WO2013147194A1 - 近距離無線通信用アンテナ、アンテナモジュール及び無線通信装置 - Google Patents

近距離無線通信用アンテナ、アンテナモジュール及び無線通信装置 Download PDF

Info

Publication number
WO2013147194A1
WO2013147194A1 PCT/JP2013/059610 JP2013059610W WO2013147194A1 WO 2013147194 A1 WO2013147194 A1 WO 2013147194A1 JP 2013059610 W JP2013059610 W JP 2013059610W WO 2013147194 A1 WO2013147194 A1 WO 2013147194A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
soft magnetic
magnetic member
antenna
communication antenna
Prior art date
Application number
PCT/JP2013/059610
Other languages
English (en)
French (fr)
Inventor
真貴 中村
岡本 浩志
三木 裕彦
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to JP2014508107A priority Critical patent/JP6090307B2/ja
Priority to KR1020147027885A priority patent/KR102017091B1/ko
Priority to CN201380018371.6A priority patent/CN104221216B/zh
Priority to US14/389,054 priority patent/US9692130B2/en
Publication of WO2013147194A1 publication Critical patent/WO2013147194A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/06Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with core of ferromagnetic material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07773Antenna details
    • G06K19/07777Antenna details the antenna being of the inductive type
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10237Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the reader and the record carrier being capable of selectively switching between reader and record carrier appearance, e.g. in near field communication [NFC] devices where the NFC device may function as an RFID reader or as an RFID tag

