WO2013146843A1 - 医用画像処理装置及びプログラム - Google Patents

医用画像処理装置及びプログラム Download PDF

Info

Publication number
WO2013146843A1
WO2013146843A1 PCT/JP2013/058919 JP2013058919W WO2013146843A1 WO 2013146843 A1 WO2013146843 A1 WO 2013146843A1 JP 2013058919 W JP2013058919 W JP 2013058919W WO 2013146843 A1 WO2013146843 A1 WO 2013146843A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
cell
image
fluorescent
cancer
Prior art date
Application number
PCT/JP2013/058919
Other languages
English (en)
French (fr)
Inventor
昭教 角森
岡田 尚大
幸祐 権田
憲明 大内
みか 渡邉
Original Assignee
コニカミノルタ株式会社
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社, 国立大学法人東北大学 filed Critical コニカミノルタ株式会社
Priority to US14/387,415 priority Critical patent/US9189678B2/en
Priority to JP2014507943A priority patent/JP5804194B2/ja
Priority to EP13769898.1A priority patent/EP2833138B1/en
Publication of WO2013146843A1 publication Critical patent/WO2013146843A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • G06V20/695Preprocessing, e.g. image segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • G06V20/698Matching; Classification
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • G06T2207/10061Microscopic image from scanning electron microscope
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10064Fluorescence image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20221Image fusion; Image merging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30024Cell structures in vitro; Tissue sections in vitro
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30096Tumor; Lesion

Definitions

  • the present invention relates to a medical image processing apparatus and a program.
  • the collected tissue is first dehydrated to fix it, and then treated with paraffin, and then cut into thin slices with a thickness of 2 to 8 ⁇ m, the paraffin is removed, stained, and observed under a microscope.
  • a pathologist makes a diagnosis based on morphological information such as a change in the size and shape of a cell nucleus and a change in a pattern as a tissue, and staining information.
  • HE staining hematoxylin-eosin staining
  • DAB diaminobenzine
  • identifying proteins that are over-expressed in tissue sections and their expression levels can be very important information in determining prognosis and subsequent treatment plans.
  • the HER2 protein encoded by the HER2 gene is a receptor-type glycoprotein that penetrates the cell membrane, and is composed of three domains, extracellular, transmembrane, and intracellular. It is activated and is involved in cell proliferation and malignant transformation through signal transduction pathways. Overexpression of HER2 protein is observed in breast cancer, lung cancer, colon cancer, stomach cancer, bladder cancer and the like.
  • HER2 protein is considered to be a prognostic factor for breast cancer, and it is known that the prognosis of HER2-positive cases is significantly poor particularly in lymph node metastasis-positive cases. Further, HER2 protein is attracting attention as an important factor that determines the adaptation of a molecular target drug (trastuzumab), and as an effect predictor of anticancer agents such as anthracyclines and taxanes.
  • HER2 protein is considered to be a prognostic factor for breast cancer, and it is known that the prognosis of HER2-positive cases is significantly poor particularly in lymph node metastasis-positive cases.
  • HER2 protein is attracting attention as an important factor that determines the adaptation of a molecular target drug (trastuzumab), and as an effect predictor of anticancer agents such as anthracyclines and taxanes.
  • overexpression of HER2 protein is examined by an immunohistochemical method (IHC method), and overexpression of HER2 gene is examined by FISH method.
  • IHC method immunohistochemical method
  • FISH method FISH method
  • first, positive, negative, and border areas are selected by a simple IHC method, and if positive, trastuzumab administration is determined.
  • positive and negative are further selected by the FISH method.
  • the IHC method and the FISH method are compared, the IHC method is simple but has a problem of low accuracy.
  • the FISH method has high accuracy, but the work is complicated and the cost is high. In other words, it is desired to develop a technique that can achieve the same accuracy as the FISH method by the IHC method. In addition, it is desired to develop a method that has a low personality and can be automated.
  • Patent Document 1 a cell nucleus is extracted from an image of a biological tissue stained by the DAB method, a cell membrane is specified from the image of the biological tissue based on the cell nucleus, and a staining state of the cell membrane is determined.
  • a system for evaluating the expression of HER2 protein based on the above is described.
  • Patent Document 1 since the DAB method is amplified by an enzyme and lacks quantitativeness, the technique described in Patent Document 1 cannot accurately grasp the expression level of the HER2 protein. Moreover, in patent document 1, protein expression is evaluated about the area
  • An object of the present invention is to make it possible to efficiently grasp a cancer region in which a specific protein is overexpressed from the entire tissue section image.
  • a medical image processing apparatus comprises: An input means for inputting a cell morphology image representing the morphology of cells in the tissue section, and a fluorescence image representing the expression of a specific protein in the same range of the tissue section as a fluorescent bright spot; A cell nucleus extracting means for extracting a cell nucleus region from the cell morphology image; A fluorescent bright spot extracting means for extracting a fluorescent bright spot from the fluorescent image; When a predetermined region including the expression region of the specific protein around the cell membrane is defined from the center of gravity of each cell nucleus region extracted by the cell nucleus extracting means, and the predetermined region does not overlap with the other predetermined region The predetermined region is estimated as a cell region including one cell, and when the plurality of predetermined regions overlap each other, the region surrounded by the outer periphery of the plurality of overlapping regions is defined as a plurality of cells.
  • An area estimation means for estimating a cell area including: Feature amount calculating means for calculating a feature amount related to each cell region based on a cell nucleus and a fluorescent bright spot included in each cell region estimated by the region estimating unit; A determination unit that determines whether each cell region estimated by the region estimation unit based on the calculated feature amount is cancer and the expression state of the specific protein in the region determined to be cancer; An output means for outputting a determination result by the determination means; Is provided.
  • the region defined by the region estimation means is preferably a circular region having a predetermined radius including the expression region of the specific protein around the cell membrane centered on the center of gravity of each cell nucleus region extracted by the cell nucleus extraction unit. .
  • the feature amount calculating means is based on the cell nucleus included in each cell region estimated by the region estimating means, and the area occupied by one cell nucleus in each cell region and / or the uneven distribution of cell nuclei in each cell region Calculating an index value indicating sex, and calculating the density of fluorescent luminescent spots in each cell region based on the fluorescent luminescent spots contained in each cell region;
  • the determination means determines whether or not each cell region is cancer based on an area occupied by one cell nucleus in each cell region and / or an index value indicating the uneven distribution of cell nuclei in each cell region. It is preferable to determine the expression state of the specific protein in the region based on the density of fluorescent bright spots in the cell region determined and determined as the cancer.
  • the determination unit is configured to determine whether the feature value of the fluorescent bright spot calculated for the cell region determined to be the cancer exceeds a plurality of predetermined threshold values, in the cell region determined to be the cancer. Classify the expression status of specific proteins into multiple stages,
  • the output means preferably outputs, as the determination result, an image obtained by classifying the cell region determined as the cancer on the cell morphology image in a manner corresponding to the classification result of the expression state of the specific protein.
  • a program is Computer An input means for inputting a cell morphology image representing the morphology of cells in the tissue section and a fluorescence image representing the expression of a specific protein in the same range of the tissue section as a fluorescent bright spot,
  • a cell nucleus extracting means for extracting a cell nucleus region from the cell morphology image; Fluorescent luminescent spot extracting means for extracting fluorescent luminescent spots from the fluorescent image,
  • a predetermined region including the expression region of the specific protein around the cell membrane is defined from the center of gravity of each cell nucleus region extracted by the cell nucleus extracting means, and the predetermined region does not overlap with the other predetermined region
  • the predetermined region is estimated as a cell region including one cell, and when the plurality of predetermined regions overlap each other, the region surrounded by the outer periphery of the plurality of overlapping regions is defined as a plurality of cells.
  • Region estimation means for estimating a cell region including Feature amount calculating means for calculating a feature amount related to each cell region based on a cell nucleus and a fluorescent bright spot included in each cell region estimated by the region estimating unit; A determination unit that determines whether each cell region estimated by the region estimation unit based on the calculated feature amount is cancer and the expression state of the specific protein in the region determined to be cancer, Output means for outputting a determination result by the determination means; To function as.
  • FIG. 1 It is a figure which shows the system configuration
  • FIG. 1 shows an example of the overall configuration of a pathological diagnosis support system 100 in the present embodiment.
  • the pathological diagnosis support system 100 acquires a microscopic image of a tissue section of a human body stained with a predetermined staining reagent, and analyzes the acquired microscopic image, thereby expressing the expression of a specific biological material in the tissue section to be observed. This is a system that outputs feature quantities quantitatively.
  • the pathological diagnosis support system 100 is configured by connecting a microscope image acquisition apparatus 1A and an image processing apparatus 2A so as to be able to transmit and receive data via an interface such as a cable 3A.
  • the connection method between the microscope image acquisition device 1A and the image processing device 2A is not particularly limited.
  • the microscope image acquisition apparatus 1A and the image processing apparatus 2A may be connected via a LAN (Local Area Network) or may be configured to be connected wirelessly.
  • LAN Local Area Network
  • the microscope image acquisition apparatus 1A is a known optical microscope with a camera, and acquires a microscope image of a tissue section on a slide placed on a slide fixing stage and transmits it to the image processing apparatus 2A.
