WO2013147105A1 - ロール状モールド、並びに、ロール状モールド及び素子の製造方法 - Google Patents

ロール状モールド、並びに、ロール状モールド及び素子の製造方法 Download PDF

Info

Publication number
WO2013147105A1
WO2013147105A1 PCT/JP2013/059417 JP2013059417W WO2013147105A1 WO 2013147105 A1 WO2013147105 A1 WO 2013147105A1 JP 2013059417 W JP2013059417 W JP 2013059417W WO 2013147105 A1 WO2013147105 A1 WO 2013147105A1
Authority
WO
WIPO (PCT)
Prior art keywords
roll
mold
shaped mold
film
glass substrate
Prior art date
Application number
PCT/JP2013/059417
Other languages
English (en)
French (fr)
Inventor
古田勝己
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2013147105A1 publication Critical patent/WO2013147105A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • B29C33/424Moulding surfaces provided with means for marking or patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • B29C33/3857Manufacturing moulds, e.g. shaping the mould surface by machining by making impressions of one or more parts of models, e.g. shaped articles and including possible subsequent assembly of the parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation

Definitions

  • the present invention relates to a roll-shaped mold having a fine concavo-convex shape for transferring a pattern such as a microchannel device and an optical element, a method for producing the roll-shaped mold, and a method for producing an element using the roll-shaped mold.
  • a master mold can be produced by plane machining, and a stamper can be produced by electroforming (attaching a metal to the mold) and affixed to a roller.
  • electroforming attaching a metal to the mold
  • the cost for electroforming is high and application to a roller is difficult. .
  • Patent Document 2 there is a method of forming a metal oxide or the like on the surface of a resin mold base in order to improve mold durability by a mold release process (see Patent Document 2).
  • Patent Document 2 since a resin film is used as a base material, a film forming temperature is restricted in a film forming process of a metal oxide or the like, and it is difficult to form a dense film. Further, due to a difference in linear expansion coefficient between the film forming material and the resin film base material, warpage of the resin film base material occurs, and the fine uneven shape affects the accuracy.
  • An object of the present invention is to provide a roll-shaped mold having fine irregularities with good accuracy while preventing deterioration of the base material portion and improving the durability of the mold.
  • an object of this invention is to provide the manufacturing method of the roll-shaped mold for manufacturing the above-mentioned roll-shaped mold at low cost, and the manufacturing method of the element using the said roll-shaped mold.
  • a roll-shaped mold according to the present invention includes a pattern portion having a fine concavo-convex shape formed of an ultraviolet curable resin, a thin glass substrate portion supporting the pattern portion, and a pattern portion. And a support member having a curved surface that supports the glass base material portion from the back side so that the front side becomes the front side.
  • the glass substrate portion in the transfer mold is a thin plate (film shape), it is flexible and easily attached to a cylindrical roll or belt that is a support member having a curved surface. You can turn it on. If the thickness of the glass substrate portion, the diameter of the cylindrical roll, and the bending radius of the belt are appropriately set, the glass substrate portion adheres closely to the cylindrical roll or belt as a support member without being damaged. In addition, since glass is used as the base material portion, it is possible to prevent deterioration of the mold even if it is repeatedly molded (manufacturing elements such as parts and devices), and the durability of the mold can be improved.
  • glass is used as the base material part, even if a high temperature process is adopted when forming a film on the pattern part, warping or the like in the glass base material part does not occur, and the dimensional change of the fine uneven shape Can be prevented.
  • Glass is harder in physical properties than resin, and has good compatibility with inorganic compounds, fluorine compounds, and the like. Therefore, even when these films are formed, the mold is less deteriorated and the durability is excellent.
  • a film-shaped mold having a pattern portion formed on a thin glass substrate is referred to as a film-shaped mold
  • a film-shaped mold fixed to a support member having a curved surface is referred to as a roll-shaped mold. It is called.
  • the pattern portion has a release film on the surface side.
  • the roll-shaped mold can be easily released from the element when the element (component or apparatus) is manufactured by transfer.
  • a release film is also formed at the exposed portion.
  • the release film is formed of a fluorine-based compound.
  • a protective film is provided at least between the pattern portion and the release film.
  • the adhesion of the release film can be improved, and the durability of the release film is improved.
  • the release film and the glass base material part it is preferable that a protective film is also formed between them.
  • the protective film is formed of an inorganic compound.
  • an inorganic compound by using an inorganic compound, the adhesion with the release film is improved and the durability of the mold is improved.
  • the inorganic compound has good compatibility with the glass base material portion, and can improve the adhesion with it.
  • the thickness of the protective film is 5 nm or more.
  • the protective film is formed of a material containing SiO 2 .
  • the ultraviolet curable resin is one of an epoxy resin and an acrylic resin. If a heat-resistant epoxy resin is used, a high-temperature process can be employed when forming the protective film, so that a denser protective film can be formed.
  • the glass substrate portion is formed of a member having a thickness of 0.1 mm to 0.2 mm and a minimum bending radius of 50 mm.
  • the glass substrate part can be wound around a cylindrical roll as a support member and fixed to a belt without damage to the glass substrate part. Can do.
  • the support member is a cylindrical roll
  • the glass substrate portion is fixed to the cylindrical roll by a vacuum chuck.
  • a vacuum chuck by sticking the glass substrate portion to the cylindrical roll with a vacuum chuck, it is possible to prevent air from entering between the glass substrate portion and the cylindrical roll to form a gap.
  • the glass substrate portion is fixed to the support member using at least one of an adhesive and a double-sided tape.
  • an adhesive or a double-sided tape the film mold can be firmly fixed to a cylindrical roll or belt as a support member.
  • the circumferential length of the single glass substrate portion is equal to the circumferential length of the support member.
  • the edge (end part) of the film-like mold is reduced, it is possible to reduce a defect that the molding resin enters between the glass base part and the support member from the edge.
  • a plurality of glass substrate portions are fixed to a support member.
  • the area of each film mold can be made relatively small, and the production of the film mold becomes easy.
  • the area can be made relatively small, a film-like mold can be produced with high shape accuracy without requiring a large-scale apparatus.
  • by sticking a plurality of film-shaped molds to one support member it is possible to manufacture a small variety of products.
  • the method for producing a roll-shaped mold according to the present invention includes a pattern part forming step of forming a pattern part having a fine concavo-convex shape with an ultraviolet curable resin on one surface side of a flat glass substrate part, and pattern part formation And a fixing step of fixing the other surface side of the glass substrate portion to a support member having a curved surface.
  • the film-shaped mold composed of the glass substrate portion and the pattern portion is fixed to the support member, so that the mold can be produced at low cost.
  • mold is thin plate shape (film shape), it is flexible and can be easily wound around the support member which has a curved surface.
  • glass is used as the base material portion, a durable mold can be produced.
  • glass is used as the base material portion, even if a high temperature process is employed when forming a film on the pattern portion, warping or the like in the glass base material portion does not occur, and the molded product has a fine uneven shape. It is possible to prevent the dimensional change from occurring.
  • the roll-shaped mold manufacturing method includes a release film forming step of forming a release film on the upper side of the pattern portion between the pattern portion forming step and the fixing step.
  • a protective film forming step of forming a protective film on the pattern portion is provided between the pattern portion forming step and the release film forming step.
  • the pattern portion is formed by an imprint process.
  • the shape of the pattern portion can be transferred with high accuracy.
  • the release film is formed using a dipping method.
  • the release film can be uniformly formed on the surface of the fine uneven shape.
  • the protective film is formed using a CVD (Chemical Vapor Deposition) method.
  • CVD Chemical Vapor Deposition
  • a dense film can be formed, and a film thickness can be ensured on the side surface of the standing wall even for a shape having a 90-degree standing wall or the like.
  • the element manufacturing method includes an application step of applying an ultraviolet curable resin to a resin base material, and after the application step, pressing the pattern portion of the roll-shaped mold in the direction of the resin base material. And a transfer step of transferring and solidifying the shape of the pattern portion by irradiating the substrate with ultraviolet rays, and a release step of releasing the roll-shaped mold from the ultraviolet curable resin after the transfer step.
  • the element manufacturing method by using the above-described roll-shaped mold, it is possible to continuously mold without deteriorating the mold, and it is possible to improve the throughput of parts and other element manufacturing. Cost can be reduced.
  • the roll-shaped mold rotates, and the transfer step and the release step are performed a plurality of times.
  • the element manufactured by the above-described element manufacturing method is a microchannel device or an optical element.
  • the above-described element manufacturing method it is possible to easily manufacture a large amount of microchannel devices, optical elements (for example, imaging lenses, flash lenses, microlens arrays,. It becomes like this.
  • FIG. 1A is a perspective view for explaining a roll-shaped mold according to the first embodiment
  • FIG. 1B is a plan view of FIG. 1A
  • FIG. 1C is a glass substrate portion and a pattern portion periphery in the roll-shaped mold.
  • FIG. It is a figure explaining arrangement
  • FIG. 3A is a plan view illustrating the element according to the first embodiment
  • FIG. 3B is a partial enlarged cross-sectional view taken along the line AA in FIG. 3A.
  • 4A to 4G are diagrams for explaining the manufacturing procedure of the roll-shaped mold shown in FIG. 1A and the like.
  • 5A to 5D are diagrams for explaining the manufacturing procedure of the element shown in FIG.
  • FIG. 6A is a plan view for explaining a roll-shaped mold according to the second embodiment
  • FIGS. 6B and 6C are views for explaining the arrangement of pattern portions of the roll-shaped mold