Definitions

  • the present invention is an antenna for low-power wireless communication: RFID (Radio Frequency Frequency Identification) used in a small wireless communication device such as a mobile phone, and is particularly a near field communication standard NFC (NFC) using a communication frequency band of 13.56 MHz.
  • RFID Radio Frequency Frequency Identification
  • NFC near field communication standard NFC
  • the present invention relates to an antenna for near field communication corresponding to Near Field Communication, and an antenna module and a wireless communication apparatus including the antenna.
  • an IC card system is widely known as a system for performing near field communication.
  • the IC card system disclosed in Japanese Patent Application Laid-Open No. 2010-200061 includes a reader / writer (which can be referred to as an “antenna device”) 280 and an IC card 285 serving as a transponder.
  • the antenna device 280 is an unbalanced circuit, and includes a semiconductor 70, a noise filter (first filter) 71, a matching circuit 72, a low-pass filter (second filter) 73, and an antenna resonance circuit 66.
  • the semiconductor 70 includes a transmission circuit, a reception circuit, a modulation circuit, a demodulation circuit, a controller, and the like.
  • the antenna resonance circuit 66 includes a short-range wireless communication antenna 1a, a resistor (not shown), and a resonance capacitor 65.
  • the resonance frequency of the antenna resonance circuit 66 is set to a specific frequency (for example, 13.56 MHz) used for communication, and the real part of the impedance of the antenna resonance circuit 66 is substantially short-circuited at the frequency.
  • the antenna resonance circuit 66 is connected to the semiconductor 70 via the impedance matching circuit 72.
  • the output terminal Tx connected to the modulation circuit of the transmission circuit in the semiconductor 70 is connected to the impedance matching circuit 72 via the first filter 71 for EMC countermeasures.
  • the input terminal Rx connected to the demodulation circuit of the receiving circuit in the semiconductor 70 is connected to the connection point between the first filter 71 and the impedance matching circuit 72 via the second filter 73 having a capacitor connected in series with the resistor. It is connected.
  • the operation of the transmission circuit and the reception circuit is controlled by the controller.
  • a signal having a frequency (for example, 13.56 MHz) corresponding to the tuning frequency is supplied from the oscillator to the transmission circuit, modulated based on a predetermined protocol, and supplied to the antenna resonance circuit 66.
  • the near field communication antenna 1a of the antenna resonance circuit 66 is magnetically coupled to the near field communication antenna 1b of the IC card 285 with a predetermined coupling coefficient. Therefore, when the IC card 285, which is a transponder, is brought close to the short-range wireless communication antenna 1a, the short-range wireless communication antenna 1b in the IC card 285 is magnetically coupled to the short-range wireless communication antenna 1a to transmit power by electromagnetic induction.
  • the integrated circuit 68 of the IC card 285 is supplied with power and performs data transmission in accordance with a predetermined protocol (for example, ISO 14443, 15693, 18092, etc.).
  • Japanese Patent Laid-Open No. 2005-094737 discloses a cylindrical body 351 and a rectangular plate-like shape as shown in FIG. It has a one-sided soft magnetic core composed of a flange part 355, and a coil 352 wound around a body part 351. Conductive wire end parts 353 and 353 of the coil 352 are provided on the side surface and the bottom surface of the flange part 355.
  • the antenna 200 has been proposed in which a nonmagnetic material (not shown) having a flat top surface is provided on the coil 352 and the body portion 351. Since the magnetic flux generated from the coil 352 passes exclusively through the soft magnetic core, the magnetic flux density directed above the coil 352 is increased.
  • a wireless communication device such as a cellular phone has a main antenna mainly used for a call, a short-range wireless communication antenna, a contactless charging antenna, and a digital TV antenna, together with other circuit devices, in a limited size housing. And a plurality of antennas. For this reason, a small short-range wireless communication antenna with a small mounting area and a short height is required.
  • Near-field wireless communication antennas require a communication distance of 30 mm or more in practice even if they are miniaturized. To reduce the size of the antenna, it is necessary to reduce the size of the soft magnetic member. However, if the size of the soft magnetic member is reduced, the magnetic flux decreases, so that it becomes difficult to secure a predetermined communication distance, and stable communication cannot be performed.
  • the self-resonant frequency of the antenna is required to be sufficiently higher than the communication frequency band of 13.56 MHz, and is generally recommended to be 40 MHz or higher.
  • a coil 352 is wound directly around a soft magnetic body 351, and almost the entire inner region of the coil 352 is filled with a soft magnetic member.
  • the self-inductance is large, and the self-resonance frequency of the antenna is lowered to approach the communication frequency band.
  • the self-inductance of the antenna in the communication frequency band tends to vary due to variations in the parasitic reactance of the coil 352 and variations in the magnetic characteristics of the soft magnetic member.
  • the self-inductance varies, it is necessary to adjust the matching conditions with other circuits in each antenna, which requires a lot of time and man-hours, and increases the cost of the antenna.
  • the self-inductance can be reduced by reducing the number of turns and the winding diameter of the coil, the communication distance is shortened because the magnetic flux generated by the coil is reduced.
  • an object of the present invention is to provide a short-range wireless communication antenna that can be miniaturized while ensuring directivity and communication distance in the direction of the other party to communicate with, can easily protect coils, and can be surface-mounted. It is.
  • Another object of the present invention is to provide an antenna module and a wireless communication apparatus having such a short-range wireless communication antenna.
  • the near field communication antenna of the present invention includes at least one annular coil, a plate-like nonmagnetic resin member that holds the annular coil, and a plate-like soft magnetic layer that overlaps the nonmagnetic resin member via the annular coil A member, and a terminal to which the conductor of the annular coil is connected,
  • the annular coil is disposed in a circumferential recess along the outer periphery of the non-magnetic resin member so as not to go outside the outer periphery of the soft magnetic member,
  • the conducting wire of the annular coil is connected to the terminal through a notch provided in an outer peripheral edge of the soft magnetic member.
  • the whole inside of the annular coil is preferably a non-magnetic region.
  • the soft magnetic member exhibits a function as a magnetic yoke, and can suppress an unnecessary increase in self-inductance.
  • the non-magnetic resin member has a fixed surface joined to the soft magnetic member and a free surface facing the fixed surface.
  • the circumferential recess of the non-magnetic resin member includes (a) a circumferential step having one outer peripheral flange extending from the free surface, or (b) a pair of outer peripheral flanges extending from the fixed surface and the free surface. It is the circumferential groove part which has. (a) In the case of the flange, the annular coil is disposed in a gap formed by the soft magnetic member joined to the nonmagnetic resin member and the outer peripheral flange.
  • the circumferential recess has a function of positioning the annular coil and protects the annular coil from interference with other components.
  • the annular coil may be integrally formed with the nonmagnetic resin member by insert molding.
  • the annular coil may be composed of a plurality of coils.
  • the first coil and the second coil are arranged concentrically, one end of the first coil conductor and one end of the second coil conductor are connected to form a ground end, and the first coil
  • the other end of the lead wire and the other end of the lead wire of the second coil each constitute a signal end, and the first coil and the second coil are wound in opposite directions when viewed from the ground end.
  • An antenna having such a configuration is suitable for a balanced circuit.
  • the first coil and the second coil are arranged on the surface of the soft magnetic member, and one end of the first coil conductor and one end of the second coil conductor are connected to form a ground terminal, The other end of the conducting wire of the first coil and the other end of the conducting wire of the second coil each constitute a signal end, and the first coil and the second coil are wound in opposite directions when viewed from the ground end.
  • one coil can be used for transmission and the other coil can be used for reception, and transmission and reception can be performed simultaneously.
  • the soft magnetic member preferably has a rectangular plate shape having flat upper and lower surfaces facing each other and a side surface therebetween.
  • the top surface and the bottom surface may have an opening, a depression, or a projection used for positioning the nonmagnetic resin member.
  • the nonmagnetic resin member has a protrusion, an opening or a depression corresponding to the opening, the depression or the protrusion of the soft magnetic member. Since both are combined on the basis of the protrusion part of a soft magnetic member or a nonmagnetic resin member, the assembly without a position shift becomes easy.
  • a projection part in a soft-magnetic member a position, a dimension, and a shape with little influence on a self-inductance are selected.
  • a notch for drawing out the conducting wire of the annular coil on the side surface of the soft magnetic member.
  • the conducting wire passing through the notch is connected to a terminal provided on the bottom surface of the soft magnetic member (surface opposite to the nonmagnetic resin member) or the bottom surface of the substrate member bonded to the bottom surface of the soft magnetic member.
  • the side notch portion of the soft magnetic member not only positions the conductor, but also prevents the conductor from jumping out from the side surface of the antenna, thereby preventing disconnection.
  • the terminal that connects the conductor of the annular coil is also used as an electrode for surface mounting the antenna.
  • the terminals are formed by (a) printing or transferring Ag paste or the like in the form of a terminal pattern on the top or bottom surface of a soft magnetic member and baking it, or (b) attaching a printed circuit board having a copper pattern, or (c) ) It can be formed by sticking a resin substrate on which a lead terminal is insert-molded.
  • the substrate member When using the substrate member, the substrate member is provided with a protrusion, the soft magnetic member is provided with an opening for receiving the protrusion of the substrate member, and the nonmagnetic resin member is provided with an opening for receiving the protrusion of the substrate member or It is preferable to provide a recess. Also in this case, since the soft magnetic member and the nonmagnetic resin member are combined on the basis of the protruding portion, the assembly without misalignment is facilitated.
  • the nonmagnetic resin member preferably has a rectangular or circular shape similar to that of the soft magnetic member in plan view.
  • the nonmagnetic resin member is preferably formed of a high heat resistant engineering plastic such as a liquid crystal polymer or polyphenylene sulfide so that it can withstand high temperatures such as solder reflow. If a flat portion is provided on one surface of the non-magnetic resin member, it becomes easy to automatically mount the antenna on a circuit board or the like by a vacuum adsorption method.
  • an integrated circuit including the short-range wireless antenna, a reactance element that forms a matching circuit, a reactance element that forms a noise filter, a transmission circuit, and a reception circuit is mounted on a resin substrate. It is characterized by that.
  • the wireless communication device of the present invention includes the short-range wireless antenna.
  • the short-range wireless communication antenna of the present invention has the advantage that it can be miniaturized while ensuring the directivity and communication distance to the communication partner, the coil is easily protected, and the surface mounting is easy.
  • 1 is a top perspective view showing an antenna for near field communication according to a first embodiment of the present invention. It is a bottom perspective view showing an antenna for near field communication according to a first embodiment of the present invention. It is sectional drawing which shows the antenna for near field communication by the 1st embodiment of this invention.
  • 1 is an exploded top perspective view showing a short-range wireless communication antenna according to a first embodiment of the present invention.