  • the microscope image acquisition apparatus 1A includes an irradiation unit, an imaging unit, an imaging unit, a communication I / F, and the like.
  • the irradiating means includes a light source, a filter, and the like, and irradiates light to a tissue section on the slide placed on the slide fixing stage.
  • the imaging means is composed of an eyepiece lens, an objective lens, and the like, and forms an image of transmitted light, reflected light, or fluorescence emitted from the tissue section on the slide by the irradiated light.
  • the imaging means includes a CCD (Charge Coupled Device) sensor and the like, and images the image formed on the imaging surface by the imaging means to generate digital image data (R, G, B image data) of the microscope image
  • the communication I / F transmits image data of the generated microscope image to the image processing apparatus 2A.
  • the microscope image acquisition apparatus 1A includes a bright field unit that combines an irradiation unit and an imaging unit suitable for bright field observation, and a fluorescence unit that combines an irradiation unit and an imaging unit suitable for fluorescence observation. It is possible to switch between bright field / fluorescence by switching units.
  • the microscope image acquisition apparatus 1A is not limited to a microscope with a camera.
  • a virtual microscope slide creation apparatus for example, a special microscope scan apparatus that acquires a microscope image of an entire tissue section by scanning a slide on a microscope slide fixing stage). Table 2002-514319
  • the virtual microscope slide creation device it is possible to acquire image data that allows a display unit to view a whole tissue section on a slide at a time.
  • the image processing device 2A calculates a feature amount quantitatively indicating the expression level of a specific biological material in the tissue section to be observed by analyzing the microscope image transmitted from the microscope image acquisition device 1A. It is a medical image processing apparatus that outputs a feature amount.
  • FIG. 2 shows a functional configuration example of the image processing apparatus 2A. As shown in FIG. 2, the image processing apparatus 2 ⁇ / b> A includes a control unit 21, an operation unit 22, a display unit 23, a communication I / F 24, a storage unit 25, and the like, and each unit is connected via a bus 26. Yes.
  • the control unit 21 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), and the like.
  • the control unit 21 executes various processes in cooperation with various programs stored in the storage unit 25, and performs image processing 2A. Overall control of the operation.
  • the control unit 21 executes image analysis processing (see FIG. 10) in cooperation with a program stored in the storage unit 25, and extracts a cell nucleus extraction unit, a fluorescent bright spot extraction unit, a region estimation unit, and a feature amount calculation.
  • the function as a means and a determination means is implement
  • the operation unit 22 includes a keyboard having character input keys, numeric input keys, various function keys, and the like, and a pointing device such as a mouse, and a key pressing signal pressed by the keyboard and an operation signal by the mouse. Are output to the control unit 21 as an input signal.
  • the display unit 23 includes, for example, a monitor such as a CRT (Cathode Ray Tube) or an LCD (Liquid Crystal Display), and displays various screens in accordance with display signal instructions input from the control unit 21.
  • the display unit 23 functions as an output unit for outputting the calculated feature amount.
  • the communication I / F 24 is an interface for transmitting and receiving data to and from external devices such as the microscope image acquisition device 1A.
  • the communication I / F 24 functions as a bright field image and fluorescent image input unit.
  • the communication I / F 24 functions as an input unit.
  • the storage unit 25 includes, for example, an HDD (Hard Disk Drive), a semiconductor nonvolatile memory, or the like. As described above, the storage unit 25 stores various programs, various data, and the like. For example, the storage unit 25 stores various data including a magnification table 251 used in image analysis processing described later.
  • the image processing apparatus 2A may include a LAN adapter, a router, and the like and be connected to an external device via a communication network such as a LAN.
  • the image processing apparatus 2A in the present embodiment performs analysis using the bright field image (HE-stained image) and the fluorescence image transmitted from the microscope image acquisition apparatus 1A.
  • a bright-field image is a microscope image obtained by enlarging and photographing a HE (hematoxylin-eosin) -stained tissue section in a bright field with the microscope image acquisition apparatus 1A.
  • Hematoxylin is a blue-violet pigment that stains cell nuclei, bone tissue, part of cartilage tissue, serous components, etc. (basophilic tissue, etc.).
  • Eosin is a red to pink pigment that stains the cytoplasm, connective tissue of soft tissues, red blood cells, fibrin, endocrine granules, etc.
  • FIG. 3 shows an example of a bright field image obtained by photographing a tissue section subjected to HE staining. As shown in FIG. 3, in the bright field image obtained by photographing the tissue section subjected to HE staining, the morphology of the cells in the tissue section appears. Cell nuclei are darker than the surrounding cytoplasm (blue-violet) and appear distinct from the surroundings, and the morphology of the cell nuclei can be clearly captured in the bright field image.
  • the fluorescent image is stained using a staining reagent including nanoparticles (referred to as fluorescent substance-containing nanoparticles) encapsulating a fluorescent substance bound with a biological substance recognition site that specifically binds and / or reacts with a specific biological substance.
  • a staining reagent including nanoparticles referred to as fluorescent substance-containing nanoparticles
  • This is a microscope image obtained by irradiating the tissue section with the excitation light of a predetermined wavelength in the microscope image acquisition device 1A to emit fluorescent substance-containing nanoparticles (fluorescence), and enlarging and photographing this fluorescence. . That is, the fluorescence that appears in the fluorescence image indicates the expression of a specific biological material corresponding to the biological material recognition site in the tissue section.
  • FIG. 4 shows an example of the fluorescence image.
  • a method for acquiring a fluorescent image including a staining reagent (fluorescent substance-containing nanoparticles) used for acquiring the fluorescent image, a method for staining a tissue section with the staining reagent, and the like.
  • fluorescent substance examples include fluorescent organic dyes and quantum dots (semiconductor particles). When excited by ultraviolet to near infrared light having a wavelength in the range of 200 to 700 nm, it preferably emits visible to near infrared light having a wavelength in the range of 400 to 1100 nm.
  • fluorescent organic dyes include fluorescein dye molecules, rhodamine dye molecules, Alexa Fluor (Invitrogen) dye molecules, BODIPY (Invitrogen) dye molecules, cascade dye molecules, coumarin dye molecules, and eosin dyes.
  • fluorescent organic dyes include fluorescein dye molecules, rhodamine dye molecules, Alexa Fluor (Invitrogen) dye molecules, BODIPY (Invitrogen) dye molecules, cascade dye molecules, coumarin dye molecules, and eosin dyes.
  • examples include molecules, NBD dye molecules, pyrene dye molecules, Texas Red dye molecules, cyanine dye molecules, and the like.
  • quantum dots containing II-VI group compounds, III-V group compounds, or group IV elements as components ("II-VI group quantum dots”, "III-V group quantum dots”, " Or “Group IV quantum dots”). You may use individually or what mixed multiple types.
  • CdSe CdS, CdS, CdTe, ZnSe, ZnS, ZnTe, InP, InN, InAs, InGaP, GaP, GaAs, Si, and Ge, but are not limited thereto.
  • a quantum dot having the above quantum dot as a core and a shell provided thereon.
  • CdSe / ZnS when the core is CdSe and the shell is ZnS, it is expressed as CdSe / ZnS.
  • CdSe / ZnS, CdS / ZnS, InP / ZnS, InGaP / ZnS, Si / SiO 2 , Si / ZnS, Ge / GeO 2 , Ge / ZnS, and the like can be used, but are not limited thereto.
  • the quantum dots those subjected to surface treatment with an organic polymer or the like may be used as necessary. Examples thereof include CdSe / ZnS having a surface carboxy group (manufactured by Invitrogen), CdSe / ZnS having a surface amino group (manufactured by Invitrogen), and the like.
  • the fluorescent substance-encapsulating nanoparticles are those in which the fluorescent substance is dispersed inside the nanoparticles, whether the fluorescent substance and the nanoparticles themselves are chemically bonded or not. Good.
  • the material constituting the nanoparticles is not particularly limited, and examples thereof include polystyrene, polylactic acid, and silica.
  • Fluorescent substance-containing nanoparticles used in the present embodiment can be produced by a known method.
  • silica nanoparticles encapsulating a fluorescent organic dye can be synthesized with reference to the synthesis of FITC-encapsulated silica particles described in Langmuir 8, Vol. 2921 (1992).
  • Various fluorescent organic dye-containing silica nanoparticles can be synthesized by using a desired fluorescent organic dye in place of FITC.
  • Silica nanoparticles encapsulating quantum dots can be synthesized with reference to the synthesis of CdTe-encapsulated silica nanoparticles described in New Journal of Chemistry, Vol. 33, p. 561 (2009).
  • Polystyrene nanoparticles encapsulating a fluorescent organic dye may be copolymerized using an organic dye having a polymerizable functional group described in US Pat. No. 4,326,008 (1982) or polystyrene described in US Pat. No. 5,326,692 (1992). It can be produced using a method of impregnating nanoparticles with a fluorescent organic dye.
  • Polymer nanoparticles encapsulating quantum dots can be prepared using the method of impregnating polystyrene nanoparticles with quantum dots described in Nature Biotechnology, Vol. 19, page 631 (2001).