  • 7A to 7D are plan views for explaining modifications of the roll-shaped mold shown in FIG. 6A and the like. It is a conceptual side sectional view explaining a roll mold concerning a 3rd embodiment.
  • 9A to 9D are diagrams for explaining a manufacturing procedure of a modification of the element
  • FIG. 9E is an enlarged sectional view of one element to be manufactured.
  • the roll mold 100 includes a film mold 10 and a cylindrical roll 20.
  • the roll mold 100 should be provided on the element 200 (see FIGS. 3A and 9E) which is a component or apparatus such as a microchannel device or an optical element, for example, by being rotated about the axis AX by a driving device (not shown).
  • the pattern can be transferred.
  • one film mold 10 is attached to the side surface 20p of the cylindrical roll 20.
  • an element (component) 200 of a microchannel device will be described as an example of an element to be manufactured.
  • the film-shaped mold 10 has a pattern portion 11 and a glass substrate portion 12 as shown in an enlarged cross section.
  • the film-shaped mold 10 is in the form of a rectangular thin plate or sheet in a state where it is not wound around the cylindrical roll 20.
  • the film mold 10 is flexible and can be easily attached to the cylindrical roll 20.
  • the film mold 10 can be attached to and detached from the cylindrical roll 20 and can be exchanged.
  • the pattern portion 11 has a fine concavo-convex shape 11 a on the front side, and is a member that imparts the pattern shape of the manufactured element 200 to the target.
  • the pattern unit 11 has a pattern of a plurality of elements 200. That is, as shown in FIG. 2 conceptually, a plurality of element patterns SS are two-dimensionally arranged on the film mold 10.
  • a protective film 13 and a release film 14 are provided on the surface 11p of the pattern portion 11 on the surface side.
  • the protective film 13 is interposed between the pattern portion 11 and the release film 14. That is, the release film 14 is disposed on the outermost side of the roll mold 100.
  • the pattern part 11 is formed of an ultraviolet curable resin.
  • the ultraviolet curable resin for example, an acrylic resin or an epoxy resin is used. It is preferable to use a heat-resistant epoxy resin.
  • the release film 14 is formed of a material having a low surface energy that is preferable as a structure having a release function, such as a fluorine-based compound or a hydrocarbon compound.
  • the protective film 13 is formed of an inorganic compound that has good compatibility with the glass substrate portion 12. For example, SiO 2 is used as the inorganic compound.
  • the thickness of the protective film 13 is an optimum thickness that maintains the durability, and is, for example, 5 nm to 100 nm, preferably 10 nm to 50 nm.
  • Epoxy resin (as pattern part)
  • the epoxy resin is not particularly limited as long as it has an epoxy group and is polymerized and cured by light or heat.
  • an acid anhydride, a cation generator or the like can be used as the curing initiator.
  • An epoxy resin is preferable in that it has a low cure shrinkage and can be made into an element 200 with excellent molding accuracy.
  • Examples of the epoxy include novolak phenol type epoxy resin, biphenyl type epoxy resin, and dicyclopentadiene type epoxy resin.
  • Examples include bisphenol F diglycidyl ether, bisphenol A diglycidyl ether, 2,2′-bis (4-glycidyloxycyclohexyl) propane, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, vinyl Cyclohexene dioxide, 2- (3,4-epoxycyclohexyl) -5,5-spiro- (3,4-epoxycyclohexane) -1,3-dioxane, bis (3,4-epoxycyclohexyl) adipate, 1,2 -Cyclopropanedicarboxylic acid bisglycidyl ester and the like.
  • the curing agent is used for constituting the curable resin material and is not particularly limited.
  • an acid anhydride curing agent it is preferable to use an acid anhydride curing agent, a phenol curing agent, a photocationic initiator, or the like.
  • acid anhydride curing agents include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, 3-methyl-hexahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride
  • examples thereof include an acid, a mixture of 3-methyl-hexahydrophthalic anhydride and 4-methyl-hexahydrophthalic anhydride, tetrahydrophthalic anhydride, nadic anhydride, and methyl nadic anhydride.
  • the photocation initiator examples include onium salts, diazonium salts, iodonium salts, and sulfonium acetones.
  • a hardening accelerator is contained as needed.
  • the curing accelerator is not particularly limited as long as it has good curability, is not colored, and does not impair the transparency of the curable resin.
  • the inorganic compound is preferably light transmissive.
  • a metal oxide is used as the inorganic compound.
  • the metal oxide a compound stable to light, oxygen, or heat is preferable, and ZnO, SiO 2 , Al 2 O 3 , ZrO 2 , SnO 2 , and CaO are preferable. From the viewpoint of transfer durability, an oxide of at least one metal selected from the group consisting of Si, Al, and Zr is more preferable, and SiO 2 , Al 2 O 3 , and ZrO 2 are particularly preferable.
  • Fluorine resin (as release film)
  • a perfluoro group such as a CF 3 (CF 2 ) a-group or a CF 3 .CF 3 .CF (CF 2 ) b-group at one end of the molecular structure (a and b are integers).
  • the length of the perfluoro group is preferably 2 or more in terms of carbon number, and the number of CF 2 groups following CF 3 of CF 3 (CF 2 ) a- is suitably 5 or more.
  • the perfluoro group does not need to be a straight chain and may have a branched structure.
  • a structure such as CF 3 (CF 2 ) c— (CH 2 ) d— (CF 2 ) e— may be used in response to recent environmental problems.
  • c is 3 or less
  • d is an integer (preferably 1)
  • e is 4 or less.
  • the above-mentioned fluorine release agent is usually a solid, but in order to apply it to the surface of the pattern portion 11, it is necessary to make a solution dissolved in an organic solvent.
  • a fluorinated hydrocarbon solvent or a mixture of some organic solvent is suitable as the solvent.
  • the concentration of the solvent is not particularly limited, but since the required release film 14 is characterized by being particularly thin, a low concentration is sufficient, and it may be 1 to 3% by mass.
  • OPTOOL DSX manufactured by Daikin Industries
  • Durasurf HD-1100, HD-2100 manufactured by Daikin Industries
  • Novec EGC1720 manufactured by Sumitomo 3M
  • vapor deposition of triazine thiol manufactured by Takeuchi vacuum coating
  • amorphous fluorine Top grade M manufactured by AGC
  • antifouling coat OPC-800 manufactured by NI Material
  • Hydrocarbon compound (as release film)
  • a silicone-based release agent is applicable, and the hydrocarbon group thereof may be a straight chain such as C n H 2n + 1 .
  • Conventional silicone mold release agents are compositions mainly composed of organopolysiloxane resins, and many compositions are known as compositions for forming a cured film exhibiting water repellency.
  • JP-A-55-48245 discloses a hydroxyl group-containing methylpolysiloxane resin, ⁇ , ⁇ -dihydroxydiorganopolysiloxane, and organosilane, which are cured to have excellent releasability and antifouling properties and water repellency.
  • Compositions that form certain films have been proposed.
  • 59-140280 discloses a composition mainly composed of a partial cohydrolyzed condensate of an organosilane mainly composed of a perfluoroalkyl group-containing organosilane and an amino group-containing organosilane.
  • a composition that forms a cured film excellent in oil repellency has been proposed.
  • Mold Spat manufactured by AGC Seimi Chemical
  • Olga Chicks SIC-330, 434 manufactured by Matsumoto Fine Chemical
  • SR-2410 manufactured by Toray Dow Chemical
  • SAMLAY made by Nippon Soda is mentioned as a self-assembled monolayer.
  • the glass base material portion 12 is a thin plate-like member that supports the pattern portion 11 on the surface 12p.
  • the glass base material part 12 has a smooth surface.
  • the glass base material part 12 is fixed to the cylindrical roll 20 on the back surface 12q side.
  • Examples of the fixing method include fixing with a vacuum chuck, an adhesive, a double-sided tape, and the like.
  • the circumferential length of the glass substrate portion 12 is equal to the circumferential length of the cylindrical roll 20. In this case, when one glass substrate part 12 is wound around the cylindrical roll 20, the two opposing end surfaces of the film mold 10 can be abutted at one place.
  • the glass substrate portion 12 can be applied or used as long as it can be formed thin and has flexibility, but it is a thin plate glass having surface smoothness using a float method, a down draw method, a fusion method, or the like.
  • Silicate glass, silica glass, borosilicate glass, alkali-free glass and the like are preferable. Most preferred is alkali-free glass, and specific examples include alkali-free borosilicate glass manufactured by Nippon Electric Glass Co., Ltd.
  • the glass base material part 12 is cut
  • the glass substrate 12 is preferably made of a material having a thickness of 0.1 mm to 0.2 mm and a minimum bending radius of 50 mm. Thus, since the glass substrate part 12 is thin and the minimum bending radius is substantially equal to or smaller than the radius of the cylindrical roll 20 as will be described later, the glass substrate part 12 is wound around the cylindrical roll 20 without damage. be able to.
  • the cylindrical roll 20 is a member that supports the glass substrate portion 12 from the back side and has a curved surface so that the pattern portion 11 is on the front side.
  • the cylindrical roll 20 is provided with the some hole 20a.
  • the holes 20a are evenly arranged so that the film-shaped mold 10 is uniformly attached.
  • the cylindrical roll 20 is connected to a vacuum pump (not shown), and the film-shaped mold 10 is adsorbed to the cylindrical roll 20 by operating the vacuum pump while the film-shaped mold 10 is wound.
  • the cylindrical roll 20 is made of metal, for example. As the metal, for example, SUS material or the like is used.
  • the radius of the roll mold 100 is 50 mm or more and 300 mm or less.
  • the element 200 includes a structural unit 30 and a resin base material 40.
  • a micro flow channel device or an optical element an imaging lens, a flash lens, a micro lens array, or the like
  • 3A and 3B show a microchannel device as an example.
  • the element 200 is obtained by cutting an element assembly 80 shown in FIG. 5C described later.
  • the structure 30 has a fine uneven shape 31 a, that is, a pattern shape that exhibits the function of the element 200.
  • the structure section 30 is provided with a channel groove FC through which a test solution or the like passes, a sample or reagent inlet MC that communicates with the channel groove FC, and the like.
  • the structure part 30 is formed of an ultraviolet curable resin.
  • the ultraviolet curable resin for example, an acrylic resin or an epoxy resin is used.
  • the resin material used for the structure part 30 may be the same as or different from the resin that forms the pattern part 11 of the film mold 10.
  • UV nanoimprint resin PAK-02 manufactured by Toyo Gosei Co., Ltd.
  • the resin base material 40 is a thin plate-like resin member that supports the structure portion 30.
  • a resin film having a smooth surface is used as the resin substrate 40.
  • the resin material include PET (Polyethylene terephthalate), acrylic, PC (Polycarbonate), PI (polyimide), and the like.
  • an ultraviolet curable resin JS ⁇ b> 1 is applied to one surface side of the flat glass substrate part 12.
  • a coating method a dispenser, spin coating, die coating or the like is used.
