WO2013147541A1 - 셀레나이드 착체, 이의 제조방법 및 이를 이용한 ci(g)s 박막 - Google Patents

셀레나이드 착체, 이의 제조방법 및 이를 이용한 ci(g)s 박막 Download PDF

Info

Publication number
WO2013147541A1
WO2013147541A1 PCT/KR2013/002620 KR2013002620W WO2013147541A1 WO 2013147541 A1 WO2013147541 A1 WO 2013147541A1 KR 2013002620 W KR2013002620 W KR 2013002620W WO 2013147541 A1 WO2013147541 A1 WO 2013147541A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
alkyl
alkoxy
aryl
thin film
Prior art date
Application number
PCT/KR2013/002620
Other languages
English (en)
French (fr)
Inventor
이동현
이상익
문창섭
고병선
유홍
Original Assignee
에스케이이노베이션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130033595A external-priority patent/KR20130111408A/ko
Application filed by 에스케이이노베이션 주식회사 filed Critical 에스케이이노베이션 주식회사
Publication of WO2013147541A1 publication Critical patent/WO2013147541A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/08Copper compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F11/00Compounds containing elements of Groups 6 or 16 of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a selenide complex, a method for preparing the same, and CI (G) S using the same. More specifically, a selenide complex, which is a bidentate compound containing selenium and a metal, a method for preparing the same, and a CI (G) using the same It is about) S thin film
  • Solar cells are classified into silicon semiconductor solar cells, compound semiconductor solar cells, and stacked solar cells according to their constituents.
  • the solar cells including the CI (G) S light absorbing layer are composed of chalcopyrite compound semiconductor solar cells. Belongs to the category.
  • Chalcopyritic compounds are composed of CuSe, CuInSe2, CuGaSe2, Cu (In, Ga) Se2, CuInS2, CuGaS2, Cu (In, Ga) S2, CuIn (Se, S) 2, CuGa (Se, S) 2, Cu (In, Ga) (Se, S) 2, and CuAlSe2, CuFeSe2, Cu2CdSe4, Cu2CdSnSe4, Cu2ZnSnSe4, etc. which are group 1-2- (4) -6.
  • CI (G) S a typical group 1-3-6 chalcopyrite compound semiconductor, has a direct transition energy bandgap of 1 eV or more and has the highest light absorption coefficient (1 ⁇ 10 5 cm ⁇ 1) among semiconductors.
  • it is known to be a very ideal material as a light absorption layer of the solar cell because it is very stable optically.
  • U.S. Patent Publication No. 2009-0280624 discloses manufacturing a CIS thin film by preparing Cu 2 Se and In 2 Se 3 precursors, and heat-treating them, and U.S. Patent No. 6,127,202 using a printing method. A method of forming a CI (G) S thin film is disclosed.
  • the Cu 2 Se precursor disclosed in the above document is an insoluble solid phase complex, which has a disadvantage in that it should be used for coating / printing by transforming it into a slurry form in an amine / dimethylsulfide solvent or further transforming into a 1,2-diaminoethane complex. have.
  • the characteristics of the copper selenide precursor compound described in the above examples are generally very low in solubility, making it difficult to select a solvent, and thus should be prepared through ink formulation through the addition of an additional plasticizer or dispersant.
  • carbon and other residues derived from the dispersant that can be used at this time lower the electrical properties of the semiconductor, when using a hydrazine solvent does not need to be formulated, but there is a problem that is very difficult to commercialize due to the toxicity and explosiveness of the solvent.
  • the present invention provides a selenide complex having a novel structure and a method for preparing the same, and provides a solution of a CI (G) S precursor including the novel selenide complex.
  • the present invention provides a CI (G) S thin film prepared using a CI (G) S precursor solution containing a selenide complex and a method of manufacturing the same.
  • the present invention provides novel selenide complexes.
  • novel selenide complex of the present invention is represented by the following formula (1).
  • A is (C3-C12) ar (C1-C7) alkyl or (C3-C12) heteroaryl containing one or more heteroatoms in the aromatic ring;
  • M is Cu, In, or Ga having a bidentate bond with a heteroatom contained in the aralkyl or heteroaryl of Se and A;
  • L is a ligand capable of binding to M
  • Aralkyl or heteroaryl of A is hydroxy, amino, (C1-C7) alkyl, (C1-C7) alkoxy, (C3-C12) cycloalkyl, (C6-C12) aryl, (C6-C12) C 1 -C 7) alkyl, (C 1 -C 7) alkoxycarbonyl, (C 1 -C 7) alkylcarbonyl or (C 6 -C 12) arylcarbonyl;
  • n is the oxidation number of M.
  • Formula 1 of the present invention may be represented by the following formula (2).
  • R is hydrogen, hydroxy, amine, (C1-C7) alkyl, (C1-C7) alkoxy, (C3-C12) cycloalkyl, (C6-C12) aryl, (C6-C12) ar (C1-C7) alkyl (C3-C12) alkylene with or without (C1-C7) alkoxycarbonyl, (C1-C7) alkylcarbonyl or (C6-C12) arylcarbonyl, or with or without fused ring with adjacent substituents of each substituent Or (C3-C12) alkenylene to form an alicyclic ring or form a monocyclic or polycyclic aromatic ring;
  • R 1 is hydrogen, halogen, hydroxy, nitro, amine, (C1-C7) alkyl, (C1-C7) alkoxy, (C6-C12) aryl, (C6-C12) ar (C1-C7) alkyl, (C1 -C7) alkoxycarbonyl, (C1-C7) alkylcarbonyl or (C6-C12) arylcarbonyl;
  • Alkylene, alkoxy cycloalkyl, aryl, aralkyl, alkoxycarbonyl, alkylcarbonyl, arylcarbonyl, alkylene and alkenylene of R and alkyl, alkoxy, aryl, aralkyl, alkoxycarbonyl, alkylcarbon of R 1 Nyl, arylcarbonyl may be further substituted with halogen, hydroxy, nitro, amine, (C1-C7) alkyl, (C1-C7) alkoxy;
  • M is Cu, In or Ga
  • L is a ligand capable of binding to M
  • p is an integer from 1 to 4.
  • n is an integer from 1 to 4.
  • n is the oxidation number of M.
  • Formula 1 may include a compound represented by the following formula (3).
  • R is hydrogen or (C1-C7) alkyl, wherein alkyl of R may be further substituted with halogen, hydroxy, nitro, amine, (C1-C7) alkyl, (C1-C7) alkoxy;
  • M is Cu
  • L is a ligand capable of binding to M
  • p is an integer from 1 to 4.
  • n is an integer from 1 to 2;
  • n is the oxidation number of M.
  • Formula 1 according to an embodiment of the present invention may be prepared by reacting the following formula (4) and the formula (5).
  • A is (C3-C12) ar (C1-C7) alkyl or (C3-C12) heteroaryl containing one or more heteroatoms in the aromatic ring;
  • M is Cu, In or Ga
  • L is a ligand capable of binding to M
  • n is the oxidation number of M.
  • Formula 5 according to an embodiment of the present invention may be prepared by using 0.5 to 2 moles per 1 mole of the formula 4, A may be represented by the following formula (6).
  • R 1 is hydrogen, halogen, hydroxy, nitro, amine, (C1-C7) alkyl, (C1-C7) alkoxy, (C6-C12) aryl, (C6-C12) ar (C1-C7) alkyl, (C1 -C7) alkoxycarbonyl, (C1-C7) alkylcarbonyl or (C6-C12) arylcarbonyl;
  • Alkyl, alkoxy, aryl, aralkyl, alkoxycarbonyl, alkylcarbonyl and arylcarbonyl of R 1 are further substituted with halogen, hydroxy, nitro, amine, (C1-C7) alkyl, (C1-C7) alkoxy Can be;
  • n is an integer from 1 to 4.
  • the present invention provides a method for producing a selenide complex represented by the formula (1) by reacting the formula (4) and the formula (5).
  • A is (C3-C12) ar (C1-C7) alkyl or (C3-C12) heteroaryl containing one or more heteroatoms in the aromatic ring;
  • M is Cu, In, or Ga having a bidentate bond with a heteroatom contained in the aralkyl or heteroaryl of Se and A;
  • L is a ligand capable of binding to M
  • Aralkyl or heteroaryl of A is hydroxy, amino, (C1-C7) alkyl, (C1-C7) alkoxy, (C3-C12) cycloalkyl, (C6-C12) aryl, (C6-C12) C 1 -C 7) alkyl, (C 1 -C 7) alkoxycarbonyl, (C 1 -C 7) alkylcarbonyl or (C 6 -C 12) arylcarbonyl;
  • n is the oxidation number of M.
  • Formula 5 according to an embodiment of the method for producing a selenide complex represented by Formula 1 of the present invention may be 0.5 to 2 moles per 1 mole of Formula 4, and A may be represented by Formula 6. .
  • Formula 5 of the method for producing a selenide complex according to an embodiment of the present invention may be a compound represented by the following formula (7) or formula (8).
  • R 11 silver (C1-C7) alkyl (C1-C7) cycloalkyl, (C6-C12) aryloxy or (C6-C12) aryl, wherein alkyl, cycloalkyl, aryl, aryloxy is further substituted with (C1-C7) alkyl Can be;
  • Y is PF 6 , SbF 6 , OSO 2 CF 3 , or BF 4 ,
  • X is a halide
  • q is an integer of 1 to 3.
  • Chemical Formula 7 is [Cu (CH 3 CN) 4 ] (PF 6 ), [Cu (CH 3 CN) 4 ] (SbF 6 ) [Cu (CH 3 CN) 4 ] (OSO 2 CF 3 ), [ Cu (CH 3 CN) 4 ] (BF 4 ), [Cu (PhCN) 4 ] (PF 6 ), [Cu (PhCN) 4 ] (SbF 6 ), [Cu (PhCN) 4 ] (OSO 2 CF 3 ) Or [Cu (PhCN) 4 ] (BF 4 ).
  • the present invention provides a method for producing a selenide complex represented by the following formula (2) comprising reacting a compound of formula (9) with a strong base and then reacting the compound of formula (10) prepared by reacting selenium.
  • R is hydrogen, hydroxy, amine, (C1-C7) alkyl, (C1-C7) alkoxy, (C3-C12) cycloalkyl, (C6-C12) aryl, (C6-C12) ar (C1-C7) alkyl (C3-C12) alkylene with or without (C1-C7) alkoxycarbonyl, (C1-C7) alkylcarbonyl or (C6-C12) arylcarbonyl, or with or without fused ring with adjacent substituents of each substituent Or (C3-C12) alkenylene to form an alicyclic ring or form a monocyclic or polycyclic aromatic ring;
  • R 1 is hydrogen, halogen, hydroxy, nitro, amine, (C1-C7) alkyl, (C1-C7) alkoxy, (C6-C12) aryl, (C6-C12) ar (C1-C7) alkyl, (C1 -C7) alkoxycarbonyl, (C1-C7) alkylcarbonyl or (C6-C12) arylcarbonyl;
  • Alkylene, alkoxy cycloalkyl, aryl, aralkyl, alkoxycarbonyl, alkylcarbonyl, arylcarbonyl, alkylene and alkenylene of R and alkyl, alkoxy, aryl, aralkyl, alkoxycarbonyl, alkylcarbon of R 1 Nyl, arylcarbonyl may be further substituted with halogen, hydroxy, nitro, amine, (C1-C7) alkyl, (C1-C7) alkoxy;
  • M is Cu, In or Ga
  • L is a ligand capable of binding to M
  • p is an integer from 1 to 4.
  • n is an integer from 1 to 4.
  • l is an integer of m-1;
  • n is the oxidation number of M.
  • the strong base used in the method for producing a selenide complex according to an embodiment of the present invention is one selected from (C1-C4) alkyllithium, (C1-C4) alkylmagnesium halide and alkali metal hydride, and the formulas 9 and 1 0.5 to 2.0 moles can be used with respect to moles.
  • the (C1-C4) alkyllithium used in the method for producing a selenide complex according to an embodiment of the present invention may be n-butyllithium, sec-butyllithium or tert-butyllithium,
  • the (C1-C4) alkylmagnesium halide can be methylmagnesium chloride, methylmagnesium iodide, methylmagnesium bromide, ethylmagnesium chloride, ethylmagnesium bromide or propylmagnesium chloride, and the alkali metal hydride can be Na or NaH.
  • the present invention provides a CI (G) S precursor solution containing the selenide complex represented by the formula (1), and provides a CI (G) S thin film prepared by using a CI (G) S precursor solution.
  • the present invention also provides a method for producing the CI (G) S thin film.
  • the method for producing a CI (G) S thin film of the present invention comprises the steps of: (a) forming an indium-gallium-selenium thin film layer of indium metal, gallium metal and selenium on a substrate;
  • step (b) forming a CI (G) S precursor layer by applying or printing a solution containing the selenide complex represented by Formula 1 according to the present invention on the thin film layer of step (a) in an inert gas atmosphere:
  • Heat treatment according to an embodiment of the present invention may be performed for 1 to 10 minutes at 300 ⁇ 600 °C
  • the solution of step (b) is the selenide complex according to the invention triethyl phosphate, triisopropyl phosphate, It can be prepared by addition to one or more solvents selected from pyridine, picoline, dimethylformamide and dimethylsulfoxide.
  • the substrate according to an embodiment of the present invention is not limited, but may be, for example, a soda lime glass substrate or a soda lime glass substrate coated with molybdenum.
  • Coating or printing according to an embodiment of the present invention is carried out by one method selected from die coating, inkjet printing, screen printing, dip coating, droplet casting, flow casting, roll coating, spray coating, doctor blading and gravure printing
  • the drying may be performed at 100 to 200 ° C. for 1 to 5 minutes.
  • the selenide complex of the present invention is easily dissolved in a general organic solvent and does not require additional formulation, and does not leave carbon and other residues derived from a dispersant used in the formulation.
  • the selenide complex of the present invention is capable of complete solution in an organic solvent, so that the viscosity and boiling point can be controlled by solvent selection, and there are problems in thin film form such as unevenness in coating and printing, process clogging, roughness, and ink formulation.
  • the difficulty of commercialization due to the toxicity and explosiveness of the materials used can be solved.
  • the CI (G) S precursor solution including the novel selenide complex according to the present invention does not require a separate formulation, and is easily deposited and economical.
  • the CI (G) S thin film prepared by using the CI (G) S precursor solution according to the present invention can be deposited by a non-vacuum thin film manufacturing method, so it is economical and does not need to be formulated into a material such as a binder and has high purity and Since the thin film is formed, the solar cell including the CI (G) S thin film of the present invention has high efficiency and has economic advantages.
  • the manufacturing method of the CI (G) S thin film according to the present invention can provide a method for producing a uniform and high purity CIGS-based thin film by a solution process using the selenide complex of the novel bidentate compound of the present invention, Large-area CIGS thin films can be manufactured at low cost.
  • the CIGS-based thin film prepared according to the method for producing a CIGS thin film of the present invention using the CIGS precursor solution containing the selenide complex of the present invention the thin film is extremely uniform with high purity.
  • Example 1 is an NMR spectrum of the selenide complex prepared according to Example 1 of the present invention.
  • Figure 2 is a photograph showing the results of observing the SEM characteristics of the thin film prepared according to Example 3 of the present invention.
  • Example 3 is a graph showing the results of observing the crystal characteristics of the thin film prepared according to Example 3 of the present invention by XRD.
  • Example 4 is a SEM photograph of a CIGS thin film prepared according to Example 5 of the present invention.
