the embodiment of the present invention.
  • the relationship between the measured gyroscopic model and the initial gyroscopic model (for example, the slope of the curves in the two models) can be used for the angular velocity in the initial slewing model.
  • the correspondence between the driving electrical signals is corrected to ensure the accuracy of the model.
  • the present invention corrects the initial swing model by means of a disconnection approximation. It should be noted that other numerical calculation methods, such as polynomial fitting, multiple curve fitting, etc., may also be used for the correction of the initial rotation model.
  • the vertical axis ⁇ represents the angular velocity
  • the horizontal axis Q represents the product of the current and the oil pump rotational speed.
  • the hydraulic system is used to control the rotary mechanism to rotate. Therefore, by controlling the current I of the electromagnetic proportional valve and the rotational speed of the oil pump, The flow rate of the hydraulic oil entering the swing mechanism is controlled to control the rotational speed of the swing mechanism (i.e., the angular velocity ⁇ ).
  • the rotational speed of the swing mechanism i.e., the angular velocity ⁇ .
  • the gyroscopic model (including the initial gyroscopic model) has a linear relationship only within a certain interval (Q Q , Q N ), where N is a positive integer.
  • Q is divided into N segments within its range: (Q Q , Q 1? ..., Q m-1 ,
  • Q is the product of current and oil pump speed, and ge ( m , m+1 );
  • m is a positive integer, and 0 ⁇ ⁇ N, where N is the number of segments of the current (positive integer).
  • N is the number of segments of the current (positive integer).
  • the current I is divided into three sections (Q Q , Qi, Q 2 , Q 3 ), and the ( , Q 2 ) section of the initial swivel model is combined with FIG. 4 below.
  • the correction process is described in detail.
  • Fig. 4 when the angular velocity ⁇ is zero, Q is not zero, and only when Q is greater, the angular velocity ⁇ begins to increase (i.e., the slewing mechanism begins to rotate).
  • is the curve corresponding to the current gyro model.
  • the corresponding angular velocity at ( ⁇ and 3 ⁇ 4 is ⁇ ⁇ 2 .
  • a set of data is measured (Q t , (o t ), if Q t falls within the interval (Qi, Q 2 ), then the data (Q t , o) t ) is re-fitted with the original curve of the interval (such as least squares method, etc.) to obtain the curve [.
  • the swing angle detecting device includes: a control unit that acquires a measured swing angle of the swing mechanism, according to The pre-stored initial swivel model calculates the theoretical swivel angle of the slewing mechanism, and Calculate the difference between the measured rotation angle and the theoretical rotation angle; when the absolute value of the difference is less than the set value, take the measured rotation angle as the detection result; otherwise, use the theoretical rotation angle as the detection result.
  • the angle sensor can It is an incremental encoder or an absolute encoder. Of course, it can also be a sensor other than the encoder.
  • the control unit is connected with the swing operation handle. When the operator operates the rotary operation handle, the controller can operate according to the swing operation.
  • the amplitude of the handle sends a correspondingly-sized drive electrical signal to the drive unit (eg, the hydraulic system), and the controller collects the actual signal magnitude and oil pump speed fed back by the drive unit through the sensor.
  • the control unit sends a control current to the electromagnetic proportional valve to control the opening degree of the electromagnetic proportional valve, thereby controlling the hydraulic oil flowing to the hydraulic actuator to achieve the purpose of controlling the swing speed of the swing mechanism.
  • the control current generated by the control unit is Electricity when the electromagnetic proportional valve actually operates It may be inconsistent. Therefore, it is necessary to collect the actual operating current of the electromagnetic proportional valve and determine the value of the theoretical rotation angle according to the actual collected feedback current.
  • the angle sensor can detect the rotation angle, and the controller Connected with the angle sensor, and obtains the measured rotation angle data from the angle sensor, thereby obtaining the measured rotation angle.
  • the angle sensor outputs a pulse number proportional to the swing angle, and the control unit can according to the number of pulses. Calculate the value of the measured rotation angle.
  • the encoder itself counts the number of pulses, and then directly feeds back the value of the measured rotation angle to the control unit. Then, the control unit sets the difference between the measured rotation angle and the theoretical rotation angle. The settings are compared (refer to Figure 2). Although there is a deviation between the theoretical rotation angle and the true rotation angle, there is no large deviation.
  • the angle sensor fails, the measured rotation angle detected by the angle sensor will have a large deviation. Therefore, the comparison is measured.
  • the difference between the angle of rotation 0 1 and the theoretical angle of rotation ⁇ 2 can effectively realize the fault detection of the angle sensor and prevent the adverse effects caused by the wrong angle information on the swing control.
  • the absolute value of the difference is less than the set value, it indicates that the measured rotation angle of the angle sensor is basically consistent with the theoretical rotation angle, that is, the angle The sensor does not malfunction. At this time, the measured rotation angle measured by the angle sensor is directly used as the detection result. Otherwise, it indicates that the measured angle of rotation of the angle sensor is significantly different from the theoretical angle of rotation.
  • the control unit uses the theoretical rotation angle as the detection result; otherwise, the measured rotation is performed. The angle is used as the test result.
  • the output signal of the angle sensor may change abnormally. Usually, this abnormal change will only last for a certain period of time (for example, a few seconds). Therefore, if the angle of rotation is measured within a certain period of time, Although the difference between the theoretical rotation angles is not within the allowable range several times, after the certain period of time, the difference returns to the normal range, then the difference variation may be due to interference and the like. As a result, the angle sensor itself has not failed, and the measured rotation angle can still be used as a result of the detection. Conversely, if the difference occurs more frequently within a reasonably long period of time, exceeding the set number of times, it indicates that the angle sensor is likely to have failed.
  • the slewing mechanism rotates under the drive of a drive system (such as a hydraulic system) whose angular velocity of rotation is proportional to the drive input of the drive system.
  • the drive system can be a hydraulic system or a motor.
  • the angular velocity is proportional to the flow rate of the hydraulic system, and the flow rate of the hydraulic system is proportional to the product of the actual control current of the electromagnetic proportional valve and the rotational speed of the oil pump. Therefore, the angular velocity is proportional to the above product. . Therefore, the gyroscopic model can be established by the relationship between the above product and the angular velocity.