  • the average particle diameter is obtained by taking an electron micrograph using a scanning electron microscope (SEM), measuring the cross-sectional area of a sufficient number of particles, and taking each measured value as the area of the circle. As sought. In the present application, the arithmetic average of the particle sizes of 1000 particles is defined as the average particle size. The coefficient of variation was also a value calculated from the particle size distribution of 1000 particles.
  • the biological material recognition site is a site that specifically binds and / or reacts with the target biological material.
  • the target biological substance is not particularly limited as long as a substance that specifically binds to the target biological substance exists, but typically, protein (peptide), nucleic acid (oligonucleotide, polynucleotide), antibody, etc. Is mentioned. Accordingly, substances that bind to the target biological substance include antibodies that recognize the protein as an antigen, other proteins that specifically bind to the protein, and nucleic acids having a base sequence that hybridizes to the nucleic acid. Is mentioned.
  • an anti-HER2 antibody that specifically binds to HER2 which is a protein present on the cell surface
  • an anti-ER antibody that specifically binds to an estrogen receptor (ER) present in the cell nucleus and actin that forms a cytoskeleton
  • an anti-actin antibody that specifically binds to are preferable.
  • the mode of binding between the biological substance recognition site and the fluorescent substance-encapsulating nanoparticles is not particularly limited, and examples thereof include covalent bonding, ionic bonding, hydrogen bonding, coordination bonding, physical adsorption, and chemical adsorption.
  • a bond having a strong bonding force such as a covalent bond is preferred from the viewpoint of bond stability.
  • an organic molecule that connects between the biological substance recognition site and the fluorescent substance-containing nanoparticle.
  • a polyethylene glycol chain can be used, and SM (PEG) 12 manufactured by Thermo Scientific can be used.
  • a silane coupling agent that is a compound widely used for bonding an inorganic substance and an organic substance can be used.
  • This silane coupling agent is a compound having an alkoxysilyl group that gives a silanol group by hydrolysis at one end of the molecule and a functional group such as a carboxyl group, an amino group, an epoxy group, an aldehyde group at the other end, Bonding with an inorganic substance through an oxygen atom of the silanol group.
  • silane coupling agent having a polyethylene glycol chain for example, PEG-silane no. SIM6492.7 manufactured by Gelest
  • silane coupling agent you may use 2 or more types together.
  • a publicly known method can be used for the reaction procedure of the fluorescent organic dye-encapsulated silica nanoparticles and the silane coupling agent.
  • the obtained fluorescent organic dye-encapsulated silica nanoparticles are dispersed in pure water, aminopropyltriethoxysilane is added, and the mixture is reacted at room temperature for 12 hours.
  • fluorescent organic dye-encapsulated silica nanoparticles whose surface is modified with an aminopropyl group can be obtained by centrifugation or filtration.
  • the antibody can be bound to the fluorescent organic dye-encapsulated silica nanoparticles via an amide bond.
  • a condensing agent such as EDC (1-Ethyl-3- [3-Dimethylaminopropyl] carbohydrate, Hydrochloride: manufactured by Pierce (registered trademark)
  • EDC 1-Ethyl-3- [3-Dimethylaminopropyl] carbohydrate, Hydrochloride: manufactured by Pierce (registered trademark)
  • a linker compound having a site that can be directly bonded to the fluorescent organic dye-encapsulated silica nanoparticles modified with organic molecules and a site that can be bonded to the molecular target substance can be used.
  • sulfo-SMCC Sulfosuccinimidyl 4 [N-maleimidemethyl] -cyclohexane-1-carboxylate: manufactured by Pierce
  • sulfo-SMCC Sulfosuccinimidyl 4 [N-maleimidemethyl] -cyclohexane-1-carboxylate: manufactured by Pierce
  • fluorescent substance-encapsulated polystyrene nanoparticles When binding a biological material recognition site to fluorescent substance-encapsulated polystyrene nanoparticles, the same procedure can be applied regardless of whether the fluorescent substance is a fluorescent organic dye or a quantum dot. That is, by impregnating a fluorescent organic dye or quantum dot into polystyrene nanoparticles having a functional group such as an amino group, fluorescent substance-containing polystyrene nanoparticles having a functional group can be obtained, and thereafter using EDC or sulfo-SMCC. Thus, antibody-bound fluorescent substance-encapsulated polystyrene nanoparticles can be produced.
  • Antibodies that recognize specific antigens include M. actin, MS actin, SM actin, ACTH, Alk-1, ⁇ 1-antichymotrypsin, ⁇ 1-antitrypsin, AFP, bcl-2, bcl-6, ⁇ -catenin, BCA 225, CA19-9, CA125, calcitonin, calretinin, CD1a, CD3, CD4, CD5, CD8, CD10, CD15, CD20, CD21, CD23, CD30, CD31, CD34, CD43, CD45, CD45R, CD56, CD57, CD61, CD68, CD79a, "CD99, MIC2", CD138, chromogranin, c-KIT, c-MET, collagen type IV, Cox-2, cyclin D1, keratin, cytokeratin (high molecular weight), pankeratin, pankeratin, cytokeratin 5/6, cytokeratin 7, cytokeratin 8, cytokeratin
  • the pathological section is immersed in a container containing xylene to remove paraffin.
  • the temperature is not particularly limited, but can be performed at room temperature.
  • the immersion time is preferably 3 minutes or longer and 30 minutes or shorter. If necessary, xylene may be exchanged during the immersion.
  • the pathological section is immersed in a container containing ethanol to remove xylene.
  • the temperature is not particularly limited, but can be performed at room temperature.
  • the immersion time is preferably 3 minutes or longer and 30 minutes or shorter. Further, if necessary, ethanol may be exchanged during the immersion.
  • the pathological section is immersed in a container containing water to remove ethanol.
  • the temperature is not particularly limited, but can be performed at room temperature.
  • the immersion time is preferably 3 minutes or longer and 30 minutes or shorter. Moreover, you may exchange water in the middle of immersion as needed.
  • the activation process of the target biological substance is performed according to a known method.
  • the activation conditions are not particularly defined, but as the activation liquid, 0.01 M citrate buffer (pH 6.0), 1 mM EDTA solution (pH 8.0), 5% urea, 0.1 M Tris-HCl buffer, etc. are used. be able to.
  • As the heating device an autoclave, a microwave, a pressure cooker, a water bath, or the like can be used.
  • the temperature is not particularly limited, but can be performed at room temperature. The temperature can be 50-130 ° C. and the time can be 5-30 minutes.
  • the section after the activation treatment is immersed in a container containing PBS (Phosphate Buffered Saline) and washed.
  • PBS Phosphate Buffered Saline
  • the temperature is not particularly limited, but can be performed at room temperature.
  • the immersion time is preferably 3 minutes or longer and 30 minutes or shorter. If necessary, the PBS may be replaced during the immersion.
  • each fluorescent substance-encapsulated nanoparticle PBS dispersion may be mixed in advance, or placed separately on a pathological section separately. Also good.
  • the temperature is not particularly limited, but can be performed at room temperature.
  • the reaction time is preferably 30 minutes or more and 24 hours or less.
  • a known blocking agent such as BSA-containing PBS
  • the stained section is immersed in a container containing PBS, and unreacted fluorescent substance-containing nanoparticles are removed.
  • the temperature is not particularly limited, but can be performed at room temperature.
  • the immersion time is preferably 3 minutes or longer and 30 minutes or shorter. If necessary, the PBS may be replaced during the immersion.
  • a cover glass is placed on the section and sealed. A commercially available encapsulant may be used as necessary.
  • HE dyeing is performed before enclosure with a cover glass.
  • Fluorescence image acquisition A wide-field microscope image (fluorescence image) is acquired from the stained pathological section using the microscope image acquisition device 1A.
  • an excitation light source and a fluorescence detection optical filter corresponding to the absorption maximum wavelength and fluorescence wavelength of the fluorescent material used for the staining reagent are selected.
  • the visual field of the fluorescent image is preferably 3 mm 2 or more, more preferably 30 mm 2 or more, and further preferably 300 mm 2 or more.
  • Nanoparticles 1 Cy5 encapsulated silica nanoparticles
  • a labeling material A was prepared.
  • CdSe / ZnS-encapsulated silica nanoparticles hereinafter referred to as “nanoparticles 2” were produced, and a labeling material B in which an anti-HER2 antibody was bound to the nanoparticles 2 was produced.
  • a plurality of fluorescent images are obtained by performing immunostaining using adjacent sections of human breast tissue whose FISH score has been measured in advance using the produced labeling materials A and B and the labeling materials C and D as comparative examples, and changing the visual field.
  • the visual field was obtained, and the number of fluorescent bright spots appearing in each fluorescent image was measured to examine the relationship with the FISH score.
  • Step (4) The reaction mixture was centrifuged at 10,000 G for 60 minutes, and the supernatant was removed.
  • SEM scanning electron microscope
  • Step (2) Quantum dot-encapsulated silica: synthesis of CdSe / ZnS-encapsulated silica nanoparticles having an emission wavelength of 655 nm
  • CdSe / ZnS-encapsulated silica nanoparticles (hereinafter referred to as “nanoparticles 2”) were prepared by the following steps (1) to (5).