  • the glass substrate portion 12 is placed or adsorbed on a flat support base.
  • the shape of the transfer surface 50a of the master mold 50 is imparted to the ultraviolet curable resin JS1 by imprint molding. Specifically, the master mold 50 is pressed against the ultraviolet curable resin JS1 on the glass substrate portion 12, and the ultraviolet curable resin JS1 is cured by irradiating the ultraviolet ray UV. After curing, the ultraviolet curable resin JS1 is released from the master mold 50 together with the glass base material portion 12. Thereby, as shown to FIG. 4C, the pattern part 11 is formed in the glass base material part 12. As shown in FIG. Thereafter, post-curing is performed to completely cure the ultraviolet curable resin JS1.
  • the film mold 10 having the product shape reversed on the surface 11p is obtained.
  • a plurality of pattern shapes of the element 200 as a product shape are arranged on the transfer surface 50a of the master mold 50.
  • the master mold 50 for example, a metal (electroforming) mold, a glass mold, a Si mold, or the like is used.
  • an inorganic compound layer that forms the protective film 13 is formed on the pattern portion 11 of the film mold 10.
  • the substrate 12 is made of glass, it is difficult to bend and can withstand high temperatures, and therefore, processing at high temperatures is possible.
  • a CVD method is used to form the protective film 13.
  • the film mold 10 having the pattern portion 11 formed on the base material 12 is fixed in the chamber 60 of the CVD apparatus to form a film.
  • the film forming temperature by the CVD method is about 60 ° C. to 200 ° C. As the temperature increases, a denser film is formed and the optimum protective film 13 is obtained.
  • a preferable film forming temperature is about 80 ° C. to 150 ° C.
  • a layer of, for example, a fluorine compound that becomes the release film 14 is formed and formed on the protective film 13 of the film mold 10.
  • the film-like mold 10 subjected to the mold release treatment shown in FIG. 4F is obtained.
  • a dipping method is used to form the release film 14.
  • the film-shaped mold 10 having the protective film 13 formed therein is immersed in the fluorine-based compound placed in the container 70.
  • a spin coating method, a spray method, a vapor deposition method, or the like may be used.
  • the solvent is evaporated by natural drying to form a dry coating film.
  • an ultraviolet curable resin JS2 is applied to the resin substrate 40.
  • a coating method for example, a die coating method is used.
  • the resin base material 40 coated with the ultraviolet curable resin JS2 on the surface 40p is conveyed under the roll mold 100 by a conveyance system (not shown).
  • the shape of the roll-shaped mold 100 is transferred to the ultraviolet curable resin JS2 on the resin substrate 40 and molded.
  • the roll-shaped mold 100 described above is pressed in the counterclockwise direction against the ultraviolet curable resin JS2 applied on the resin base material 40, and is pressed in the direction of the lower resin base material 40, or the resin.
  • the base material 40 is pressed against the roll-shaped mold 100 side, and the UV curable resin JS2 is cured by locally irradiating the pressed portion with ultraviolet rays from the back side.
  • the ultraviolet curable resin JS2 side before molding is shielded from ultraviolet rays by the light shield RT.
  • the rotation of the roll-shaped mold 100 is continued after the resin is cured or in parallel with the curing, and the ultraviolet curable resin JS2 is released from the roll-shaped mold 100 together with the resin base material 40.
  • release of the cured UV curable resin JS2 is performed, and the roll-shaped mold 100 comes into contact with the uncured UV curable resin JS2 and continuously.
  • Multiple transfer / release processes can be performed.
  • the manufactured element structure is conveyed from the bottom of the roll-shaped mold 100 to the outside. By the above, the pattern part 11 of the roll-shaped mold 100 is transferred to the ultraviolet curable resin JS2 on the resin base material 40, and as shown in FIG.
  • a plurality of elements 200 are formed on the resin base material 40 having a predetermined size.
  • An element assembly 80 in which a pattern (uneven shape 31a) is formed is obtained.
  • the pattern shape SS of the roll-shaped mold 100 is conceptually enlarged, but actually, the pattern of the fine elements 200 is formed.
  • the resin base material 40 can be supplied so as to be wound around the side surface 100 a of the roll-shaped mold 100, that is, the surface 10 a of the film-shaped mold 10.
  • the element assembly 80 is cut along a broken line and separated into pieces. Thereby, the separated element 200 shown in FIG. 5D is obtained.
  • a cutting method cutting with a punching blade 90, cutting with a CO 2 laser, dicing cut, or the like is used.
  • the product may be delivered to the customer without being separated into individual pieces. In this case, the element assembly 80 is not cut.
  • the glass substrate portion 12 as a mold has a thin plate shape (film shape). Therefore, the roll-shaped mold 100 is flexible and easily formed into the cylindrical roll 20 that is a support member having a curved surface. Can be pasted. If the thickness of the glass substrate part 12 and the diameter of the cylindrical roll 20 are appropriately set, the glass substrate part 12 adheres to the cylindrical roll 20 without being damaged. Moreover, since glass is used as the base material portion, deterioration of the mold can be prevented even if it is repeatedly molded (manufacturing the element), and the durability of the mold can be improved.
  • glass is used as the base material portion, even if a high temperature process is adopted when the film forming process is performed on the pattern portion 11, warping or the like in the glass base material portion 12 does not occur, and the fine uneven shape 11 a Dimensional changes can be prevented.
  • glass is harder in physical properties than resins and has good compatibility with inorganic compounds, fluorine compounds, and the like. Therefore, even when these films are formed, the mold does not deteriorate and durability is good.
  • Example 1 Hereinafter, examples of the present embodiment will be described.
  • the film-shaped mold 10 having a length of 100 mm in the axis AX direction, a length of 600 mm in the circumferential direction, and a total thickness of 0.15 mm, and the cylindrical roll 20 having a length of 100 mm in the axis AX direction and a radius of 100 mm. And were used.
  • the height of the convex part of the pattern part 11 of the film mold 10 is about 0.03 mm.
  • a non-alkali borosilicate glass having a thickness of 0.1 mm was used for the glass substrate portion 12 of the film mold 10.
  • the protective film 13 is made of SiO 2 and has a thickness of 20 nm.
  • a CVD method was used to form the protective film 13.
  • Opkin DSX made by Daikin Industries, Ltd. was used for the release film 14.
  • a dipping method was used to form the release film 14.
  • a UV nanoimprint resin PAK-02 manufactured by Toyo Gosei Co., Ltd. was used as the ultraviolet curable resin JS2 for the structural portion 30.
  • the height of the concave portion of the structure portion 30 is about 0.03 mm.
  • the performance of the roll mold 100 of the present embodiment will be described.
  • the roll-shaped mold was appropriately rotated, and transfer was performed 100 times.
  • Table 1 below shows the durability test results of this example and the comparative example.
  • Table 1 shows the durability test results of this example and the comparative example.
  • Table 1 As shown in Table 1, in this example, the glass substrate 12 was not deteriorated after 100 times of transfer.
  • the comparative example after 100 times of transfer, a crack was generated in the resin base material and deterioration was observed. Thereby, it turns out that durability of the roll-shaped mold 100 improved by making a base material into glass.
  • FIG. 6A two glass substrate parts 12, that is, two film molds 10 are fixed to a cylindrical roll 20.
  • two film molds 10 having the same circumferential length as the circumference of the cylindrical roll 20 are wound.
  • the element pattern SS on the film mold 10 is arranged as shown in FIG. 6B.
  • FIG. 6C once the two film-shaped molds 10 are provided with different uneven shapes 11a (for example, the A type indicated by the symbol “A” and the B type indicated by the symbol “B”), A plurality of elements 200 having different concavo-convex shapes 11a can be formed.
  • the area per sheet of the film-shaped mold 10 can be made relatively small, and the yield of the film-shaped mold 10 is improved. (Deterioration of defective rate) can be achieved, and the film mold 10 can be easily manufactured. Moreover, since the area can be made relatively small, the film mold 10 can be produced with good shape accuracy without requiring a large-scale apparatus. Further, by sticking a plurality of film molds 10 to one cylindrical roll 20, it is possible to manufacture a small variety of products. As shown in FIG. 6A, since the film mold 10 is divided in a direction horizontal to the rotation direction of the roll mold 100, the molding resin enters between the film mold 10 and the cylindrical roll 20. It becomes difficult.
  • the method of dividing the film-shaped mold 10 is not limited to the case of FIG. 6A and can be changed as appropriate.
  • it can be as follows. That is, as shown in FIG. 7A, the two film molds 10 are divided in a direction perpendicular to the rotation direction of the roll mold 100 (a direction parallel to the axis AX). In this case, the length of the film mold 10 in the circumferential direction is not increased, and the film mold 10 can be easily manufactured as described above.
  • three or more film molds 10 having the same circumferential length as the circumference of the cylindrical roll 20 may be wound.
  • the film-shaped mold 10 when the film-shaped mold 10 is further divided into a plurality of pieces, it can be arranged in a nested manner as shown in FIG. 7C or in a honeycomb shape as shown in FIG. 7D.
  • the glass substrate part 12 is fixed to the cylindrical roll 20 using the adhesive GU.
  • the adhesive GU is attached to the film mold 10 or the cylindrical roll 20, and the film mold 10 is wound around the cylindrical roll 20.
  • the film mold 10 can be firmly fixed to the cylindrical roll 20 by using the adhesive GU.
  • the pattern shape of a microchannel device is an illustration, and can be changed suitably.
  • the film-like mold 10 in which a plurality of shapes corresponding to the optical element are formed in the same process as in FIGS. 4A to 4G is wound around the side surface 20p of the cylindrical roll 20 and rolled.
  • 9A and 9B which are the same steps as FIGS. 5A and 5B, can be used to produce an element assembly 80 in which a plurality of optical elements shown in FIG. 9C are formed.
  • the element assembly 80 is cut into pieces by cutting along the broken lines.
  • an element 200 shown in FIG. 9E is obtained.
  • the element 200 shown in FIG. 9E is provided with an optical function part OS and a flange part FL that supports the optical function part OS.
  • the film-shaped mold 10 which reversed the product shape was produced, the master type
  • the roll-shaped mold 100 was arrange
  • the film-shaped mold 10 is fixed to the cylindrical roll 20 and the roll-shaped mold 100 is formed.
  • the present invention is not limited to this, and the film-shaped mold 10 is fixed to the belt. Then, a roll-shaped mold may be formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