  • Example 5 is a graph showing the results of observing the crystal characteristics of the CIGS thin film prepared according to Example 5 of the present invention by XRD.
  • the present invention provides a selenide complex, which is a novel bidentate compound represented by the following formula (1).
  • A is (C3-C12) ar (C1-C7) alkyl or (C3-C12) heteroaryl containing one or more heteroatoms in the aromatic ring;
  • M is Cu, In, or Ga having a bidentate bond with a heteroatom contained in the aralkyl or heteroaryl of Se and A;
  • L is a ligand capable of binding to M
  • Aralkyl or heteroaryl of A is hydroxy, amino, (C1-C7) alkyl, (C1-C7) alkoxy, (C3-C12) cycloalkyl, (C6-C12) aryl, (C6-C12) C1-C7) alkyl, (C1-C7) alkoxycarbonyl, (C1-C7) alkylcarbonyl or (C6-C12) arylcarbonyl;
  • n is the oxidation number of M.
  • the selenide complex of the present invention is a heteroatom of a (C 3 -C 12) ar (C 1 -C 7) alkyl or (C 3 -C 12) heteroaryl containing Se and at least one hetero atom in the aromatic ring of Chemical Formula 1 (M).
  • M Chemical Formula 1
  • a metal atom (M) Cu, In, or Ga is a bond such as a polymer by binding the hetero atom of Se and aralkyl or heteroaryl containing one or more heteroatoms in the aromatic ring of Formula 1 Unlike conventional metal complexes having a high solubility in a commercial solvent by inhibiting the aggregation between the metal complexes.
  • the by-products formed after forming the thin film using the selenide complex of the present invention are stable to heat, and thus, the residues generated during thin film generation have an advantage of producing a thin film of high purity.
  • Chemical Formula 1 according to an embodiment of the present invention may be represented by the following Chemical Formula 2.
  • R is hydrogen, hydroxy, amine, (C1-C7) alkyl, (C1-C7) alkoxy, (C3-C12) cycloalkyl, (C6-C12) aryl, (C6-C12) ar (C1-C7) alkyl (C3-C12) alkylene with or without (C1-C7) alkoxycarbonyl, (C1-C7) alkylcarbonyl or (C6-C12) arylcarbonyl, or with or without fused ring with adjacent substituents of each substituent Or (C3-C12) alkenylene to form an alicyclic ring or form a monocyclic or polycyclic aromatic ring;
  • R 1 is hydrogen, halogen, hydroxy, nitro, amine, (C1-C7) alkyl, (C1-C7) alkoxy, (C6-C12) aryl, (C6-C12) ar (C1-C7) alkyl, (C1 -C7) alkoxycarbonyl, (C1-C7) alkylcarbonyl or (C6-C12) arylcarbonyl;
  • Alkylene, alkoxy cycloalkyl, aryl, aralkyl, alkoxycarbonyl, alkylcarbonyl, arylcarbonyl, alkylene and alkenylene of R and alkyl, alkoxy, aryl, aralkyl, alkoxycarbonyl, alkylcarbon of R 1 Nyl, arylcarbonyl may be further substituted with halogen, hydroxy, nitro, amine, (C1-C7) alkyl, (C1-C7) alkoxy;
  • M is Cu, In or Ga
  • L is a ligand capable of binding to M
  • p is an integer from 1 to 4.
  • n is an integer from 0 to 4.
  • n is the oxidation number of M.
  • the N atom and Se of pyridine occupy an empty coordination position of the metal atom (M), thereby preventing the aggregation between the metal complexes, thereby increasing the solubility in commercial solvents.
  • N atom and Se of pyridine act as bi-dentate ligands, so that the N atom and Se of pyridine occupy an empty coordination site of metal atom (M), which prevents aggregation between metal complexes and increases solubility in commercial solvents. Give effect.
  • the by-products generated after coating the thin film with a metal-selenide complex and firing are stable and can be easily vaporized and removed without leaving residues such as carbon or oxygen by heat, thereby providing a thin film of high purity.
  • Formula 1 may include a compound represented by the following formula (3).
  • R is hydrogen or (C1-C7) alkyl, wherein alkyl of R may be further substituted with halogen, hydroxy, nitro, amine, (C1-C7) alkyl, (C1-C7) alkoxy;
  • M is Cu
  • L is a ligand capable of binding to M
  • p is an integer from 1 to 4.
  • n is an integer from 1 to 2;
  • n is the oxidation number of M.
  • the present invention also provides a method for preparing a selenide complex represented by Chemical Formula 1 by reacting Chemical Formula 4 and Chemical Formula 5 below.
  • A is (C3-C12) ar (C1-C7) alkyl or (C3-C12) heteroaryl containing one or more heteroatoms in the aromatic ring;
  • M is Cu, In, or Ga having a bidentate bond with a heteroatom contained in the aralkyl or heteroaryl of Se and A;
  • L is a ligand capable of binding to M
  • Aralkyl or heteroaryl of A is hydroxy, amino, (C1-C7) alkyl, (C1-C7) alkoxy, (C3-C12) cycloalkyl, (C6-C12) aryl, (C6-C12) C1-C7) alkyl, (C1-C7) alkoxycarbonyl, (C1-C7) alkylcarbonyl or (C6-C12) arylcarbonyl;
  • n is the oxidation number of M.
  • Formula 5 according to an embodiment of the method for producing a selenide complex represented by Formula 1 of the present invention may be 0.5 to 2 moles per 1 mole of Formula 4, and A may be represented by Formula 6. .
  • Formula 5 of the method for producing a selenide complex according to an embodiment of the present invention may be a compound represented by the following formula (7) or formula (8).
  • R 11 silver (C1-C7) alkyl (C1-C7) cycloalkyl, (C6-C12) aryloxy or (C6-C12) aryl, wherein alkyl, cycloalkyl, aryl, aryloxy is further substituted with (C1-C7) alkyl Can be;
  • Y is PF 6 , SbF 6 , OSO 2 CF 3 , or BF 4 ,
  • X is a halide
  • q is an integer of 1 to 3.
  • R 11 in Formula 7 may be methyl, t-butyl, sec-butyl, propyl, butyl, heptyl, cycloheptyl, phenyl, benzyl, benzoyl, ⁇ -methylbenzyl, 3-methylbenzyl, and more specifically, [ Cu (CH 3 CN) 4 ] (PF 6 ), [Cu (CH 3 CN) 4 ] (SbF 6 ) [Cu (CH 3 CN) 4 ] (OSO 2 CF 3 ), [Cu (CH 3 CN) 4 ] (BF 4 ), [Cu (PhCN) 4 ] (PF 6 ), [Cu (PhCN) 4 ] (SbF 6 ), [Cu (PhCN) 4 ] (OSO 2 CF 3 ) or [Cu (PhCN) 4 ] (BF 4 ), Formula 5 may be used in 0.5 to 2.0 moles with respect to Formula 4, 1 mole.
  • Chemical Formula 4 is preferably [Cu (CH 3 CN) 4 ] (PF 6 ), [Cu (CH 3 CN) 4 ] (SbF 6 ), [Cu (CH 3 CN) 4 ] (OSO 2 CF 3 ) or [Cu (CH 3 CN) 4 ] (BF 4 ).
  • the present invention provides a method for preparing a selenide complex represented by the following formula (2) comprising reacting a compound of formula (9) with a strong base and then reacting selenium with a compound of formula (10).
  • R is hydrogen, hydroxy, amine, (C1-C7) alkyl, (C1-C7) alkoxy, (C3-C12) cycloalkyl, (C6-C12) aryl, (C6-C12) ar (C1-C7) alkyl (C3-C12) alkylene with or without (C1-C7) alkoxycarbonyl, (C1-C7) alkylcarbonyl or (C6-C12) arylcarbonyl, or with or without fused ring with adjacent substituents of each substituent Or (C3-C12) alkenylene to form an alicyclic ring or form a monocyclic or polycyclic aromatic ring;
  • R 1 is hydrogen, halogen, hydroxy, nitro, amine, (C1-C7) alkyl, (C1-C7) alkoxy, (C6-C12) aryl, (C6-C12) ar (C1-C7) alkyl, (C1 -C7) alkoxycarbonyl, (C1-C7) alkylcarbonyl or (C6-C12) arylcarbonyl;
  • Alkylene, alkoxy cycloalkyl, aryl, aralkyl, alkoxycarbonyl, alkylcarbonyl, arylcarbonyl, alkylene and alkenylene of R and alkyl, alkoxy, aryl, aralkyl, alkoxycarbonyl, alkylcarbon of R 1 Nyl, arylcarbonyl may be further substituted with halogen, hydroxy, nitro, amine, (C1-C7) alkyl, (C1-C7) alkoxy;
  • M is Cu, In or Ga
  • L is a ligand capable of binding to M
  • p is an integer from 1 to 4.
  • n is an integer from 1 to 4.
  • l is an integer of m-1;
  • n is the oxidation number of M.
  • the strong base used in the method for producing a selenide complex according to an embodiment of the present invention is one selected from (C1-C4) alkyllithium, (C1-C4) alkylmagnesium halide and alkali metal hydride, and the formulas 9 and 1 0.5 to 2.0 moles can be used with respect to moles.
  • This molar ratio may be substantially 0.8 to 1.2 moles to reduce byproducts and obtain high yields.
  • the (C1-C4) alkyllithium used in the method for producing a selenide complex according to an embodiment of the present invention may be methyllithium, n-butyllithium, sec-butyllithium or tert-butyllithium,
  • (C1-C4) alkylmagnesium halide is methylmagnesium chloride, methylmagnesium iodide, methylmagnesium bromide, ethylmagnesium chloride, ethylmagnesium bromide or propylmagnesium chloride,
  • the alkali metal hydride may be Na or NaH, and more preferably, in view of reaction time and reaction efficiency, the strong base may be methyllithium or n-butyllithium.
  • the present invention provides a CI (G) S precursor solution comprising a selenide complex represented by the formula (1), CI (G) S thin film and CI (G) S prepared using a CI (G) S precursor solution Provided is a solar cell containing a thin film.
  • the method for producing a CIGS thin film of the present invention comprises the steps of (a) forming an indium-gallium-selenium thin film layer of indium precursor, gallium precursor and selenium on a substrate;
  • step (b) coating or printing a solution containing the selenide complex as the bidentate compound of the present invention on the thin film layer of step (a) in an inert gas atmosphere to form a CIGS precursor layer;
  • Method for producing a CIGS thin film of the present invention is a bidentate compound containing selenium and metal (Cu, In or Ga) of the present invention that can be completely solvent in a general organic solvent, not toxic and explosive hydrazine with the formula (1)
  • the selenide complex represented can be used to form a uniform and high purity CIGS thin film.
  • the method for producing a CIGS thin film of the present invention is prepared by a solution process using a solution containing the selenide complex represented by Formula 1, which is a bidentate compound containing selenium and a metal (Cu, In or Ga) It is possible to produce a uniform and high purity thin film, it is possible to manufacture a large area thin film at low cost.
  • Formula 1 is a bidentate compound containing selenium and a metal (Cu, In or Ga)
  • the bidentate compound is a compound having a bidentate coordination site in the metal, and the bidentate compound according to an embodiment of the present invention includes selenium and a metal of Cu, In, or Ga.
  • the selenide complex as the bidentate compound of the present invention prevents agglomeration between selenide complexes by introducing a bidentate ligand so that double ligands of the ligand occupy an empty coordination position of copper, indium or gallium atoms as metals.
  • the CIGS thin film of the present invention includes both CIGS and CIS thin film.
  • the CIS thin film of the present invention is a gallium precursor in the method of manufacturing the CIGS thin film of the present invention. It can be prepared in the same manner except.
  • an indium-gallium-selenium thin film layer is formed of indium precursor, gallium precursor, and selenium on a substrate.
  • the substrate at this time is not limited, but may be a soda lime glass substrate or a soda lime glass substrate coated with molybdenum.
  • the mixed weight ratio of the indium metal and the gallium metal according to an embodiment of the present invention may be 1: 2 to 4 to adjust the content of the components constituting the CIGS.
  • the indium-gallium-selenium thin film layer uses selenium, gallium metal, and indium metal for 10 to 30 minutes while maintaining the substrate temperature at 300 to 350 ° C. Can be formed.
  • a CIGS precursor layer is formed by applying or printing a solution containing the selenide complex as the bidentate compound of the present invention on the thin film layer of the above step in an inert gas atmosphere.
  • the solution containing the selenide complex which is the bidentate compound of the present invention at this time is selected from the selenide complex prepared by the above-described manufacturing method as triethyl phosphate, triisopropyl phosphate, pyridine, picoline, and dimethyl. It may be prepared by adding to at least one solvent selected from formamide and dimethyl sulfoxide, preferably, it may be prepared by including 10 to 30 parts by weight of the selenide complex in 100 parts by weight of the solvent.
  • the solution containing the selenide complex according to an embodiment of the present invention can be understood as an ink for forming a thin film.
  • the coating or printing may be done by die coating, ink-jet printing, screen printing, dip coating, droplets. It can be carried out by one method selected from drop casting, flow casting, roll coating, spray coating, doctor blading and gravure printing.
  • the CIGS precursor layer means a thin film before forming the CIGS thin film by drying and heat treatment, and forms the CIGS thin film by drying and heat treatment.
  • the drying may be carried out for 1 to 5 minutes at 100 ⁇ 200 °C and preferably may be carried out for 3 to 5 at 120 ⁇ 160 °C in consideration of the boiling point of the solvent added to the solution containing the selenide complex.
  • the heat treatment may be performed at 300 to 600 ° C. for 1 to 10 minutes, and in terms of improving CIGS crystallinity, the heat treatment may be performed at 450 to 600 ° C. for 4 to 8 minutes.
  • Example 2 0.3 g of TEP (Triethyl phosphate) in 0.3 g of the solid-phase selenide copper complex obtained in Example 1 was dissolved in a vial at room temperature to prepare an ink for coating.
  • TEP Triethyl phosphate
  • the prepared ink was filtered and then coated by Knife coating method under nitrogen atmosphere.
  • the prepared ink was filtered and then coated by Knife coating method under nitrogen atmosphere. Drying at 150 ° C for 5 minutes and heat treatment at 400 ° C for 10 minutes to form a selenide copper complex thin film.
  • the solution containing the bidentate prepared in Example 3 (copper-selenium ink) was coated by a die coating method and dried at 100 ° C. for 2 minutes, and then heat-treated at 550 ° C. for 5 minutes in an inert gas atmosphere to have a thickness of 3 um.
  • a phosphorus CIGS (CuIn 0.7 Ga 0.3 Se 2 ) thin film was formed.
  • the prepared CIGS thin film was observed by using a scanning electron microscope (SEM) and Energy Dispersive X-Ray (EDX), Table 1 below is to observe the CIGS thin film obtained according to Example 5 by EDX, in Example 5
  • SEM scanning electron microscope
  • EDX Energy Dispersive X-Ray
  • FIG. 1 a selenide complex was prepared according to Example 1, and FIG. 2 shows a result of observing thin film characteristics using the selenide complex prepared according to Example 3 by SEM. It can be seen that a thin film of easily deposited, uniform and high purity is formed without material.
  • the CIGS thin film manufactured according to the present invention has a uniform overall copper composition and a copper composition of 0.9 compared to the sum of indium and gallium, and thus the solar cell employing the CIGS thin film according to the present invention has high efficiency.
  • CIRD crystal peaks can be identified by XRD analysis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