  • Step (1) 10 ⁇ L of CdSe / ZnS decane dispersion (Invitrogen Qdot655) and 40 ⁇ L of tetraethoxysilane were mixed.
  • Step (2) 4 mL of ethanol and 1 mL of 14% aqueous ammonia were mixed.
  • Step (3) The mixture prepared in Step (1) was added to the mixture prepared in Step (2) while stirring at room temperature. Stirring was performed for 12 hours from the start of addition.
  • Step (4) The reaction mixture was centrifuged at 10,000 G for 60 minutes, and the supernatant was removed.
  • Step (1) 1 mg of nanoparticles 1 was dispersed in 5 mL of pure water. Next, 100 ⁇ L of an aminopropyltriethoxysilane aqueous dispersion was added and stirred at room temperature for 12 hours. Step (2): The reaction mixture was centrifuged at 10,000 G for 60 minutes, and the supernatant was removed. Step (3): Ethanol was added to disperse the sediment, followed by centrifugation again.
  • Step (4) The amino group-modified silica nanoparticles obtained in step (3) were adjusted to 3 nM using PBS containing 2 mM of EDTA (ethylenediaminetetraacetic acid).
  • Step (6) The reaction mixture was centrifuged at 10,000 G for 60 minutes, and the supernatant was removed.
  • Step (7) PBS containing 2 mM of EDTA was added, the precipitate was dispersed, and centrifuged again. The washing
  • Step (8) When 100 ⁇ g of the anti-HER2 antibody was dissolved in 100 ⁇ L of PBS, 1 M dithiothreitol (DTT) was added and reacted for 30 minutes.
  • Step (10) Using the nanoparticle 1 as a starting material, the particle dispersion obtained in step (7) and the reduced anti-HER2 antibody solution obtained in step (9) are mixed in PBS and allowed to react for 1 hour. It was. Step (11): 4 ⁇ L of 10 mM mercaptoethanol was added to stop the reaction. Step (12): The reaction mixture was centrifuged at 10,000 G for 60 minutes, and the supernatant was removed. Then, PBS containing 2 mM of EDTA was added, the precipitate was dispersed, and centrifuged again. The washing
  • Fluorescent substance-encapsulated silica nanoparticles bound with anti-HER2 antibody obtained from nanoparticle 1 as a starting material are labeled material A, and phosphor-encapsulated silica nanoparticles bound with anti-HER2 antibody obtained from nanoparticle 2 as a starting material. This is labeled material B.
  • an anti-HER2 antibody was bound to Cy5 to obtain a reduced anti-HER2 antibody solution (labeling material D).
  • labeling material D was bound to Cy5 to obtain a reduced anti-HER2 antibody solution.
  • labeling material C was prepared by binding an anti-HER2 antibody to CdSe.
  • tissue staining using fluorescent substance-containing nanoparticles Using the antibody-binding labeling materials A to D produced by the methods of the following steps (1) to (10), immunostaining was performed using adjacent sections of human breast tissue whose FISH score was measured in advance. As a stained section, a tissue array slide (CB-A712) manufactured by Cosmo Bio was used. Twenty-four sections with a FISH score of 1-9 were used.
  • Step (1) The pathological section was immersed in a container containing xylene for 30 minutes. The xylene was changed three times during the process.
  • Step (2) The pathological section was immersed in a container containing ethanol for 30 minutes. The ethanol was changed three times during the process.
  • Step (3) The pathological section was immersed in a container containing water for 30 minutes. The water was changed three times along the way.
  • Step (6) The section after autoclaving was immersed in a container containing PBS for 30 minutes.
  • Step (7) PBS containing 1% BSA was placed on the tissue and left for 1 hour.
  • a plurality of fluorescent images are obtained by changing the field of view (observation area), and the number of fluorescent bright spots (the number of bright spots) is obtained from each fluorescent image using image analysis software.
  • the microscope used was an upright microscope Axio Imager M2 manufactured by Carl Zeiss, and the objective lens was set to 20 times, and excitation light having a wavelength of 630 to 670 nm was irradiated to form an image of fluorescence emitted from the tissue section. Then, a fluorescence image (image data) was acquired with a microscope installation camera (monochrome), and the number of bright spots was measured with image analysis software.
  • the camera has a pixel size of 6.4 ⁇ m ⁇ 6.4 ⁇ m, a vertical pixel count of 1040, and a horizontal pixel count of 1388 (imaging area 8.9 mm ⁇ 6.7 mm).
  • the correlation coefficient R between the measured number of bright spots and the FISH score was calculated in each visual field.
  • the FISH score corresponds to the overexpression level of the HER2 gene, and the larger the value of the FISH score, the higher the overexpression level of the HER2 gene.
  • FIG. 5 shows the number of bright spots measured from fluorescent images of a plurality of different visual fields (0.3 mm 2 , 3 mm 2 , 32 mm 2 , 324 mm 2 ) and FISH when using the labeling material A (Cy5 inclusion labeling material). It is a figure which shows the relationship with a score. The value of R 2 shown in the figure is the square value of the correlation coefficient between the number of bright spots and the FISH score.
  • FIG. 6 shows the number of bright spots measured from fluorescent images of a plurality of different visual fields (0.3 mm 2 , 3 mm 2 , 32 mm 2 , 324 mm 2 ) and FISH when the labeling material B (CdSe-containing labeling material) is used. It is a figure which shows the relationship with a score.
  • FIG. 7 shows the number of bright spots measured from fluorescence images of a plurality of different visual fields (0.3 mm 2 , 3 mm 2 , 32 mm 2 , 324 mm 2 ) and the FISH score when the labeling material C (CdSe) is used. It is a figure which shows a relationship.
  • FIG. 8 shows the number of bright spots measured from fluorescent images of a plurality of different visual fields (0.3 mm 2 , 3 mm 2 , 32 mm 2 , 324 mm 2 ) and the FISH score when the labeling material D (Cy5) is used. It is a figure which shows a relationship.
  • Table 1 and FIG. 9 show the square value (R 2 ) of the correlation coefficient between the number of bright spots measured from the fluorescence image of each visual field (observation area) and the FISH score for each of the labeling materials A to D.
  • the square value (R 2 ) of the correlation coefficient between the number of bright spots and the FISH score is 0. 5387. This value is approximately 0.734 when converted to the correlation coefficient R, and it can be said that there is a strong correlation between the number of bright spots and the FISH score.
  • the square value (R 2 ) of the correlation coefficient between the number of bright spots and the FISH score is 0. It was 9887.
  • the field of view is 324 mm 2 , it can be said that the correlation is stronger than when the field of view is 32 mm 2 .
  • the labeling materials A and B use particles containing a fluorescent substance and are brighter than the labeling materials C and D using a single fluorescent substance, each point of the bright spot is captured from the image. Easy to measure the number of bright spots with high accuracy.
  • ⁇ Operation of Pathological Diagnosis Support System 100 an operation of acquiring and analyzing the above-described fluorescence image and bright field image in the pathological diagnosis support system 100 will be described.
  • staining is performed using a staining reagent containing fluorescent substance-encapsulating nanoparticles bound to a biological substance recognition site that recognizes a specific protein (here, HER2 protein in breast cancer tissue, hereinafter referred to as a specific protein).
  • a specific protein hereinafter referred to as a specific protein.
  • the present invention is not limited to this example.
  • a bright field image and a fluorescence image are acquired by the procedures (a1) to (a5).
  • A1 The operator uses a microscope image of a slide on which a fluorescent reagent-encapsulated nanoparticle bound with a biological substance recognition site that recognizes a specific protein and a tissue section stained with a HE reagent are placed. Place on the slide fixing stage of the acquisition device 1A.
  • A2) Set to the bright field unit, adjust the imaging magnification and focus, and place the observation target area on the tissue in the field of view.
  • Shooting is performed by the imaging unit to generate bright field image data, and the image data is transmitted to the image processing apparatus 2A.
  • the tissue autofluorescence and eosin emission (background) are 10% (1.1 times). If the fluorescence emission point of the fluorescent substance-encapsulating nanoparticles has the above-mentioned difference in light emission amount, the microscope can be used in any processing system of 8 bits (0 to 255 gradations) and 12 bits (0 to 4095 gradations). It was possible to automatically detect fluorescent luminescent spots from an image (fluorescent image).
  • the excitation light wavelength in the fluorescence unit is selected to be in the range of 560 to 630 nm, and the fluorescent material has fluorescence having a peak in the range of 580 to 690 nm, more preferably in the range of 600 to 630 nm due to the excitation light. It is preferable to use one that emits light.
  • the difference between the autofluorescence of the tissue including the emission of eosin and the fluorescence from the fluorescent substance-containing nanoparticles is secured. This is because it is possible to ensure that they can be distinguished and recognized (difference of 10% (1.1 times) or more).
  • the autofluorescence of the tissue is weak, so the wavelength range of the excitation light is not limited to a general range of 200 nm to 700 nm, and the autofluorescence and fluorescent substance-containing nanoparticles are not particularly limited.
  • a difference in fluorescence emission from the light source so that both can be distinguished and recognized (a difference in light quantity between the two is 10% (1.1 times or more)).