基材部の劣化を防いで型の耐久性を向上させつつ、良好な精度で微細な凹凸形状を有するロール状モールドを提供することを目的とする。ロール状モールドは、紫外線硬化性樹脂で形成される微細な凹凸形状を有するパターン部と、パターン部を支持する薄板状のガラス基材部と、パターン部が表側となるように、ガラス基材部を裏側から支持する支持部材と、を備える。ガラス基材部が薄板状(フィルム状)であるため、可撓性があり、曲面を有する支持部材に容易に貼りつけることができる。また、ガラスを基材部としているため、繰り返し成形(素子を製造)しても型の劣化を防ぐことができ、型の耐久性を良くすることができる。また、パターン部に成膜加工をする際に高温工程を採用しても、ガラス基材部での反り等が発生せず、微細な凹凸形状の寸法変化を防ぐことができる。

Description

ロール状モールド、並びに、ロール状モールド及び素子の製造方法
 この発明は、マイクロ流路デバイス、光学素子等のパターンを転写するための微細な凹凸形状を有するロール状モールド、当該ロール状モールドの製造方法、及び当該ロール状モールドを用いる素子の製造方法に関する。
 マイクロ流路デバイス、光学素子等の素子の製造に用いるロール状モールドの作製のため、ロール状の金属ブランクに直接加工する方法がある。このような加工方法は、曲面に微細な形状を直接加工する必要がありパターンの精度確保が難しく、加工時間も長くなり加工費用が非常にかかる。平面加工によりマスターモールドを作製し、電鋳(鋳型に金属を付着させること)によりスタンパーを作製してローラーに貼りつける方法も考えられるが、電鋳作製費用が高く、ローラーへの貼りつけも難しい。
 また、ロール状モールドの別の作製方法として、熱硬化性樹脂から成るレンズ部を樹脂製の基材シートの片面に形成したフィルム状の樹脂型を、鉄芯シリンダーに巻きつける方法がある(特許文献1参照)。
 しかしながら、特許文献1の方法では、樹脂型の基材に樹脂フィルムを用いているため、基材部での劣化が早く、型の耐久性が低いという問題がある。
 また、離型処理により型耐久性を向上させるために、樹脂製モールドベースの表面に金属酸化物等を形成する方法がある(特許文献2参照)。
 しかしながら、特許文献2の方法では、基材として樹脂フィルムを用いているため、金属酸化物等の成膜工程において成膜温度に制約が出てしまい、緻密な成膜が難しくなる。また、成膜物質と樹脂フィルム基材との線膨張係数差等により、樹脂フィルム基材の反り等が発生し、微細な凹凸形状については精度に影響を与えてしまう。
特開2000-334745号公報 国際公開第2009/148138号
 本発明は、基材部の劣化を防いで型の耐久性を向上させつつ、良好な精度で微細な凹凸形状を有するロール状モールドを提供することを目的とする。
 また、本発明は、上述のロール状モールドを低コストで製造するためのロール状モールドの製造方法及び当該ロール状モールドを用いる素子の製造方法を提供することを目的とする。
 上記課題を解決するため、本発明に係るロール状モールドは、紫外線硬化性樹脂で形成される微細な凹凸形状を有するパターン部と、パターン部を支持する薄板状のガラス基材部と、パターン部が表側となるようにガラス基材部を裏側から支持する、曲面を有する支持部材と、を備える。
 上記ロール状モールドによれば、転写用の型におけるガラス基材部が薄板状(フィルム状)であるため、可撓性があり、曲面を有する支持部材である円筒状ロールやベルトに容易に貼りつけることができる。ガラス基材部の厚さや円筒状ロールの径やベルトの曲げ半径を適切に設定すれば、ガラス基材部が破損することなく支持部材である円筒状ロールやベルトに密着する。また、ガラスを基材部としているため、繰り返し成形(部品、装置等である素子を製造)しても型の劣化を防ぐことができ、型の耐久性を良くすることができる。また、ガラスを基材部としているため、パターン部に成膜加工をする際に高温工程を採用しても、ガラス基材部での反り等が発生せず、微細な凹凸形状の寸法変化を防ぐことができる。なお、ガラスは、樹脂に比較して物性的に硬く、無機系化合物やフッ素系化合物等との相性も良いため、これらの成膜を行っても型の劣化が少なく耐久性に優れる。
 なお、以下の記載においては、薄板状のガラス基材部上にパターン部が形成されたものをフィルム状モールドと称し、該フィルム状モールドを曲面を有する支持部材に固着したものを、ロール状モールドと称している。
 本発明の具体的な側面では、上記ロール状モールドにおいて、少なくともパターン部は、表面側に離型膜を有する。この場合、転写による素子(部品又は装置)の製造時に素子からロール状モールドを容易に離型することができる。なお、ガラス基材部上において、パターン部が形成されておらずガラス基材部の面が露呈している箇所がある場合、この露呈した箇所にも離型膜が形成されていることが好ましい。
 本発明の別の側面では、離型膜は、フッ素系化合物で形成される。
 本発明のさらに別の側面では、少なくともパターン部と離型膜との間に保護膜を有する。この場合、離型膜の密着性を良くすることができ、離型膜の耐久性が向上する。なお、ガラス基材部上において、パターン部が形成されておらずガラス基材部の面が露呈している箇所に離型膜が形成されている場合、この離型膜とガラス基材部との間にも保護膜が形成されていることが好ましい。
 本発明のさらに別の側面では、保護膜は、無機系化合物で形成される。この場合、無機系化合物を用いることにより、離型膜との密着性が向上し、型の耐久性が向上する。また、無機系化合物は、ガラス基材部との相性も良く、これとの密着性を向上させることができる。
 本発明のさらに別の側面では、保護膜の厚みは、5nm以上である。
 本発明のさらに別の側面では、保護膜は、SiOを含む材料で形成される。
 本発明のさらに別の側面では、紫外線硬化性樹脂は、エポキシ系樹脂及びアクリル系樹脂のいずれか一方である。耐熱性があるエポキシ系樹脂を用いれば、保護膜を成膜する際に高温工程を採用することができるため、より緻密な保護膜を形成することができる。
 本発明のさらに別の側面では、ガラス基材部は、厚みが0.1mm以上0.2mm以下であり、最小曲げ半径が50mmである部材で形成される。この場合、ガラス基材部の厚み、最小曲げ半径を上記範囲の値にすることにより、ガラス基材部への破損がない状態で支持部材である円筒状ロールへの巻きつけやベルトへの固着ができる。
 本発明のさらに別の側面では、支持部材は円筒状ロールであり、ガラス基材部は、真空チャックにより円筒状ロールに固定される。この場合、真空チャックによってガラス基材部を円筒状ロールに貼りつけることにより、ガラス基材部と円筒状ロールとの間にエアー等が入って隙間が形成されることを防ぐことができる。また、ガラス基材部とパターン部とで構成されるフィルム状モールドの交換が容易になり、部品、装置等である素子の製造のための段取り時間を短くすることができる。
 本発明のさらに別の側面では、ガラス基材部は、接着剤及び両面テープの少なくとも一方を用いて支持部材に固定される。この場合、接着剤や両面テープを用いることにより、フィルム状モールドを支持部材である円筒状ロールやベルトに強固に固定することができる。
 本発明のさらに別の側面では、単一のガラス基材部の周方向の長さは、支持部材の周の長さと等しい。この場合、フィルム状モールドのエッジ(端部)が少なくなることで、エッジから成形用の樹脂がガラス基材部と支持部材との間に入ってしまうという不良を低減することができる。
 本発明のさらに別の側面では、複数のガラス基材部を支持部材に固定する。この場合、複数のガラス基材部を用いるため、個々のフィルム状モールドの面積を比較的小さくすることができ、フィルム状モールドの作製が容易になる。また、面積を比較的小さくすることができるため、大掛かりな装置を必要とせずにフィルム状モールドを高い形状精度で作製することができる。また、複数のフィルム状モールドを1つの支持部材に貼りつけることにより、多品種少量の製品を製造することができる。
 本発明に係るロール状モールドの製造方法は、平板状のガラス基材部の一方の面側に紫外線硬化性樹脂によって微細な凹凸形状を有するパターン部を形成するパターン部形成工程と、パターン部形成工程後、ガラス基材部の他方の面側を、曲面を有する支持部材に固定する固定工程と、を備える。
 上記ロール状モールドの製造方法によれば、支持部材にガラス基材部とパターン部とで構成されるフィルム状モールドを固定するため、低コストで型を作製することができる。また、型としてのガラス基材部が薄板状(フィルム状)であるため、可撓性があり、曲面を有する支持部材に容易に巻きつけることができる。また、ガラスを基材部としているため、耐久性がある型を作製することができる。また、ガラスを基材部としているため、パターン部に成膜加工をする際に高温工程を採用しても、ガラス基材部での反り等が発生せず、成形品において微細な凹凸形状の寸法変化が生じることを防ぐことができる。
 本発明の具体的な側面では、上記ロール状モールドの製造方法において、パターン部形成工程と固定工程との間に、パターン部の上側に離型膜を形成する離型膜形成工程を備える。
 本発明の別の側面では、パターン部形成工程と離型膜形成工程との間に、パターン部の上に保護膜を形成する保護膜形成工程を備える。
 本発明のさらに別の側面では、パターン部は、インプリントプロセスにより形成する。この場合、精度良くパターン部の形状を転写させることができる。