  • 1 is an exploded bottom perspective view showing a short-range wireless communication antenna according to a first embodiment of the present invention.
  • It is a disassembled top perspective view which shows the antenna for near field communication by the 2nd Example of this invention.
  • It is a disassembled bottom perspective view showing an antenna for near field communication according to a second embodiment of the present invention.
  • FIG. 1 It is a bottom view which shows the antenna for near field communication by the 5th embodiment of this invention. It is a partial expanded sectional view which shows the antenna for near field communication by the 5th embodiment of this invention. It is a top perspective view which shows the board
  • FIG. 3 is a plan view showing a soft magnetic member of Samples 1 to 3 used for the short-range wireless communication antennas of Examples 1 to 3.
  • FIG. 20 (a) is a cross-sectional view taken along line AA in FIG. 6 is a plan view showing a soft magnetic member of Sample 4 used for the short-range wireless communication antenna of Example 4.
  • FIG. 21 (a) is a cross-sectional view taken along line BB of FIG. 6 is a plan view showing a soft magnetic member of Sample 5 used for the short-range wireless communication antenna of Example 5.
  • FIG. FIG. 22 (a) is a cross-sectional view taken along the line CC of FIG. 6 is a plan view showing a soft magnetic member of Sample 6 used for the short-range wireless communication antenna of Comparative Example 1.
  • FIG. 23 (a) is a cross-sectional view taken along the line DD of FIG. It is a block diagram which shows the circuit of the antenna apparatus which comprises the antenna for near field communication. It is a perspective view which shows the conventional antenna for near field communication. It is the schematic which shows the evaluation method of the communication distance of an antenna. It is a perspective view which shows the external appearance of the radio
  • FIGS. 1 to 5 show an antenna 1 according to a first embodiment of the present invention.
  • the antenna 1 includes an annular coil 20, a nonmagnetic resin member 10 that holds the annular coil 20, and a rectangular plate-like soft magnetic member 5 that is overlapped with the coil holding nonmagnetic resin member 10 and fixed by an adhesive or the like.
  • Have The outer shape of the soft magnetic member 5 is substantially square in plan view.
  • the antenna 1 can be used in the unbalanced circuit shown in FIG. 24 or a balanced circuit described later.
  • the rectangular plate-shaped soft magnetic member 5 has a rectangular central opening 8, and a rectangular central protrusion 24 of the rectangular plate-shaped nonmagnetic resin member 10 is fitted into the central opening 8, and is bonded by an adhesive or the like. Fixed.
  • the non-magnetic resin member 10 having a rectangular plate shape similar to the soft magnetic member 5 is composed of a top surface 10a that is a flat free surface, a bottom surface 10b that is fixed to the soft magnetic member 5, and a space between the top surface 10a and the bottom surface 10b.
  • the side surface 10c includes a flange portion 22 extending from the upper surface 10a and a circumferential step portion 23.
  • the annular coil 20 is disposed in a gap formed by the circumferential step 23, the lower surface of the flange portion 22, and the upper surface 5a of the soft magnetic member 5.
  • the thickness of the non-magnetic resin member 10 for holding the coil is preferably 2 mm or less.
  • the nonmagnetic resin member 10 facilitates automatic mounting on the circuit board by vacuum suction of the antenna 1, prevents collision with the suction nozzle and other parts of the mounting machine, and prevents damage to the annular coil 20.
  • the nonmagnetic resin member 10 can be formed of a high heat resistant thermoplastic engineering plastic such as a liquid crystal polymer or polyphenylene sulfide.
  • the depth of the circumferential step 23 is set so that one or two or more annular coils 20 wound around the circumferential step 23 do not protrude outward from the outer periphery of the flange 22 and the soft magnetic member 5.
  • the bottom surface 10b of the nonmagnetic resin member 10 is flat and has a rectangular protrusion 24 at a position corresponding to the opening 8 of the soft magnetic member 5, but the form thereof can be changed as necessary. May be.
  • the conducting wire of the annular coil 20 is wound in a plurality of layers in the winding axis direction, but is preferably a single layer in the winding diameter direction in order to suppress the interline capacity. Even when the height of the antenna 1 is desired to be suppressed, it is preferable to keep the conductive wire in two layers.
  • the outer periphery of the annular coil 20 is preferably equal to or less than the outer periphery of the soft magnetic member 5 (equal to or slightly smaller than the outer periphery of the soft magnetic member 5). When the outer periphery of the annular coil 20 goes outside the outer periphery of the soft magnetic member 5, the shielding effect by the soft magnetic member 5 is reduced.
  • the distance between the outer periphery of the annular coil 20 and the outer periphery of the soft magnetic member 5 is preferably 0 to 1 mm.
  • the number of turns of the annular coil 20 can be appropriately set according to the winding diameter of the annular coil 20, the magnetic characteristics of the soft magnetic member 5, and the desired self-inductance.
  • the outer shape of the annular coil 20 is rectangular, but of course, it may be circular.
  • the distance between the annular coil 20 and the soft magnetic member 5 may be set so that a desirable self-inductance and Q value can be obtained, but it is preferably set to 1 mm or less considering that the antenna becomes thicker by the distance. .
  • the conducting wire used for the annular coil 20 is preferably a single enameled wire, more preferably an enameled wire (self-bonding wire) on which a heat-fusible overcoat is formed.
  • the self-bonding annular coil 20 is easy to assemble.
  • the wire diameter of the conducting wire is preferably 30 to 80 ⁇ m.
  • the rectangular soft magnetic member 5 similar to the non-magnetic resin member 10 for holding a coil has a top surface 5a and a bottom surface 5b facing each other, and a side surface 5c therebetween.
  • the top surface 5a and the bottom surface 5b are both flat and have a central opening 8 into which the protrusion 24 of the nonmagnetic resin member 10 is fitted.
  • one side of the coil holding resin member 10 is 30 mm or less and the thickness is 2.5 mm or less.
  • the side surface 5c of the soft magnetic member 5 is provided with a plurality of notches 6a and 6b for arranging the conducting wires 21a and 21b at both ends of the annular coil 20. It is sufficient to provide at least two notches 6a and 6b, but they may be formed on each side so that the direction of the soft magnetic member 5 does not occur depending on the formation position.
  • Soft magnetic member 5 is made of high resistance soft magnetic ferrite such as Ni-based ferrite, Li-based ferrite, Mn-based ferrite, Fe-Si based soft magnetic alloy, Fe-based or Co-based amorphous alloy, nanocrystalline soft-magnetic alloy, etc. can do.
  • Soft magnetic member 5 made of soft magnetic ferrite is mainly composed of ferric oxide (Fe 2 O 3 ), zinc oxide (ZnO), nickel oxide (NiO), copper oxide (CuO), manganese oxide (MnO), etc.
  • the calcined powder is preferably formed by powder molding and sintering. The sintered body may be used as it is, but may be processed such as grinding and punching.
  • the soft magnetic member 5 made of soft magnetic ferrite is produced by processing a green sheet formed from a soft magnetic ferrite slurry by a doctor blade method or the like into a predetermined shape, and sintering it in a single layer or by lamination. You can also also in this case, the sintered body may be processed into a predetermined shape.
  • the soft magnetic member 5 made of an amorphous alloy or a nanocrystalline soft magnetic alloy can be produced by cutting and laminating an alloy ribbon into a predetermined shape. Further, the alloy ribbon may be pulverized into powder or flakes to form a dust core, or dispersed in resin or rubber and formed into a sheet.
  • the initial magnetic permeability ⁇ i (frequency 100 kHz) of the soft magnetic material constituting the soft magnetic member 5 is preferably 10 or more when measured in the shape of a ring-shaped core.
  • the shape and size of the opening 8 of the soft magnetic member 5 are not particularly limited as long as the nonmagnetic resin member 10 can be positioned while functioning as a magnetic yoke, but in order to ensure the function as the magnetic yoke,
  • the area is preferably 1 to 20% of the area of the soft magnetic member 5, and more preferably 1 to 10%.
  • Each side of the opening 8 is preferably parallel to each corresponding side of the soft magnetic member 5 and the center of the opening 8 and the center of the soft magnetic member 5 are preferably coincident with each other.
  • the opening 8 is a through hole, but may be a depression. Note that the protrusion 24 fitted into the opening 8 protrudes from the bottom surface 5b of the soft magnetic member 5 provided with the terminal 15 so as not to hinder the connection between the terminal of the antenna 1 and the line provided on the mounting substrate. Must not.
  • the conducting wires 21a and 21b of the annular coil 20 are welded, thermocompression bonded, ultrasonic vibrations with the terminals 15a and 15b formed on the bottom surface 5b of the soft magnetic member 5 through the outer circumferential notches 6a and 6b of the soft magnetic member 5. Etc. are connected.
  • the terminals 15a to 15d formed of a conductor pattern such as Ag are also used as surface mounting electrodes. Each of the terminals 15a to 15d is formed on the bottom surface 5b of the soft magnetic member 5 directly or via an insulating glass layer or resin layer, and on the surface thereof for thermal protection and solderability improvement. A protective layer.
  • the conductor layer is formed by, for example, applying a paste of an alloy such as glass, organic vehicle, solvent, etc., such as Cu, Ag, Ag—Pd, etc., to a predetermined portion of the bottom surface 5b of the soft magnetic member 5 by printing. It is formed by drying at °C and baking at a temperature of 500 °C or higher. Instead of baking the alloy paste, the conductor layer may be formed by plating or vapor-depositing the conductor layer metal and then removing unnecessary portions by etching.
  • the protective layer is a solder layer or a plating layer such as Ni or Au.
  • FIGS. 6 and 7 show an antenna according to a second embodiment of the present invention. Since the antenna of the first embodiment is substantially the same except for the positioning configuration, only the differences will be described in detail.
  • a positioning central projection 9 is provided on the upper surface 5a of the soft magnetic member 5, and a recess (non-penetrating recess) 7 for receiving the projection 9 on the bottom surface 10b of the nonmagnetic resin member 10 is provided. Is provided.
  • the protrusion 9 is located at the air core of the annular coil 20 and is sufficiently smaller than the inner diameter of the annular coil 20.
  • the area of the projection 9 in a plan view is preferably 1 to 10%, more preferably 1 to 5% of the area of the inner periphery of the annular coil 20.
  • Each side of the protrusion 9 is preferably parallel to the corresponding side of the soft magnetic member 5 and the center of the protrusion 9 and the center of the soft magnetic member 5 are preferably coincident with each other.
  • the antenna of the second embodiment having such a configuration also exhibits the same function and effect as the antenna of the first embodiment.
  • FIGS. 8 to 10 show an antenna according to a third embodiment of the present invention.
  • This antenna includes an elongated non-magnetic resin member 10 for holding a coil shown in FIG. 9 and an elongated soft magnetic member 5 similar to the non-magnetic resin member 10.
  • the bottom surface 10b of the nonmagnetic resin member 10 and the top surface 5a of the soft magnetic member 5 are bonded.
  • the nonmagnetic resin member 10 has a pair of upper and lower flange portions 22a and 22b on the entire circumference of the side surface 10c, and the annular coil 20 is wound around the groove portion 23 formed in both flange portions 22a and 22b. . Notches 25a and 25b through which the conducting wire of the annular coil 20 passes are formed in the flange portion 22b on the bottom surface 10b side.
  • notches 6a and 6b are formed at positions corresponding to the notches 25a and 25b of the nonmagnetic resin member 10.
  • Three terminals 15a, 15b, 15c are provided on the bottom surface of the soft magnetic member 5, the terminal 15a is close to the notch 6a, the terminal 15b is close to the notch 6b, and the terminal 15c Is located between the terminal 15a and the terminal 15b.
  • the terminal 15c is used as a surface mounting electrode.
  • One conductor 21a of the annular coil 20 is connected to the terminal 15a through the notch 25a of the nonmagnetic resin member 10 and the notch 6a of the soft magnetic member 5, and the other conductor 21b of the annular coil 20 is
  • the nonmagnetic resin member 10 is connected to the terminal 15b through the notch 25b and the notch 6b of the soft magnetic member 5.