  • the angular velocity in the actual rotary model is approximately linear with the flow of the hydraulic system.
  • the rotational speed of the oil pump is constant, and the flow rate of the hydraulic system is proportional to the hydraulic system. Under normal circumstances, the oil pump speed is fixed during the operation rotation.
  • the vertical axis of Fig. 3 represents angular velocity, and the horizontal axis represents current.
  • A is the relationship between the actual angular velocity and current
  • B is the linear relationship curve obtained by curve fitting A.
  • the theoretical rotation angle of the slewing mechanism can be obtained by the relationship between the angular velocity and time.
  • the theoretical turning angle is calculated from the initial swivel model of the previously stored swivel mechanism.
  • the invention gives an initial Rotary model, but due to the individual differences of each bench-top construction machine (based on the same equipment, the use of a period of time will also be different from the previous state), the same initial swing model does not guarantee that it is fully applicable to the same project Any device in the machine. Therefore, it is possible to correct the initial rotation model in each device by using the method in the embodiment of the present invention. For each device, during its rotation, the relationship between the measured gyroscopic model and the initial gyroscopic model (for example, the slope of the curves in the two models) can be used for the angular velocity in the initial slewing model. The correspondence between the driving electrical signals is corrected to ensure the accuracy of the model.
  • the present invention corrects the initial swing model by means of a disconnection approximation. It should be noted that other numerical calculation methods, such as polynomial fitting, multiple curve fitting, etc., may also be used for the correction of the initial rotation model.
  • the vertical axis ⁇ represents the angular velocity
  • the horizontal axis Q represents the product of the current and the oil pump rotational speed.
  • the hydraulic system is used to control the rotary mechanism to rotate. Therefore, by controlling the current I of the electromagnetic proportional valve and the rotational speed of the oil pump, The flow rate of the hydraulic oil entering the swing mechanism is controlled to control the rotational speed of the swing mechanism (i.e., the angular velocity ⁇ ).
  • the gyroscopic model (including the initial gyroscopic model) has a linear relationship only within a certain interval (Q Q , Q N ), where N is a positive integer.
  • Q is divided into N segments within its range: (Q Q , Q ..., Q m- !,
  • the angular velocity ⁇ in (Q m , Q m+ 1 ) is linear with the current I, and the mathematical expression of the gyroscopic model is the above formula (1).
  • the swivel model first compare the new swivel model with the initial swivel model (for example, compare the slopes of the segments). If the two are similar, replace the corresponding data in the initial swivel model with the new data and re-fit the curves on each segment in the initial swivel model; otherwise, continue to use the original swivel model.
  • the current I is divided into three sections (Q Q , Qi, Q 2 , Q 3 ), and the ( , Q 2 ) section of the initial swivel model is combined with FIG. 4 below.
  • the correction process is described in detail.
  • is the corresponding gyroscopic model.
  • the curve, the corresponding angular velocity at ( ⁇ and 3 ⁇ 4 in the current swivel model is ⁇ ⁇ 2 .
  • a set of data is measured (Q t , (o t ), if Q t falls within the interval ( Qi, Q 2 ), then, re-fitting the data (Q t , o) t ) with the original curve of the interval (such as least squares method, etc.) to obtain the curve [.
  • the swing angle detecting device further includes an alarm unit, and when the absolute value of the difference is greater than the set value, the control unit controls the alarm unit to issue an alarm.
  • the alarm unit may be a voice alarm.
  • the swing angle detecting device further includes a zero point detecting sensor when rotating
  • the zero detection sensor will be inducted to send a signal to the control unit, and the control unit will clear the rotation angle according to the signal.
  • the zero detection sensor can be a travel switch, a proximity switch, etc. The flow of the angle detection of the control unit will be described in detail below with reference to FIG. 6 .
  • Step one the control unit detects whether there is a zero detection signal from the zero detection sensor, and if so, resets the rotation angle ⁇ to zero, and performs step two; otherwise, Step 5: Step 2: The control unit determines whether the angle sensor is faulty. If the angle sensor fails, use the theoretical rotation angle ⁇ 2 as the rotation angle ⁇ , and perform step 5; otherwise, perform step 3. Step 3, use the measured rotation The angle 0i is taken as the rotation angle ⁇ , and step 4 is performed. Step 4, the driving input quantity measured at a certain time (for example, the product of the feedback current and the oil pump rotation speed, etc.) and the angular velocity constitute a first coordinate, which is measured at a certain time.
  • a certain time for example, the product of the feedback current and the oil pump rotation speed, etc.
  • the driving input quantity forms a second coordinate of the starting point of the section corresponding to the current slewing model, calculates the slope of the line connecting the first coordinate and the second coordinate; and the slope of the section corresponding to the current slewing model Compare, if the two are within the allowed range (indicating the angle If the device is in the normal state, correct the current swivel model and then perform step 5; otherwise, it indicates that the angle sensor may be faulty, so the current swivel model is no longer modified, and step 5 is directly executed.
  • the above two slopes can be judged by the following formula (2):
  • Q is the flow at a certain moment, that is, the product of the feedback current and the oil pump speed;
  • is the angular velocity measured by the control unit at that certain time;
  • m is the flow rate Q at the certain moment in the current swing model The angular velocity of the starting point of the corresponding segment;
  • Q m is the segment corresponding to the flow rate Q at the certain moment in the current turning model The flow rate corresponding to the starting point;
  • km is the slope of the section corresponding to the flow rate g at the certain moment in the current swing model;
  • is the threshold. Step 5, end this angle detection.
  • a swing angle detecting system for a swing mechanism comprising: an angle sensor for detecting a measured swing angle of the swing mechanism; a swing angle detecting device connected to the angle sensor, the swing angle detecting device It is the turning angle detecting device in each of the above embodiments.
  • a construction machine comprising a turning mechanism and a turning angle detecting device for detecting a turning angle of the turning mechanism, the turning angle detecting device being the turning angle detecting device in each of the above embodiments.
  • the invention realizes the judgment of the failure of the angle sensor by comparing the measured rotation angle with the theoretical rotation angle, and can obtain a more accurate rotation angle in the case of the sensor failure, thereby ensuring the safety of the swing control. .
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