 本発明のさらに別の側面では、離型膜は、ディッピング法を用いて形成する。この場合、微細な凹凸形状の表面に満遍なく離型膜を形成することができる。
 本発明のさらに別の側面では、保護膜は、CVD(化学気相蒸着:Chemical Vapor Deposition)法を用いて形成する。この場合、緻密膜を成膜することができるとともに、90度の立ち壁等を有する形状体に対しても立ち壁側面に膜厚みを確保することができる。
 本発明に係る素子の製造方法は、樹脂基材に紫外線硬化性樹脂を塗布する塗布工程と、塗布工程後、上述のロール状モールドのパターン部を樹脂基材方向に押圧し、紫外線硬化性樹脂に紫外線を照射してパターン部の形状を転写固化させる転写工程と、転写工程後、紫外線硬化性樹脂からロール状モールドを離型する離型工程と、を備える。
 上記素子の製造方法によれば、上述のロール状モールドを用いることにより、型を劣化させずに連続的に成形することが可能となり、部品その他の素子製造のスループットを向上させることができ、低コスト化できる。
 本発明の具体的な側面では、上記素子の製造方法において、ロール状モールドが回転し、転写工程と離型工程とを複数回行う。
 本発明の別の側面では、上述の素子製造方法で製造される素子が、マイクロ流路デバイス又は光学素子である。上記素子の製造方法により、高精度が要求されるマイクロ流路デバイス、光学素子(例えば、撮像レンズ、フラッシュ用レンズ、マイクロレンズアレイ、…)等を、容易に大量、安価で製造することができるようになる。
図1Aは、第1実施形態に係るロール状モールドを説明する斜視図であり、図1Bは、図1Aの平面図であり、図1Cは、ロール状モールドのうちガラス基材部及びパターン部周辺の部分拡大断面図である。 図1A等に示すロール状モールドのパターン部の配置を説明する図である。 図3Aは、第1実施形態に係る素子を説明する平面図であり、図3Bは、図3AのAA矢視部分拡大断面図である。 図4A~4Gは、図1A等に示すロール状モールドの製造手順を説明する図である。 図5A~5Dは、図3A等に示す素子の製造手順を説明する図である。 図6Aは、第2実施形態に係るロール状モールドを説明する平面図であり、図6B及び6Cは、ロール状モールドのパターン部の配置を説明する図である。 図7A~7Dは、図6A等に示すロール状モールドの変形例を説明する平面図である。 第3実施形態に係るロール状モールドを説明する概念的な側方断面図である。 図9A~9Dは、素子の変形例の製造手順を説明する図であり、図9Eは作製される素子1個の拡大断面図である。
 以下の実施の形態においては、支持部材として円筒状ロールに適用したロール状モールドを用いて説明する。
 〔第1実施形態〕
ロール状モールド
 以下、図面を参照しつつ、本発明の第1実施形態に係るロール状モールドについて説明する。
 図1A及び1Bに示すように、ロール状モールド100は、フィルム状モールド10と、円筒状ロール20とを備える。ロール状モールド100は、不図示の駆動装置によって軸AXを中心として回転させることで例えばマイクロ流路デバイスや光学素子等の部品又は装置である素子200(図3A及び図9E参照)に設けられるべきパターンを転写することができる。本実施形態では、1枚のフィルム状モールド10を円筒状ロール20の側面20pに貼りつけている。なお、本実施形態では、作製される素子の例としてマイクロ流路デバイスの素子(部品)200を用いて説明する。
 図1Cに断面を拡大して示すように、フィルム状モールド10は、パターン部11と、ガラス基材部12とを有する。フィルム状モールド10は、円筒状ロール20に巻きつけていない状態で矩形の薄い板状又はシート状となっている。フィルム状モールド10は、可撓性があり、円筒状ロール20に容易に貼りつけることができる。また、フィルム状モールド10は、円筒状ロール20に対して着脱可能であり、交換可能となっている。
 フィルム状モールド10のうち、パターン部11は、表側に微細な凹凸形状11aを有しており、作製される素子200のパターン形状を対象に付与する部材である。パターン部11は、複数の素子200のパターンを有する。つまり、概念的に図2に示すように、フィルム状モールド10には、複数の素子パターンSSが2次元的に配列されて形成されている。図1Cに示すように、パターン部11の表面11p上には、表面側に保護膜13と離型膜14とが設けられている。保護膜13は、パターン部11と離型膜14との間に介在している。つまり、離型膜14は、ロール状モールド100の最も外側に配置されている。離型膜14を設けることにより、後述する素子200の製造時にロール状モールド100から素子集合体80を容易に離型させることができるようになる。保護膜13を設けることにより、離型膜14の密着性を良くし、パターン部11から離型膜14が剥離することを防ぐことができる。パターン部11は、紫外線硬化性樹脂で形成される。紫外線硬化性樹脂として、例えばアクリル系樹脂やエポキシ系樹脂等が用いられる。なお、耐熱性があるエポキシ系樹脂を用いることが好ましい。離型膜14は、離型性機能を持つ構造として好ましい表面エネルギーの低い材料、例えばフッ素系化合物、炭化水素化合物等で形成される。保護膜13は、ガラス基材部12との相性が良い無機系化合物で形成される。無機系化合物として、例えばSiO等が用いられる。保護膜13の厚みは、耐久性が維持される最適な厚みとし、例えば5nm以上100nm以下、好ましくは10nm以上50nm以下である。
 以下、パターン部11等の形成に適する材料について詳述する。
A)エポキシ樹脂(パターン部として)
 エポキシ樹脂としては、エポキシ基を持ち、光又は熱により重合硬化するものであれば特に限定されない。硬化開始剤としては、酸無水物やカチオン発生剤等を用いることができる。エポキシ樹脂は硬化収縮率が低いため、成形精度の優れた素子200とすることができる点で好ましい。
 エポキシの種類としては、ノボラックフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、及びジシクロペンタジエン型エポキシ樹脂が挙げられる。その一例として、ビスフェノールFジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、2,2'-ビス(4-グリシジルオキシシクロヘキシル)プロパン、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカーボキシレート、ビニルシクロヘキセンジオキシド、2-(3,4-エポキシシクロヘキシル)-5,5-スピロ-(3,4-エポキシシクロヘキサン)-1,3-ジオキサン、ビス(3,4-エポキシシクロヘキシル)アジペート、1,2-シクロプロパンジカルボン酸ビスグリシジルエステル等を挙げることができる。
 硬化剤は、硬化性樹脂材料を構成する上で使用されるものであり、特に限定はない。硬化剤としては、酸無水物硬化剤やフェノール硬化剤、光カチオン開始剤等を使用することが好ましい。酸無水物硬化剤の具体例としては、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、3-メチル-ヘキサヒドロ無水フタル酸、4-メチル-ヘキサヒドロ無水フタル酸、あるいは3-メチル-ヘキサヒドロ無水フタル酸と4-メチル-ヘキサヒドロ無水フタル酸との混合物、テトラヒドロ無水フタル酸、無水ナジック酸、無水メチルナジック酸等を挙げることができる。光カチオン開始剤としては、例えばオニウム塩、ジアゾニウム塩、ヨードニウム塩、及びスルホニウムアセトン類が挙げられる。また、必要に応じて硬化促進剤が含有される。硬化促進剤としては、硬化性が良好で、着色がなく、硬化性樹脂の透明性を損なわないものであれば、特に限定されるものではないが、例えば、2-エチル-4-メチルイミダゾール(2E4MZ)等のイミダゾール類、3級アミン、4級アンモニウム塩、ジアザビシクロウンデセン等の双環式アミジン類とその誘導体、ホスフィン、ホスホニウム塩等を用いることができ、これらを1種、あるいは2種以上を混合して用いてもよい。
B)無機系化合物(保護膜として)
 無機系化合物は、光透過性であることが好ましい。無機系化合物として、例えば金属酸化物が用いられる。
 金属酸化物としては、光、酸素、または熱に対して安定な化合物が好ましく、ZnO、SiO、Al、ZrO、SnO、及びCaOが好ましい。転写の耐久性の点からSi、Al及びZrからなる群から選ばれる少なくとも1種の金属の酸化物がより好ましく、SiO、Al、及びZrOが特に好ましい。
C)フッ素系樹脂(離型膜として)
 フッ素置換炭化水素基としては、特に分子構造の一端にCF(CF)a-基や、CF・CF・CF(CF)b-基等のパーフルオロ基(a及びbは整数)を持つフッ素置換炭化水素基が好ましい。また、パーフルオロ基の長さが炭素数にして2個以上が好ましく、CF(CF)a-のCFにつづくCF基の数は5以上が適切である。
 また、パーフルオロ基は直鎖である必要はなく、分岐構造を有していてもよい。さらに、近年の環境問題対応として、CF(CF)c-(CH)d-(CF)e-のような構造でもよい。この場合、cは3以下、dは整数(好ましくは1)、eは4以下、である。
 上記のフッ素離型剤は通常は固体であるが、これをパターン部11の表面に塗布するには、有機溶剤に溶解した溶液とする必要がある。離型剤の分子構造によって異なってくるが、多くはその溶媒としてフッ化炭化水素系の溶剤またはそれに若干の有機溶媒を混合したものが適している。溶媒の濃度は特に限定がないが、必要とする離型膜14は特に薄いことが特徴であるので、濃度は低いもので充分であり、1~3質量%でよい。