  • FIG. 10 shows a flowchart of image analysis processing in the image processing apparatus 2A.
  • the image analysis processing shown in FIG. 10 is executed in cooperation with the control unit 21 and a program stored in the storage unit 25.
  • step S1 when a bright field image is input from the microscope image acquisition device 1A through the communication I / F 24 (step S1), a cell nucleus region is extracted from the bright field image (step S2).
  • FIG. 11 shows a detailed flow of the process in step S2.
  • the process of step S2 is executed in cooperation with the control unit 21 and the program stored in the storage unit 25.
  • step S2 first, a bright-field image is converted into a monochrome image (step S201).
  • threshold processing is performed on the monochrome image using a predetermined threshold, and the value of each pixel is binarized (step S202).
  • FIG. 12 shows an example of a binary image after threshold processing.
  • noise processing is performed (step S203).
  • the noise process can be performed by performing a closing process on the binary image.
  • the closing process is a process in which the contraction process is performed the same number of times after the expansion process is performed.
  • the expansion process is a process of replacing a target pixel with white when at least one pixel in the range of n ⁇ n pixels (n is an integer of 2 or more) from the target pixel is white.
  • the contraction process is a process of replacing a target pixel with black when at least one pixel in the range of n ⁇ n pixels from the target pixel contains black.
  • FIG. 13 shows an example of an image after noise processing. As shown in FIG. 13, after the noise processing, an image (cell nucleus image) from which cell nuclei are extracted is obtained.
  • a labeling process is performed on the image after the noise process, and a label Label_nucleus is assigned to each of the extracted cell nuclei (step S204).
  • the labeling process is a process for identifying an object in an image by assigning the same label (number) to connected pixels. By labeling, each cell nucleus can be identified from the image after noise processing and a label can be applied.
  • the label Label_nucleus is added to the new cell nucleus as MAX.
  • step S3 of FIG. 10 the cell region in the bright field image is estimated based on the region of the cell nucleus extracted in step S2 (step S3).
  • a circular region having a radius r centered on the center of gravity of each extracted cell nucleus region is determined, and when the determined circular region does not overlap with other circular regions, the determined circular region is regarded as a single circular region.
  • a cell region including a plurality of cells is estimated as a cell region including cells (see FIG. 20A), and when the plurality of circular regions defined above overlap each other, the region surrounded by the outer periphery of the plurality of circular regions overlapping each other (See FIG. 20B).
  • overexpression of a specific protein is seen around the cell membrane of cancerous cells.
  • the radius r is set to a size that reliably includes the cell and the specific protein expressed around the cell membrane.
  • a region defined from the center of gravity of each cell nucleus is described as a circular region in order to estimate the cell region, but this region includes from the center of gravity of each cell nucleus to the expression region of a specific protein around the cell membrane.
  • the shape is not particularly limited as long as it is a region to be formed.
  • the radius r changes according to the shooting magnification of the input bright field image. Therefore, in step S3, by comparing the cell nucleus size S_base serving as a predetermined reference with the average cell nucleus size S_ave_in of normal cell nuclei acquired from the bright field image, the imaging magnification of the input bright field image is determined. The radius r is determined based on the determined imaging magnification.
  • the size of normal cell nuclei estimated not to be cancerous is used as the reference cell nucleus size and the average cell nucleus size for determining the imaging magnification.
  • FIG. 14 shows a detailed flow of the process in step S3.
  • the process of step S3 is executed in cooperation with the control unit 21 and the program stored in the storage unit 25.
  • the ROI for determining the photographing magnification is set in the bright field image (step S301).
  • the bright field image acquired by the microscope image acquisition apparatus 1A is an image in which a tissue section to be observed is enlarged at a certain imaging magnification.
  • an ROI for determining the photographing magnification is set.
  • FIG. 15 shows an example of the ROI set in step S301. As shown in FIG. 15, for example, rectangular areas of s pixels ⁇ s pixels at the four corners of the bright field image are set as ROI1 to ROI4. In most cases, bright field images are taken with the region on the section of interest of the doctor centered on the center, so the center of the image is likely to be a cancerous cell. Therefore, the four corners in the image are set as ROI.
  • step S302 the average cell nucleus size S_ave_in in each set ROI region is calculated (step S302).
  • FIG. 16 shows a detailed flow of the process in step S302.
  • the process in step S302 is executed in cooperation with the control unit 21 and the program stored in the storage unit 25.
  • threshold processing is performed only on the ROI region using a threshold for cell nucleus extraction based on color information such as RGB, and the value of each pixel is binarized (step S3021).
  • the cell nucleus extraction threshold is determined in advance.
  • FIG. 17A shows an original image
  • FIG. 17B shows an image obtained by performing threshold processing on the original image of FIG. 17A.
  • FIG. 17A shows cell nuclei are drawn at a higher density than the surroundings. Therefore, as shown in FIG. 17B, a cell nucleus candidate can be extracted by performing threshold processing.
  • the threshold-processed image is subjected to a closing process, and a small area such as noise is removed (step S3022).
  • the circularity C of the object (cell nucleus candidate) extracted from the ROI region is calculated (step S3023).
  • the circularity C can be obtained by the following equation (1).
  • C (4 ⁇ ⁇ Sk) ⁇ (L ⁇ L) Equation (1)
  • Sk is the area of the object
  • L is the perimeter.
  • step S3024 the calculated circularity C is compared with a predetermined threshold Thc. If it is determined that C> Thc is not satisfied (step S3024; NO), the process proceeds to step S3026. If it is determined that C> Thc (step S3024; YES), the area Sk of the object is added ( ⁇ Sk), the counter m is incremented by 1 (step S3025), and the process proceeds to step S3026.
  • FIG. 17C shows the result of extracting cell nuclei with a circularity C> Thc from the cell nucleus candidates extracted in FIG. 17B.
  • step S3026 it is determined whether or not the calculation of the circularity C has been completed for all the objects in the ROI region, and if it is determined that there is an object for which the calculation of the circularity C has not been completed (step S3026; NO), the process returns to step S3023, and the processes of steps S3023 to S3025 are executed for the next object.
  • step S3026 the average cell nucleus size S_ave_in is calculated by dividing ⁇ Sk by m (step S3027). Control proceeds to step S303 in FIG.
  • step S303 of FIG. 14 the reference cell nucleus size S_base stored in the storage unit 25 is referred to (step S303). Then, the estimated enlargement rate Mag is calculated by dividing the average cell nucleus size S_ave_in by the reference cell nucleus size S_base (step S304).
  • step S305 the shooting magnification of the bright field image is determined based on the magnification table 251 and the estimated magnification rate Mag stored in the storage unit 25 (step S305).
  • FIG. 18 shows an example of the magnification table 251.
  • step S305 based on the magnification table 251 and the estimated enlargement factor Mag, it is determined at which shooting magnification, for example, among the six shooting magnifications used in the microscope observation.
  • the contents of the magnification table 251 are not limited to those shown in FIG. 18, and differ depending on the photographing magnification that can be photographed by the microscope image acquisition apparatus 1 ⁇ / b> A.
  • FIG. 19 shows a detailed flow of the process in step S305.
  • the process in step S305 is executed in cooperation with the control unit 21 and the program stored in the storage unit 25.
  • step S3051 5 is set to the variable i (step S3051).
  • step S3052 it is determined whether or not Mag ⁇ Table [i] (step S3052). If it is determined that Mag ⁇ Table [i] (step S3052; YES), the imaging magnification is determined to be Table [i] (step S3053), and the process proceeds to step S306 in FIG. If it is determined that Mag ⁇ Table [i] is not satisfied (step S3052; NO), the variable i is decremented (step S3054), and then it is determined whether i ⁇ 0 is satisfied (step S3055). If it is determined that i ⁇ 0 (step S3055; YES), the process returns to step S3052. If it is determined that i ⁇ 0 is not satisfied (step S3055; NO), the photographing magnification is determined to be equal (step S3056), and the process proceeds to step S306 in FIG.
  • step S306 a cell region is estimated based on the determined imaging magnification and the cell nucleus region extracted in step S2 of FIG. 10 (step S306).
  • a radius r corresponding to each of the photographing magnifications defined in the magnification table 251 is stored in advance.
  • step S306 a radius r corresponding to the determined imaging magnification is acquired, and a circular region having a radius r is determined around the center of gravity of each cell nucleus.
  • the center of gravity of the cell nucleus can be calculated by the following [Equation 1].
  • the determined circular area is estimated as a cell area including one cell. As shown in FIG.
  • a region surrounded by the outer periphery of the overlapping circular regions is estimated as a cell region including a plurality of cells.
  • the process proceeds to step S6 in FIG.
  • step S5 shows a detailed flow of the process in step S5.
  • the process of step S5 is executed in cooperation with the control unit 21 and the program stored in the storage unit 25.
  • the R component is extracted from the fluorescence image (step S501).
  • Tophat conversion is performed on the image from which the R component has been extracted (step S502).
  • the Tophat conversion is a process of subtracting the value of the corresponding pixel of the image obtained by applying the minimum value filter and the maximum value filter to the input image in this order from the value of each pixel of the input image.
  • the minimum value filter replaces the value of the target pixel with the minimum value of pixels in the vicinity of the target pixel (for example, 3 ⁇ 3 pixels).