一种回转机构的回转角度检测方法,包括:获取回转机构的实测回转角度;根据预先存储的回转机构的初始回转模型计算回转机构的理论回转角度;计算实测回转角度和理论回转角度之间的差值,当该差值的绝对值小于设定值时,以实测回转角度作为检测结果;否则,以理论回转角度作为检测结果。还公开了一种回转机构的回转角度检测装置、检测系统以及工程机械。通过对实测回转角度与理论回转角度的对比,实现了对角度传感器的故障的判断,并且在传感器发生故障的情况下,仍能获得较为精确的回转角度,从而确保了回转控制的安全性。

Description

回转机构的回转角度检测方法、 装置、 系统与工程机械 技术领域 本发明涉及机械领域, 更具体地, 涉及一种回转机构的回转角度检测方法、装置、 系统与工程机械。 背景技术 在具有回转机构的工程机械 (例如混凝土泵车) 的作业中, 实现回转的方式是将 回转部件 (例如混凝土泵车的臂架) 铰接在固定于回转机构 (例如转台) 的基座上, 回转机构 (例如转台) 受工程机械的液压系统的驱动而回转, 从而使回转部件旋转。 为防止回转机构 (例如转台) 的液压系统因回转过度损坏, 以及在特殊支撑方式 下防止工程机械车身倾翻, 必须在各种不同工况下对回转部件 (例如混凝土泵车的臂 架) 的回转角度加以限制。 因此, 实时而可靠地对回转角度进行检测对保证工程机械 (例如混凝土泵车) 的安全具有重要意义。 图 1示出了现有技术中的回转角度检测装置的示意图。 如图 1所示, 现有技术中 的回转角度检测装置包括角度传感器、 零点检测传感器和控制器。 其中, 角度传感器 用于对回转角度进行实时检测, 控制器与角度传感器连接, 从而可以实时获取回转角 度的相关数据。 控制器根据其获得的相关数据解析出实际的回转角度。 另外, 由于传 感器会存在检测误差, 长期的误差累计会使测量出的回转角度出现较大偏差, 为此在 回转部件的初始位置处, 设置有零点检测传感器。 因此, 当回转部件 (例如混凝土泵 车的臂架) 回转收拢到零点位置 (即初始位置) 时, 零点检测传感器受到触发而向控 制器发出信号, 当控制器收到该信号时, 将回转角度清零。 然而, 现有技术中的回转角度检测装置无法对角度传感器的故障进行判断。 在现 有技术中, 用于工程机械中回转机构的回转角度测量的角度传感器, 多为绝对或增量 式编码器, 在使用时容易发生损坏、 脉冲丢失或增多等问题。 如图 1可知, 现有技术 中的回转角度检测装置没有回转角度的反馈信息, 对角度的测量完全依赖于角度传感 器。 因此, 当角度传感器发生故障时, 即使检测出的回转角度出现较大偏差, 控制器 无法判断出角度传感器已经发生了故障, 进一步地, 由于回转角度是不正确的, 因此, 也无法对回转进行有效的控制, 引起安全隐患。 发明内容 本发明旨在提供一种回转机构的回转角度检测方法、 装置、 系统与工程机械, 以 解决现有技术由于无法判断角度传感器是否发生故障进行有效判断, 从而引起安全隐 患的问题。 为解决上述技术问题, 根据本发明的第一个方面, 提供了一种回转机构的回转角 度检测方法, 包括: 获取回转机构的实测回转角度; 根据预先存储的回转机构的初始 回转模型计算回转机构的理论回转角度; 计算实测回转角度和理论回转角度之间的差 值, 当差值的绝对值小于设定值时, 以实测回转角度作为检测结果; 否则, 以理论回 转角度作为检测结果。 根据本发明的第二个方面, 提供了一种回转机构的回转角度检测装置, 包括: 控 制单元, 获取回转机构的实测回转角度, 根据预先存储的初始回转模型计算回转机构 的理论回转角度, 并计算实测回转角度和理论回转角度之间的差值; 当差值的绝对值 小于设定值时, 以实测回转角度作为检测结果; 否则, 以理论回转角度作为检测结果。 根据本发明的第三个方面, 提供了一种回转机构的回转角度检测系统, 包括: 角 度传感器, 用于检测回转机构的实测回转角度; 回转角度检测装置, 与角度传感器连 接, 该回转角度检测装置是上述的回转角度检测装置。 根据本发明的第四个方面, 提供了一种工程机械, 包括回转机构和用于检测回转 机构的回转角度的回转角度检测装置, 该回转角度检测装置是上述的回转角度检测装 置。 本发明通过对实测回转角度与理论回转角度的对比, 实现了对角度传感器的故障 的判断, 并且在传感器发生故障的情况下, 仍能获得较为精确的回转角度, 从而确保 了回转控制的安全性。 附图说明 构成本申请的一部分的附图用来提供对本发明的进一步理解, 本发明的示意性实 施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中: 图 1示意性示出了现有技术中的回转角度检测装置的示意图; 图 2示意性示出了本发明实施例中的回转角度检测方法的流程图; 图 3示意性示出了本发明实施例中的一个初始回转模型中回转机构的驱动电信号 与回转角速度之间的关系图; 图 4示意性示出了本发明实施例中对初始回转模型进行修正的示意图; 图 5 示意性示出了本发明实施例中的回转机构的回转角度检测装置的结构示意 图; 以及 图 6示意性示出了本发明实施例中的控制单元进行一次角度检测时的流程图。 具体实施方式 以下结合附图对本发明的实施例进行详细说明, 但是本发明可以由权利要求限定 和覆盖的多种不同方式实施。 作为本发明的第一方面, 提供了一种回转角度检测方法。 如图 2所示, 该方法包 括: 获取回转机构的实测回转角度 θ1 ; 根据预先存储的回转机构的初始回转模型计算 回转机构的理论回转角度 θ2; 计算实测回转角度 01和理论回转角度 θ2之间的差值, 当 差值的绝对值小于设定值 δ (例如 2度) 时, 以实测回转角度 0 乍为检测结果; 否则, 以理论回转角度 02作为检测结果。 