  • the annular coil 20 is wound around the groove portion 23 formed by the pair of flange portions 22a, 22b, the positioning of the annular coil 20 is easy. Further, the annular coil 20 is separated from the soft magnetic member 5 by the thickness of the flange portion 22b.
  • the soft magnetic member 5 and the coil holding resin member 10 have no positioning means (combination of protrusions and openings), but the notch portions 25a and 25b of the nonmagnetic resin member 10 and the notch portion 6a of the soft magnetic member 5 By aligning 6b, the nonmagnetic resin member 10 and the soft magnetic member 5 can be positioned.
  • this antenna Since this antenna is elongated, it can be mounted along the edge of the circuit board so as not to damage the mounting area of other components.
  • the antenna of the third embodiment also exhibits the same function and effect as the antenna of the first embodiment.
  • FIGS. 11 and 12 show an antenna according to a fourth embodiment of the present invention.
  • the antenna includes a substrate member 14 having a pair of protrusions 16a and 16b, a soft magnetic member 5 having a pair of openings 8a and 8b for receiving the protrusions 16a and 16b, and a protrusion 16a and 16b.
  • the non-magnetic resin member 10 is provided with an outer peripheral flange 22a on the upper surface side and an outer peripheral flange 22b on the bottom surface side.
  • the annular coil 20 is wound around a groove formed by the pair of flange portions 22a and 22b.
  • Notch portions 25a and 25b are respectively provided on the opposite side surfaces of the nonmagnetic resin member 10, and the notch portions 6a and 6b are provided at the same position as the notch portions 25a and 25b on the opposite side surface of the soft magnetic member 5 in plan view.
  • the cutout portions 26a and 26b are provided at the same position as the cutout portions 25a and 25b on the opposite side surface of the substrate member 14 in plan view.
  • the nonmagnetic resin member 10, the soft magnetic member 5, and the substrate member 14 are sequentially stacked, and the protrusions 16a of the substrate member 14 are formed on the openings 11a and 11b of the nonmagnetic resin member 10 and the openings 8a and 8b of the soft magnetic member 5.
  • 16b is inserted, and the upper surface 5a of the soft magnetic member 5 is bonded to the bottom surface 10b of the nonmagnetic resin member 10, and the upper surface 14a of the substrate member 14 is bonded to the bottom surface 5b of the soft magnetic member 5.
  • the lengths of the protrusions 16a and 16b are set so that the protrusions 16a and 16b do not protrude from the openings 11a and 11b when the nonmagnetic resin member 10, the soft magnetic member 5, and the substrate member 14 are stacked.
  • the cutout portions 25a and 25b of the nonmagnetic resin member 10, the cutout portions 6a and 6b of the soft magnetic member 5, and the cutout portions 26a and 26b of the substrate member 14 are arranged in the vertical direction. It becomes a pair of vertical notches through which 21a and 21b pass.
  • the antenna of the fourth embodiment also exhibits the same effect as the antenna of the first embodiment.
  • positioning of the nonmagnetic resin member 10, the soft magnetic member 5, and the board member 14 during assembly is very easy.
  • the substrate member 14 is preferably formed of a liquid crystal polymer.
  • FIGS. 13 to 15 show an antenna according to a fifth embodiment of the present invention.
  • the annular coil 20 includes a first coil 20a and a second coil 20b that are concentrically wound around a groove between the flanges 22a and 22b of the non-magnetic resin member 10 for holding a coil.
  • Three terminals 15a, 15b, and 15c are provided on the bottom surface 5b of the soft magnetic member 5.
  • One conducting wire of the first coil 20a and one conducting wire of the second coil 20b are connected and connected to the central terminal 15c as a common wire 21c, and the other conducting wires 21a and 21b of both the coils 20a and 20b are terminals at both ends.
  • the first coil 20a and the second coil 20b are wound in opposite directions.
  • a flexible printed board or a rigid board for example, a glass epoxy board
  • terminals 15a, 15b, 15c as shown in FIG.
  • a resin substrate member 14 that is integrally insert-molded may be used.
  • notches 26a, 26b, and 26c for passing the conducting wires 21a, 21b, and 21c are provided at positions corresponding to the notches 6a, 6b, and 6c of the soft magnetic member 5. Yes.
  • FIG. 17 shows a balanced circuit of the module of the present invention using this antenna.
  • One end 21a of the first coil 20a is connected to a matching circuit 72 composed of capacitors C1 and C2, and a first circuit 71 composed of an inductor L0 and a capacitor C0 is connected to the modulation circuit of the transmission circuit in the semiconductor 70. It is connected to the output terminal Tx1 to be connected.
  • the input terminal Rx connected to the demodulating circuit of the receiving circuit in the semiconductor 70 is connected to a connection point between the filter 71 and the matching circuit 72 through a second filter 73 having a resistor R2 and a capacitor C3 connected in series. ing.
  • one end 21b of the second coil 20b is connected to a matching circuit 72 composed of capacitors C1 and C2, and a first filter 71 composed of an inductor L0 and a capacitor C0 is used to transmit the transmission circuit in the semiconductor 70. It is connected to the output terminal Tx2 connected to the modulation circuit.
  • the common end 21c of the first coil 20a and the second coil 20b is grounded.
  • a reactance element and a resistor constituting the antenna 1, the semiconductor 70, the matching circuit 72, and the first and second filters 71 and 73 are provided on the glass epoxy substrate to form a module. Even if the intermediate tap is not provided as in the first to fifth embodiments, if one end of the annular coil 20 is connected to the output end Tx and the other end is connected to the output end Tx2, the balanced circuit module and can do.
  • FIG. 18 shows an antenna according to a sixth embodiment of the present invention.
  • This antenna is the same as the fifth embodiment in that the annular coil 20 is composed of the first coil 20a and the second coil 20b, but the two coils 20a, 20b are on the upper surface 5a of the soft magnetic member 5. Different in that they are arranged side by side.
  • One conducting wire of the first coil 20a and one conducting wire of the second coil 20b are connected and connected to the terminal 15c as a common wire 21c, and the other conducting wires 21a, 21b of the coils 20a, 20b are connected to the terminal 15a, Connected to 15b.
  • the first coil 20a and the second coil 20b are wound in opposite directions.
  • FIG. 19 shows another circuit configuration of the module of the present invention using this antenna.
  • One end 21a of the first coil 20a is connected via a matching circuit 72 and a filter 71 to an output end Tx connected to the modulation circuit of the transmission circuit in the semiconductor 70.
  • One end 21b of the second coil 20b is connected via a matching circuit 72 and a filter 71 to an input end Rx connected to a demodulation circuit of a receiving circuit in the semiconductor 70.
  • a reactance element and a resistor constituting the antenna 1, the semiconductor 70, the matching circuit 72, and the filter 71 are provided on a glass epoxy substrate to form a module.
  • the module having such a configuration can perform reception while transmitting.
  • FIG. 27 shows the external appearance of a wireless communication apparatus using the antenna of the present invention. Since the antenna of the present invention is small, it can be incorporated in a highly functional communication device that is small, low power, and similar to the smartphone 100.
  • the soft magnetic material constituting the soft magnetic member 5 has a composition (after firing) composed of 46.5 mol% Fe 2 O 3 , 20.0 mol% ZnO, 22.5 mol% NiO, and 11.0 mol% CuO, Ni-based ferrite with an initial permeability of 110 was used.
  • Fe 2 O 3 powder, ZnO powder, NiO powder and CuO powder are mixed so as to have the above-mentioned composition after firing, and the calcined powder is granulated by adding a binder, etc., and the granulated powder is formed into a square shaped body.
  • the molded body is sintered at 1100 ° C., the central opening 8 is formed in the obtained sintered body, and a necessary surface is ground by a grinding stone to be flattened, and FIG. 20 (a) and FIG. As shown in b), a square-shaped soft magnetic member 5 (samples 1 to 3) having a central opening 8 was produced.
  • Samples 1 to 3 all have external dimensions (after sintering) of 14 mm x 14 mm x 0.8 mm, and the dimensions of the central opening 8 are 3.5 mm x 3 mm (sample 1) and 2.5 mm x 2 mm, respectively. (Sample 2) and 1.5 mm ⁇ 1 mm (Sample 3).
  • a nonmagnetic resin member 10 having a protrusion corresponding to each of samples 1 to 3 was formed of a liquid crystal polymer.
  • the external dimensions of each nonmagnetic resin member 10 were 13.6 mm ⁇ 13.6 mm ⁇ 0.6 mm, excluding the protrusions.
  • An annular cutout portion of 0.3 mm from the outer edge and 0.3 mm from the main surface was formed on the entire side surface of each nonmagnetic resin member 10.
  • An enameled wire with a wire diameter of 60 ⁇ m (conductor diameter: 50 ⁇ m, coating layer thickness: 5 ⁇ m) was wound around this annular cutout for 7 turns to form an annular coil 20 having a length of 13 mm and a thickness of 0.25 mm.
  • the annular coil 20 was bonded to the soft magnetic member 5 together with the nonmagnetic resin member 10 to produce an antenna having a thickness of 1.4 mm.
  • Example 4 In the same manner as in Examples 1 to 3, a square-shaped soft magnetic member 5 (sample 4) having a central recess 8 as shown in FIGS. 21 (a) and 21 (b) was produced.
  • the external dimensions of the sample 4 were 14 mm ⁇ 14 mm ⁇ 0.8 mm, the dimensions of the central recess 7 were 3.5 mm ⁇ 3 mm, and the depth was 0.4 mm.
  • an antenna having a thickness of 1.4 mm was produced in the same manner as in Examples 1 to 3.
  • Example 5 In the same manner as in Examples 1 to 3, a square-shaped soft magnetic member 5 (sample 5) having a central protrusion 9 as shown in FIGS. 22 (a) and 22 (b) was produced.
  • the outer dimensions of the sample 5 were 14 mm ⁇ 14 mm ⁇ 0.8 mm
  • the dimensions of the central protrusion 9 were 3.5 mm ⁇ 3 mm
  • the height was 0.4 mm.
  • an antenna having a thickness of 1.4 mm was produced in the same manner as in Examples 1 to 3.
  • the area ratio of the central protrusion 9 to the inner periphery of the annular coil 20 was 6.2%.
  • Comparative Example 1 In the same manner as in Examples 1 to 3, a square-shaped soft magnetic member 5 (sample 6) having a circular body part 27 as shown in FIGS. 23 (a) and 23 (b) was produced.
  • the external dimensions of the sample 6 were 14 mm ⁇ 14 mm ⁇ 0.7 mm, and the dimensions of the circular body 27 were a diameter of 12 mm and a height of 0.7 mm.
  • the area ratio of the circular body portion 27 to the inner peripheral portion of the annular coil 20 was 100%.
  • An enameled wire with a wire diameter of 60 ⁇ m (conductor diameter: 50 ⁇ m, coating layer thickness: 5 ⁇ m) is wound around the circular body 27 of the soft magnetic member 5 of sample 6 for 6 turns, and the inner diameter is 12 mm, the outer diameter is 12.7 mm, and the thickness An annular coil 20 of 0.1 mm was used. The annular coil 20 was bonded to the soft magnetic member 5 to produce an antenna having a thickness of 1.4 mm.
  • the evaluation device is an evaluation board made by NXP Semiconductor, which includes a signal processing circuit necessary for non-contact data communication and an IC chip component storing information.
  • NXP Semiconductor which includes a signal processing circuit necessary for non-contact data communication and an IC chip component storing information.
  • the self-inductance of the antenna at 13.56 MHz is less than 3 ⁇ H.
  • the number of turns of the coil was adjusted so that the antennas of Examples 1 to 5 and Comparative Example 1 also had a self-inductance of less than 3 ⁇ H.
  • the constants of the matching circuit are the same in Examples 1 to 5 and Comparative Example 1. Table 1 shows the communication distance between the antenna and the IC tag.
  • the self-inductance at 13.56 MHz decreased slightly as the area of the opening of the soft magnetic member 5 increased.
  • the self-inductance was reduced.
  • the self-inductance slightly increased.
  • an inductance value of less than 3 ⁇ H was obtained with the same number of turns.
  • Example 4 and Example 5 there was a maximum difference of 0.11 ⁇ H in inductance, but the same communication distance was obtained with the same matching circuit. Since the opening, the recess, and the protrusion are provided in the central portion of the soft magnetic member 5, there is little influence on the magnetic flux contributing to communication, and there was no difference in the communication distance in Examples 1 to 5.
  • the self-inductance was as large as 3.73 ⁇ H, and an inductance of less than 3 ⁇ H was not obtained.
  • the number of turns of the coil was reduced to 6 turns and an inductance of less than 3 ⁇ H was obtained, communication was not possible with the same matching circuit as the example, and even if impedance matching was adjusted by changing the matching circuit constant, the communication distance was 31 mm It was short.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Details Of Aerials (AREA)
  • Near-Field Transmission Systems (AREA)
  • Support Of Aerials (AREA)