본 발명은 신규한 셀레나이드 착체, 이의 제조방법 및 CI(G)S 박막을 제공하며, 또한 본 발명에 따른 신규한 셀레나이드 착체는 별도의 제제화 과정없이 고순도의 균일한 CI(G)S박막을 제조할 수 있다.

Description

셀레나이드 착체, 이의 제조방법 및 이를 이용한 CI(G)S 박막
본 발명은 셀레나이드 착체와 이의 제조방법 및 이를 이용한 CI(G)S 에 관한 것으로, 보다 상세하게는 셀레늄과 금속을 포함하는 바이덴테이트 화합물인 셀레나이드 착체, 이의 제조방법 및 이를 이용한 CI(G)S 박막에 관한 것이다
태양전지는 구성성분에 따라 실리콘 반도체 태양전지, 화합물 반도체 태양전지, 적층형 태양전지 등으로 분류되며, CI(G)S 광 흡수층을 포함하는 태양전지는 찰코파이라이트(Chalcopyrite)계 화합물 반도체 태양전지의 분류에 속한다.
찰코파이라이트형 화합물은 구성 성분에 따라 1-3-6족인 CuSe, CuInSe2, CuGaSe2, Cu(In,Ga)Se2, CuInS2, CuGaS2, Cu(In,Ga)S2, CuIn(Se,S)2, CuGa(Se,S)2, Cu(In,Ga)(Se,S)2와 1-2-(4)-6족인 CuAlSe2, CuFeSe2, Cu2CdSe4, Cu2CdSnSe4, Cu2ZnSnSe4 등으로 나뉜다.
대표적인 1-3-6족 찰코파이라이트형 화합물 반도체인 CI(G)S는 1 eV 이상의 직접 천이형 에너지 밴드갭을 가지고 있고, 반도체 중에서 가장 높은 광 흡수 계수(1×105cm-1)를 가질 뿐만 아니라 전기 광학적으로 매우 안정하여 태양전지의 광흡수층으로 매우 이상적인 소재로 알려져 있다.
CI(G)S계 태양전지는 수 마이크론 두께의 박막으로 태양전지를 만드는데, 초기 장치비 및 공정 시간이 긴 진공법 대신 무기화학 착체 전구체를 잉크제로 사용한 여러 가지 비진공 박막 제조방법이 시도되고 있다.
대표적인 예로 미국 특허공개번호 제2009-0280624호에 Cu2Se와 In2Se3 전구체를 제작하여 열처리하여 CIS 박막을 제조하는 것이 개시되어 있으며, 미국 특허등록 제6,127,202호에는 프린팅(printing) 방식을 사용해서 CI(G)S 박막을 형성시키는 방법이 개시되어 있다.
하지만, 상기 문헌에서 개시한 Cu2Se 전구체는 불용성 고상 착제로써, 이를 아민/디메틸설파이드 용매에서 슬러리 형태로 변형하거나 혹은 1,2-디아미노에탄 착제로 추가 변형하여 코팅/프린팅에 사용해야 하는 단점이 있다.
이러한 문제점을 극복하기 위해 미국등록특허 제 7094651과 미국등록특허 제 734191에 CuSe2, In2Se3, Ga2Se3 찰코파이라이트 화합물을 각각 히드라진에 용해하여 조성에 맞는 전구체 혼합용액을 제조하는 방법과 각 전구체 용액을 이용하여 코팅 후 열처리를 통해 CIGS 찰코파이라이트 화합물을 제조하는 방법이 소개되었다. 특히 셀렌화 구리화합물 잉크제를 제조하는데 있어 상기 방법은 간편하게 완전용액상의 전구체 제조가 가능하지만, 제조시간이 매우 길고 폭발성이 있는 용매를 사용하므로 상용 공정화가 어려운 단점이 있다.
한편 Journal of Crystal Growth 2009, Vol 311, 2621-2625에 구리, 인듐, 갈륨 및 셀레늄을 포함하는 잉크에 에틸셀룰로오스 바인더를 첨가하여 점성을 이용한 문헌이 공지되었으나, 이는 환원 과정과 열처리 과정중에 바인더에서 유래한 탄소 잔유물이 충분히 제거되지 않아 상업적 활용에 어려움이 있다.
상기 예에서 기술한 셀렌화 구리 전구체 화합물의 특징은 일반적으로 용해도가 매우 낮아 용매선택이 어려워서 추가적인 가소제나 분산제의 첨가를 통해 잉크 제제화를 통해 제조해야 한다. 또한, 이때 사용될 수 있는 분산제에서 유래한 탄소 및 기타 잔유물은 반도체의 전기적 특성을 저하시키며, 히드라진 용매를 사용하는 경우 제제화가 필요 없지만 용매의 유독성 및 폭발성으로 상용화하기 매우 어려운 문제점이 있다.
따라서 종래의 문제점들을 극복할 수 있는 신규한 셀레나이드착체를 이용한 CI(G)S 전구체 용액의 개발이 요구되고 있다.
본 발명은 신규한 구조의 셀레나이드 착체와 이의 제조방법을 제공하며, 신규한 셀레나이드 착체를 포함하는 CI(G)S 전구체 용액을 제공한다.
또한 본 발명은 셀레나이드 착체를 포함하는 CI(G)S 전구체 용액을 이용하여 제조되는 CI(G)S 박막과 이의 제조방법을 제공한다.
본 발명은 신규한 셀레나이드 착체를 제공한다.
본 발명의 신규한 셀레나이드 착체는 하기 화학식 1로 표시된다.
[화학식 1]
[A-Se]nMLn-1
A는 방향족고리내에 하나이상의 헤테로원자를 포함하는 (C3-C12)아르(C1-C7)알킬 또는 (C3-C12)헤테로아릴이며;
M은 Se와 A의 아르알킬 또는 헤테로아릴에 포함된 헤테로원자와 바이덴테이트결합을 가지는 Cu, In 또는 Ga이며;
L은 M과 결합가능한 리간드이며;
상기 A의 아르알킬 또는 헤테로아릴은 하이드록시, 아미노, (C1-C7)알킬, (C1-C7)알콕시, (C3-C12)시클로알킬, (C6-C12)아릴, (C6-C12)아르(C1-C7)알킬, (C1-C7)알콕시카보닐, (C1-C7)알킬카보닐 또는 (C6-C12)아릴카보닐로 더 치환될 수 있으며;
n은 M의 산화수이다.]
본 발명의 화학식 1은 하기 화학식 2로 표시될 수 있다.
[화학식 2]
Figure PCTKR2013002620-appb-I000001
[상기 화학식 1에서,
R은 수소, 하이드록시, 아민, (C1-C7)알킬, (C1-C7)알콕시, (C3-C12)시클로알킬, (C6-C12)아릴, (C6-C12)아르(C1-C7)알킬, (C1-C7)알콕시카보닐, (C1-C7)알킬카보닐 또는 (C6-C12)아릴카보닐이거나, 각 치환기의 인접한 치환체와 융합고리를 포함하거나 포함하지 않는 (C3-C12)알킬렌 또는 (C3-C12)알케닐렌으로 연결되어 지환족 고리를 형성하거나, 단일환 또는 다환의 방향족 고리를 형성할 수 있으며;
R1은 수소, 할로겐, 하이드록시, 니트로, 아민, (C1-C7)알킬, (C1-C7)알콕시, (C6-C12)아릴, (C6-C12)아르(C1-C7)알킬, (C1-C7)알콕시카보닐, (C1-C7)알킬카보닐 또는 (C6-C12)아릴카보닐이며;
상기 R의 알킬, 알콕시 시클로알킬, 아릴, 아르알킬, 알콕시카보닐, 알킬카보닐, 아릴카보닐, 알킬렌 및 알케닐렌과 R1의 알킬, 알콕시, 아릴, 아르알킬, 알콕시카보닐, 알킬카보닐, 아릴카보닐은 할로겐, 하이드록시, 니트로, 아민, (C1-C7)알킬, (C1-C7)알콕시로 더 치환될 수 있으며;
M은 Cu, In 또는 Ga이며;
L은 M과 결합가능한 리간드이며;
p는 1 내지 4의 정수이며;
m은 1 내지 4의 정수이고;
n은 M의 산화수이다.]
본 발명의 일 실시예에 따른 화학식 1은 하기 화학식 3으로 표시되는 화합물을 포함할 수 있다.
[화학식 3]
Figure PCTKR2013002620-appb-I000002
[상기 화학식 3에서,
R은 수소 또는 (C1-C7)알킬이며, 상기 R의 알킬은 할로겐, 하이드록시, 니트로, 아민, (C1-C7)알킬, (C1-C7)알콕시로 더 치환될 수 있으며;
M은 Cu이며;
L은 M과 결합가능한 리간드이며;
p는 1 내지 4의 정수이며;
m은 1 내지 2의 정수이고;
n은 M의 산화수이다.]
본 발명의 일 실시예에 따른 화학식 1은 하기 화학식 4와 하기 화학식 5을 반응시켜 제조된 것일 수 있다.
[화학식 4]
A-Se-H
[화학식 5]
MLn
[상기 화학식 4 또는 5에서,
A는 방향족고리내에 하나이상의 헤테로원자를 포함하는 (C3-C12)아르(C1-C7)알킬 또는 (C3-C12)헤테로아릴이며;
M은 Cu, In 또는 Ga이며;
L은 M과 결합가능한 리간드이며;
n은 M의 산화수이다.]
본 발명의 일 실시예에 따른 상기 화학식 5는 화학식 4, 1몰에 대하여 0.5 ~ 2몰 사용되어 제조될 수 있으며, 상기 A는 하기 화학식 6으로 표시될 수 있다.
[화학식 6]
Figure PCTKR2013002620-appb-I000003
[상기 화학식 6에서,
R1은 수소, 할로겐, 하이드록시, 니트로, 아민, (C1-C7)알킬, (C1-C7)알콕시, (C6-C12)아릴, (C6-C12)아르(C1-C7)알킬, (C1-C7)알콕시카보닐, (C1-C7)알킬카보닐 또는 (C6-C12)아릴카보닐이며;
상기 R1의 알킬, 알콕시, 아릴, 아르알킬, 알콕시카보닐, 알킬카보닐, 아릴카보닐은 할로겐, 하이드록시, 니트로, 아민, (C1-C7)알킬, (C1-C7)알콕시로 더 치환될 수 있으며;
m은 1 내지 4의 정수이다]
또한 본 발명은 하기 화학식 4와 하기 화학식 5을 반응시켜 상기 화학식 1로 표시되는 셀레나이드 착체의 제조방법을 제공한다.
[화학식 4]
A-Se-H
[화학식 5]
MLn
[상기 화학식 4 및 5에서,
A는 방향족고리내에 하나이상의 헤테로원자를 포함하는 (C3-C12)아르(C1-C7)알킬 또는 (C3-C12)헤테로아릴이며;
M은 Se와 A의 아르알킬 또는 헤테로아릴에 포함된 헤테로원자와 바이덴테이트결합을 가지는 Cu, In 또는 Ga이며;
L은 M과 결합가능한 리간드이며;
상기 A의 아르알킬 또는 헤테로아릴은 하이드록시, 아미노, (C1-C7)알킬, (C1-C7)알콕시, (C3-C12)시클로알킬, (C6-C12)아릴, (C6-C12)아르(C1-C7)알킬, (C1-C7)알콕시카보닐, (C1-C7)알킬카보닐 또는 (C6-C12)아릴카보닐로 더 치환될 수 있으며;
n은 M의 산화수이다.]