优选地, 当差值的绝对值大于设定值时发出警报, 以表明用于对回转机构的实测回转角度进行检测的角度传感器发生了故障。 具体地说, 先通过角度传感器对回转角度进行检测, 根据采集到的角度传感器的 信号经运算得到实测回转角度 θ1 ; 同时, 根据回转机构的运行参数 (例如控制电信号 的大小、 回转的角速度等) 和回转模型计算得到理论回转角度 θ2。 然后将实测回转角 度 01与理论回转角度 θ2的差值与设定值 δ进行比较。 虽然理论回转角度 θ2与真实回 转角度之间存在偏差, 但不会出现较大偏差, 而角度传感器发生故障时, 角度传感检 测到的实测回转角度则会发生较大的偏差, 因此, 通过比较实测回转角度 01与理论回 转角度 θ2的差值即可有效的实现对角度传感器的故障检测, 防止由于错误的角度信息 对回转控制造成不良后果。 当差值的绝对值小于设定值 δ时, 表明角度传感器的实测 回转角度 0i还是基本与理论回转角度 θ2相吻合的,即角度传感器没有发生故障,此时, 直接将角度传感器测得的实测回转角度 0i作为检测的结果。 否则, 则表明角度传感器 的实测回转角度 61与理论回转角度 θ2的偏差较大。 进一步地, 如果实测回转角度 0i 与理论回转角度 θ2的偏差较大, 那么很可能是由于角度传感器发生故障而引起的。 此 时, 如果仍然将角度传感器测得的实测回转角度 为检测结果, 将无法对回转进行 有效的控制, 甚至可能会引起安全事故。 因此, 在这种情况下可使用理论回转角度 θ2 作为检测结果, 从而可以避免由于角度传感器发生故障, 而无法对回转进行有效控制 的问题, 消除了安全隐患。 作为一个优选的实施例, 如图 2所示, 进一步地, 在预定的时间内, 当差值的绝 对值大于设定值 δ的次数 Count达到设定次数值 M时,以理论回转角度 θ2作为检测结 果; 否则, 以实测回转角度 为检测结果。 由于干扰等因素, 角度传感器的输出信 号可能会发生不正常的变化,通常这种不正常的变化只会持续一段的时间(例如几秒), 因此, 如果在某一段时间内, 实测回转角度 01和理论回转角度 θ2之间的差值虽然有几 次不在允许的范围内, 但是, 经过该某一段时间后, 该差值又恢复到了正常的范围内, 那么, 该差值变动可以是由于干扰等因素造成的, 角度传感器本身并没有发生故障, 仍然可以采用实测回转角度 0i作为检测的结果。 反之, 如果在合理长的时间期限内, 该差值出现的次数较多, 超过了设定次数值 M, 则表明角度传感器很可能已经发生的 故障。 作为一个优选的实施例, 初始回转模型是根据回转机构的驱动输入量 (例如流入 回转机构的液压油的流量、 驱动回转机构回转的驱动电流和电压等) 与回转角速度之 间的关系建立的。 例如, 回转机构在驱动系统 (例如液压系统) 的驱动下发生转动, 其转动的角速 度正比于驱动系统的驱动输入量。 驱动系统可以是液压系统, 也可以是电机等。 对于 采用液压系统作为驱动系统的实施例来说, 回转角速度正比与液压系统的流量, 而液 压系统的流量正比与电磁比例阀的实际控制电流与油泵转速的乘积, 因此, 角速度与 上述乘积成正比。 因此, 可以通过上述乘积与角速度之间的关系建立回转模型。 从理 论上说, 角速度与液压系统的流量之间存在线性关系,但由于实际产品的限制及误差, 实际的回转模型中的角速度与液压系统的流量之间为近似的线性关系。 特别的, 在图 3 所示的一个实施例中, 油泵的转速是一定的, 此时液压系统的流量与液压系统的成 正比, 在通常情况下, 在操作回转时, 油泵转速都是固定的。 图 3的纵轴表示角速度, 横轴表示电流。 A为实际的角速度与电流之间的关系曲线, B是对 A进行曲线拟合后 得出的线性关系曲线。 从图 3中可以看出, 实际的回转模型中的角速度与电流之间具 有近似的线性关系。 因此, 在获得驱动输入量 (例如电流和油泵转速) 的基础上, 就 可以通过角速度与时间的关系, 得到回转机构的理论回转角度 θ2。 优选地, 理论回转角度是根据预先存储的回转机构的初始回转模型计算得到的; 方法还包括: 当将实测回转角度作为检测结果时, 根据实测回转角度对初始回转模型 进行修正。 对于任何一种工程机械 (例如混凝土泵车) 来说, 本发明都给定了一个初 始回转模型, 但由于每台式工程机械的个体差异性 (基于对于同一台设备来说, 使用 一段时间后也会与先前的状态存在差异),同一个初始回转模型并不能保证完全适用于 同一种工程机械中的任一台设备。 因此, 利用本发明实施例中的方法可能对每台设备 中的初始回转模型进行修正。 对每台设备来说, 在其回转的过程中, 可以将根据实测 得到的回转模型与初始回转模型之间的关系(例如这两个模型中的曲线的斜率),对初 始回转模型中的角速度与驱动电信号之间的对应关系进行修正,以保证模型的准确性。 作为一个优选的实施方式, 如图 4所示, 本发明采用拆线逼近的方法对初始回转 模型进行修正。 需要说明的是, 对初始回转模型的修正也可以采用其它的数值计算方 法, 例如多项式拟合、 多次曲线拟合等。 图 4中纵轴 ω代表角速度, 横轴 Q代表电流 与油泵转速的乘积, 本实施例中, 采用液压系统控制回转机构进行旋转, 因此, 通过 控制电磁比例阀的电流 I和油泵转速, 就可以控制进入回转机构的液压油的流量, 从 而控制回转机构的转速 (即角速度 ω)。 实际上, 当向电磁比例阀提供的电流 I小于初 始电流时, 电磁比例阀处于关闭状态, 因此不能驱动回转机构进行回转; 当向电磁比 例阀提供的电流 I超过饱和电流时, 电磁阀的开度达到最大值, 此时电磁阀的开席不 再随着电流的增加而增加。 此外, 由于油泵转速也是有上限值, 因此, 也影响流量的 大小。 因此, 回转模型 (包括初始回转模型) 只在一定的区间 (QQ, QN) 内为线性关 系, 其中, N为正整数。 在一个优选的实施例中, 将 Q在其范围内分为 N个区段: (QQ, Q1? ......, Qm-1,