Abstract

 少なくとも一つの環状コイルと、環状コイルを保持する板状の非磁性樹脂部材と、環状コイルを介して非磁性樹脂部材と重なる板状の軟磁性部材と、環状コイルの導線が接続する端子とを備え、環状コイルは、磁性部材の外周より外側に出ないように、非磁性樹脂部材の外周に沿った周方向凹部に配置されており、環状コイルの導線は軟磁性部材の外周縁に設けられた切欠きを通って端子に接続されている近距離通信用アンテナ。

Description

近距離無線通信用アンテナ、アンテナモジュール及び無線通信装置
 本発明は、携帯電話等の小型の無線通信装置に用いられる小電力無線通信:RFID(Radio Frequency Identification)用のアンテナであって、特に13.56 MHzの通信周波数帯を利用した近距離通信規格NFC(Near Field Communication)に対応した近距離無線通信用アンテナ、及びそれを具備するアンテナモジュール及び無線通信装置に関する。
 近距離無線通信を行うシステムとして、ICカードシステムが広く知られている。例えば、特開2010-200061号に開示のICカードシステムは、図24に示すように、リーダ/ライタ(「アンテナ装置」と呼ぶことができる。)280と、トランスポンダとなるICカード285により構成されている。アンテナ装置280は不平衡型回路であって、半導体70と、ノイズフィルタ(第一フィルタ)71と、整合回路72と、ローパスフィルタ(第二フィルタ)73と、アンテナ共振回路66とを具備する。半導体70は、送信回路、受信回路、変調回路、復調回路、コントローラ等を含む。アンテナ共振回路66は、近距離無線通信用アンテナ1a及び抵抗(図示せず)と、共振コンデンサ65とを含む。アンテナ共振回路66の共振周波数は、通信に利用される固有の周波数(例えば13.56 MHz)に設定され、前記周波数においてアンテナ共振回路66のインピーダンスの実部は実質的に短絡状態にある。アンテナ共振回路66はインピーダンス整合回路72を介して半導体70と接続されている。
 半導体70内の送信回路の変調回路と接続する出力端Txは、EMC対策用の第一フィルタ71を介してインピーダンス整合回路72に接続されている。また半導体70内の受信回路の復調回路と接続する入力端Rxは、抵抗と直列に接続したキャパシタを備えた第二フィルタ73を介して、第一フィルタ71とインピーダンス整合回路72との接続点に接続されている。
 送信回路及び受信回路の動作はコントローラにより制御される。送信回路に発振器から同調周波数に対応する周波数(例えば13.56 MHz)の信号が与えられ、所定のプロトコルに基づいて変調されてアンテナ共振回路66へ供給される。アンテナ共振回路66の近距離無線通信用アンテナ1aは、ICカード285の近距離無線通信用アンテナ1bと所定の結合係数で磁気的に結合する。そのため、近距離無線通信用アンテナ1aにトランスポンダであるICカード285を近づけると、ICカード285内の近距離無線通信用アンテナ1bは近距離無線通信用アンテナ1aと磁気結合し、電磁誘導による電力伝送によってICカード285の集積回路68は電源の供給を受けるとともに、所定のプロトコル(例えばISO 14443、15693、18092等)に従ってデータ伝送を行う。
 このようなシステムに用いられる近距離無線通信用アンテナ(以下単に「アンテナ」と呼ぶ)として、特開2005-094737号は、図25に示すように、円柱状の胴部351と矩形板状の鍔部355とからなる片鍔状の軟磁性コアと、胴部351に巻回されたコイル352とを具備し、コイル352の導線端部353,353が鍔部355の側面及び底面に設けられた端子356,356に接続されており、コイル352と胴部351の上に上面が平面状の非磁性材(図示せず)が設けられたアンテナ200を提案している。コイル352から生じた磁束は専ら軟磁性コアを通過するため、コイル352の上方に指向する磁束密度が高くなる。
 携帯電話等の無線通信機器は、制限されたサイズの筐体内に、他の回路装置とともに、主に通話に用いられるメインアンテナ、近距離無線通信用アンテナ、無接点充電用アンテナ、デジタルテレビ用アンテナ等の複数のアンテナを具備する。このため、実装面積が小さく背も低い小型の近距離無線通信用アンテナが要求されている。
 近距離無線通信用アンテナは、小型化しても実用上30 mm以上の通信距離が要求される。アンテナの小型化には軟磁性部材の小型化が必要であるが、軟磁性部材を小さくすると磁束が減少するため、所定の通信距離を確保することが困難となり、安定した通信を実行できない。
 アンテナの自己共振周波数は、通信周波数帯である13.56 MHzより十分に高周波数であることが求められ、一般に40 MHz以上であることが推奨されている。特開2005-094737号のアンテナでは、軟磁性胴部351にコイル352が直接巻回されており、コイル352の内側領域のほぼ全体が軟磁性部材で満たされている。その結果、自己インダクタンスは大きく、アンテナの自己共振周波数は低下して、通信周波数帯に近づく。このようなアンテナでは、コイル352の寄生リアクタンスのばらつきや軟磁性部材の磁気特性のばらつきにより、通信周波数帯におけるアンテナの自己インダクタンスがばらつき易くなる。自己インダクタンスがばらつくと、各アンテナで他の回路との整合条件の調整を行う必要があり、多くの時間と工数を必要とし、アンテナのコスト上昇を招く。コイルの巻き数や巻径を減じて自己インダクタンスを小さくできるが、コイルが発生する磁束が減少するために、通信距離が短くなる。
 通信距離を確保するために、供給電力の増大によりアンテナからの放射磁界を大きくすることも考えられるが、供給電力を大きくし過ぎると、磁性体が磁気飽和したり、近距離の場合に相手方のアンテナに大きな電力を誘起し、半導体を破壊したりするおそれがある。その対策に保護回路を設けることもできるが、その分部品点数が増加するという問題が発生する。 
 透磁率、飽和磁束密度、コアロス等の磁気特性に優れた軟磁性合金を用いて特開2005-094737号の軟磁性コアを小型化することも可能であるが、直接コイルを巻回するために絶縁コーティングを施す必要がある。すると工数が増加し、アンテナの製造コストが上昇する。また、コイル352を保護するための樹脂部材も必要となり、製造コストが上がる。
 従って、本発明の目的は、通信する相手方向への指向性と通信距離を確保しながら小型化でき、コイルの保護が容易であり、面実装が可能な近距離無線通信用アンテナを提供することである。
 本発明の別の目的は、かかる近距離無線通信用アンテナを具備するアンテナモジュール及び無線通信装置を提供することである。
 本発明の近距離通信用アンテナは、少なくとも一つの環状コイルと、前記環状コイルを保持する板状の非磁性樹脂部材と、前記環状コイルを介して前記非磁性樹脂部材と重なる板状の軟磁性部材と、前記環状コイルの導線が接続する端子とを備え、
 前記環状コイルは、前記軟磁性部材の外周より外側に出ないように、前記非磁性樹脂部材の外周に沿った周方向凹部に配置されており、
 前記環状コイルの導線は前記軟磁性部材の外周縁に設けられた切欠きを通って前記端子に接続されていることを特徴とする。
 前記環状コイルの内側全体は非磁性領域であるのが好ましい。この構成により、軟磁性部材は磁気ヨークとしての機能を発揮し、無用な自己インダクタンスの増加を抑制することができる。
 前記非磁性樹脂部材は前記軟磁性部材と接合される固定面と、それに対向する自由面とを有する。非磁性樹脂部材の周方向凹部は、(a) 自由面から延在する1つの外周鍔部を有する周方向段部、又は(b) 固定面及び自由面から延在する一対の外周鍔部を有する周方向溝部である。(a) の場合、環状コイルは、非磁性樹脂部材に接合された軟磁性部材と外周鍔部により形成された空隙に配置される。(b) の場合、周方向溝部に配置された環状コイルが1つの外周鍔部の分だけ軟磁性部材から離隔しているので、自己インダクタンスを低下させることができる。また実装基板のグランド面がアンテナの設置面より十分に広い場合、環状コイルと軟磁性部材との間隔によりアンテナのQ値が高まる。さらに、周方向溝部の方が周方向段部より環状コイルと軟磁性部材との間隔のばらつきを小さくできる。
 いずれの場合も、周方向凹部は環状コイルの位置決め機能を有するとともに、環状コイルを他の部品との干渉から保護する。また環状コイルは、インサート成形により非磁性樹脂部材と一体的に構成しても良い。
 前記環状コイルを複数のコイルで構成しても良い。第一の例では、第一コイル及び第二コイルは同心状に配置されており、第一コイルの導線の一端と第二コイルの導線の一端は接続されて接地端を構成し、第一コイルの導線の他端と第二コイルの導線の他端はそれぞれ信号端を構成し、接地端から見て第一コイルと第二コイルとは逆方向に巻回されている。このような構成のアンテナは平衡型の回路に好適である。
 第二の例では、第一コイル及び第二コイルは軟磁性部材の面上に並んでおり、第一コイルの導線の一端と第二コイルの導線の一端は接続されて接地端を構成し、第一コイルの導線の他端と第二コイルの導線の他端はそれぞれ信号端を構成し、接地端から見て第一コイルと第二コイルとは逆方向に巻回されている。このような構成のアンテナでは、一方のコイルを送信用に他方のコイルを受信用に用い、送受信を同時に行うことができる。
 前記軟磁性部材は、対向する平坦な上面及び底面と、それらの間の側面とを有する矩形板状であるのが好ましい。上面及び底面は、非磁性樹脂部材の位置決めに用いる開口部、窪み又は突起部を有しても良い。この場合、非磁性樹脂部材は、軟磁性部材の開口部、窪み又は突起部に対応する突起部、開口部又は窪みを有する。軟磁性部材又は非磁性樹脂部材の突起部を基準にして両者を組み合わせるので、位置ずれのない組み立てが容易となる。なお、軟磁性部材に突起部を設ける場合、自己インダクタンスへの影響が少ない位置、寸法及び形状を選択する。
 軟磁性部材の側面に、環状コイルの導線を引き出す切欠き部を設けるのが好ましい。切欠き部を通った導線は、軟磁性部材の底面(非磁性樹脂部材と反対側の面)、又は軟磁性部材の底面に接着された基板部材の底面に設けられた端子に接続される。軟磁性部材の側面切欠き部は、導線を位置決めするだけでなく、導線がアンテナの側面から飛び出すのを防止し、もって断線を防止する。
 環状コイルの導線を接続する端子は、アンテナを面実装するための電極としても用いられる。端子は、(a) 軟磁性部材の上面又は底面にAgペースト等を端子パターン状に印刷又は転写し、焼き付けることにより形成したり、(b) 導体パターンを有するプリント基板を貼付したり、(c) 端子がインサート成形された樹脂基板を貼付したりして、形成することができる。
 基板部材を用いる場合、基板部材に突起部を設け、軟磁性部材に前記基板部材の突起部を受承する開口部を設け、非磁性樹脂部材に基板部材の突起部を受承する開口部又は凹部を設けるのが好ましい。この場合も、突起部を基準にして軟磁性部材と非磁性樹脂部材とを組み合わせるので、位置ずれのない組み立てが容易となる。
 非磁性樹脂部材は平面視で軟磁性部材と相似形の矩形状又は円形状であるのが好ましい。はんだリフロー等の高温に耐え得るように、非磁性樹脂部材は液晶ポリマー、ポリフェニレンサルファイド等の高耐熱性エンジニアリングプラスチックにより形成するのが好ましい。非磁性樹脂部材の一面に平坦部を設ければ、真空吸着法によりアンテナを回路基板等へ自動実装するのが容易となる。
 本発明のアンテナモジュールは、樹脂基板に、上記近距離無線通用アンテナと、整合回路を構成するリアクタンス素子と、ノイズフィルタを構成するリアクタンス素子と、送信回路と受信回路とを含む集積回路を実装したことを特徴とする。
 本発明の無線通信装置は上記近距離無線通用アンテナを具備することを特徴とする。
 本発明の近距離無線通信用アンテナは、通信相手への指向性及び通信距離を確保しながら小型化でき、コイルの保護が容易であり、かつ面実装が容易であるという利点を有する。