본 발명의 상기 화학식 1로 표시되는 셀레나이드 착체의 제조방법의 일 실시예에 따른 화학식 5는 화학식 4, 1몰에 대하여 0.5 ~ 2몰 사용할 수 있으며, 상기 A는 상기 화학식 6으로 표시될 수 있다.
본 발명의 일실시예에 따른 셀레나이드 착체의 제조방법의 화학식 5는 하기 화학식 7 또는 화학식 8로 표시되는 화합물 일 수 있다.
[화학식 7]
[Cu(R11CN)4](Y)
[화학식 8]
CuXq
[상기 화학식 7 또는 8에서,
R11 (C1-C7)알킬 (C1-C7)시클로알킬, (C6-C12)아릴옥시 또는 (C6-C12)아릴이며, 상기 알킬, 시클로알킬, 아릴, 아릴옥시는 (C1-C7)알킬로 더 치환될 수 있으며;
Y는 PF6, SbF6, OSO2CF3, 또는 BF4이며,
X는 할라이드이고,
q는 1 내지 3의 정수이다.]
보다 구체적으로 화학식 7은 [Cu(CH3CN)4](PF6), [Cu(CH3CN)4](SbF6) [Cu(CH3CN)4](OSO2CF3), [Cu(CH3CN)4](BF4), [Cu(PhCN)4](PF6), [Cu(PhCN)4](SbF6), [Cu(PhCN)4](OSO2CF3) 또는 [Cu(PhCN)4](BF4)일 수 있다.
또한 본 발명은 하기 화학식 9의 화합물과 강염기를 반응시킨 후 셀레늄을 반응시켜 제조된 화학식 10의 화합물에 화학식 3을 반응시키는 것을 포함하는 하기 화학식 2로 표시되는 셀레나이드 착체의 제조방법을 제공한다.
[화학식 2]
Figure PCTKR2013002620-appb-I000004
[화학식 10]
Figure PCTKR2013002620-appb-I000005
[화학식 3]
MLn
[화학식 9]
Figure PCTKR2013002620-appb-I000006
[상기 화학식 2, 3, 9 및 10에서,
R은 수소, 하이드록시, 아민, (C1-C7)알킬, (C1-C7)알콕시, (C3-C12)시클로알킬, (C6-C12)아릴, (C6-C12)아르(C1-C7)알킬, (C1-C7)알콕시카보닐, (C1-C7)알킬카보닐 또는 (C6-C12)아릴카보닐이거나, 각 치환기의 인접한 치환체와 융합고리를 포함하거나 포함하지 않는 (C3-C12)알킬렌 또는 (C3-C12)알케닐렌으로 연결되어 지환족 고리를 형성하거나, 단일환 또는 다환의 방향족 고리를 형성할 수 있으며;
R1은 수소, 할로겐, 하이드록시, 니트로, 아민, (C1-C7)알킬, (C1-C7)알콕시, (C6-C12)아릴, (C6-C12)아르(C1-C7)알킬, (C1-C7)알콕시카보닐, (C1-C7)알킬카보닐 또는 (C6-C12)아릴카보닐이며;
상기 R의 알킬, 알콕시 시클로알킬, 아릴, 아르알킬, 알콕시카보닐, 알킬카보닐, 아릴카보닐, 알킬렌 및 알케닐렌과 R1의 알킬, 알콕시, 아릴, 아르알킬, 알콕시카보닐, 알킬카보닐, 아릴카보닐은 할로겐, 하이드록시, 니트로, 아민, (C1-C7)알킬, (C1-C7)알콕시로 더 치환될 수 있으며;
M은 Cu, In 또는 Ga이며;
L은 M과 결합가능한 리간드이며;
p는 1 내지 4의 정수이며;
m은 1 내지 4의 정수이고;
l은 m-1의 정수이며;
n은 M의 산화수이다.]
본 발명의 일실시예에 따른 셀레나이드 착체의 제조방법에 사용되는 강염기는 (C1-C4)알킬리튬, (C1-C4)알킬마그네슘할라이드 및 알칼리금속하이드라이드에서 선택되는 하나이며, 화학식 9, 1몰에 대하여 0.5 ~ 2.0몰을 사용할 수 있다.
또한 본 발명의 일실시예에 따른 셀레나이드 착체의 제조방법에 사용되는 (C1-C4)알킬리튬은 n-부틸리튬, sec-부틸리튬 또는 tert-부틸리튬일 수 있으며,
(C1-C4)알킬마그네슘할라이드는 메틸마그네슘클로라이드, 메틸마그네슘아요다이드, 메틸마그네슘브로마이드, 에틸마그네슘클로라이드, 에틸마그네슘브로마이드 또는 프로필마그네슘클로라이드일 수 있으며, 알칼리금속하이드라이드는 Na 또는 NaH일 수 있다.
또한 본 발명은 상기 화학식 1로 표시되는 셀레나이드 착체를 포함하는 CI(G)S 전구체 용액을 제공하며, CI(G)S 전구체 용액를 이용하여 제조되는 CI(G)S박막을 제공한다.
또한 본 발명은 상기 CI(G)S박막의 제조방법을 제공한다.
본 발명의 CI(G)S박막의 제조방법은 (a)기판상에 인듐금속, 갈륨금속 및 셀레늄으로 인듐-갈륨-셀레늄 박막층을 형성하는 단계;
(b)비활성기체 분위기하에서 상기 (a)단계의 박막층상에 본 발명에 따른 상기 화학식 1로 표시되는 셀레나이드 착체를 포함하는 용액을 도포 또는 프린팅하여 CI(G)S전구체층을 형성하는 단계:및
(c)상기 단계의 CIGS 전구체층을 건조하고 열처리하여 CIGS 박막을 제조하는 단계;를 포함한다.
본 발명의 일 실시예에 따른 열처리는 300 ~ 600℃에서 1 ~10분동안 수행될 수 있으며, 상기 (b)단계의 용액은 본 발명에 따른 셀레나이드 착체를 트리에틸 포스페이트, 트리이소프로필 포스페이트, 피리딘, 피콜린, 다이메틸포름아마이드 및 다이메틸설폭사이드에서 선택되는 하나이상의 용매에 첨가하여 제조될 수 있다.
본 발명의 일 실시예에 따른 기판은 한정이 있는 것은 아니나, 일례로 소다라임 유리기판 또는 몰리브데늄이 코팅된 소다라임 유리기판일 수 있다.
본 발명의 일 실시예에 따른 도포 또는 프린팅은 다이코팅, 잉크젯 프린팅, 스크린프린팅, 딥코팅, 액적캐스팅, 흐름 캐스팅, 롤코팅, 분무코팅, 닥터블레이딩 및 그라비아인쇄에서 선택되는 하나의 방법으로 수행될 수 있으며, 건조는 100 ~ 200℃에서 1 ~ 5분동안 수행될 수 있다.
본 발명의 셀레나이드 착체는 일반적인 유기용매에 쉽게 녹아 추가적인 제제화가 필요 없으며, 제제화에 사용되는 분산제등에서 유래한 탄소 및 기타 잔유물이 남지 않아 고순도의 박막제조가 가능하다.
또한 본 발명의 셀레나이드 착체는 유기용매에 완전용액화가 가능하여 용매 선택에 의한 점도 및 끓는 점 조절이 가능하며, 코팅 및 프린팅의 불균일성과 공정상의 막힘, 거칠기등의 박막 형태상의 문제점과 잉크제제화에 사용되는 물질의 유독성과 폭발성에 의한 상용화의 어려움의 문제점들을 해결할 수 있다.
또한 본 발명에 따른 신규한 셀레나이드 착체를 포함하는 CI(G)S 전구체 용액은 별도의 제제화가 필요없어 쉽게 증착이 가능하며 경제적이다.
또한 본 발명에 따른 CI(G)S 전구체 용액을 이용하여 제조되는 CI(G)S박막은 비진공 박막 제조방법으로 박막을 증착할 수 있어 경제적이고 바인더와 같은 물질로 제제화할 필요가 없어 고순도와 박막을 형성하므로 본 발명의 CI(G)S박막을 포함하는 태양전지는 높은 효율을 가지며 경제적인 장점이 있다.
또한 본 발명에 따른 CI(G)S박막의 제조방법은 본 발명의 신규한 바이덴테이트 화합물인 셀레나이드 착체를 이용하여 용액공정으로 균일하고 고순도인 CIGS계 박막의 제조방법을 제공할 수 있으며, 저렴한 비용으로 대면적인 CIGS박막의 제조가 가능하다.
또한 본 발명의 셀레나이드 착제를 포함하는 CIGS 전구체 용액을 이용하여 본 발명의 CIGS 박막의 제조방법에 따라 제조된 CIGS계 박막은 박막이 고순도로 극히 균일하다.
도 1은 본 발명의 실시 예 1에 따라 제조된 셀레나이드 착체의 NMR스펙트럼이다.
도 2는 본 발명의 실시 예 3에 따라 제조된 박막 특성을 SEM으로 관찰한 결과를 나타낸 사진이다.
도 3은 본 발명의 실시예 3에 따라 제조된 박막의 결정 특성을 XRD로 관찰한 결과를 나타낸 그래프이다.
도 4는 본 발명의 실시 예 5에 따라 제조된 CIGS 박막의 SEM사진이다.
도 5는 본 발명의 실시 예 5에 따라 제조된 CIGS 박막의 결정 특성을 XRD로 관찰한 결과를 나타낸 그래프이다.
본 발명은 하기 화학식 1로 표시되는 신규한 바이덴테이트 화합물인 셀레나이드 착체를 제공한다.
[화학식 1]
[A-Se]nMLn-1
A는 방향족고리내에 하나이상의 헤테로원자를 포함하는 (C3-C12)아르(C1-C7)알킬 또는 (C3-C12)헤테로아릴이며;
M은 Se와 A의 아르알킬 또는 헤테로아릴에 포함된 헤테로원자와 바이덴테이트결합을 가지는 Cu, In 또는 Ga이며;
L은 M과 결합가능한 리간드이며;
상기 A의 아르알킬 또는 헤테로아릴은 하이드록시, 아미노, (C1-C7)알킬, (C1-C7)알콕시, (C3-C12)시클로알킬, (C6-C12)아릴, (C6-C12)아르(C1-C7)알킬, (C1-C7)알콕시카보닐, (C1-C7)알킬카보닐 또는 (C6-C12)아릴카보닐로 더 치환될 수 있으며;
n은 M의 산화수이다.]
본 발명의 셀레나이드 착체는 Se와 상기 화학식 1의 방향족고리내에 하나이상의 헤테로원자를 포함하는 (C3-C12)아르(C1-C7)알킬 또는 (C3-C12)헤테로아릴의 헤테로원자가 금속 원자(M)인 Cu, In 또는 Ga의 빈 배위자리를 차지함으로써 금속 착체 간의 뭉침을 방해하여 상용용매에 대한 용해도를 증가시키는 효과를 준다.
즉, 금속 원자(M)인 Cu, In 또는 Ga가 Se와 상기 화학식 1의 방향족고리내에 하나 이상의 헤테로원자를 포함하는 아르알킬 또는 헤테로아릴의 헤테로 원자와 바이덴테이트 결합을 하여 폴리머와 같은 결합을 갖는 기존의 금속 착체와 달리 금속 착체간의 뭉침을 억제하여 상용용매에 대한 높은 용해도를 가진다.
나아가 본 발명의 셀레나이드 착체를 이용하여 박막을 형성한 후 생성되는 부산물은 열에 안정하여 박막생성시의 잔유물이 거의 남지 않아 높은 순도의 박막을 제조할 수 있는 장점을 가진다.
바람직하게는 본 발명의 일 실시예에 따른 상기 화학식 1은 하기 화학식 2로 표시될 수 있다.
[화학식 2]
Figure PCTKR2013002620-appb-I000007
[상기 화학식 2에서,