Qm, Qm+1, Im+2, ......, QN), 其中, m和 N为正整数。 每个区段, 例如 (Qm, Qm+1 ) 内的角速度 ω与 g为线性关系, 即可得到回转模型的数学表达式为 ( = km Q - Qm) ^ ( m ( 1 ) 其中, ω为角速度; k为回转模型中 (Qm, Qm+!) 区段的斜率;
Q为电流与油泵转速的乘积, 且 g e ( m , m+1);
m为正整数, 且 0≤ ≤N, N为电流的区段数目 (正整数)。 对回转模型进行修正时, 首先将新的回转模型与初始回转模型进行对比 (例如, 比较各区段的斜率)。 如果二者相近, 则将新的数据代替初始回转模型中的相应数据, 并对初始回转模型中各区段上的曲线进行重新拟合; 否则, 继续使用原来的回转模型。 特别地, 在图 4所示的回转模型中, 电流 I被分成三个区段 (QQ, Qi, Q2, Q3), 下面结合图 4对初始回转模型的 ( , Q2) 区段的修正过程进行详细说明。 如图 4所示, 当角速度 ω为零时, Q不为零, 只有当 Q大于 时, 角速度 ω才 开始增加 (即回转机构才开始转动)。 图 4中 Α为当前回转模型对应的曲线, 在当前 回转模型中的(^和¾处对应的角速度为 ω^Π ω2。 在某一时刻 t, 测得一组数据 (Qt, (ot), 如果 Qt落入区间 (Qi, Q2), 那么, 将数据 (Qt, o)t)和该区间原有的曲线重新拟 合 (如最小二乘法等), 得到曲线〔。 由曲线 C计算在 (^和 处对应的角速度为 ωι' 和 ω2', 并与(^和 Q2处的原有两个角速度(^和 ω2值进行平均, 以得到修正后的(^ 和(¾处的角速度 ωι "和 ω2", 同时, 重新计算该区段两侧的其它区段的斜率 (即公式 ( 1 ) 中的参数 k), 从而得到修正后的回转模型, 其曲线如 B所示。 作为本发明的第二方面,提供了一种回转机构的回转角度检测装置。如图 5所示, 该回转角度检测装置包括: 控制单元, 获取回转机构的实测回转角度, 根据预先存储 的初始回转模型计算回转机构的理论回转角度, 并计算实测回转角度和理论回转角度 之间的差值; 当差值的绝对值小于设定值时, 以实测回转角度作为检测结果; 否则, 以理论回转角度作为检测结果。 优选地, 角度传感器可以是增量式编码器或绝对式编 码器, 当然, 也可以是除编码器以外的其它传感器。 其中, 控制单元与回转操作手柄连接, 当操作人员操作回转操作手柄时, 控制器 可以根据回转操作手柄的幅度向驱动单元 (例如液压系统) 发出相应大小的驱动电信 号, 同时, 控制器通过传感器采集驱动单元反馈的实际信号的大小和油泵转速。例如, 在图 4所示的实施例中, 控制单元向电磁比例阀发出控制电流, 以控制电磁比例阀的 开度, 从而控制流向液压执行元件的液压油, 以达到控制回转机构的回转速度的目的。 同时, 由于控制单元发出的控制电流与电磁比例阀实际动作时的电流可能不一致, 因 此, 有必要对电磁比例阀的实际工作电流进行采集, 并根据实际采集到的反馈电流的 大小, 确定理论回转角度的值。 同时, 角度传感器可以实现对回转角度的检测, 控制 器与角度传感器连接, 并从角度传感器获取实测的回转角度的数据, 从而得到实测回 转角度。 例如, 当回转机构转动时, 角度传感器输出与回转角度成正比的脉冲数, 控 制单元根据脉冲数就可以计算出实测回转角度的值。 又例如, 编码器本身对脉冲数进 行计数, 然后将实测回转角度的值直接反馈给控制单元。 然后, 控制单元将实测回转角度与理论回转角度的差值与设定值进行比较 (请参 考图 2)。 虽然理论回转角度与真实回转角度之间存在偏差, 但不会出现较大偏差, 而 角度传感器发生故障时, 角度传感检测到的实测回转角度则会发生较大的偏差, 因此, 通过比较实测回转角度 01与理论回转角度 θ2的差值即可有效的实现对角度传感器的故 障检测, 防止由于错误的角度信息对回转控制造成不良后果。 当差值的绝对值小于设 定值时, 表明角度传感器的实测回转角度还是基本与理论回转角度相吻合的, 即角度 传感器没有发生故障,此时,直接将角度传感器测得的实测回转角度作为检测的结果。 否则, 则表明角度传感器的实测回转角度与理论回转角度的偏差较大。 进一步地, 如 果实测回转角度与理论回转角度的偏差较大, 那么很可能是由于角度传感器发生故障 而引起的。 此时, 如果仍然将角度传感器测得的实测回转角度作为检测结果, 将无法 对回转进行有效的控制, 甚至可能会引起安全事故。 因此, 在这种情况下可使用理论 回转角度作为检测结果, 从而可以避免由于角度传感器发生故障, 而无法对回转进行 有效控制的问题, 消除了安全隐患。 在优选的实施方式中, 进一步地, 在预定的时间内, 当差值的绝对值大于设定值 的次数达到设定次数值时, 控制单元以理论回转角度作为检测结果; 否则, 以实测回 转角度作为检测结果。 由于干扰等因素, 角度传感器的输出信号可能会发生不正常的 变化, 通常这种不正常的变化只会持续一段的时间(例如几秒), 因此, 如果在某一段 时间内, 实测回转角度和理论回转角度之间的差值虽然有几次不在允许的范围内, 但 是, 经过该某一段时间后, 该差值又恢复到了正常的范围内, 那么, 该差值变动可以 是由于干扰等因素造成的, 角度传感器本身并没有发生故障, 仍然可以采用实测回转 角度作为检测的结果。 反之, 如果在合理长的时间期限内, 该差值出现的次数较多, 超过了设定次数值, 则表明角度传感器很可能已经发生的故障。 