 具体例としては、オプツールDSX(ダイキン工業製)、デュラサーフHD-1100、HD-2100(ダイキン工業製)、ノベックEGC1720(住友3M製)、トリアジンチオール(竹内真空被膜製)の蒸着、アモルファスフッ素 サイトップ グレードM(AGC製)、防汚コートOPC-800(エヌアイマテリアル製)等が挙げられる。
D)炭化水素化合物(離型膜として)
 炭化水素化合物としては、シリコーン系離型剤が該当し、これの炭化水素基としては、C2n+1のように直鎖でもよい。
 従来のシリコーン系離型剤は、オルガノポリシロキサン樹脂を主成分とする組成物であり、撥水性を示す硬化皮膜を形成する組成物としては数多くの組成物が知られている。例えば、特開昭55-48245号公報には水酸基含有メチルポリシロキサン樹脂とα,ω-ジヒドロキシジオルガノポリシロキサンとオルガノシランからなり、硬化して離型性、防汚性に優れ、撥水性のある皮膜を形成する組成物が提案されている。また、特開昭59-140280号公報にはパーフルオロアルキル基含有オルガノシランとアミノ基含有オルガノシランを主成分とするオルガノシランの部分共加水分解縮合物を主剤とする組成物であり、撥水性、撥油性に優れた硬化皮膜を形成する組成物が提案されている。
 具体例としては、モールドスパット(AGCセイミケミカル製)、オルガチックスSIC-330,434(マツモトファインケミカル製)、SR-2410(東レダウケミカル製)等が挙げられる。また、自己組織化単分子膜として、SAMLAY(日本曹達製)が挙げられる。
 図1Cに戻って、ガラス基材部12は、表面12p上にパターン部11を支持する薄板状の部材である。ガラス基材部12は、平滑な面を有する。ガラス基材部12は、裏面12q側で円筒状ロール20に固定される。固定方法として、例えば真空チャック、接着剤、両面テープ等による固定がある。ガラス基材部12の周方向の長さは、円筒状ロール20の円周の長さと等しい。この場合、1枚のガラス基材部12を円筒状ロール20に巻きつけた際に、フィルム状モールド10の対向する2つの端面を1箇所で突き合わすことができる。これにより、複数のフィルム状モールドを用いる場合よりもフィルム状モールド10の突き合わせ部の数が少なくなり、フィルム状モールド10と円筒状ロール20との間に樹脂等が入り込みにくくなる。ガラス基材部12としては、薄く形成でき、可撓性を有するガラス材であれば適用又は使用できるが、フロート法、ダウンドロー法、フュージョン法等を用いた表面平滑性のある薄板ガラスであって、ケイ酸塩ガラス、シリカガラス、ホウケイ酸ガラス、無アルカリガラス等が好ましい。最も好ましくは無アルカリガラスであり、具体例としては、日本電気硝子(株)製の無アルカリホウケイ酸ガラスが挙げられる。ガラス基材部12は、例えばレーザースクライブ法を用いて切断される。これにより、ガラス基材部12の強度が保たれる。ガラス基材部12は、厚みが0.1mm以上0.2mm以下であり、最小曲げ半径が50mmの材料を用いることが好ましい。このようにガラス基材部12が薄く、後述するように最小曲げ半径が円筒状ロール20の半径と略等しい又は小さいため、ガラス基材部12の破損がない状態で円筒状ロール20に巻きつけることができる。
 図1A及び1Bに戻って、円筒状ロール20は、パターン部11が表側となるように、ガラス基材部12を裏側から支持する部材であるとともに、曲面を有する部材である。ガラス基材部12を真空チャックによって固定する場合、図1Bに示すように、円筒状ロール20には、複数の孔20aが設けられている。各孔20aは、フィルム状モールド10を均一に貼りつけるように均等に配置されている。円筒状ロール20は、不図示の真空ポンプに繋がれており、フィルム状モールド10を巻きつけた状態で真空ポンプを動作することにより、円筒状ロール20にフィルム状モールド10を吸着させる。円筒状ロール20は、例えば金属で形成されている。金属として、例えばSUS材等が用いられる。ロール状モールド100の半径は、50mm以上300mm以下である。
素子(部品又は装置)
 図3A及び3Bに示すように、素子200は、構造部30と、樹脂基材40とを備える。ロール状モールド100で作製される素子200としては、マイクロ流路デバイスや、光学素子(撮像レンズ、フラッシュ用レンズ、マイクロレンズアレイ等)が作製可能である。図3A及び3Bでは、例示としてマイクロ流路デバイスを示す。素子200は、後述する図5Cに示す素子集合体80を切断することによって得る。
 素子(部品)200のうち、構造部30は、微細な凹凸形状31aすなわち素子200の機能を発揮するパターン形状を有する。マイクロ流路デバイスの場合、構造部30には、試験液等を通過させる流路用溝FCや、流路用溝FCに連通する試料や試薬の導入口MC等が設けられている。構造部30は、紫外線硬化性樹脂で形成される。紫外線硬化性樹脂として、例えばアクリル系樹脂やエポキシ系樹脂が用いられる。構造部30に用いられる樹脂材料は、フィルム状モールド10のパターン部11を形成する樹脂と同じ材料でもよいし、異なっていてもよい。具体的には、UVナノインプリント用樹脂 PAK-02(東洋合成工業製)等が用いられる。
 樹脂基材40は、構造部30を支持する薄板状の樹脂製の部材である。樹脂基材40としては、平滑な面を有した、例えば樹脂フィルム等が用いられる。樹脂材料としては、例えばPET(Polyethylene terephthalate)、アクリル、PC(Polycarbonate)、PI(polyimide)等が挙げられる。
ロール状モールドの製造方法
 以下、図4A~4Gを参照しつつ、ロール状モールド100の製造方法について説明する。
〔塗布工程〕
 まず、図4Aに示すように、平板状のガラス基材部12の一方の面側に紫外線硬化性樹脂JS1を塗布する。塗布方法として、ディスペンサー、スピンコート、ダイコート等が用いられる。なお、この工程及び以後の工程を含む処理に際して、ガラス基材部12は、平坦な支持台に載置又は吸着される。
〔パターン部形成工程〕
 次に、図4Bに示すように、インプリント成形により、紫外線硬化性樹脂JS1に対してマスターモールド50の転写面50aの形状を付与する。具体的には、ガラス基材部12上の紫外線硬化性樹脂JS1にマスターモールド50を押圧し、紫外線UVを照射して紫外線硬化性樹脂JS1を硬化させる。硬化後にマスターモールド50からガラス基材部12とともに紫外線硬化性樹脂JS1を離型する。これにより、図4Cに示すように、ガラス基材部12にパターン部11が形成される。その後、ポストキュアを行い、紫外線硬化性樹脂JS1を完全に硬化させる。以上により、表面11pに製品形状を反転したフィルム状モールド10を得る。なお、詳細な形状の図示は省略するが、マスターモールド50の転写面50aには、製品形状である素子200のパターン形状が複数配置されている。マスターモールド50として、例えば金属(電鋳)型、ガラス型、Si型等が用いられる。
〔保護膜形成工程〕
 次に、図4Dに示すように、フィルム状モールド10のパターン部11上に保護膜13となる無機系化合物の層を形成する。この際、基材12がガラス製であるため、撓みにくくかつ高温にも耐えられるため、高温下での処理が可能である。保護膜13の形成には、例えばCVD法が用いられる。基材12上にパターン部11を形成したフィルム状モールド10をCVD装置のチャンバー60内に固定し、成膜する。CVD法での成膜温度は、60℃~200℃程度である。温度が高いほど、より緻密な膜が成膜され最適な保護膜13となる。フィルム状モールド10の構成材質の温度特性等も考慮して耐久性が劣化しない範囲で最適な温度を選択する。好ましい成膜温度は、80℃~150℃程度である。
〔離型膜形成工程〕
 次に、図4Eに示すように、フィルム状モールド10の保護膜13上に離型膜14となる例えばフッ素系化合物の層を形成・成膜する。これにより、図4Fに示す離型処理されたフィルム状モールド10を得る。離型膜14の形成には、例えばディッピング法が用いられる。具体的には、容器70に入れたフッ素系化合物中に保護膜13を成膜したフィルム状モールド10を浸漬する。なお、離型膜14の形成法として、スピンコート法、スプレー法、蒸着法等を用いてもよい。通常、フッ素系化合物を塗布した後に自然乾燥で溶媒を蒸発させて乾燥塗膜とする。
〔固定工程〕
 最後に、図4Gに示すように、フィルム状モールド10のパターン部11が形成されていない他方の面(裏面12q;図1C参照)側を円筒状ロール20の側面20pに貼りつけ、固定する。真空チャックによって貼りつける場合、不図示の真空ポンプを動作させ貼りつける。
素子の製造方法
 以下、図5A~5Dを参照しつつ、素子200の製造方法について説明する。
〔塗布工程〕
 まず、図5Aに示すように、樹脂基材40に紫外線硬化性樹脂JS2を塗布する。塗布方法として、例えばダイコート法が用いられる。表面40p上に紫外線硬化性樹脂JS2を塗布された樹脂基材40は、不図示の搬送系によってロール状モールド100下に搬送される。
〔転写・離型工程〕