R은 수소, 하이드록시, 아민, (C1-C7)알킬, (C1-C7)알콕시, (C3-C12)시클로알킬, (C6-C12)아릴, (C6-C12)아르(C1-C7)알킬, (C1-C7)알콕시카보닐, (C1-C7)알킬카보닐 또는 (C6-C12)아릴카보닐이거나, 각 치환기의 인접한 치환체와 융합고리를 포함하거나 포함하지 않는 (C3-C12)알킬렌 또는 (C3-C12)알케닐렌으로 연결되어 지환족 고리를 형성하거나, 단일환 또는 다환의 방향족 고리를 형성할 수 있으며;
R1은 수소, 할로겐, 하이드록시, 니트로, 아민, (C1-C7)알킬, (C1-C7)알콕시, (C6-C12)아릴, (C6-C12)아르(C1-C7)알킬, (C1-C7)알콕시카보닐, (C1-C7)알킬카보닐 또는 (C6-C12)아릴카보닐이며;
상기 R의 알킬, 알콕시 시클로알킬, 아릴, 아르알킬, 알콕시카보닐, 알킬카보닐, 아릴카보닐, 알킬렌 및 알케닐렌과 R1의 알킬, 알콕시, 아릴, 아르알킬, 알콕시카보닐, 알킬카보닐, 아릴카보닐은 할로겐, 하이드록시, 니트로, 아민, (C1-C7)알킬, (C1-C7)알콕시로 더 치환될 수 있으며;
M은 Cu, In 또는 Ga이며;
L은 M과 결합가능한 리간드이며;
p는 1 내지 4의 정수이며;
m은 0 내지 4의 정수이고;
n은 M의 산화수이다.]
본 발명의 셀레나이드 착체는 피리딘의 N원자와 Se가 금속 원자(M)의 빈 배위자리를 차지함으로써 금속 착체 간의 뭉침을 방해하여 상용용매에 대한 용해도를 증가시키는 효과를 준다.
즉, 피리딘의 N원자와 Se는 bi-dentate 리간드로 작용하여 피리딘의 N원자와 Se가 금속 원자 (M)의 빈 배위자리를 차지함으로써 금속 착체 간의 뭉침을 방해하여 상용용매에 대한 용해도를 증가시키는 효과를 준다.
또한 금속-셀레나이드 착체로 박막을 코팅하고 소성 후 생성된 부산물은 안정하여 열에 의해 탄소나 혹은 산소 등의 잔유물을 남기지 않고 쉽게 기화되어 제거될 수 있어 고순도의 박막을 제공할 수 있다.
본 발명의 일 실시예에 따른 화학식 1은 하기 화학식 3으로 표시되는 화합물을 포함할 수 있다.
[화학식 3]
Figure PCTKR2013002620-appb-I000008
[상기 화학식 3에서,
R은 수소 또는 (C1-C7)알킬이며, 상기 R의 알킬은 할로겐, 하이드록시, 니트로, 아민, (C1-C7)알킬, (C1-C7)알콕시로 더 치환될 수 있으며;
M은 Cu이며;
L은 M과 결합가능한 리간드이며;
p는 1 내지 4의 정수이며;
m은 1 내지 2의 정수이고;
n은 M의 산화수이다.]
또한 본 발명은 하기 화학식 4와 하기 화학식 5를 반응시켜 상기 화학식 1로 표시되는 셀레나이드 착체의 제조방법을 제공한다.
[화학식 4]
A-Se-H
[화학식 5]
MLn
[상기 화학식 4 및 5에서,
A는 방향족고리내에 하나이상의 헤테로원자를 포함하는 (C3-C12)아르(C1-C7)알킬 또는 (C3-C12)헤테로아릴이며;
M은 Se와 A의 아르알킬 또는 헤테로아릴에 포함된 헤테로원자와 바이덴테이트결합을 가지는 Cu, In 또는 Ga이며;
L은 M과 결합가능한 리간드이며;
상기 A의 아르알킬 또는 헤테로아릴은 하이드록시, 아미노, (C1-C7)알킬, (C1-C7)알콕시, (C3-C12)시클로알킬, (C6-C12)아릴, (C6-C12)아르(C1-C7)알킬, (C1-C7)알콕시카보닐, (C1-C7)알킬카보닐 또는 (C6-C12)아릴카보닐로 더 치환될 수 있으며;
n은 M의 산화수이다.]
본 발명의 상기 화학식 1로 표시되는 셀레나이드 착체의 제조방법의 일 실시예에 따른 화학식 5는 화학식 4, 1몰에 대하여 0.5 ~ 2몰 사용할 수 있으며, 상기 A는 상기 화학식 6으로 표시될 수 있다.
본 발명의 일실시예에 따른 셀레나이드 착체의 제조방법의 화학식 5는 하기 화학식 7 또는 화학식 8로 표시되는 화합물 일 수 있다.
[화학식 7]
[Cu(R11CN)4](Y)
[화학식 8]
CuXq
[상기 화학식 7 또는 8에서,
R11 (C1-C7)알킬 (C1-C7)시클로알킬, (C6-C12)아릴옥시 또는 (C6-C12)아릴이며, 상기 알킬, 시클로알킬, 아릴, 아릴옥시는 (C1-C7)알킬로 더 치환될 수 있으며;
Y는 PF6, SbF6, OSO2CF3, 또는 BF4이며,
X는 할라이드이고,
q는 1 내지 3의 정수이다.]
상기 화학식 7에서 R11은 메틸, t-부틸, sec-부틸, 프로필, 부틸, 헵틸, 시클로헵틸, 페닐, 벤질, 벤조일, α-메틸벤질, 3-메틸벤질일 수 있으며, 보다 구체적으로, [Cu(CH3CN)4](PF6), [Cu(CH3CN)4](SbF6) [Cu(CH3CN)4](OSO2CF3), [Cu(CH3CN)4](BF4), [Cu(PhCN)4](PF6), [Cu(PhCN)4](SbF6), [Cu(PhCN)4](OSO2CF3) 또는 [Cu(PhCN)4](BF4)일 수 있으며, 화학식 5는 화학식 4, 1몰에 대하여 0.5 ~ 2.0몰 사용할 수 있다.
반응 후 생성되는 염의 예로 리튬헥사플로오르포스페이트를 들 수 있으며 이러한 염등의 용이한 제거를 위해 바람직하게는 화학식 4는 [Cu(CH3CN)4](PF6), [Cu(CH3CN)4](SbF6), [Cu(CH3CN)4](OSO2CF3) 또는 [Cu(CH3CN)4](BF4)일 수 있다.
또한 본 발명은 하기 화학식 9의 화합물과 강염기를 반응시킨 후 셀레늄을 반응시켜 제조된 화학식 10의 화합물에 화학식 5를 반응시키는 것을 포함하는 하기 화학식 2로 표시되는 셀레나이드 착체의 제조방법을 제공한다.
[화학식 2]
Figure PCTKR2013002620-appb-I000009
[화학식 10]
Figure PCTKR2013002620-appb-I000010
[화학식 5]
MLn
[화학식 9]
Figure PCTKR2013002620-appb-I000011
[상기 화학식 2, 3, 9 및 10에서,
R은 수소, 하이드록시, 아민, (C1-C7)알킬, (C1-C7)알콕시, (C3-C12)시클로알킬, (C6-C12)아릴, (C6-C12)아르(C1-C7)알킬, (C1-C7)알콕시카보닐, (C1-C7)알킬카보닐 또는 (C6-C12)아릴카보닐이거나, 각 치환기의 인접한 치환체와 융합고리를 포함하거나 포함하지 않는 (C3-C12)알킬렌 또는 (C3-C12)알케닐렌으로 연결되어 지환족 고리를 형성하거나, 단일환 또는 다환의 방향족 고리를 형성할 수 있으며;
R1은 수소, 할로겐, 하이드록시, 니트로, 아민, (C1-C7)알킬, (C1-C7)알콕시, (C6-C12)아릴, (C6-C12)아르(C1-C7)알킬, (C1-C7)알콕시카보닐, (C1-C7)알킬카보닐 또는 (C6-C12)아릴카보닐이며;
상기 R의 알킬, 알콕시 시클로알킬, 아릴, 아르알킬, 알콕시카보닐, 알킬카보닐, 아릴카보닐, 알킬렌 및 알케닐렌과 R1의 알킬, 알콕시, 아릴, 아르알킬, 알콕시카보닐, 알킬카보닐, 아릴카보닐은 할로겐, 하이드록시, 니트로, 아민, (C1-C7)알킬, (C1-C7)알콕시로 더 치환될 수 있으며;
M은 Cu, In 또는 Ga이며;
L은 M과 결합가능한 리간드이며;
p는 1 내지 4의 정수이며;
m은 1 내지 4의 정수이고;
l은 m-1의 정수이며;
n은 M의 산화수이다.]
본 발명의 일실시예에 따른 셀레나이드 착체의 제조방법에 사용되는 강염기는 (C1-C4)알킬리튬, (C1-C4)알킬마그네슘할라이드 및 알칼리금속하이드라이드에서 선택되는 하나이며, 화학식 9, 1몰에 대하여 0.5 ~ 2.0몰을 사용할 수 있다.
이러한 몰 비는 부생성물을 줄이고 높은 수율을 얻기위해 실질적으로 0.8 ~ 1.2몰일 수 있다.
또한 본 발명의 일실시예에 따른 셀레나이드 착체의 제조방법에 사용되는 (C1-C4)알킬리튬은 메틸리튬, n-부틸리튬, sec-부틸리튬 또는 tert-부틸리튬일 수 있으며,
(C1-C4)알킬마그네슘할라이드는 메틸마그네슘클로라이드, 메틸마그네슘아요다이드, 메틸마그네슘브로마이드, 에틸마그네슘클로라이드, 에틸마그네슘브로마이드 또는 프로필마그네슘 클로라이드이며,
알칼리금속하이드라이드는 Na 또는 NaH일 수 있으며 보다 바람직하게는 반응시간과 반응 효율면에서 강염기는 메틸리튬, n-부틸리튬일 수 있다.
또한 본 발명은 상기 화학식 1로 표시되는 셀레나이드 착체를 포함하는 CI(G)S 전구체 용액을 제공하며, CI(G)S 전구체 용액를 이용하여 제조되는 CI(G)S박막 및 CI(G)S박막을 함유하는 태양전지를 제공한다.
또한 본 발명의 CIGS 박막의 제조방법은 (a)기판상에 인듐전구체, 갈륨전구체 및 셀레늄으로 인듐-갈륨-셀레늄 박막층을 형성하는 단계;
(b)비활성기체 분위기하에서 상기 (a)단계의 박막층상에 본 발명의 바이덴테이트 화합물인 셀레나이드 착체를 함유하는 용액을 도포 또는 프린팅하여 CIGS전구체층을 형성하는 단계:및
(c)상기 단계의 CIGS 전구체층을 건조하고 열처리하여 CIGS 박막을 제조하는 단계;를 포함한다.
본 발명의 CIGS 박막의 제조방법은 독성과 폭발성이 있는 히드라진이 아닌 일반 유기용매에 완전용매화가 가능한 본 발명의 셀레늄과 금속(Cu, In 또는 Ga)을 포함하는 바이덴테이트 화합물인 상기 화학식 1로 표시되는 셀레나이드 착체를 이용하여 균일하고 고순도인 CIGS 박막을 형성할 수 있다.
즉, 본 발명의 CIGS 박막의 제조방법은 셀레늄과 금속(Cu, In 또는 Ga)을 포함하는 바이덴테이트 화합물인 상기 화학식 1로 표시되는 셀레나이드 착체를 함유하는 용액을 이용하여 용액공정으로 제조가 가능하여 균일하고 순도가 높은 박막을 제조할 수 있으며, 저비용으로 대면적의 박막제조가 가능하다.