本発明の第一の実施態様による近距離無線通信用アンテナを示す上面斜視図である。 本発明の第一の実施態様による近距離無線通信用アンテナを示す底面斜視図である。 本発明の第一の実施態様による近距離無線通信用アンテナを示す断面図である。 本発明の第一の実施態様による近距離無線通信用アンテナを示す分解上面斜視図である。 本発明の第一の実施態様による近距離無線通信用アンテナを示す分解底面斜視図である。 本発明の第二の実施例による近距離無線通信用アンテナを示す分解上面斜視図である。 本発明の第二の実施例による近距離無線通信用アンテナを示す分解底面斜視図である。 本発明の第三の実施態様による近距離無線通信用アンテナを示す上面斜視図である。 本発明の第三の実施態様による近距離無線通信用アンテナに用いるコイル保持用非磁性樹脂部材を示す底面斜視図である。 本発明の第三の実施態様による近距離無線通信用アンテナを示す分解上面斜視図である。 本発明の第四の実施態様による近距離無線通信用アンテナを示す上面斜視図である。 本発明の第四の実施態様による近距離無線通信用アンテナを示す分解上面斜視図である。 本発明の第五の実施態様による近距離無線通信用アンテナを示す上面斜視図である。 本発明の第五の実施態様による近距離無線通信用アンテナを示す底面図である。 本発明の第五の実施態様による近距離無線通信用アンテナを示す部分拡大断面図である。 本発明の第五の実施態様による近距離無線通信用アンテナに用いることができる基板部材を示す上面斜視図である。 本発明の近距離無線通信用アンテナを具備するモジュールの回路構成例を示すブロック図である。 本発明の第六の実施態様による近距離無線通信用アンテナを示す上面斜視図である。 本発明の近距離無線通信用アンテナを具備するモジュールの回路構成例を示すブロック図である。 実施例1~3の近距離無線通信用アンテナに用いる試料1~3の軟磁性部材を示す平面図である。 図20(a) のA-A断面図である。 実施例4の近距離無線通信用アンテナに用いる試料4の軟磁性部材を示す平面図である。 図21(a) のB-B断面図である。 実施例5の近距離無線通信用アンテナに用いる試料5の軟磁性部材を示す平面図である。 図22(a) のC-C断面図である。 比較例1の近距離無線通信用アンテナに用いる試料6の軟磁性部材を示す平面図である。 図23(a) のD-D断面図である。 近距離無線通信用アンテナを具備するアンテナ装置の回路を示すブロック図である。 従来の近距離無線通信用アンテナを示す斜視図である。 アンテナの通信距離の評価方法を示す概略図である。 本発明の近距離無線通信用アンテナを具備する無線通信装置の外観を示す斜視図である。
 本発明の実施態様を添付図面を参照して以下詳細に説明するが、本発明はそれらに限定されるものではない。各実施態様の説明は、特に断らない限り他の実施態様にも適用される。各図において上方を向いた面を上面と呼び、下方を向いた面を底面と呼ぶが、上下関係は勿論相対的であり、アンテナを逆さにすれば逆になる。また説明の簡単化のために、各実施態様におけるアンテナの対応部品には同じ参照番号を付与する。
[1] 第一の実施態様
 本発明の第一の実施態様によるアンテナ1を図1~図5に示す。アンテナ1は、環状コイル20と、環状コイル20を保持する非磁性樹脂部材10と、コイル保持用非磁性樹脂部材10に重ねられて接着剤等により固定された矩形板状の軟磁性部材5とを有する。軟磁性部材5の外形は、平面視でほぼ正方形である。アンテナ1は、図24に示す不平衡回路、又は後述する平衡回路に用いることができる。
 矩形板状の軟磁性部材5は矩形状の中央開口部8を有し、中央開口部8に矩形板状の非磁性樹脂部材10の矩形状の中央突起部24が嵌入され、接着剤等により固定される。軟磁性部材5と相似形の矩形板状の非磁性樹脂部材10は、平坦な自由面である上面10aと、軟磁性部材5に固定される底面10bと、上面10aと底面10bとの間の側面10cとを備え、側面10cは上面10aから伸びる鍔部22と周方向段部23とを備えている。周方向段部23と、鍔部22の下面と、軟磁性部材5の上面5aとで形成される空隙に環状コイル20が配置される。
 アンテナ1の背を低くするために、コイル保持用非磁性樹脂部材10の厚さは2 mm以下が好ましい。非磁性樹脂部材10は、アンテナ1の真空吸着による回路基板への自動実装を容易にし、実装機の吸着ノズルや他の部品との衝突を防ぎ、環状コイル20の損傷を防止する。非磁性樹脂部材10は、液晶ポリマー、ポリフェニレンサルファイド等の高耐熱性の熱可塑性エンジニアリングプラスチック等により形成することができる。
 周方向段部23に巻回した一つ又は二つ以上の環状コイル20が鍔部22及び軟磁性部材5の外周より外側に突出しないように、周方向段部23の深さを設定する。図示の例では、非磁性樹脂部材10の底面10bは平坦で、軟磁性部材5の開口部8と対応する位置に矩形状の突起部24を有するが、その形態は必要に応じて適宜変更しても良い。
 環状コイル20の導線は巻軸方向に複数層に巻回されているが、線間容量を抑えるために巻径方向には単層であるのが好ましい。アンテナ1の高さを抑えたい場合でも、導線を二層までに留めるのが好ましい。環状コイル20の外周は、軟磁性部材5の外周以下(軟磁性部材5の外周と等しいか僅かに小さい)であるのが好ましい。環状コイル20の外周が軟磁性部材5の外周より外側に出ると、軟磁性部材5によるシールド効果が低減する。一方、環状コイル20の外周が軟磁性部材5の外周より大きく内側にあると、環状コイル20の近傍で磁束密度が大きくなり易く、通信距離が短くなる。空芯部を有する環状コイル20を軟磁性部材5の外周縁近傍に配置し、空芯部の面積を極力大きくすることにより、環状コイル20の磁界分布を環状コイル20の上方側に多くして、通信距離を確保する。通信距離とシールド効果とのバランスを考慮すれば、環状コイル20の外周と軟磁性部材5の外周との間隔を0~1 mmとするのが好ましい。環状コイル20の巻数は、環状コイル20の巻径、軟磁性部材5の磁気特性及び所望の自己インダクタンスに応じて適宜設定することができる。図示の例では環状コイル20の外形は矩形であるが、勿論円形にしても良い。
 環状コイル20と軟磁性部材5とが離れていると、アンテナ1の自己インダクタンスは低下するだけでなく、アンテナ1が実装される回路基板の接地面を構成する導体との間隔が広がるためにQ値は増加する。望ましい自己インダクタンス及びQ値が得られるように環状コイル20と軟磁性部材5との間隔を設定すれば良いが、間隔の分だけアンテナが厚くなることを考慮して1 mm以下とするのが好ましい。
 環状コイル20に用いる導線は単線のエナメル線が好ましく、熱融着性オーバーコートが形成されたエナメル線(自己融着線)がより好ましい。自己融着性環状コイル20は組み立てが容易である。導線の線径は30~80μmが好ましい。
 コイル保持用非磁性樹脂部材10と相似形の矩形状の軟磁性部材5は、対向する上面5a及び底面5bと、両者間の側面5cとを有する。図1~図5に示す例では、上面5a及び底面5bはともに平坦であり、非磁性樹脂部材10の突起部24が嵌入する中央開口部8を有する。アンテナ1の小型化のために、コイル保持用樹脂部材10の一辺を30 mm以下とし、厚さを2.5 mm以下とするのが好ましい。軟磁性部材5の側面5cには、環状コイル20の両端の導線21a,21bを配置するための複数の切欠き部6a,6bが設けられている。切欠き部6a,6bは最低2つ設ければ良いが、その形成位置により軟磁性部材5に方向性が生じないように各辺に形成しても良い。
 軟磁性部材5は、Ni系フェライト、Li系フェライト、Mn系フェライト等の高抵抗軟磁性フェライト、Fe-Si系軟磁性合金、Fe基又はCo基のアモルファス合金又はナノ結晶軟磁性合金等により形成することができる。軟磁性フェライトからなる軟磁性部材5は、酸化第二鉄(Fe2O3)、酸化亜鉛(ZnO)、酸化ニッケル(NiO)、酸化銅(CuO)、酸化マンガン(MnO)等を主成分とする仮焼粉を粉末成形し、焼結することにより作製するのが好ましい。焼結体をそのまま用いても良いが、研削、打ち抜き等の加工をしても良い。また、軟磁性フェライトからなる軟磁性部材5は、軟磁性フェライトのスラリーからドクターブレード法等により形成したグリーンシートを所定の形状に加工し、単層で又は積層して焼結することにより作製することもできる。この場合も、焼結体を所定の形状に加工しても良い。
 アモルファス合金又はナノ結晶軟磁性合金からなる軟磁性部材5は、合金リボンを所定の形状に切断し、積層することにより作製することができる。また、合金リボンを粉末状又は薄片状に粉砕し、ダストコアとするか、樹脂又はゴムに分散させてシート状に成形しても良い。
 いずれの場合も、軟磁性部材5を構成する軟磁性材料の初透磁率μi(周波数100 kHz)は、リング状コアの形状で測定したとき10以上であるのが好ましい。
 軟磁性部材5の開口部8の形状及び大きさは、磁気ヨークとして機能しつつ非磁性樹脂部材10を位置決めできれば、特に限定されないが、磁気ヨークとしての機能を確保するために、開口部8の面積は軟磁性部材5の面積の1~20%であるのが好ましく、1~10%であるのがより好ましい。開口部8の各辺は軟磁性部材5の対応する各辺と平行であり、かつ開口部8の中心と軟磁性部材5の中心とは一致しているのが好ましい。第一の実施態様では開口部8は貫通孔であるが、窪みでも良い。なお、アンテナ1の端子と実装基板に設けられた線路との接続を阻害しないように、開口部8に嵌入した突起部24は、端子15が設けられた軟磁性部材5の底面5bより突出してはならない。
 環状コイル20の導線21a,21bは、軟磁性部材5の外周切欠き部6a,6bを通って、軟磁性部材5の底面5bに形成された端子15a,15bと溶接、熱圧着、超音波振動等により接続されている。Ag等の導体パターンで形成された端子15a~15dは面実装用電極としても用いられる。各端子15a~15dは、軟磁性部材5の底面5bに直接又は絶縁性ガラス層又は樹脂層を介して設けられた導体層と、熱的な保護及びはんだ付け性向上のためにその表面に形成する保護層とからなる。
 上記導体層は、例えば、ガラスや有機ビヒクル、溶剤等を含むCu、Ag、Ag-Pd等の合金のペーストを、軟磁性部材5の底面5bの所定箇所に印刷により塗布し、約50~150℃で乾燥し、500℃以上の温度で焼き付けることにより形成する。また、合金ペーストを焼き付ける代わりに、導体層用金属をめっき又は蒸着した後、不要部分をエッチングにより除去する方法により上記導体層を形成しても良い。上記保護層は、半田層、又はNi、Au等のめっき層である。
[2] 第二の実施態様
 図6及び図7は本発明の第二の実施態様によるアンテナを示す。第一の実施態様のアンテナとは位置決めの構成以外ほぼ同じであるので、相違点のみ詳細に説明する。本実施態様では、軟磁性部材5の上面5aに位置決め用の中央突起部9が設けられており、非磁性樹脂部材10の底面10bに突起部9を受承する窪み(未貫通の凹部)7が設けられている。突起部9は環状コイル20の空芯部に位置し、環状コイル20の内径より十分に小さい。突起部9の平面視の面積は環状コイル20の内周部の面積の1~10%であるのが好ましく、1~5%であるのがより好ましい。突起部9の各辺は軟磁性部材5の対応する各辺と平行であり、かつ突起部9の中心と軟磁性部材5の中心とは一致しているのが好ましい。このような構成の第二の実施態様のアンテナも、第一の実施態様のアンテナと同じ作用効果を発揮する。
[3] 第三の実施態様
 図8~図10は本発明の第三の実施態様によるアンテナを示す。このアンテナは、図9に示す細長い形状のコイル保持用非磁性樹脂部材10と、上記非磁性樹脂部材10と同様に細長い形状の軟磁性部材5とを具備する。非磁性樹脂部材10の底面10bと軟磁性部材5の上面5aと接着される。
 本実施態様では、非磁性樹脂部材10は側面10cの全周に上下一対の鍔部22a,22bを有し、両鍔部22a,22bに形成された溝部23に環状コイル20が巻かれている。底面10b側の鍔部22bには、環状コイル20の導線を通す切欠き部25a,25bが形成されている。
 軟磁性部材5の側面5cにも、非磁性樹脂部材10の切欠き部25a,25bと対応する位置に切欠き部6a,6bが形成されている。軟磁性部材5の底面には3つの端子15a,15b,15cが設けられており、端子15aは切欠き部6aに近接しており、端子15bは切欠き部6bに近接しており、端子15cは端子15aと端子15bとの中間に位置する。端子15cは面実装用電極として用いられる。