 次に、図5Bに示すように、樹脂基材40上の紫外線硬化性樹脂JS2にロール状モールド100の形状を転写し成形する。具体的には、樹脂基材40上に塗布された紫外線硬化性樹脂JS2に対して上述したロール状モールド100を反時計方向に回転させつつ下側の樹脂基材40方向に押圧し、或いは樹脂基材40をロール状モールド100側に押圧し、押圧部分に裏面側から紫外線を局所的に照射して紫外線硬化性樹脂JS2を硬化させる。例えば、図示のように、成形前の紫外線硬化性樹脂JS2側は、遮光体RTによって紫外線から遮蔽される。樹脂の硬化後又は硬化と並行してにロール状モールド100の回転を継続し、ロール状モールド100から樹脂基材40とともに紫外線硬化性樹脂JS2を離型する。ロール状モールド100を連続的に回転させることにより、硬化後の紫外線硬化性樹脂JS2の離型が実行されるとともに、ロール状モールド100が未硬化の紫外線硬化性樹脂JS2に接触し、連続して複数回転写・離型工程を行うことができる。製造された素子構造体は、ロール状モールド100下から外部に搬送される。以上により、ロール状モールド100のパターン部11が樹脂基材40上の紫外線硬化性樹脂JS2に転写され、図5Cに示すように、所定の大きさの樹脂基材40上に複数の素子200のパターン(凹凸形状31a)が形成された素子集合体80を得る。なお、図5Bのロール状モールド100の断面図において、ロール状モールド100のパターン形状SSを概念的に大きく示しているが、実際には微細な素子200のパターンとなっている。また、樹脂基材40は、ロール状モールド100の側面100aすなわちフィルム状モールド10の表面10aに巻き付けるようにして供給することもできる。
〔切断工程〕
 最後に、図5Dに示すように、素子集合体80を破線に沿って切断し個片化する。これにより、図5Dに示す個片化された素子200を得る。切断の方法として、打ち抜き刃90による切断、COレーザーによる切断、ダイシングカット等が用いられる。なお、製品によって、個片化せずに顧客へ納品する場合もあり、この場合、素子集合体80を切断しない。
 以上説明したロール状モールド100によれば、型としてのガラス基材部12が薄板状(フィルム状)であるため、可撓性があり、曲面を有する支持部材である円筒状ロール20に容易に貼りつけることができる。ガラス基材部12の厚さや円筒状ロール20の径を適切に設定すれば、ガラス基材部12が破損することなく円筒状ロール20に密着する。また、ガラスを基材部としているため、繰り返し成形(素子を製造)しても型の劣化を防ぐことができ、型の耐久性を良くすることができる。また、ガラスを基材部としているため、パターン部11に成膜加工をする際に高温工程を採用しても、ガラス基材部12での反り等が発生せず、微細な凹凸形状11aの寸法変化を防ぐことができる。なお、ガラスは、樹脂に比較して物性的に硬く、無機系化合物やフッ素系化合物等との相性も良いため、これらの成膜を行っても型の劣化が少なく耐久性が良い。
〔実施例1〕
 以下、本実施形態の実施例について説明する。
 ロール状モールド100の作製において、軸AX方向の長さ100mm、周方向の長さ600mm、総厚み0.15mmのフィルム状モールド10と、軸AX方向の長さ100mm、半径100mmの円筒状ロール20とを用いた。フィルム状モールド10のパターン部11の凸部の高さは、約0.03mmである。フィルム状モールド10のガラス基材部12には、厚さ0.1mmの無アルカリホウケイ酸ガラスを用いた。パターン部11の紫外線硬化性樹脂JS1として、エポキシ系樹脂を用い、総厚0.05mmとした。なお、保護膜13には、SiOを用い、厚さ20nmに形成した。保護膜13の形成には、CVD法を用いた。また、離型膜14には、ダイキン工業株式会社製 オプツールDSXを用いた。離型膜14の形成には、ディッピング法を用いた。
 ロール状モールド100を用いて作製された素子200のうち構造部30には、紫外線硬化性樹脂JS2として、東洋合成工業製 UVナノインプリント用樹脂 PAK-02を用いた。構造部30の凹部の高さは、約0.03mmである。
 以下、本実施例のロール状モールド100の性能について説明する。なお、比較例として、フィルム状モールドの基材部が樹脂、具体的にはPCであるロール状モールドを用い、他の部材は本実施形態のロール状モールド100と同様の材料及び製造方法を用いた。本実施例及び比較例ともにロール状モールドを適宜回転させ、100回の転写を行った。
 以下、表1に本実施例及び比較例の耐久試験結果を示す。
〔表1〕
Figure JPOXMLDOC01-appb-I000001
 表1に示すように、本実施例において、100回の転写後、ガラス基材部12に劣化は見られなかった。一方、比較例において、100回の転写後、樹脂製の基材部に亀裂が発生し劣化が見られた。これにより、基材をガラス製にすることによりロール状モールド100の耐久性が向上したことがわかる。
〔第2実施形態〕
 以下、第2実施形態に係るロール状モールド等について説明する。なお、第2実施形態に係るロール状モールド等は、第1実施形態のロール状モールド等を一部変更したものであり、特に説明しない部分は、第1実施形態と同様である。
 図6Aに示すように、2枚のガラス基材部12、すなわち2枚のフィルム状モールド10を円筒状ロール20に固定する。図6Aでは、円筒状ロール20の円周と同じ周方向の長さの2枚のフィルム状モールド10を巻きつけている。この場合、フィルム状モールド10上の素子パターンSSは、図6Bのように配置される。なお、図6Cに示すように、2枚のフィルム状モールド10に異なる凹凸形状11a(例えば図示の記号「A」で示すAタイプ、及び記号「B」で示すBタイプ)を付与すれば、一度に異なる凹凸形状11aの素子200を、それぞれ複数形成することができる。
 本実施形態のロール状モールド100によれば、複数のガラス基材部12を用いるため、フィルム状モールド10の1枚当たりの面積を比較的小さくすることができ、フィルム状モールド10の歩留まりの向上(不良率の低下)を図ることができ、フィルム状モールド10の作製が容易になる。また、面積を比較的小さくすることができるため、大掛かりな装置を必要とせずにフィルム状モールド10を良い形状精度で作製することができる。また、複数のフィルム状モールド10を1つの円筒状ロール20に貼りつけることにより、多品種少量の製品を製造することができる。なお、図6Aのように、フィルム状モールド10がロール状モールド100の回転方向に水平な方向に分割されているため、成形用の樹脂がフィルム状モールド10と円筒状ロール20との間に入り込みにくくなる。
 なお、フィルム状モールド10の分割の仕方は、図6Aの場合に限られず、適宜変更することができ、例えば以下のようなものとすることができる。すなわち、図7Aに示すように、2枚のフィルム状モールド10をロール状モールド100の回転方向に垂直な方向(軸AXに平行な方向)で分割する。この場合、フィルム状モールド10の周方向の長さが長くならず、上述と同様にフィルム状モールド10の作製が容易になる。
 また、図7Bに示すように、円筒状ロール20の円周と同じ周方向の長さの3枚以上のフィルム状モールド10を巻きつけてもよい。
 また、フィルム状モールド10をさらに複数枚に分割した場合、図7Cに示すように、入れ子状に配置したり、図7Dに示すように、ハニカム状に配置したりすることもできる。
〔第3実施形態〕
 以下、第3実施形態に係るロール状モールド等について説明する。なお、第3実施形態に係るロール状モールド等は、第1実施形態のロール状モールド等を一部変更したものであり、特に説明しない部分は、第1実施形態と同様である。
 図8に示すように、ガラス基材部12は、接着剤GUを用いて円筒状ロール20に固定される。接着剤GUによって貼りつける場合、フィルム状モールド10又は円筒状ロール20に接着剤GUをつけ、フィルム状モールド10を円筒状ロール20に巻きつける。なお、ガラス基材部12を円筒状ロール20に固定する方法として、接着剤GUに限らず、両面テープ等の他の粘着部材を用いることができる。
 本実施形態のロール状モールド100によれば、接着剤GUを用いることにより、フィルム状モールド10を円筒状ロール20に強固に固定することができる。
 以上、実施形態に即して本発明を説明したが、本発明は上記実施形態に限定されるものではない。例えば、上記実施形態において、マイクロ流路デバイスのパターン形状は例示であり、適宜変更することができる。また、素子200として光学素子を作製する場合、図4A~4Gと同様の工程で光学素子に対応した形状が複数形成されたフィルム状モールド10を、円筒状ロール20の側面20pに巻きつけてロール状モールド100を形成し、図5A、5Bと同工程である図9A、9Bに示す工程を用いて、図9Cに示す複数の光学素子が形成された素子集合体80を作製できる。最後に、図9Dに示すように、素子集合体80を破線に沿って切断し個片化する。これにより、図9Eに示す個片化された光学素子である素子200を得る。図9Eに示す素子200には、光学機能部OSと光学機能部OSを支持するフランジ部FLとが設けられている。
 また、上記実施形態において、製品形状を反転したフィルム状モールド10を作製したが、製品形状を反転したマスター型を準備し、製品形状を有したサブマスター型を複製し、さらにもう一度転写させ製品形状を反転したサブサブマスター型を作成してもよい。
 また、上記実施形態において、樹脂基材40上にロール状モールド100を配置したが、樹脂基材40を上方に搬送し、樹脂基材40の下にロール状モールド100を配置してもよい。
 なお、上記の実施の形態では、フィルム状モールド10を円筒状ロール20に固着してロール状モールド100を形成した例で説明したが、これに限るものでなく、フィルム状モールド10をベルトに固着してロール状モールドを形成してもよい。