상기에서 상술한 바와 같이 바이덴테이트 화합물은 금속에 두자리의 배위자리를 갖는 화합물로서 본 발명의 일 실시예에 따른 바이덴테이트 화합물은 셀레늄과 Cu, In 또는 Ga의 금속을 포함한다.
즉, 본 발명의 바이덴테이트 화합물인 셀레나이드 착체는 바이덴테이트 리간드의 도입을 통해 리간드의 두 배위원자가 금속인 구리, 인듐 또는 갈륨원자의 빈 배위자리를 차지함으로써 셀레나이드 착체간의 뭉침을 방해하여 상용용매에 대한 용해도를 증가시키는 효과를 제공하는 구조를 가지는 화합물을 의미한다.
또한 제제화를 위한 바인더나 분산제가 포함되어 있지 않기 때문에 바인더나 분산제에서 기인하는 탄소나 산소등의 잔유물을 남기지 않아 고순도의 박막 제조가 가능하다.
이하 본 발명의 CIGS 박막의 제조방법을 구체적으로 상술하는 바, 본 발명의 CIGS 박막은 CIGS와 CIS 박막을 모두를 포함하는 것으로 본 발명의 CIS 박막은 본 발명의 CIGS 박막의 제조방법에서 갈륨전구체를 제외하여 동일한 방법으로 제조될 수 있다.
먼저 기판상에 인듐전구체, 갈륨전구체 및 셀레늄으로 인듐-갈륨-셀레늄 박막층을 형성한다.
이 때의 기판은 한정이 있는 것은 아니나, 소다라임 유리기판 또는 몰리브데늄이 코팅된 소다라임 유리기판일 수 있다.
또한 본 발명의 일 실시예에 따른 인듐금속과 갈륨금속의 혼합중량비는 CIGS를 구성하는 구성성분의 함량을 조절하기 위해 1 : 2 ~ 4일 수 있다.
인듐-갈륨-셀레늄 박막의 결정성을 향상시키고 구리의 조성을 조절하기 위해서 인듐-갈륨-셀레늄 박막층은 셀레늄, 갈륨금속 및 인듐금속을 이용하여 기판온도를 300 ~ 350℃로 유지하면서 10 ~ 30분동안 형성시킬 수 있다.
다음으로, 비활성기체 분위기하에서 상기 단계의 박막층상에 본 발명의 바이덴테이트 화합물인 셀레나이드 착체를 함유하는 용액을 도포 또는 프린팅하여 CIGS 전구체층을 형성한다.
이 때의 본 발명의 바이덴테이트 화합물인 셀레나이드 착체를 함유하는 용액은 상기에서 일례로 상술한 제조방법으로 제조된 셀레나이드 착체를 트리에틸 포스페이트, 트리이소프로필 포스페이트, 피리딘, 피콜린, 다이메틸포름아마이드 및 다이메틸설폭사이드에서 선택되는 하나이상의 용매에 첨가하여 제조될 수 있으며, 바람직하게는 용매 100중량부에 셀레나이드 착체 10 ~ 30 중량부로 포함되어 제조될 수 있다.
본 발명의 일 실시예에 따른 셀레나이드 착체를 함유하는 용액은 박막을 형성하기 위한 잉크로 이해될 수 있음은 물론이다.
셀레나이드 착체를 함유하는 용액을 도포 또는 프린팅하여 CIGS 전구체층을 형성할 때 도포 또는 프린팅은 다이코팅, 잉크젯 프린팅(ink-jet printing), 스크린프린팅(screen printing), 딥코팅(dip coating), 액적캐스팅(drop casting), 흐름 캐스팅(flow casting), 롤코팅(roll coating), 분무코팅(spray coating), 닥터블레이딩 및 그라비아인쇄에서 선택되는 하나의 방법으로 수행될 수 있다.
CIGS 전구체층은 건조와 열처리에 의해 CIGS 박막을 형성하기 전의 박막을 의미하며 건조와 열처리에 의해 CIGS 박막을 형성한다.
이 때의 건조는 100 ~ 200℃에서 1 ~ 5분동안 수행될 수 있으며 바람직하게는 셀레나이드 착체를 함유하는 용액에 첨가된 용매의 끓는점을 고려하여 120 ~ 160℃에서 3 ~ 5동안 수행될 수 있으며, 열처리는 300 ~ 600℃에서 1 ~ 10분동안 수행될 수 있으며, 바람직하게는 CIGS 결정성을 향상시킬 수 있는 측면에서는 450 ~ 600℃에서 4 ~ 8동안 수행될 수 있다.
이하, 본 발명을 하기의 실시예에 의거하여 좀 더 상세히 설명하고자 한다. 그러나, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 본 발명이 하기 실시예로 한정되는 것은 아니다.
[실시예 1] 2-picoline 계열 셀렌화 구리 착체의 제조
-78oC에서 삼구플라스크에 250mL의 THF를 질소 대기 하에서 주입한 후, 이어서 BuLi 6.25mL(1.6M in hexane)을 추가로 주입하고 10분간 교반시켰다. 여기에 2-Picoline 1mL(0.01mol)을 15분간 천천히 적가하였다. 이후 용액의 색깔은 약한 노란색에서 짙은 적갈색으로 변하며, 최종적으로 주황색 슬러리 화합물로 변하였다. 이 용액을 약 3시간 동안 교반한 후 Se 0.79g(0.01mol)을 질소 대기하에서 한번에 주입하면, 주황색 슬러리 형태의 용액은 갈색을 띈 주황색 슬러리 용액으로 변하였다.
상기 슬러리 용액을 -78oC, 약 6시간 동안 교반시킨 후, 아세토니트릴 용액에 녹아있는 [Cu(CH3CN)4](PF6)(흰색고체, 3.73g, 0.01 mol)을 무수조건에서 천천히 주입하여, 슬러리 상태의 용액에 갈색의 고체 침전이 석출되었다. 생성된 고체에 THF 200mL를 주입하고 용액을 걸러낸 후, 질소 대기 하에서 건조하여 표제화합물 1.32g의 갈색 생성물을 수득하였으며, 도 1에 합성된 화합물의 NMR데이터를 나타내었다.
1H NMR(CDCl3/ppm) 4.2(s, 2H), 6.69~6.72(m, 1H), 7.25~7.29(m, 1H), 7.98(d, 1H), 8.45(d, 1H)
[실시예 2] 4-picoline 계열 셀렌화 구리 착제의 제조
-78oC 에서 삼구플라스크에 250mL의 THF를 질소 대기 하에서 주입한 후, BuLi 6.25mL(1.6M)을 추가로 주입하고 10분간 교반시켰다. 여기에 2-Picoline 0.973mL(0.01mol)을 15분간 천천히 적가하였다. 이 후 용액색깔은 약한 노란색에서 짙은 적갈색으로 변하며, 최종적으로 주황색 슬러리 화합물로 변하였다. 이 용액을 약 3시간 동안 교반시킨 후 Se 0.79g(0.01mol)을 질소 대기하에서 한번에 주입하게 되면, 주황색 슬러리 형태의 용액은 갈색을 띈 주황색 슬러리 용액으로 변하였다.
상기 슬러리 용액을 -78oC, 약 6시간 동안 교반시킨 후, 아세토니트릴 용액에 녹아있는 [Cu(CH3CN)4](PF6) (흰색고체, 3.73g, 0.01 mol)을 무수조건에서 천천히 주입하여, 슬러리 상태의 용액에 갈색의 고체 침전이 석출되었다. 생성된 고체에 THF 200mL를 주입하고 용액을 걸러낸 후, 질소 대기 하에서 건조하여 갈색의 표제화합물 1.08g을 수득하였다.
[실시예 3]
상기 실시 예 1에서 수득한 고체상의 셀레나이드 구리 착체 0.3g에 TEP(Triethyl phosphate) 0.72ml를 상온에서 바이알에 넣고 용해시켜 코팅을 위한 잉크를 제조하였다.
제조한 잉크는 필터링을 한 후, 질소 분위기하에서 Knife 코팅법으로 코팅하였다.
120℃에서 5분 동안 건조하고 400℃에서 10분 동안 열처리하여 셀레나이드 구리 박막을 형성 하였다.
[실시예 4]
상기 실시 예 2에서 수득한 고체상의 셀레나이드 구리 착체 0.3g에 TIP(Triisopropyl phosphate) 0.8ml를 상온에서 바이알에 넣고 용해시켜 코팅을 위한 잉크를 제조하였다.
제조한 잉크는 필터링을 한 후, 질소 분위기하에서 Knife 코팅법으로 코팅하였다. 150℃에서 5분 동안 건조하고 400℃에서 10분 동안 열처리하여 셀레나이드 구리 착체 박막을 형성 하였다.
[실시예 5]
소다라임 유리기판(아브리사)위에 몰리브데늄(Mo)을 증착하고 이 상부에 Se을 300 oC에서 승화시켜 생성된 Se vapor를 20 sccm의 flow rate를 흘려주어 기판온도를 300℃로 유지하면서 인듐 금속0.7g, 갈륨 금속0.25g을 사용하여 20분동안 인듐-갈륨-셀레늄박막층을 형성하였다.
상기 실시 예 3에서 제조한 바이덴테이트가 함유된 용액(구리-셀레늄 잉크)를 다이코팅방법으로 코팅하여 100℃에서 2분동안 건조한 후 비활성기체 분위기 하에서 550℃에서 5분 동안 열처리하여 두께 3 um인 CIGS(CuIn0.7Ga0.3Se2) 박막을 형성하였다.
제조된 CIGS 박막은 주사전자현미경(SEM)과 Energy Dispersive X-Ray(EDX)를 이용하여 관찰하였으며, 하기 표 1은 실시예 5에 따라 수득한 CIGS 박막을 EDX로 관찰한 것이며, 실시예 5에 따라 수득한 CIGS 박막을 SEM을 통하여 관찰한 사진을 도 4에 나타내었다.
표 1
Element Weight(%) Atomic(%)
Cu 19.99 25.51
Ga 7.77 9.04
Se 45.03 46.24
In 27.21 19.21
도 1에서 보이는 바와 같이 실시예 1에 따라 셀레나이드 착체를 제조하였으며 실시예 3에 따라 제조된 셀레나이드 착체를 이용한 박막 특성을 SEM으로 관찰한 결과를 나타낸 도 2를 보면 잉크의 제제화를 위한 별도의 물질없이도 쉽게 증착되고 균일하며 고순도인 박막을 형성하는 것을 알 수 있다.
도 3은 실시예 3에 따라 제조된 박막의 결정특성을 XRD로 관찰한 그래프로 셀레나이드 구리 착체의 방향성 및 결정 피크(2θ= 27, 45)를 나타낸다.
또한 표 1과 도 4에 나타난 바와 같이 본 발명에 따라 제조된 CIGS 박막은 전체적으로 균일하고 인듐과 갈륨의 합 대비 구리 조성이 0.9를 가져 본 발명에 따른 CIGS 박막을 채용한 태양전지는 높은 효율이 가질 수 있으며, XRD 분석을 통해 CIGS 결정 피크를 확인 할 수 있다.
이상에서는 본 발명의 바람직한 실시 예를 참조하여 설명하였지만, 해당 기술분야의 숙련된 당업자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (22)