 環状コイル20の一方の導線21aは、非磁性樹脂部材10の切欠き部25a及び軟磁性部材5の切欠き部6aを通って端子15aに接続され、また環状コイル20の他方の導線21bは、非磁性樹脂部材10の切欠き部25b及び軟磁性部材5の切欠き部6bを通って端子15bに接続されている。
 本実施態様では、一対の鍔部22a,22bにより形成された溝部23に環状コイル20が巻かれているので、環状コイル20の位置決めが容易である。また鍔部22bの厚さの分だけ、環状コイル20は軟磁性部材5から離隔している。軟磁性部材5及びコイル保持用樹脂部材10に位置決め手段(突起部と開口部の組合せ)がないが、非磁性樹脂部材10の切欠き部25a,25bと軟磁性部材5の切欠き部6a,6bとを整合させることにより、非磁性樹脂部材10と軟磁性部材5との位置決めを行うことができる。
 このアンテナは細長いので、他の部品の実装領域を損ねないように回路基板の縁部に沿って実装可能である。第三の実施態様のアンテナも、第一の実施態様のアンテナと同じ作用効果を発揮する。
[4] 第四の実施態様
 図11及び図12は本発明の第四の実施態様によるアンテナを示す。このアンテナは、一対の突起部16a,16bを有する基板部材14と、突起部16a,16bを受承する一対の開口部8a,8bを有する軟磁性部材5と、突起部16a,16bを受承する一対の開口部11a,11bを有するコイル保持用非磁性樹脂部材10とからなり、非磁性樹脂部材10には上面側の外周鍔部22aと底面側の外周鍔部22bとが設けられており、一対の鍔部22a,22bにより形成される溝部に環状コイル20が巻回されている。非磁性樹脂部材10の対向側面にそれぞれ切欠き部25a,25bが設けられており、軟磁性部材5の対向側面で切欠き部25a,25bと平面視で同じ位置に切欠き部6a,6bが設けられており、基板部材14の対向側面で切欠き部25a,25bと平面視で同じ位置に切欠き部26a,26bが設けられている。
 非磁性樹脂部材10、軟磁性部材5及び基板部材14を順に重ねて、非磁性樹脂部材10の開口部11a,11b及び軟磁性部材5の開口部8a,8bに基板部材14の突起部16a,16bを嵌入させ、非磁性樹脂部材10の底面10bに軟磁性部材5の上面5aを接着し、軟磁性部材5の底面5bに基板部材14の上面14aを接着する。突起部16a,16bの長さは、非磁性樹脂部材10、軟磁性部材5及び基板部材14を重ねたときに、突起部16a,16bが開口部11a,11bから突出しないように設定する。非磁性樹脂部材10の切欠き部25a,25b、軟磁性部材5の切欠き部6a,6b、及び基板部材14の切欠き部26a,26bはそれぞれ垂直方向に並び、環状コイル20の両引出線21a,21bが通る一対の垂直方向の切欠き部となる。
 第四の実施態様のアンテナも、第一の実施態様のアンテナと同じ作用効果を発揮する。その上、このアンテナでは、非磁性樹脂部材10、軟磁性部材5及び基板部材14の組立時の位置決めが非常に容易である。なお、基板部材14は液晶ポリマーにより形成するのが好ましい。
[5] 第五の実施態様
 図13~図15は本発明の第五の実施態様によるアンテナを示す。本実施態様では、環状コイル20は、コイル保持用非磁性樹脂部材10の鍔部22a,22b間の溝部に同心状に巻回された第一コイル20aと第二コイル20bとからなる。軟磁性部材5の底面5bには、3つの端子15a,15b,15cが設けられている。第一コイル20aの一方の導線と第二コイル20bの一方の導線は接続されて、共通線21cとして中央の端子15cに接続され、両コイル20a,20bの他方の導線21a,21bは両端の端子15a,15bに接続されている。共通線21cから見て、第一コイル20aと第二コイル20bとは逆方向に巻回されている。
 軟磁性部材5の底面5bに端子を形成する代わりに、端子用導体パターンが設けられたフレキシブルプリント基板又はリジッド基板(例えばガラスエポキシ基板)、又は図16に示すように端子15a,15b,15cが一体的にインサート成形された樹脂基板部材14を用いても良い。基板部材14の一側面には、軟磁性部材5の切欠き部6a,6b,6cと対応する位置に、導線21a,21b、21cを通すための切欠き部26a,26b,26cが設けられている。
 このアンテナを用いた本発明のモジュールの平衡型回路を図17に示す。第一コイル20aの一端21aはキャパシタC1,C2で構成された整合回路72に接続され、インダクタL0とキャパシタC0で構成された第一フィルタ71を介して、半導体70内の送信回路の変調回路と接続する出力端Tx1に接続されている。半導体70内の受信回路の復調回路と接続する入力端Rxは、直列に接続した抵抗R2及びキャパシタC3を備えた第二フィルタ73を介して、フィルタ71と整合回路72との接続点に接続されている。同様に、第二コイル20bの一端21bはキャパシタC1,C2で構成された整合回路72に接続され、インダクタL0とキャパシタC0で構成された第一フィルタ71を介して、半導体70内の送信回路の変調回路と接続する出力端Tx2に接続されている。第一コイル20aと第二コイル20bの共通端21cは接地されている。ガラスエポキシ基板にアンテナ1、半導体70、整合回路72、及び第一及び第二のフィルタ71,73を構成するリアクタンス素子及び抵抗を設けて、モジュールとする。なお、第一~第五の実施態様のように、中間タップを設けない構成でも、環状コイル20の一端を出力端Txに、他端を出力端Tx2に接続すれば、平衡型回路のモジュールとすることができる。
[6] 第六の実施態様
 図18は本発明の第六の実施態様によるアンテナを示す。このアンテナは、環状コイル20が第一コイル20a及び第二コイル20bで構成されている点では第五の実施態様と同じであるが、2つのコイル20a,20bが軟磁性部材5の上面5a上に並んで配置されている点で異なる。第一コイル20aの一方の導線と第二コイル20bの一方の導線とは接続され、共通線21cとして端子15cに接続されており、各コイル20a,20bの他方の導線21a,21bは端子15a,15bに接続されている。共通線21cから見て、第一コイル20aと第二コイル20bとは逆方向に巻回されている。
 このアンテナを用いた本発明のモジュールの他の回路構成を図19に示す。第一コイル20aの一端21aは、整合回路72及びフィルタ71を介して、半導体70内の送信回路の変調回路と接続する出力端Txに接続されている。第二コイル20bの一端21bは、整合回路72及びフィルタ71を介して、半導体70内の受信回路の復調回路と接続する入力端Rxに接続されている。ガラスエポキシ基板にアンテナ1、半導体70、整合回路72及びフィルタ71を構成するリアクタンス素子及び抵抗を設けて、モジュールとする。このような構成のモジュールでは送信しながら受信を行うことができる。
 図27は本発明のアンテナを用いた無線通信装置の外観を示す。本発明のアンテナは小型であるので、スマートフォン100のように小型かつ小電力で高機能の通信機器にも内蔵可能である。
 本発明を以下の実施例によりさらに詳細に説明するが、本発明はそれに限定されるものではない。
実施例1~3
 軟磁性部材5を構成する軟磁性材料として、46.5 mol%のFe2O3,20.0 mol%のZnO,22.5 mol%のNiO,及び11.0 mol%のCuOからなる組成(焼成後)を有し、初透磁率が110のNi系フェライトを用いた。Fe2O3粉末,ZnO粉末,NiO粉末及びCuO粉末を上記焼成後の組成となるように混合し、仮焼した粉末にバインダー等を加えて造粒し、造粒粉を正方形状成形体に成形し、成形体を1100℃で焼結し、得られた焼結体に中央開口部8を形成するとともに、必要な面を砥石で研削して平坦化し、図20(a) 及び図20(b) に示すように中央開口部8を有する正方形状の軟磁性部材5(試料1~3)を作製した。試料1~3はいずれも14 mm×14 mm×0.8 mmの外形寸法(焼結後)を有し、中央開口部8の寸法はそれぞれ3.5 mm×3 mm(試料1)、2.5 mm×2 mm(試料2)、及び1.5 mm×1 mm(試料3)であった。
 各試料1~3に対応する突起部を有する非磁性樹脂部材10を液晶ポリマーにより形成した。各非磁性樹脂部材10の外形寸法は、突起部を除き、13.6 mm×13.6 mm×0.6 mmであった。各非磁性樹脂部材10の側面全周に外周縁から0.3 mmで、主面から0.3 mmの環状切欠き部を形成した。この環状切欠き部に、線径60μm(導体径:50μm、被覆層厚さ:5μm)のエナメル線を7ターン巻回し、縦横ともに13 mmで、厚さ0.25 mmの環状コイル20とした。環状コイル20を非磁性樹脂部材10とともに軟磁性部材5に接着し、厚さ1.4 mmのアンテナを作製した。
実施例4
 実施例1~3と同様にして、図21(a) 及び図21(b) に示すように中央凹部8を有する正方形状の軟磁性部材5(試料4)を作製した。試料4の外形寸法は14 mm×14 mm×0.8 mmであり、中央凹部7の寸法は3.5 mm×3 mmで、深さ0.4 mmであった。試料4の軟磁性部材5を用いて、実施例1~3と同様にして、厚さ1.4 mmのアンテナを作製した。
実施例5
 実施例1~3と同様にして、図22(a) 及び図22(b) に示すように中央突起部9を有する正方形状の軟磁性部材5(試料5)を作製した。試料5の外形寸法は14 mm×14 mm×0.8 mmであり、中央突起部9の寸法は3.5 mm×3 mmで、高さ0.4 mmであった。試料5の軟磁性部材5を用いて、実施例1~3と同様にして、厚さ1.4 mmのアンテナを作製した。環状コイル20の内周部に対する中央突起部9の面積率は6.2%であった。
比較例1
 実施例1~3と同様にして、図23(a) 及び図23(b) に示すように円形状胴部27を有する正方形状の軟磁性部材5(試料6)を作製した。試料6の外形寸法は14 mm×14 mm×0.7 mmであり、円形状胴部27の寸法は直径12 mmで、高さ0.7 mmであった。環状コイル20の内周部に対する円形状胴部27の面積率は100%であった。
 試料6の軟磁性部材5の円形状胴部27に、線径60μm(導体径:50μm、被覆層厚さ:5μm)のエナメル線を6ターン巻回し、内径12mm、外径12.7mm及び厚さ0.1 mmの環状コイル20とした。環状コイル20を軟磁性部材5に接着し、厚さ1.4 mmのアンテナを作製した。
 図26に示す評価装置を用いて、各アンテナとICタグとの通信を行った。評価装置は、非接触データ通信に必要な信号処理回路及び情報を格納したICチップ部品を具備するNXP Semiconductor社製の評価ボードである。なお、アンテナの自己共振周波数を40 MHz以上とするには、13.56 MHzでのアンテナの自己インダクタンスを3μH未満とするのが望ましい。
 実施例1~5及び比較例1のアンテナも3μH未満の自己インダクタンスを有するように、コイルの巻き数を調整した。実施例1~5及び比較例1で整合回路の定数は同じとした。アンテナとICタグとの通信距離を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~3のアンテナでは、軟磁性部材5の開口部の面積が大きくなるに従い、13.56 MHzでの自己インダクタンスは僅かに低下した。軟磁性部材5に凹部を設けた実施例4のアンテナでは、自己インダクタンスは低下した。また軟磁性部材5に突起部を設けた実施例5のアンテナでは、自己インダクタンスは僅かに増加した。このように、実施例1~5のいずれも、同じ巻き数で3μH未満のインダクタンス値が得られた。実施例4及び実施例5では、最大でインダクタンスに0.11μHの差があるが、同じ整合回路で同様の通信距離が得られた。前記開口部、凹部及び突起部は軟磁性部材5の中央部に設けられているので、通信に寄与する磁束への影響は少なく、実施例1~5で通信距離に差がなかった。
 一方、比較例1のアンテナでは、実施例1と同じコイルの巻き数では、自己インダクタンスが3.73μHと大きく、3μH未満のインダクタンスは得られなかった。コイルの巻き数を6ターンに減じて3μH未満のインダクタンスを得たが、実施例と同じ整合回路では通信できず、整合回路の定数を変えてインピーダンスマッチングを調整しても、通信距離は31 mmと短かった。