例如, 回转机构在驱动系统 (例如液压系统) 的驱动下发生转动, 其转动的角速 度正比于驱动系统的驱动输入量。 驱动系统可以是液压系统, 也可以是电机等。 对于 采用液压系统作为驱动系统的实施例来说, 回转角速度正比与液压系统的流量, 而液 压系统的流量正比与电磁比例阀的实际控制电流与油泵转速的乘积, 因此, 角速度与 上述乘积成正比。 因此, 可以通过上述乘积与角速度之间的关系建立回转模型。 从理 论上说, 角速度与液压系统的流量之间存在线性关系,但由于实际产品的限制及误差, 实际的回转模型中的角速度与液压系统的流量之间为近似的线性关系。 特别的, 在图 3 所示的一个实施例中, 油泵的转速是一定的, 此时液压系统的流量与液压系统的成 正比, 在通常情况下, 在操作回转时, 油泵转速都是固定的。 图 3的纵轴表示角速度, 横轴表示电流。 A为实际的角速度与电流之间的关系曲线, B是对 A进行曲线拟合后 得出的线性关系曲线。 从图 3中可以看出, 实际的回转模型中的角速度与电流之间具 有近似的线性关系。 因此, 在获得驱动输入量 (例如电流和油泵转速) 的基础上, 就 可以通过角速度与时间的关系, 得到回转机构的理论回转角度。 优选地, 理论回转角度是根据预先存储的回转机构的初始回转模型计算得到的。 当将实测回转角度作为检测结果时, 控制单元可根据实测回转角度对初始回转模型进 行修正。 对于任何一种工程机械 (例如混凝土泵车) 来说, 本发明都给定了一个初始 回转模型, 但由于每台式工程机械的个体差异性 (基于对于同一台设备来说, 使用一 段时间后也会与先前的状态存在差异),同一个初始回转模型并不能保证完全适用于同 一种工程机械中的任一台设备。 因此, 利用本发明实施例中的方法可能对每台设备中 的初始回转模型进行修正。 对每台设备来说, 在其回转的过程中, 可以将根据实测得 到的回转模型与初始回转模型之间的关系(例如这两个模型中的曲线的斜率),对初始 回转模型中的角速度与驱动电信号之间的对应关系进行修正, 以保证模型的准确性。 作为一个优选的实施方式, 如图 4所示, 本发明采用拆线逼近的方法对初始回转 模型进行修正。 需要说明的是, 对初始回转模型的修正也可以采用其它的数值计算方 法, 例如多项式拟合、 多次曲线拟合等。 图 4中纵轴 ω代表角速度, 横轴 Q代表电流 与油泵转速的乘积, 本实施例中, 采用液压系统控制回转机构进行旋转, 因此, 通过 控制电磁比例阀的电流 I和油泵转速, 就可以控制进入回转机构的液压油的流量, 从 而控制回转机构的转速 (即角速度 ω)。 实际上, 当向电磁比例阀提供的电流 I小于初 始电流时, 电磁比例阀处于关闭状态, 因此不能驱动回转机构进行回转; 当向电磁比 例阀提供的电流 I超过饱和电流时, 电磁阀的开度达到最大值, 此时电磁阀的开席不 再随着电流的增加而增加。 此外, 由于油泵转速也是有上限值, 因此, 也影响流量的 大小。 因此, 回转模型 (包括初始回转模型) 只在一定的区间 (QQ, QN) 内为线性关 系, 其中, N为正整数。 在一个优选的实施例中, 将 Q在其范围内分为 N个区段: (QQ, Q ......, Qm-!,
Qm, Qm+1, Qm+2, . . . . . ., QN), 其中, m和 N为正整数。 每个区段, 例如 (Qm, Qm+ 1 ) 内的角速度 ω与电流 I为线性关系, 即可得到回转模型的数学表达式为上述公式(1 )。 对回转模型进行修正时, 首先将新的回转模型与初始回转模型进行对比 (例如, 比较各区段的斜率)。 如果二者相近, 则将新的数据代替初始回转模型中的相应数据, 并对初始回转模型中各区段上的曲线进行重新拟合; 否则, 继续使用原来的回转模型。 特别地, 在图 4所示的回转模型中, 电流 I被分成三个区段 (QQ, Qi, Q2, Q3), 下面结合图 4对初始回转模型的 ( , Q2 ) 区段的修正过程进行详细说明。 如图 4所示, 当角速度 ω为零时, Q不为零, 只有当 Q大于 (¾时, 角速度 ω才 开始增加 (即回转机构才开始转动)。 图 4中 Α为当前回转模型对应的曲线, 在当前 回转模型中的(^和¾处对应的角速度为 ω^Π ω2。 在某一时刻 t, 测得一组数据 (Qt, (ot), 如果 Qt落入区间 (Qi, Q2), 那么, 将数据 (Qt, o)t)和该区间原有的曲线重新拟 合 (如最小二乘法等), 得到曲线〔。 由曲线 C计算在 (^和 处对应的角速度为 ωι' 和 ω2', 并与(^和 Q2处的原有两个角速度(^和 ω2值进行平均, 以得到修正后的(^ 和(¾处的角速度 ωι "和 ω2", 同时, 重新计算该区段两侧的其它区段的斜率 (即公式 ( 1 ) 中的参数 k), 从而得到修正后的回转模型, 其曲线如 B所示。 在一个优选的实施例中, 回转角度检测装置还包括报警单元, 当差值的绝对值大 于设定值时, 控制单元控制报警单元发出警报。例如, 报警单元可以是语音报警装置、 声光报警装置、 显示在显示器上的字符或图像等。 当操作人员收到报警装置发出的警 报时, 可采取相应处理措施。 优选地, 回转角度检测装置还包括零点检测传感器, 当回转机构回转到零点位置 (即初始位置) 时, 零点检测传感器将受到感应而向控制单元发出信号, 控制单元根 据该信号将回转角度清零。 优选地, 零点检测传感器可以是行程开关、 接近开关等。 下面结合图 6对控制单元进行一次角度检测时的流程进行详细说明 (特别地, 控 制单元可以不断地循环执行下述步骤)。 步骤一, 控制单元检测是否有来自零点检测传感器的零点检测信号, 如果有, 将 回转角度 Θ复位为零, 并执行步骤二; 否则, 执行步骤五。 