  1. 하기 화학식 1로 표시되는 셀레나이드 착체.
    [화학식 1]
    [A-Se]nMLn-1
    A는 방향족고리내에 하나이상의 헤테로원자를 포함하는 (C3-C12)아르(C1-C7)알킬 또는 (C3-C12)헤테로아릴이며;
    M은 Se와 A의 아르알킬 또는 헤테로아릴에 포함된 헤테로원자와 바이덴테이트결합을 가지는 Cu, In 또는 Ga이며;
    L은 M과 결합가능한 리간드이며;
    상기 A의 아르알킬 또는 헤테로아릴은 하이드록시, 아미노, (C1-C7)알킬, (C1-C7)알콕시, (C3-C12)시클로알킬, (C6-C12)아릴, (C6-C12)아르(C1-C7)알킬, (C1-C7)알콕시카보닐, (C1-C7)알킬카보닐 또는 (C6-C12)아릴카보닐로 더 치환될 수 있으며;
    n은 M의 산화수이다.]
  2. 제 1항에 있어서,
    상기 화학식 1은 하기 화학식 2로 표시되는 셀레나이드 착체.
    [화학식 2]
    Figure PCTKR2013002620-appb-I000012
    [상기 화학식 2에서,
    R은 수소, 하이드록시, 아민, (C1-C7)알킬, (C1-C7)알콕시, (C3-C12)시클로알킬, (C6-C12)아릴, (C6-C12)아르(C1-C7)알킬, (C1-C7)알콕시카보닐, (C1-C7)알킬카보닐 또는 (C6-C12)아릴카보닐이거나, 각 치환기의 인접한 치환체와 융합고리를 포함하거나 포함하지 않는 (C3-C12)알킬렌 또는 (C3-C12)알케닐렌으로 연결되어 지환족 고리를 형성하거나, 단일환 또는 다환의 방향족 고리를 형성할 수 있으며;
    R1은 수소, 할로겐, 하이드록시, 니트로, 아민, (C1-C7)알킬, (C1-C7)알콕시, (C6-C12)아릴, (C6-C12)아르(C1-C7)알킬, (C1-C7)알콕시카보닐, (C1-C7)알킬카보닐 또는 (C6-C12)아릴카보닐이며;
    상기 R의 알킬, 알콕시 시클로알킬, 아릴, 아르알킬, 알콕시카보닐, 알킬카보닐, 아릴카보닐, 알킬렌 및 알케닐렌과 R1의 알킬, 알콕시, 아릴, 아르알킬, 알콕시카보닐, 알킬카보닐, 아릴카보닐은 할로겐, 하이드록시, 니트로, 아민, (C1-C7)알킬, (C1-C7)알콕시로 더 치환될 수 있으며;
    M은 Cu, In 또는 Ga이며;
    L은 M과 결합가능한 리간드이며;
    p는 1 내지 4의 정수이며;
    m은 0 내지 4의 정수이고;
    n은 M의 산화수이다.]
  3. 제 1항에 있어서,
    상기 화학식 1은 하기 화학식 3으로 표시되는 셀레나이드 착체.
    [화학식 3]
    Figure PCTKR2013002620-appb-I000013
    [상기 화학식 3에서,
    R은 수소 또는 (C1-C7)알킬이며 상기 R의 알킬은 할로겐, 하이드록시, 니트로, 아민, (C1-C7)알킬, (C1-C7)알콕시로 더 치환될 수 있으며;
    M은 Cu이며;
    L은 M과 결합가능한 리간드이며;
    p는 1 내지 4의 정수이며;
    m은 0 내지 2의 정수이고;
    n은 M의 산화수이다.]
  4. 제 1항에 있어서,
    상기 화학식 1은 하기 화학식 4와 하기 화학식 5을 반응시켜 제조되는 것을 특징으로 하는 셀레나이드 착체.
    [화학식 4]
    A-Se-H
    [화학식 5]
    MLn
    [상기 화학식 4 또는 5에서,
    A는 방향족고리내에 하나이상의 헤테로원자를 포함하는 (C3-C12)아르(C1-C7)알킬 또는 (C3-C12)헤테로아릴이며;
    M은 Cu, In 또는 Ga이며;
    L은 M과 결합가능한 리간드이며;
    n은 M의 산화수이다.]
  5. 제 4항에 있어서,
    상기 화학식 5는 화학식 4, 1몰에 대하여 0.5 ~ 2몰 사용하는 것을 특징으로 하는 화학식 1로 표시되는 셀레나이드 착체.
  6. 제 4항에 있어서,
    상기 A는 하기 화학식 6으로 표시되는 것을 특징으로 하는 셀레나이드 착체.
    [화학식 6]
    Figure PCTKR2013002620-appb-I000014
    [상기 화학식 6에서,
    R1은 수소, 할로겐, 하이드록시, 니트로, 아민, (C1-C7)알킬, (C1-C7)알콕시, (C6-C12)아릴, (C6-C12)아르(C1-C7)알킬, (C1-C7)알콕시카보닐, (C1-C7)알킬카보닐 또는 (C6-C12)아릴카보닐이며;
    상기 R1의 알킬, 알콕시, 아릴, 아르알킬, 알콕시카보닐, 알킬카보닐, 아릴카보닐은 할로겐, 하이드록시, 니트로, 아민, (C1-C7)알킬, (C1-C7)알콕시로 더 치환될 수 있으며;
    m은 0 내지 4의 정수이다]
  7. 하기 화학식 4와 하기 화학식 5을 반응시켜 하기 화학식 1로 표시되는 셀레나이드 착체의 제조방법.
    [화학식 1]
    [A-Se]nMLn-1
    [화학식 4]
    A-Se-H
    [화학식 5]
    MLn
    [상기 화학식 1, 4 및 5에서,
    A는 방향족고리내에 하나이상의 헤테로원자를 포함하는 (C3-C12)아르(C1-C7)알킬 또는 (C3-C12)헤테로아릴이며;
    M은 Cu, In 또는 Ga로, Se와 A의 아르알킬 또는 헤테로아릴에 포함된 헤테로원자와 바이덴테이트결합을 가지며;
    L은 M과 결합가능한 리간드이며;
    상기 A의 아르알킬 또는 헤테로아릴은 하이드록시, 아미노, (C1-C7)알킬, (C1-C7)알콕시, (C3-C12)시클로알킬, (C6-C12)아릴, (C6-C12)아르(C1-C7)알킬, (C1-C7)알콕시카보닐, (C1-C7)알킬카보닐 또는 (C6-C12)아릴카보닐로 더 치환될 수 있으며;
    n은 M의 산화수이다.]
  8. 제 7항에 있어서,
    상기 화학식 5는 화학식 4, 1몰에 대하여 0.5 ~ 2몰 사용하는 것을 특징으로 하는 화학식 1로 표시되는 셀레나이드 착체의 제조방법.
  9. 제 7항에 있어서,
    상기 A는 하기 화학식 6으로 표시되는 것을 특징으로 하는 셀레나이드 착체.
    [화학식 6]
    Figure PCTKR2013002620-appb-I000015
    [상기 화학식 6에서,
    R1은 수소, 할로겐, 하이드록시, 니트로, 아민, (C1-C7)알킬, (C1-C7)알콕시, (C6-C12)아릴, (C6-C12)아르(C1-C7)알킬, (C1-C7)알콕시카보닐, (C1-C7)알킬카보닐 또는 (C6-C12)아릴카보닐이며;
    상기 R1의 알킬, 알콕시, 아릴, 아르알킬, 알콕시카보닐, 알킬카보닐, 아릴카보닐은 할로겐, 하이드록시, 니트로, 아민, (C1-C7)알킬, (C1-C7)알콕시로 더 치환될 수 있으며;
    m은 0 내지 4의 정수이다]
  10. 제 7항에 있어서,
    화학식 5는 하기 화학식 7 또는 8로 표시되는 화합물인 것을 특징으로 하는 셀레나이드 착체의 제조방법.
    [화학식 7]
    [Cu(R11CN)4](Y)
    [화학식 8]
    CuXq
    [상기 화학식 7 또는 8에서,
    R11 (C1-C7)알킬, (C1-C7)시클로알킬, (C6-C12)아릴옥시 또는 (C6-C12)아릴이며, 상기 R11의 알킬, 시클로알킬, 아릴, 아릴옥시는 (C1-C7)알킬로 더 치환될 수 있으며;
    Y는 PF6, SbF6, OSO2CF3, 또는 BF4이며;
    X는 할라이드이고;
    q는 1 내지 3의 정수이다.]
  11. 제 10항에 있어서,
    화학식 7은 [Cu(CH3CN)4](PF6), [Cu(CH3CN)4](SbF6) [Cu(CH3CN)4](OSO2CF3), [Cu(CH3CN)4](BF4), [Cu(PhCN)4](PF6), [Cu(PhCN)4](SbF6), [Cu(PhCN)4](OSO2CF3) 또는 [Cu(PhCN)4](BF4)인 것을 특징으로 하는 셀레나이드 착체의 제조방법.
  12. 하기 화학식 9의 화합물과 강염기를 반응시킨 후 셀레늄을 반응시켜 제조된 화학식 10의 화합물에 화학식 3을 반응시키는 것을 포함하는 하기 화학식 2로 표시되는 셀레나이드 착체의 제조방법.
    [화학식 2]
    Figure PCTKR2013002620-appb-I000016
    [화학식 10]
    Figure PCTKR2013002620-appb-I000017
    [화학식 5]
    MLn
    [화학식 9]
    Figure PCTKR2013002620-appb-I000018
    [상기 화학식 2, 5, 9 및 10에서,
    R은 수소, 하이드록시, 아민, (C1-C7)알킬, (C1-C7)알콕시, (C3-C12)시클로알킬, (C6-C12)아릴, (C6-C12)아르(C1-C7)알킬, (C1-C7)알콕시카보닐, (C1-C7)알킬카보닐 또는 (C6-C12)아릴카보닐이거나, 각 치환기의 인접한 치환체와 융합고리를 포함하거나 포함하지 않는 (C3-C12)알킬렌 또는 (C3-C12)알케닐렌으로 연결되어 지환족 고리를 형성하거나, 단일환 또는 다환의 방향족 고리를 형성할 수 있으며;
    R1은 수소, 할로겐, 하이드록시, 니트로, 아민, (C1-C7)알킬, (C1-C7)알콕시, (C6-C12)아릴, (C6-C12)아르(C1-C7)알킬, (C1-C7)알콕시카보닐, (C1-C7)알킬카보닐 또는 (C6-C12)아릴카보닐이며;
    상기 R의 알킬, 알콕시 시클로알킬, 아릴, 아르알킬, 알콕시카보닐, 알킬카보닐, 아릴카보닐, 알킬렌 및 알케닐렌과 R1의 알킬, 알콕시, 아릴, 아르알킬, 알콕시카보닐, 알킬카보닐, 아릴카보닐은 할로겐, 하이드록시, 니트로, 아민, (C1-C7)알킬, (C1-C7)알콕시로 더 치환될 수 있으며;
    M은 Cu, In 또는 Ga이며;
    L은 M과 결합가능한 리간드이며;
    p는 1 내지 4의 정수이며;
    m은 1 내지 4의 정수이고;
    l은 m-1의 정수이며;
    n은 M의 산화수이다.]
  13. 제 12항에 있어서,
    강염기는 (C1-C4)알킬리튬, (C1-C4)알킬마그네슘할라이드 및 알칼리금속하이드라이드에서 선택되는 하나이며, 화학식 9, 1몰에 대하여 0.5 ~ 2몰을 사용하는 것을 특징으로 하는 셀레나이드 착체의 제조방법.
  14. 제 13항에 있어서,
    (C1-C4)알킬리튬은 메틸리듐, n-부틸리튬, sec-부틸리튬 또는 tert-부틸리튬이며;
    (C1-C4)알킬마그네슘할라이드는 메틸마그네슘클로라이드, 메틸마그네슘아요다이드, 메틸마그네슘브로마이드, 에틸마그네슘클로라이드, 에틸마그네슘브로마이드 또는 프로필마그네슘클로라이드이며;
    알칼리금속하이드라이드는 Na 또는 NaH인 것을 특징으로 하는 셀레나이드 착체의 제조방법.
  15. 제 1항 내지 제 6항에서 선택되는 어느 한항의 셀레나이드 착체를 포함하는 CI(G)S 전구체 용액.
  16. 제 15항에 따른 전구체 용액을 이용하여 제조되는 CI(G)S박막.
  17. (a)기판상에 인듐금속, 갈륨금속 및 셀레늄으로 인듐-갈륨-셀레늄 박막층을 형성하는 단계;
    (b)비활성기체 분위기하에서 상기 (a)단계의 박막층상에 제 1항 내지 제 6항에서 선택되는 어느 한 항의 셀레나이드 착체를 포함하는 용액을 도포 또는 프린팅하여 CI(G)S전구체층을 형성하는 단계:및
    (c)상기 단계의 CIGS전구체층을 건조하고 열처리하여 CIGS계 박막을 제조하는 단계;를 포함하는 것을 특징으로 하는 CIGS계 박막의 제조방법.
  18. 제 17항에 있어서,
    상기 열처리는 300 ~ 600℃에서 1 ~ 10분동안 수행되는 것을 특징으로 하는 CIGS계 박막의 제조방법.
  19. 제 17항에 있어서,
    상기 용액은 셀레나이드 착체를 트리에틸 포스페이트, 트리이소프로필 포스페이트, 피리딘, 피콜린, 다이메틸포름아마이드 및 다이메틸설폭사이드에서 선택되는 하나이상의 용매에 첨가하여 제조되는 것을 특징으로 하는 CIGS계 박막의 제조방법.
  20. 제 17항에 있어서,
    상기 기판은 소다라임 유리기판 또는 몰리브데늄이 코팅된 소다라임 유리기판인 것을 특징으로 하는 CIGS계 박막의 제조방법.
  21. 제 17항에 있어서,
    상기 도포 또는 프린팅은 다이코팅, 잉크젯 프린팅, 스크린프린팅, 딥코팅, 액적캐스팅, 흐름 캐스팅, 롤코팅, 분무코팅, 닥터블레이딩 및 그라비아인쇄에서 선택되는 하나의 방법으로 수행되는 것을 특징으로 하는 CIGS계 박막의 제조방법.
  22. 제 17항에 있어서,
    건조는 100 ~ 200℃에서 1 ~ 5 분동안 수행되는 것을 특징으로 하는 CIGS계 박막의 제조방법.
PCT/KR2013/002620 2012-03-29 2013-03-29 셀레나이드 착체, 이의 제조방법 및 이를 이용한 ci(g)s 박막 WO2013147541A1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2012-0032201 2012-03-29
KR20120032201 2012-03-29
KR10-2012-0053320 2012-05-18
KR20120053320 2012-05-18
KR10-2013-0033595 2013-03-28
KR1020130033595A KR20130111408A (ko) 2012-03-29 2013-03-28 셀레나이드 착체, 이의 제조방법 및 이를 이용한 ci(g)s 박막