Claims (12)

  1. 少なくとも一つの環状コイルと、前記環状コイルを保持する板状の非磁性樹脂部材と、前記環状コイルを介して前記非磁性樹脂部材と重なる板状の軟磁性部材と、前記環状コイルの導線が接続する端子とを備え、
     前記環状コイルは、前記軟磁性部材の外周より外側に出ないように、前記非磁性樹脂部材の外周に沿った周方向凹部に配置されており、
     前記環状コイルの導線は前記軟磁性部材の外周縁に設けられた切欠きを通って前記端子に接続されていることを特徴とする近距離通信用アンテナ。
  2. 請求項1に記載の近距離無線通信用アンテナであって、前記環状コイルの内側全体が非磁性領域であることを特徴とする近距離無線通信用アンテナ。
  3. 請求項1又は2に記載の近距離無線通信用アンテナにおいて、前記非磁性樹脂部材は前記軟磁性部材と接合される固定面と、それに対向する自由面とを有し、前記非磁性樹脂部材の前記周方向凹部は、前記自由面から延在する1つの外周鍔部を有する周方向段部であり、前記非磁性樹脂部材に接合された前記軟磁性部材と前記外周鍔部により形成された空隙に前記環状コイルが配置されることを特徴とする近距離無線通信用アンテナ。
  4. 請求項1又は2に記載の近距離無線通信用アンテナにおいて、前記非磁性樹脂部材は前記軟磁性部材と接合される固定面と、それに対向する自由面とを有し、前記非磁性樹脂部材の前記周方向凹部は、前記固定面及び前記自由面から延在する一対の外周鍔部を有する周方向溝部であり、前記周方向溝部に前記環状コイルが配置されることを特徴とする近距離無線通信用アンテナ。
  5. 請求項1~4のいずれかに記載の近距離無線通信用アンテナにおいて、
     前記環状コイルは同心状に配置された第一コイル及び第二コイルからなり、
     前記第一コイルの導線の一端と前記第二コイルの導線の一端は接続されて接地端を構成し、前記第一コイルの導線の他端と前記第二コイルの導線の他端はそれぞれ信号端を構成し、
     前記接地端から見て、前記第一コイルと前記第二コイルとは逆方向に巻回されていることを特徴とする近距離無線通信用アンテナ。
  6. 請求項1~4のいずれかに記載の近距離無線通信用アンテナにおいて、
     前記環状コイルは、前記軟磁性部材の面上に並んだ第一コイル及び第二コイルからなり、
     前記第一コイルの導線の一端と前記第二コイルの導線の一端は接続されて接地端を構成し、前記第一コイルの導線の他端と前記第二コイルの導線の他端はそれぞれ信号端を構成し、
     前記接地端から見て、前記第一コイルと前記第二コイルとは逆方向に巻回されていることを特徴とする近距離無線通信用アンテナ。
  7. 請求項1~6のいずれかに記載の近距離無線通信用アンテナにおいて、
     前記非磁性樹脂部材は突起部を有し、
     前記軟磁性部材は、前記非磁性樹脂部材の前記突起部を受承する開口部又は凹部を有し、
     前記突起部が前記開口部又は凹部に嵌入することにより、前記非磁性樹脂部材と前記軟磁性部材との位置決めが行われることを特徴とする近距離無線通信用アンテナ。
  8. 請求項1~6のいずれかに記載の近距離無線通信用アンテナにおいて、
     前記軟磁性部材は突起部を有し、
     前記非磁性樹脂部材は、前記軟磁性部材の前記突起部を受承する開口部又は凹部を有し、
     前記突起部が前記開口部又は凹部に嵌入することにより、前記軟磁性部材と前記非磁性樹脂部材との位置決めが行われることを特徴とする近距離無線通信用アンテナ。
  9. 請求項1~8のいずれかに記載の近距離無線通信用アンテナにおいて、
     端子を有する基板部材をさらに具備し、
     前記基板部材は、前記軟磁性部材の前記環状コイルと反対側の面に接合されていることを特徴とする近距離無線通信用アンテナ。
  10. 請求項9に記載の近距離無線通信用アンテナにおいて、
     前記基板部材は少なくとも一つの突起部を有し、
     前記軟磁性部材は前記基板部材の突起部を受承する少なくとも一つの開口部を有し、
     前記非磁性樹脂部材は前記基板部材の突起部を受承する少なくとも一つの開口部又は凹部を有することを特徴とする近距離無線通信用アンテナ。
  11. 請求項1~10のいずれかに記載の近距離無線通用アンテナを具備するモジュールであって、樹脂基板に、前記近距離無線通用アンテナと、整合回路を構成するリアクタンス素子と、ノイズフィルタを構成するリアクタンス素子と、送信回路及び受信回路を有する集積回路とを実装したことを特徴とするアンテナモジュール。
  12. 請求項1~10のいずれかに記載の近距離無線通用アンテナを具備することを特徴とする無線通信装置。
PCT/JP2013/059610 2012-03-30 2013-03-29 近距離無線通信用アンテナ、アンテナモジュール及び無線通信装置 WO2013147194A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014508107A JP6090307B2 (ja) 2012-03-30 2013-03-29 近距離無線通信用アンテナ、アンテナモジュール及び無線通信装置
KR1020147027885A KR102017091B1 (ko) 2012-03-30 2013-03-29 근거리 무선 통신용 안테나, 안테나 모듈 및 무선 통신 장치
CN201380018371.6A CN104221216B (zh) 2012-03-30 2013-03-29 近距离无线通信用天线、天线模块以及无线通信装置
US14/389,054 US9692130B2 (en) 2012-03-30 2013-03-29 Near-field communication antenna, antenna module and wireless communications apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-079307 2012-03-30
JP2012079307 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013147194A1 true WO2013147194A1 (ja) 2013-10-03

Family

ID=49260435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059610 WO2013147194A1 (ja) 2012-03-30 2013-03-29 近距離無線通信用アンテナ、アンテナモジュール及び無線通信装置

Country Status (5)

Country Link
US (1) US9692130B2 (ja)
JP (1) JP6090307B2 (ja)
KR (1) KR102017091B1 (ja)
CN (1) CN104221216B (ja)
WO (1) WO2013147194A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017098936A (ja) * 2015-11-18 2017-06-01 Necトーキン株式会社 アンテナモジュール

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI477023B (zh) * 2013-01-18 2015-03-11 矽品精密工業股份有限公司 電子封裝件及其製法
JP2015144160A (ja) * 2014-01-31 2015-08-06 デクセリアルズ株式会社 アンテナ装置、非接触電力伝送用アンテナユニット、電子機器
KR20160129336A (ko) * 2015-04-30 2016-11-09 엘지전자 주식회사 이동 단말기
KR101686633B1 (ko) * 2015-05-18 2016-12-14 주식회사 아이티엠반도체 안테나 모듈 패키지 및 그 제조방법
KR101713032B1 (ko) * 2015-12-08 2017-03-07 주식회사 에이티앤씨 무선통신 단말기용 초소형 nfc 안테나 제조 방법
US10056701B2 (en) 2016-04-29 2018-08-21 Laird Technologies, Inc. Multiband WiFi directional antennas
USD813209S1 (en) 2016-04-29 2018-03-20 Laird Technologies, Inc. Antenna housing
WO2018062753A1 (ko) * 2016-09-27 2018-04-05 주식회사 아모그린텍 저주파 안테나 모듈 및 이를 포함하는 키리스 엔트리 시스템
CN107256420B (zh) * 2016-12-31 2018-02-27 深圳市融智兴科技有限公司 Uhf电子标签、制作方法及可洗涤织物
US10055613B1 (en) 2017-02-06 2018-08-21 Nxp B.V. NFC reader with auto tuner
US10108825B2 (en) * 2017-03-22 2018-10-23 Nxp B.V. NFC reader with remote antenna
USD872717S1 (en) * 2018-05-21 2020-01-14 Televes, S.A. Telecommunications antenna
EP3939386B1 (en) * 2019-03-11 2023-09-06 Nicoventures Trading Limited Aerosol provision device
KR102622085B1 (ko) * 2023-05-17 2024-01-09 주식회사 대현텔레메트리 코어 파손 방지 구조의 안테나

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04101168U (ja) * 1991-02-06 1992-09-01 オムロン株式会社 電磁結合型電子機器
JPH08279714A (ja) * 1995-02-08 1996-10-22 Harada Ind Co Ltd 送受信アンテナ
EP0782214A1 (en) * 1995-12-22 1997-07-02 Texas Instruments France Ring antennas for resonant cicuits
JPH10107531A (ja) * 1996-09-30 1998-04-24 Toshiba Corp アンテナ装置及び情報処理装置並びに無線通信システム
JP2006339757A (ja) * 2005-05-31 2006-12-14 Denso Corp アンテナコイル、通信基板モジュールの製造方法及びカード型無線機
JP2007110290A (ja) * 2005-10-12 2007-04-26 Tamura Seisakusho Co Ltd ループアンテナ
JP2010033612A (ja) * 1998-12-31 2010-02-12 Casio Comput Co Ltd 電子機器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04101168A (ja) * 1990-08-21 1992-04-02 Brother Ind Ltd 画像形成装置
EP0901141A4 (en) * 1996-05-01 1999-07-21 Omron Tateisi Electronics Co RELAY
JPH101168A (ja) * 1996-06-13 1998-01-06 Nec Eng Ltd エア緩衝材
JP3975627B2 (ja) 1998-12-31 2007-09-12 カシオ計算機株式会社 データ通信装置
US7307595B2 (en) * 2004-12-21 2007-12-11 Q-Track Corporation Near field location system and method
JP4277753B2 (ja) 2003-08-13 2009-06-10 株式会社村田製作所 アンテナ用チップコイルおよびチップコイル型アンテナ
JP2008046671A (ja) 2006-08-10 2008-02-28 Omron Corp Rfidタグ
JP2009296107A (ja) * 2008-06-03 2009-12-17 Sumida Corporation 受信アンテナコイル
KR101247436B1 (ko) * 2008-08-26 2013-03-25 퀄컴 인코포레이티드 동시 무선 전력 송신 및 근접장 통신
US8188933B2 (en) 2008-12-17 2012-05-29 Panasonic Corporation Antenna unit and mobile terminal therewith
JP4831183B2 (ja) 2009-02-26 2011-12-07 パナソニック株式会社 アンテナ装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04101168U (ja) * 1991-02-06 1992-09-01 オムロン株式会社 電磁結合型電子機器
JPH08279714A (ja) * 1995-02-08 1996-10-22 Harada Ind Co Ltd 送受信アンテナ
EP0782214A1 (en) * 1995-12-22 1997-07-02 Texas Instruments France Ring antennas for resonant cicuits
JPH10107531A (ja) * 1996-09-30 1998-04-24 Toshiba Corp アンテナ装置及び情報処理装置並びに無線通信システム
JP2010033612A (ja) * 1998-12-31 2010-02-12 Casio Comput Co Ltd 電子機器
JP2006339757A (ja) * 2005-05-31 2006-12-14 Denso Corp アンテナコイル、通信基板モジュールの製造方法及びカード型無線機
JP2007110290A (ja) * 2005-10-12 2007-04-26 Tamura Seisakusho Co Ltd ループアンテナ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017098936A (ja) * 2015-11-18 2017-06-01 Necトーキン株式会社 アンテナモジュール

Also Published As

Publication number Publication date
CN104221216A (zh) 2014-12-17
JPWO2013147194A1 (ja) 2015-12-14
US20150070233A1 (en) 2015-03-12
CN104221216B (zh) 2017-09-05
KR102017091B1 (ko) 2019-09-02
KR20140141636A (ko) 2014-12-10
JP6090307B2 (ja) 2017-03-08
US9692130B2 (en) 2017-06-27

Similar Documents

Publication Publication Date Title
JP6090307B2 (ja) 近距離無線通信用アンテナ、アンテナモジュール及び無線通信装置
US9997834B1 (en) Antenna device and communication terminal apparatus
JP5928640B2 (ja) アンテナ装置および無線通信装置
JP6260729B2 (ja) 給電素子
US9679240B2 (en) Antenna device and radio communication apparatus
US9559421B2 (en) Antenna
US9576238B2 (en) Antenna device and communication terminal device
TWI568072B (zh) Antenna module, communication device and antenna module manufacturing method
KR20150068400A (ko) 복합 코일 모듈 및 휴대 기기
CN106797073B (zh) 天线模块以及电子设备
JP2011066759A (ja) アンテナ装置、及び、通信装置
TW201513458A (zh) 天線裝置及通訊裝置
JP2013211638A (ja) 近距離無線通信用アンテナ
KR101792134B1 (ko) 무선충전모듈
JP5995134B2 (ja) アンテナ及びそれを用いた移動体通信機
WO2019239626A1 (ja) Rfidタグ及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769850

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014508107

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14389054

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147027885

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13769850

Country of ref document: EP

Kind code of ref document: A1