  • the maximum value filter replaces the value of the target pixel with the maximum value among the pixels in the vicinity of the target pixel (for example, 3 ⁇ 3 pixels).
  • FIG. 23 shows an image obtained by extracting fluorescent luminescent spots obtained after noise removal in the fluorescent luminescent spot candidate image shown in FIG.
  • a labeling process is performed on the image after noise removal, and a label Label_point is assigned to each of the extracted fluorescent luminescent spots (step S504). Label_point is assigned in order from 1. After the labeling process ends, the process proceeds to step S6 in FIG.
  • step S6 of FIG. 10 the values of the respective pixels of the cell nucleus image and the corresponding pixels of the fluorescent luminescent spot image are added (step S6), and the feature quantity relating to the fluorescent luminescent spot / cell nucleus in each cell region is added from this added image. Is calculated (step S7).
  • step S7 as one of the feature values, an area S / n occupied by one cell nucleus in the region, which is a feature value indicating the number of cell nuclei in the cell region, is calculated.
  • the number n of cell nuclei is 1, and the area of the cell region is ⁇ r 2 , so that per cell nucleus
  • the area S / n occupied by is ⁇ r 2 .
  • the number n of the cell nucleus is two, the area of the cell region is a pi] r 2, the area S / n occupied per cell nucleus, is pi] r 2/2 .
  • the smaller the S / n the higher the possibility of cancer.
  • step S7 as one of the feature quantities, an index value Fnum designed to show a larger value as the number of cell nuclei in the cell region is larger and the distance between the cell nuclei is closer is calculated.
  • D (Ni) of the cell nucleus Ni and the cell nucleus Ni + 1 can be calculated by [Equation 2].
  • Min (D (Ni)) of D (Ni) is calculated.
  • Fnum is calculated by the following [Equation 3] using the calculated Min (D (Ni)) for each cell region.
  • the density Dk of the fluorescent bright spots in each cell region is calculated as one of the feature amounts.
  • the fluorescent bright spot density D k in the cell region can be obtained by the following equation (2).
  • D k (H / S) / n
  • D k is an index that quantitatively indicates the expression level of a specific protein in a cell region, and the higher the D k , the higher the malignancy of the cancer in the cell region.
  • step S8 determination of whether each cell region is a cancer region and determination of the protein expression status in the cancer region are performed based on the calculated feature amount.
  • FIG. 25 shows a detailed flow of the process in step S8 of FIG.
  • the process in step S8 is executed in cooperation with the control unit 21 and the program stored in the storage unit 25.
  • a cell region to be determined is selected, and it is determined whether or not S / n is smaller than a predetermined threshold T s / n (step S801). If it is determined that S / n is not smaller than a predetermined threshold value T s / n (step S801; NO), it is determined that the region is not a cancer region (non-cancer) (step S803), and the process is as follows. The process proceeds to step S809.
  • step S801 When it is determined that S / n is smaller than a predetermined threshold value T s / n (step S801; YES), it is determined whether Fnum exceeds a predetermined threshold value T Fnum (step S802). . If it is determined that Fnum does not exceed the predetermined threshold value T Fnum (step S802; NO), it is determined that the region is not a cancer region (non-cancer) (step S803), and the process proceeds to step S809. To do.
  • step S803 If it is determined that Fnum exceeds a predetermined threshold value T Fnum (step S803; YES), the region is determined to be cancerous, and D k is set to predetermined threshold values T Dk1 , T Dk2 , T Dk3 and TDk4 are compared (step S804).
  • step S804 If it is determined that D k > T Dk1 (step S804; D k > T Dk1 ), the cell region is determined to be a high expression region of the specific protein (step S805), and the process proceeds to step S809. .
  • step S804 If it is determined that T Dk1 ⁇ D k > T Dk2 (step S804; T Dk1 ⁇ D k > T Dk2 ), it is determined that the cell region is an intermediate expression region of the specific protein (step S806). Shifts to step S809.
  • step S804 If it is determined that T Dk2 ⁇ D k > T Dk3 (step S804; T Dk2 ⁇ D k > T Dk3 ), it is determined that the cell region is a low expression region of the specific protein (step S807), and processing is performed. Shifts to step S809.
  • step S804 When it is determined that T Dk3 ⁇ D k > T Dk4 (step S804; T Dk3 ⁇ D k > T Dk4 ), the cell region is determined to be a very low expression region of the specific protein (step S808). The processing moves to step S809.
  • step S809 it is determined whether or not the determination has been completed for all cell regions. If it is determined that the determination for all cell regions is not completed (step S809; NO), the process returns to step S801, and the determination is performed for the next cell region. If it is determined that the determination has been completed for all cell regions (step S809; YES), the process proceeds to step S9 in FIG.
  • step S9 of FIG. 10 an image in which a high expression region, a medium expression region, a low expression region, and a very low expression region are classified (for example, color-coded) on the bright field image in different display modes according to the classification.
  • the analysis result screen 231 including this is generated and displayed on the display unit 23 (step S9).
  • FIG. 26 shows an example of the analysis result screen 231.
  • the analysis result screen 231 displays a bright field image 231a, a fluorescent bright spot image 231b, and a protein expression status display 231c.
  • the protein expression status display 231c a high expression region, a medium expression region, a low expression region, and a very low expression region of a specific protein are displayed in different colors on the bright field image.
  • the areas displayed in these colors are areas determined to be cancer. Therefore, by viewing the analysis result screen 231, the doctor can recognize at a glance where the cancer exists in the entire tissue section image, so that the cancer is overlooked in a wide field of view. Can be alerted to.
  • the doctor can efficiently grasp the overexpression and spread of the specific protein that is an indicator of cancer malignancy. And an appropriate treatment plan can be made.
  • the display method of the analysis result screen 231 is not limited to that shown in FIG.
  • only the protein expression status display 231c may be displayed.
  • the bright field image and the protein expression status display may be switched and displayed in accordance with a switching instruction from the operation unit 22.
  • the bright field image 231a, the fluorescent bright spot image 231b, and the protein expression status display 231c displayed on the analysis result screen 231 may be displayed in an enlarged or reduced manner so that they can be easily observed.
  • the analysis result can be printed out or output to an external device by pressing the print button 231d or the send button 231e.
  • the print button 231d is pressed by the operation unit 22
  • the data of the analysis result is transmitted by the control unit 21 to a printer (not shown) via a communication network such as the communication I / F 24 or LAN, and the analysis result is printed out.
  • the control unit 21 transmits the analysis result data to an external device (for example, PACS (Picture Archiving and Communication System for PACS) via a communication network such as the communication I / F 24 or a LAN). medical application)).
  • PACS Picture Archiving and Communication System for PACS
  • the control unit 21 extracts the cell nucleus region from the bright field image obtained by photographing the slide of the tissue section, and extracts the region around the cell membrane from the center of gravity of each extracted cell nucleus region.
  • a circular region with a predetermined radius that includes the specific protein expression region is defined. If the circular region does not overlap with other circular regions, the circular region is estimated as a cell region containing one cell. When a plurality of defined circular regions overlap each other, a region surrounded by the outer periphery of the plurality of overlapping circular regions is estimated as a cell region including a plurality of cells.
  • the control unit 21 extracts fluorescent luminescent spots from fluorescent images taken with the same field of view.
  • each estimated cell region based on the cell nuclei and fluorescent luminescent spots included in each estimated cell region, a feature amount relating to each cell region is calculated, and whether each of the estimated cell regions is cancer based on the calculated feature amount Whether or not the expression state of the specific protein in the region determined to be cancer is determined, and the determination result is output.
  • the doctor can grasp the cancer region and the expression state of the specific protein in the cancer region efficiently without overlooking the entire tissue section image.
  • the control unit 21 determines whether each cell region is cancer based on the area occupied by each cell nucleus in each cell region and / or an index value indicating the uneven distribution of cell nuclei in each cell region. Then, based on the density of the fluorescent bright spots in the cell region determined to be cancerous, the expression status of the specific protein in the region is determined. Therefore, it is possible to extract a cancer region with high accuracy by utilizing the characteristics of cells in the cancer region that cells grow in the cancerous region and the distance between cell nuclei is shortened. Moreover, the expression state of the specific protein in the region determined as the cancer region using the density of the fluorescent bright spots can be obtained with high accuracy.
  • control unit 21 specifies the cell region determined to be cancer based on whether or not the feature value of the fluorescent bright spot calculated for the cell region determined to be cancer exceeds a plurality of predetermined threshold values.
  • the protein expression status is classified into a plurality of stages, and an image obtained by classifying the cell region determined to be cancer on the cell morphology image in a manner corresponding to the classification result of the specific protein expression status is output as the determination result. Therefore, doctors can recognize at a glance where cancer is present in the entire tissue section image for each area estimated as a cell area, so be careful about overlooking cancer in a wide field of view. Can be aroused.
  • the doctor can efficiently grasp the overexpression and spread of the specific protein that is an indicator of cancer malignancy And an appropriate treatment plan can be made.
  • each cell region is cancer using an area occupied by one nucleus in each cell region and an index value indicating the uneven distribution of cell nuclei.