步骤二, 控制单元判断角度传感器是否发生故障, 如果角度传感器发生故障, 则 使用理论回转角度 θ2作为回转角度 θ, 并执行步骤五; 否则执行步骤三。 步骤三, 使用实测回转角度 0i作为回转角度 θ, 并执行步骤四。 步骤四, 在某一时刻测得的驱动输入量 (例如反馈电流和油泵转速的乘积等) 以 及角速度构成第一坐标, 该某一时刻测得的驱动输入量在当前回转模型中所对应的区 段的起点构成第二坐标, 计算第一坐标和第二坐标的连线的斜率; 并将该斜率与当前 回转模型中所对应的区段的斜率进行比较, 如果二者位于允许的范围内 (表明角度传 感器处于正常状态), 则对当前回转模型进行修正后再执行步骤五; 否则, 表明角度传 感器可能发生了故障, 因此不再对当前回转模型进行修改, 直接执行步骤五。 例如, 当驱动系统是液压系统时, 可用下述公式 (2) 对上述两个斜率进行判断:
Figure imgf000011_0001
其中, Q为某一时刻的流量, 即反馈电流与油泵转速的乘积; ω为该某一时刻控 制单元实测的角速度; 0)m是在当前回转模型中,该某一时刻时的流量 Q所对应的区段 的起点的角速度; Qm是在当前回转模型中, 该某一时刻时的流量 Q所对应的区段的 起点所对应的流量; km是在当前回转模型中, 该某一时刻的流量 g所对应的区段的 斜率; γ是阈值。 步骤五, 结束本次角度检测。 作为本发明的第三方面, 提供了一种回转机构的回转角度检测系统, 包括: 角度 传感器, 用于检测回转机构的实测回转角度; 回转角度检测装置, 与角度传感器连接, 该回转角度检测装置是上述各实施例中的回转角度检测装置。 作为本发明的第四方面, 提供了一种工程机械, 包括回转机构和用于检测回转机 构的回转角度的回转角度检测装置, 该回转角度检测装置是上述各实施例中的回转角 度检测装置。 本发明通过对实测回转角度与理论回转角度的对比, 实现了对角度传感器的故障 的判断, 并且在传感器发生故障的情况下, 仍能获得较为精确的回转角度, 从而确保 了回转控制的安全性。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种回转机构的回转角度检测方法, 其特征在于, 包括- 获取所述回转机构的实测回转角度;
根据预先存储的所述回转机构的初始回转模型计算所述回转机构的理论回 转角度;
计算所述实测回转角度和所述理论回转角度之间的差值, 当所述差值的绝 对值小于设定值时, 以实测回转角度作为检测结果; 否则, 以所述理论回转角 度作为检测结果。
2. 根据权利要求 1所述的回转角度检测方法, 其特征在于, 进一步地, 在预定的 时间内, 当所述差值的绝对值大于所述设定值的次数达到设定次数值时, 以所 述理论回转角度作为所述检测结果; 否则, 以所述实测回转角度作为所述检测 结果。
3. 根据权利要求 1或 2所述的回转角度检测方法,其特征在于,所述方法还包括: 当将所述实测回转角度作为所述检测结果时, 根据所述实测回转角度对所述初 始回转模型进行修正。
4. 根据权利要求 2所述的回转角度检测方法, 其特征在于, 所述初始回转模型是 根据所述回转机构的驱动输入量与回转角速度之间的关系建立的。
5. 根据权利要求 2所述的回转角度检测方法, 其特征在于, 所述方法还包括: 当 所述差值的绝对值大于所述设定值时发出警报。
6. 一种回转机构的回转角度检测装置, 其特征在于, 包括- 控制单元, 获取所述回转机构的实测回转角度, 根据预先存储的初始回转 模型计算所述回转机构的理论回转角度, 并计算所述实测回转角度和所述理论 回转角度之间的差值; 当所述差值的绝对值小于设定值时, 以所述实测回转角 度作为检测结果; 否则, 以所述理论回转角度作为检测结果。
7. 根据权利要求 6所述的回转角度检测装置, 其特征在于, 进一步地, 在预定的 时间内, 当所述差值的绝对值大于所述设定值的次数达到设定次数值时, 以所 述理论回转角度作为检测结果; 否则, 以所述实测回转角度作为检测结果。
8. 根据权利要求 6所述的回转角度检测装置, 其特征在于, 当将所述实测回转角 度作为所述检测结果时, 所述控制单元根据所述实测回转角度对所述初始回转 模型进行修正。
9. 根据权利要求 6-8中任一项所述的回转角度检测装置, 其特征在于, 所述初始 回转模型是根据所述回转机构的驱动输入量与回转角速度之间的关系建立的。
10. 根据权利要求 6所述的回转角度检测装置, 其特征在于, 所述回转角度检测装 置还包括报警单元, 当所述差值的绝对值大于所述设定值时, 所述控制单元控 制所述报警单元发出警报。
11. 一种回转机构的回转角度检测系统, 其特征在于, 包括- 角度传感器, 用于检测所述回转机构的实测回转角度;
回转角度检测装置, 与所述角度传感器连接, 所述回转角度检测装置是权 利要求 6-10中任一项所述的回转角度检测装置。
12. 一种工程机械, 包括回转机构和用于检测所述回转机构的回转角度的回转角度 检测装置, 其特征在于, 所述回转角度检测装置是权利要求 6-10中任一项所述 的回转角度检测装置。
PCT/CN2012/081663 2012-04-01 2012-09-20 回转机构的回转角度检测方法、装置、系统与工程机械 WO2013149452A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210096620.0 2012-04-01
CN2012100966200A CN102620705A (zh) 2012-04-01 2012-04-01 回转机构的回转角度检测方法、装置、系统与工程机械