Claims (22)

  1.  紫外線硬化性樹脂で形成される微細な凹凸形状を有するパターン部と、
     前記パターン部を支持する薄板状のガラス基材部と、
     前記パターン部が表側となるように前記ガラス基材部を裏側から支持する、曲面を有する支持部材と、
    を備える、ロール状モールド。
  2.  少なくとも前記パターン部は、表面側に離型膜を有する、請求項1に記載のロール状モールド。
  3.  前記離型膜は、フッ素系化合物で形成される、請求項2に記載のロール状モールド。
  4.  少なくとも前記パターン部と前記離型膜との間に保護膜を有する、請求項2に記載のロール状モールド。
  5.  前記保護膜は、無機系化合物で形成される、請求項4に記載のロール状モールド。
  6.  前記保護膜の厚みは、5nm以上である、請求項4に記載のロール状モールド。
  7.  前記保護膜は、SiOを含む材料で形成される、請求項4に記載のロール状モールド。
  8.  前記紫外線硬化性樹脂は、エポキシ系樹脂及びアクリル系樹脂のいずれか一方である、請求項1に記載のロール状モールド。
  9.  前記ガラス基材部は、厚みが0.1mm以上0.2mm以下であり、最小曲げ半径が50mmである部材で形成される、請求項1に記載のロール状モールド。
  10.  前記支持部材は円筒状ロールであり、前記ガラス基材部は、真空チャックにより前記円筒状ロールに固定される、請求項1に記載のロール状モールド。
  11.  前記ガラス基材部は、接着剤及び両面テープの少なくとも一方を用いて前記支持部材に固定される、請求項1に記載のロール状モールド。
  12.  単一の前記ガラス基材部の周方向の長さは、前記支持部材の周の長さと等しい、請求項1に記載のロール状モールド。
  13.  複数の前記ガラス基材部を前記支持部材に固定する、請求項1に記載のロール状モールド。
  14.  平板状のガラス基材部の一方の面側に紫外線硬化性樹脂によって微細な凹凸形状を有するパターン部を形成するパターン部形成工程と、
     前記パターン部形成工程後、前記ガラス基材部の他方の面側を、曲面を有する支持部材に固定する固定工程と、
    を備える、ロール状モールドの製造方法。
  15.  前記パターン部形成工程と前記固定工程との間に、前記パターン部の上側に離型膜を形成する離型膜形成工程を備える、請求項14に記載のロール状モールドの製造方法。
  16.  前記パターン部形成工程と前記離型膜形成工程との間に、前記パターン部の上に保護膜を形成する保護膜形成工程を備える、請求項15に記載のロール状モールドの製造方法。
  17.  前記パターン部は、インプリントプロセスにより形成する、請求項14に記載のロール状モールドの製造方法。
  18.  前記離型膜は、ディッピング法を用いて形成する、請求項15に記載のロール状モールドの製造方法。
  19.  前記保護膜は、CVD法を用いて形成する、請求項16に記載のロール状モールドの製造方法。
  20.  樹脂基材に紫外線硬化性樹脂を塗布する塗布工程と、
     前記塗布工程後、請求項1から13までのいずれか一項に記載のロール状モールドの前記パターン部を前記樹脂基材方向に押圧し、紫外線硬化性樹脂に紫外線を照射して前記パターン部の形状を転写固化させる転写工程と、
     前記転写工程後、前記紫外線硬化性樹脂から前記ロール状モールドを離型する離型工程と、
    を備える、素子の製造方法。
  21.  前記ロール状モールドが回転し、前記転写工程と前記離型工程とを複数回行う、請求項20に記載の素子の製造方法。
  22.  前記素子が、マイクロ流路デバイス又は光学素子である、請求項20に記載の素子の製造方法。
PCT/JP2013/059417 2012-03-30 2013-03-28 ロール状モールド、並びに、ロール状モールド及び素子の製造方法 WO2013147105A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012083189 2012-03-30
JP2012-083189 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013147105A1 true WO2013147105A1 (ja) 2013-10-03

Family

ID=49260348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059417 WO2013147105A1 (ja) 2012-03-30 2013-03-28 ロール状モールド、並びに、ロール状モールド及び素子の製造方法

Country Status (3)

Country Link
JP (1) JPWO2013147105A1 (ja)
TW (1) TW201410428A (ja)
WO (1) WO2013147105A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159618A1 (ja) * 2014-04-15 2015-10-22 富士フイルム株式会社 型ロールの製造方法及び型ロール
WO2017073370A1 (ja) * 2015-10-26 2017-05-04 大日本印刷株式会社 フィルムモールド及びインプリント方法
JPWO2016051928A1 (ja) * 2014-10-04 2017-09-28 富山県 インプリント用テンプレート及びその製造方法
KR20200084604A (ko) * 2019-01-03 2020-07-13 부산대학교 산학협력단 렌즈 표면 나노구조층 및 이의 제조 방법
KR20200133960A (ko) * 2019-05-21 2020-12-01 한국세라믹기술원 패터닝 복합 장치 및 그 동작 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02217234A (ja) * 1989-02-18 1990-08-30 Canon Inc 2p用ロール型スタンパーおよびその製造方法
JP2006289952A (ja) * 2005-04-07 2006-10-26 Samsung Electro Mech Co Ltd インプリント装置、システム及び方法
JP2009226697A (ja) * 2008-03-21 2009-10-08 Fujifilm Corp スタンパーローラの製造方法及びその方法で製造されたスタンパーローラ
WO2012018048A1 (ja) * 2010-08-06 2012-02-09 綜研化学株式会社 ナノインプリント用樹脂製モールドおよびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4743373B2 (ja) * 2001-08-21 2011-08-10 株式会社クラレ 樹脂シートの製造方法
JP2006116826A (ja) * 2004-10-21 2006-05-11 Seiko Epson Corp マイクロレンズ基板製造用成形型、マイクロレンズ基板の製造方法、マイクロレンズ基板、透過型スクリーンおよびリア型プロジェクタ
JP5396074B2 (ja) * 2007-12-20 2014-01-22 株式会社クラレ 樹脂シートの製造方法、光学フィルム、及び、樹脂シートの製造装置
JP5632372B2 (ja) * 2009-06-05 2014-11-26 旭化成イーマテリアルズ株式会社 ナノインプリント用モールド及びナノインプリント用モールドの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02217234A (ja) * 1989-02-18 1990-08-30 Canon Inc 2p用ロール型スタンパーおよびその製造方法
JP2006289952A (ja) * 2005-04-07 2006-10-26 Samsung Electro Mech Co Ltd インプリント装置、システム及び方法
JP2009226697A (ja) * 2008-03-21 2009-10-08 Fujifilm Corp スタンパーローラの製造方法及びその方法で製造されたスタンパーローラ
WO2012018048A1 (ja) * 2010-08-06 2012-02-09 綜研化学株式会社 ナノインプリント用樹脂製モールドおよびその製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159618A1 (ja) * 2014-04-15 2015-10-22 富士フイルム株式会社 型ロールの製造方法及び型ロール
JP2015202646A (ja) * 2014-04-15 2015-11-16 富士フイルム株式会社 型ロールの製造方法及び型ロール
JPWO2016051928A1 (ja) * 2014-10-04 2017-09-28 富山県 インプリント用テンプレート及びその製造方法
WO2017073370A1 (ja) * 2015-10-26 2017-05-04 大日本印刷株式会社 フィルムモールド及びインプリント方法
JP2017084900A (ja) * 2015-10-26 2017-05-18 大日本印刷株式会社 フィルムモールド及びインプリント方法
CN108352301A (zh) * 2015-10-26 2018-07-31 大日本印刷株式会社 薄膜模具以及压印方法
US11123960B2 (en) 2015-10-26 2021-09-21 Dai Nippon Printing Co., Ltd. Film mold and imprinting method
CN108352301B (zh) * 2015-10-26 2023-03-24 大日本印刷株式会社 薄膜模具以及压印方法
KR20200084604A (ko) * 2019-01-03 2020-07-13 부산대학교 산학협력단 렌즈 표면 나노구조층 및 이의 제조 방법
KR102194832B1 (ko) 2019-01-03 2020-12-23 부산대학교 산학협력단 렌즈 표면 나노구조층의 제조 방법
KR20200133960A (ko) * 2019-05-21 2020-12-01 한국세라믹기술원 패터닝 복합 장치 및 그 동작 방법
KR102291288B1 (ko) 2019-05-21 2021-08-20 한국세라믹기술원 패터닝 복합 장치 및 그 동작 방법

Also Published As

Publication number Publication date
JPWO2013147105A1 (ja) 2015-12-14
TW201410428A (zh) 2014-03-16

Similar Documents

Publication Publication Date Title
US9354512B2 (en) Resin mold for imprinting and method for producing the same
US9895838B2 (en) Resin mold for nanoimprinting and production method thereof
JP5597263B2 (ja) 微細構造積層体、微細構造積層体の作製方法及び微細構造体の製造方法
EP2950330B1 (en) Light-transmitting imprinting mold and method for manufacturing large-area mold
US9511535B2 (en) Resin mold, production method thereof, and use thereof
WO2013147105A1 (ja) ロール状モールド、並びに、ロール状モールド及び素子の製造方法
WO2010032511A1 (ja) ウエハレンズの製造方法
TWI618113B (zh) Functional transfer body and functional transfer film reel
TW201519962A (zh) 用於在帶狀薄膜基材上形成具有不連續圖案之塗膜的塗敷裝置、及具有凹凸圖案之帶狀薄膜構件的製造方法
WO2013002048A1 (ja) 微細凹凸構造転写用鋳型
JP2018517944A (ja) セグメント化転写テープ並びにその作製及び使用方法
TWI592741B (zh) 光罩及光罩的製造方法
JP2013045792A (ja) ロール状モールド
US11123960B2 (en) Film mold and imprinting method
JP2018187767A (ja) 撥水性部材及びその製造方法
KR20120020012A (ko) 유기-무기 복합체 및 이로부터 제조된 나노임프린트용 스탬프
CN112689797A (zh) 用于制造压印光刻的印模的方法、用于压印光刻的印模、压印辊子、和卷对卷基板处理设备
US9855703B2 (en) Method of forming aligned pattern in pattern formation region by using imprint process
US20220032507A1 (en) Method for producing flexible mold, flexible mold substrate and method for producing optical component
KR102230702B1 (ko) 나노 임프린팅 패턴 제작 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13770379

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014508071

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13770379

Country of ref document: EP

Kind code of ref document: A1