  • the region determined to be a cancer region it was decided to determine the protein expression status using the number of fluorescent bright spots. It is not limited to this. For example, it may be possible to determine whether or not a cancer region by using either an area occupied by one nucleus in each cell region or an index value indicating the uneven distribution of cell nuclei, or the number of fluorescent bright spots It is good also as determining whether it is a cancer area
  • the HER2 protein in breast cancer has been mentioned as an example of the specific protein, but is not limited thereto.
  • the feature quantity that quantitatively indicates the expression level of the specific protein corresponding to the lesion type It can be provided to a doctor.
  • an HDD or a semiconductor nonvolatile memory is used as a computer-readable medium for the program according to the present invention, but the present invention is not limited to this example.
  • a portable recording medium such as a CD-ROM can be applied.
  • a carrier wave is also applied as a medium for providing program data according to the present invention via a communication line.
  • the medical field it may be used as a medical image processing apparatus that processes microscopic images of tissue sections.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 組織切片の画像全体の中から効率よく特定タンパクが過剰発現している癌領域を把握することを可能とする。 画像処理装置2Aによれば、制御部21は、組織切片のスライドを撮影した明視野画像から細胞核の領域を抽出し、抽出された各細胞核の領域の重心から細胞膜周囲の特定タンパク発現領域を包含する所定の半径の円領域を細胞領域として推定する。また、制御部21は、同一視野で撮影した蛍光画像から蛍光輝点を抽出する。そして、推定された各細胞領域に含まれる細胞核及び蛍光輝点に基づいて、各細胞領域に関する特徴量を算出し、算出された特徴量に基づいて前記推定された各細胞領域が癌であるか否か及び癌であると判定された領域における特定タンパクの発現状況を判定し、判定結果を出力する。

Description

医用画像処理装置及びプログラム
 本発明は、医用画像処理装置及びプログラムに関する。
 病理診断では、まず採取した組織を固定するために脱水し、パラフィンによるブロック化といった処理を行った後、2~8μmの厚さの薄片に切り、パラフィンを取り除き、染色して顕微鏡観察を行う。病理医は、この顕微鏡像の中で、細胞の核の大きさや形の変化、組織としてのパターンの変化等の形態学的な情報、染色情報をもとに診断を行っている。病理診断に用いられる組織染色方法としては、従来の色素染色法(例えばヘマトキシリン-エオジン染色;以下、HE染色)、酵素を用いた色素染色法(例えばDAB(ジアミノベンジン)染色)が知られている。
 病理診断において、組織切片で過剰発現をしているタンパク質及びその発現量を特定することは、予後の予測やその後の治療計画を決める上で非常に重要な情報となり得る。
 例えば、HER2遺伝子のコードするHER2タンパクは、細胞膜を貫通する受容体型糖タンパクであり、細胞外、膜貫通、細胞内の3ドメインから構成され、増殖因子が結合すると、チロシン残基のリン酸化により活性化され、シグナル伝達経路を介して細胞の増殖や悪性化に関与するとされている。乳癌、肺癌、大腸癌、胃癌、膀胱癌等においてHER2タンパクの過剰発現がみられる。
 また、HER2タンパクは乳癌の予後因子であるとされており、特にリンパ節転移陽性例では、HER2陽性例の予後が有意に不良であることが知られている。また、HER2タンパクは、分子標的薬(トラスツズマブ)の適応を決める重要な因子として、また、アンスラサイクリン系、タキサン系等の抗癌剤の効果予測因子として注目されている。
 一般的に、HER2タンパクの過剰発現は免疫組織化学的方法(IHC法)で検査され、HER2遺伝子の過剰発現はFISH法で検査されている。HER検査のガイドラインによると、まず簡便なIHC法で陽性、陰性、境界領域を選別し、陽性の場合にはトラスツズマブの投与を決定する。IHC法で境界領域のものについては、さらにFISH法で陽性、陰性を選別する。
 IHC法とFISH法を比べると、IHC法は簡便だが、精度が低いという問題があった。一方、FISH法は精度が高いが、作業が煩雑でありコストが高い。つまり、IHC法でFISH法と同様の精度を出せる手法の開発が望まれている。また、属人性が低く、自動化可能な手法の開発が望まれている。
 例えば、特許文献1には、DAB法により染色された生体組織の画像から細胞核を抽出し、その細胞核に基づいて生体組織の画像から細胞膜を特定し、細胞膜の染色状態を判別し、この判別結果に基づいてHER2タンパクの発現を評価するシステムが記載されている。
特開2009-115599号公報
 しかしながら、DAB法は酵素による増幅があり定量性に欠けるため、特許文献1に記載の技術では、精度よくHER2タンパクの発現量を把握することはできない。また、特許文献1においては、画像全体の中からユーザから腫瘍領域として指定された領域についてタンパクの発現の評価を行っており、ユーザによる腫瘍領域の見落としを防止することはできない。
 本発明の課題は、組織切片の画像全体の中から効率よく特定タンパクが過剰発現している癌領域を把握できるようにすることである。
 上記課題を解決するために、本発明の第1の側面によると、医用画像処理装置は、
 組織切片における細胞の形態を表す細胞形態画像と、前記組織切片の同一範囲における特定タンパクの発現を蛍光輝点で表す蛍光画像を入力する入力手段と、
 前記細胞形態画像から細胞核の領域を抽出する細胞核抽出手段と、
 前記蛍光画像から蛍光輝点を抽出する蛍光輝点抽出手段と、
 前記細胞核抽出手段により抽出された各細胞核の領域の重心から細胞膜周囲の前記特定タンパクの発現領域を包含する所定の領域を定め、前記定められた領域が他の前記定められた領域と重ならない場合には、その定められた領域を一つの細胞を含む細胞領域として推定し、前記定められた複数の領域が互いに重なり合う場合には、その重なり合う複数の領域の外周に囲まれた領域を複数の細胞を含む細胞領域として推定する領域推定手段と、
 前記領域推定手段により推定された各細胞領域に含まれる細胞核及び蛍光輝点に基づいて、前記各細胞領域に関する特徴量を算出する特徴量算出手段と、
 前記算出された特徴量に基づいて前記領域推定手段により推定された各細胞領域が癌であるか否か及び癌であると判定された領域における前記特定タンパクの発現状況を判定する判定手段と、
 前記判定手段による判定結果を出力する出力手段と、
 を備える。
 上記の医用画像処理装置において、
 前記領域推定手段によって定められる領域は、前記細胞核抽出手段により抽出された各細胞核の領域の重心を中心とし細胞膜周囲の前記特定タンパクの発現領域を包含する所定の半径の円領域であることが好ましい。
 上記の医用画像処理装置において、
 前記特徴量算出手段は、前記領域推定手段により推定された各細胞領域に含まれる細胞核に基づいて、前記各細胞領域において細胞核1個当たりが占める面積、及び/又は前記各細胞領域における細胞核の偏在性を示す指標値を算出し、前記各細胞領域に含まれる蛍光輝点に基づいて、前記各細胞領域における蛍光輝点の密度を算出し、
 前記判定手段は、前記各細胞領域において細胞核1個当たりが占める面積、及び/又は前記各細胞領域における細胞核の偏在性を示す指標値に基づいて、前記各細胞領域が癌であるか否かを判定し、前記癌であると判定された細胞領域における蛍光輝点の密度に基づいて、当該領域の前記特定タンパクの発現状況を判定することが好ましい。
 上記の医用画像処理装置において、
 前記判定手段は、前記癌と判定された細胞領域について算出された蛍光輝点の特徴量が予め定められた複数の閾値を超えるか否かに基づいて、前記癌と判定された細胞領域における前記特定タンパクの発現状況を複数の段階に分類し、
 前記出力手段は、前記細胞形態画像上の前記癌と判定された細胞領域を前記特定タンパクの発現状況の分類結果に応じた態様で区分けした画像を前記判定結果として出力することが好ましい。
 本発明の第2の側面によると、プログラムは、
 コンピュータを、
 組織切片における細胞の形態を表す細胞形態画像と、前記組織切片の同一範囲における特定タンパクの発現を蛍光輝点で表す蛍光画像を入力する入力手段、