Publications (1)

Publication Number Publication Date
WO2013149452A1 true WO2013149452A1 (zh) 2013-10-10

Family

ID=46560775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/081663 WO2013149452A1 (zh) 2012-04-01 2012-09-20 回转机构的回转角度检测方法、装置、系统与工程机械

Country Status (2)

Country Link
CN (1) CN102620705A (zh)
WO (1) WO2013149452A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102620705A (zh) * 2012-04-01 2012-08-01 中联重科股份有限公司 回转机构的回转角度检测方法、装置、系统与工程机械
CN102944209A (zh) * 2012-11-15 2013-02-27 中联重科股份有限公司 一种用于确定回转角度的设备、系统、方法和工程机械
CN103532451A (zh) * 2013-10-31 2014-01-22 重庆长安汽车股份有限公司 一种旋转变压器位置信号故障诊断方法
CN103575249B (zh) * 2013-11-08 2016-07-27 中联重科股份有限公司 回转装置的回转角度检测设备、系统、方法和工程机械
CN104494446B (zh) * 2014-11-11 2017-02-15 苏州汇川技术有限公司 电动车编码器掉线检测系统及方法
CN105807796B (zh) * 2014-12-29 2018-08-24 中联重科股份有限公司 臂架回转速度的控制方法、装置、系统及工程机械
CN106481080B (zh) * 2016-08-29 2018-11-20 北汽福田汽车股份有限公司 用于泵车转台回转的控制方法、控制装置及泵车
CN111409460B (zh) * 2020-04-09 2021-10-15 浙江吉利汽车研究院有限公司 一种用于电动汽车的驱动电机旋转状态监控方法及系统
CN113063898A (zh) * 2021-03-24 2021-07-02 中国大唐集团科学技术研究院有限公司中南电力试验研究院 基于区块链的火电站碳排放监测方法及系统
CN113389538B (zh) * 2021-06-29 2023-07-11 北京三一智造科技有限公司 车身回转控制方法以及系统
CN114348887B (zh) * 2022-03-21 2022-10-04 杭州杰牌传动科技有限公司 基于塔吊回转动作模型的智能监控预警系统及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030023400A1 (en) * 2001-07-30 2003-01-30 Alps Electric Co., Ltd. Rotational angle detector which prevents controlled system from being improperly controlled
CN1932469A (zh) * 2005-09-16 2007-03-21 通用汽车环球科技运作公司 使用自适应阈值的健康状态监测和故障诊断
CN101226067A (zh) * 2008-02-01 2008-07-23 三一重工股份有限公司 一种工程车辆转台的回转角度检测装置及其工程车辆
CN101451832A (zh) * 2008-12-30 2009-06-10 三一重工股份有限公司 用于测量机械臂或机械手角度的传感器标定方法及装置
CN201707757U (zh) * 2010-02-08 2011-01-12 徐工集团工程机械股份有限公司建设机械分公司 一种倾翻报警系统及包括该系统的混凝土泵车
CN201748913U (zh) * 2010-08-03 2011-02-16 徐工集团工程机械股份有限公司建设机械分公司 工程机械角度检测系统
CN102249153A (zh) * 2011-07-15 2011-11-23 上海三一科技有限公司 回转角度检测装置及控制方法及包括该装置的起重机
CN102261890A (zh) * 2011-04-19 2011-11-30 长沙中联重工科技发展股份有限公司 回转角度测量装置
CN202092629U (zh) * 2011-06-02 2011-12-28 中国铁建重工集团有限公司 一种用于混凝土喷射机械手臂架旋转角度信号的采集装置
CN102620705A (zh) * 2012-04-01 2012-08-01 中联重科股份有限公司 回转机构的回转角度检测方法、装置、系统与工程机械

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3355856B2 (ja) * 1995-03-30 2002-12-09 日産自動車株式会社 センサ故障検出装置
JPH10115517A (ja) * 1996-10-11 1998-05-06 Hitachi Constr Mach Co Ltd 作業機の角度センサ補正装置
WO2008047424A1 (en) * 2006-10-18 2008-04-24 Hitachi Zosen Corporation Method and device for evaluating shafting alignment of ship
CN101762388B (zh) * 2009-12-25 2012-11-14 重庆大学 环面蜗杆齿面误差测量方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030023400A1 (en) * 2001-07-30 2003-01-30 Alps Electric Co., Ltd. Rotational angle detector which prevents controlled system from being improperly controlled
CN1932469A (zh) * 2005-09-16 2007-03-21 通用汽车环球科技运作公司 使用自适应阈值的健康状态监测和故障诊断
CN101226067A (zh) * 2008-02-01 2008-07-23 三一重工股份有限公司 一种工程车辆转台的回转角度检测装置及其工程车辆
CN101451832A (zh) * 2008-12-30 2009-06-10 三一重工股份有限公司 用于测量机械臂或机械手角度的传感器标定方法及装置
CN201707757U (zh) * 2010-02-08 2011-01-12 徐工集团工程机械股份有限公司建设机械分公司 一种倾翻报警系统及包括该系统的混凝土泵车
CN201748913U (zh) * 2010-08-03 2011-02-16 徐工集团工程机械股份有限公司建设机械分公司 工程机械角度检测系统
CN102261890A (zh) * 2011-04-19 2011-11-30 长沙中联重工科技发展股份有限公司 回转角度测量装置
CN202092629U (zh) * 2011-06-02 2011-12-28 中国铁建重工集团有限公司 一种用于混凝土喷射机械手臂架旋转角度信号的采集装置
CN102249153A (zh) * 2011-07-15 2011-11-23 上海三一科技有限公司 回转角度检测装置及控制方法及包括该装置的起重机
CN102620705A (zh) * 2012-04-01 2012-08-01 中联重科股份有限公司 回转机构的回转角度检测方法、装置、系统与工程机械

Also Published As

Publication number Publication date
CN102620705A (zh) 2012-08-01

Similar Documents

Publication Publication Date Title
WO2013149452A1 (zh) 回转机构的回转角度检测方法、装置、系统与工程机械
JP5661839B2 (ja) 異常検出診断機能を備える同期電動機の制御システム
US9896959B2 (en) Pitch angle measuring system and method for wind turbines
JP5980965B2 (ja) 複数の回転角検出器により回転角を更新するロボット制御装置
JP2017019080A5 (ja) 制御方法
CN108322103A (zh) 一种永磁同步电机相序校正方法及其装置
CN105262398B (zh) 基于霍尔传感器的永磁同步电机的矢量控制方法及装置
EP2828631A1 (en) Torque detecting method and arm device
JP6970581B2 (ja) 作業機械、作業機械を含むシステムおよび作業機械の制御方法
BR112012013747B1 (pt) dispositivo e processo de comando de uma máquina síncrona com ímãs permanentes e acionamento em uma aeronave
CN110658453B (zh) 异步电机工作异常检测方法及装置
US9156118B2 (en) Method of operating a pivot drive
WO2013123768A1 (zh) 编码器的故障检测方法、装置和系统
JP5203585B2 (ja) 駆動制御装置及びその制御方法
CA3195636A1 (en) Method and system for controlling a rotation speed of a turntable and aerial work platform
US10883859B2 (en) Fail-safe speed monitoring of a drive
JP6848845B2 (ja) サーボモータの負荷状態診断装置及び負荷状態診断方法
JP7032035B2 (ja) 位置測定装置の動作クロック信号を検査するための装置および方法
JP2015068071A (ja) 建設機械
JP7253510B2 (ja) 旋回角度の補正方法
KR20170129396A (ko) 유무선 통신을 이용하여 자동 토크 제어가 가능한 너트 런너 시스템
EP3389928B1 (en) Impulse wrench rotation detection
CN207110481U (zh) 一种混凝土布料机
US10472801B2 (en) System for measuring friction force of excavator swing device for supplying lubricating oil
EP2632653B1 (en) Method and apparatus for monitoring and limiting the velocity of an industrial robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12873732

Country of ref document: EP

Kind code of ref document: A1