Publications (1)

Publication Number Publication Date
WO2013147541A1 true WO2013147541A1 (ko) 2013-10-03

Family

ID=49260714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/002620 WO2013147541A1 (ko) 2012-03-29 2013-03-29 셀레나이드 착체, 이의 제조방법 및 이를 이용한 ci(g)s 박막

Country Status (1)

Country Link
WO (1) WO2013147541A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116330777A (zh) * 2023-03-28 2023-06-27 广东中宇恒通电热科技有限公司 一种具有高强度绝缘材料的加热膜

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1020881A2 (en) * 1999-01-14 2000-07-19 Fuji Photo Film Co., Ltd. Photo-electrochemical cell
US6350946B1 (en) * 1999-09-10 2002-02-26 Fuji Photo Film Co., Ltd. Photoelectric conversion device and photoelectric cell
EP1213776A2 (en) * 2000-12-08 2002-06-12 Fuji Photo Film Co., Ltd. Metal complex dye for a dye sensitized solar cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1020881A2 (en) * 1999-01-14 2000-07-19 Fuji Photo Film Co., Ltd. Photo-electrochemical cell
US6350946B1 (en) * 1999-09-10 2002-02-26 Fuji Photo Film Co., Ltd. Photoelectric conversion device and photoelectric cell
EP1213776A2 (en) * 2000-12-08 2002-06-12 Fuji Photo Film Co., Ltd. Metal complex dye for a dye sensitized solar cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAMPTON, M. J. ET AL.: "Direct Patterning CdSe Quantum Dots into Sub-100 nm Structures", LANGMUIR, vol. 26, no. 5, 2010, pages 3012 - 3015 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116330777A (zh) * 2023-03-28 2023-06-27 广东中宇恒通电热科技有限公司 一种具有高强度绝缘材料的加热膜
CN116330777B (zh) * 2023-03-28 2023-09-15 广东中宇恒通电热科技有限公司 一种具有高强度绝缘材料的加热膜

Similar Documents

Publication Publication Date Title
WO2012067439A2 (ko) 다이아자다이엔계 금속 화합물, 이의 제조 방법 및 이를 이용한 박막 형성 방법
WO2010036036A2 (ko) 신규한 안트라센 유도체 및 이를 이용한 유기전자소자
WO2013009079A1 (ko) 트리페닐렌계 화합물 및 이를 이용한 유기 전계 발광 소자
WO2014098396A1 (ko) 금속 전구체 및 이를 이용한 금속 전구체 잉크
WO2013032304A2 (ko) 유기전자소자 및 그 제조방법
WO2017105078A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2020166875A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2017052129A1 (ko) 유기전기소자용 신규 화합물, 이를 이용한 유기전기소자 및 그 전자장치
WO2012128509A2 (ko) 화합물 및 이를 이용한 유기전기소자, 그 전자장치
WO2015108377A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2018236100A1 (ko) 유기 태양 전지
WO2020166873A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2020153650A1 (ko) 유기 발광 소자용 화합물 및 이를 포함하는 장수명의 유기발광소자
WO2020067800A1 (ko) 유기 발광 소자용 잉크 조성물
WO2017047977A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 발광 소자
WO2017014460A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2019221487A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2019013526A1 (ko) 신규한 화합물 및 이를 포함하는 유기 발광 소자
WO2019004781A1 (ko) 페로브스카이트 태양전지
WO2017043797A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2014061867A1 (ko) 신규한 유기 반도체 화합물 및 이의 제조방법
WO2019004605A1 (ko) 유기 태양 전지
WO2023128521A1 (ko) 유기발광소자
WO2015190900A1 (ko) 성막용 전구체 화합물 및 이를 이용한 박막 형성 방법
WO2018034443A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13768483

Country of ref document: EP

Kind code of ref document: A1