 前記細胞形態画像から細胞核の領域を抽出する細胞核抽出手段、
 前記蛍光画像から蛍光輝点を抽出する蛍光輝点抽出手段、
 前記細胞核抽出手段により抽出された各細胞核の領域の重心から細胞膜周囲の前記特定タンパクの発現領域を包含する所定の領域を定め、前記定められた領域が他の前記定められた領域と重ならない場合には、その定められた領域を一つの細胞を含む細胞領域として推定し、前記定められた複数の領域が互いに重なり合う場合には、その重なり合う複数の領域の外周に囲まれた領域を複数の細胞を含む細胞領域として推定する領域推定手段、
 前記領域推定手段により推定された各細胞領域に含まれる細胞核及び蛍光輝点に基づいて、前記各細胞領域に関する特徴量を算出する特徴量算出手段、
 前記算出された特徴量に基づいて前記領域推定手段により推定された各細胞領域が癌であるか否か及び癌であると判定された領域における前記特定タンパクの発現状況を判定する判定手段、
 前記判定手段による判定結果を出力する出力手段、
 として機能させる。
 本発明によれば、組織切片の画像全体の中から効率よく特定タンパクが過剰発現している癌領域を把握することが可能となる。
病理診断支援システムのシステム構成を示す図である。 図1の画像処理装置の機能的構成を示すブロック図である。 明視野画像の一例を示す図である。 蛍光画像の一例を示す図である。 標識材料Aを用いた場合の輝点数とFISHスコアとの関係を示す図である。 標識材料Bを用いた場合の輝点数とFISHスコアとの関係を示す図である。 標識材料Cを用いた場合の輝点数とFISHスコアとの関係を示す図である。 標識材料Dを用いた場合の輝点数とFISHスコアとの関係を示す図である。 各標識材料A~Dについて、各視野の顕微鏡画像から計測された輝点数とFISHスコアとの相関係数の2乗値を示す図である。 図2の制御部により実行される画像解析処理を示すフローチャートである。 図10のステップS2の処理の詳細を示すフローチャートである。 閾値処理後の二値画像の一例を示す図である。 ノイズ処理後の二値画像の一例を示す図である。 図10のステップS3の処理の詳細を示すフローチャートである。 図14のステップS301において設定されるROIの一例を示す図である。 図14のステップS302における処理の詳細フローを示すフローチャートである。 閾値処理前の明視野画像を示す図である。 図17Aの明視野画像に閾値処理を施した画像を示す図である。 図17Bで抽出された細胞核候補から円形度C>Thcの細胞核を抽出した結果を示す図である。 倍率テーブルの一例を示す図である。 図14のステップS305における処理の詳細フローを示すフローチャートである。 一つの細胞を含む細胞領域を説明するための図である。 複数の細胞を含む細胞領域を説明するための図である。 図10のステップS5の処理の詳細を示すフローチャートである。 蛍光輝点候補画像の一例を示す図である。 図16に示す蛍光輝点候補画像におけるノイズ除去後に得られる蛍光輝点画像の一例を示す図である。 Min(D(Ni))を説明するための図である。 図10のステップS8の処理の詳細を示すフローチャートである。 解析結果画面の一例を示す図である。
 以下、図を参照して本発明を実施するための形態について説明するが、本発明はこれらに限定されない。
<病理診断支援システム100の構成>
 図1に、本実施の形態における病理診断支援システム100の全体構成例を示す。病理診断支援システム100は、所定の染色試薬で染色された人体の組織切片の顕微鏡画像を取得し、取得された顕微鏡画像を解析することにより、観察対象の組織切片における特定の生体物質の発現を定量的に表す特徴量を出力するシステムである。
 図1に示すように、病理診断支援システム100は、顕微鏡画像取得装置1Aと、画像処理装置2Aと、がケーブル3A等のインターフェースを介してデータ送受信可能に接続されて構成されている。なお、顕微鏡画像取得装置1Aと画像処理装置2Aとの接続方式は特に限定されない。例えば、顕微鏡画像取得装置1Aと画像処理装置2AはLAN(Local Area Network)により接続されることとしてもよいし、無線により接続される構成としてもよい。
 顕微鏡画像取得装置1Aは、公知のカメラ付き光学顕微鏡であり、スライド固定ステージ上に載置されたスライド上の組織切片の顕微鏡画像を取得し、画像処理装置2Aに送信するものである。
 顕微鏡画像取得装置1Aは、照射手段、結像手段、撮像手段、通信I/F等を備えて構成されている。照射手段は、光源、フィルター等により構成され、スライド固定ステージに載置されたスライド上の組織切片に光を照射する。結像手段は、接眼レンズ、対物レンズ等により構成され、照射した光によりスライド上の組織切片から発せられる透過光、反射光、又は蛍光を結像する。撮像手段は、CCD(Charge Coupled Device)センサー等を備え、結像手段により結像面に結像される像を撮像して顕微鏡画像のデジタル画像データ(R、G、Bの画像データ)を生成する顕微鏡設置カメラである。通信I/Fは、生成された顕微鏡画像の画像データを画像処理装置2Aに送信する。本実施の形態において、顕微鏡画像取得装置1Aは、明視野観察に適した照射手段及び結像手段を組み合わせた明視野ユニット、蛍光観察に適した照射手段及び結像手段を組み合わせた蛍光ユニットが備えられており、ユニットを切り替えることにより明視野/蛍光を切り替えることが可能である。
 なお、顕微鏡画像取得装置1Aとしては、カメラ付き顕微鏡に限定されず、例えば、顕微鏡のスライド固定ステージ上のスライドをスキャンして組織切片全体の顕微鏡画像を取得するバーチャル顕微鏡スライド作成装置(例えば、特表2002-514319号公報参照)等を用いてもよい。バーチャル顕微鏡スライド作成装置によれば、スライド上の組織切片全体像を表示部で一度に閲覧可能な画像データを取得することができる。
 画像処理装置2Aは、顕微鏡画像取得装置1Aから送信された顕微鏡画像を解析することにより、観察対象の組織切片における特定の生体物質の発現量を定量的に示す特徴量を算出し、算出された特徴量を出力する医用画像処理装置である。
 図2に、画像処理装置2Aの機能構成例を示す。図2に示すように、画像処理装置2Aは、制御部21、操作部22、表示部23、通信I/F24、記憶部25等を備えて構成され、各部はバス26を介して接続されている。
 制御部21は、CPU(Central Processing Unit)、RAM(Random Access Memory)等を備えて構成され、記憶部25に記憶されている各種プログラムとの協働により各種処理を実行し、画像処理装置2Aの動作を統括的に制御する。例えば、制御部21は、記憶部25に記憶されているプログラムとの協働により画像解析処理(図10参照)を実行し、細胞核抽出手段、蛍光輝点抽出手段、領域推定手段、特徴量算出手段、判定手段としての機能を実現する。
 操作部22は、文字入力キー、数字入力キー、及び各種機能キー等を備えたキーボードと、マウス等のポインティングデバイスを備えて構成され、キーボードで押下操作されたキーの押下信号とマウスによる操作信号とを、入力信号として制御部21に出力する。
 表示部23は、例えば、CRT(Cathode Ray Tube)やLCD(Liquid Crystal Display)等のモニタを備えて構成されており、制御部21から入力される表示信号の指示に従って、各種画面を表示する。本実施の形態において、表示部23は、算出された特徴量を出力するための出力手段として機能する。
 通信I/F24は、顕微鏡画像取得装置1Aをはじめとする外部機器との間でデータ送受信を行なうためのインターフェースである。通信I/F24は、明視野画像と蛍光画像の入力手段として機能する。本実施の形態において、通信I/F24は、入力手段として機能する。
 記憶部25は、例えばHDD(Hard Disk Drive)や半導体の不揮発性メモリー等で構成されている。記憶部25には、前述のように各種プログラムや各種データ等が記憶されている。例えば、記憶部25は、後述する画像解析処理で使用される倍率テーブル251をはじめとする各種データを記憶している。
 その他、画像処理装置2Aは、LANアダプターやルーター等を備え、LAN等の通信ネットワークを介して外部機器と接続される構成としてもよい。
 本実施の形態における画像処理装置2Aは、顕微鏡画像取得装置1Aから送信された明視野画像(HE染色画像)及び蛍光画像を用いて解析を行う。
 明視野画像は、HE(ヘマトキシリン-エオジン)染色された組織切片を顕微鏡画像取得装置1Aにおいて明視野で拡大結像及び撮影することにより得られる顕微鏡画像である。ヘマトキシリンは青紫色の色素であり、細胞核、骨組織、軟骨組織の一部、漿液成分など(好塩基性の組織等)を染色する。エオジンは赤~ピンク色の色素であり、細胞質、軟部組織の結合組織、赤血球、線維素、内分泌顆粒など(好酸性の組織等)を染色する。図3に、HE染色を行った組織切片を撮影した明視野画像の一例を示す。図3に示すように、HE染色を行った組織切片を撮影した明視野画像においては、組織切片における細胞の形態が表れている。細胞核は、周囲の細胞質よりも濃い色(青紫色)で周囲と区別して表れており、明視野画像では、細胞核の形態をはっきり捉えることができる。
 蛍光画像は、特定の生体物質と特異的に結合及び/又は反応する生体物質認識部位が結合した蛍光物質を内包したナノ粒子(蛍光物質内包ナノ粒子と呼ぶ)を含む染色試薬を用いて染色された組織切片に対し、顕微鏡画像取得装置1Aにおいて所定波長の励起光を照射して蛍光物質内包ナノ粒子を発光(蛍光)させ、この蛍光を拡大結像及び撮影することにより得られる顕微鏡画像である。即ち、蛍光画像に現れる蛍光は、組織切片における、生体物質認識部位に対応する特定の生体物質の発現を示すものである。図4に、蛍光画像の一例を示す。
<蛍光画像の取得>
 ここで、蛍光画像の取得方法について、この蛍光画像の取得に際して用いられる染色試薬(蛍光物質内包ナノ粒子)、染色試薬による組織切片の染色方法等も含めて詳細に説明する。
〔蛍光物質〕
 蛍光画像の取得のための染色試薬に用いられる蛍光物質としては、蛍光有機色素及び量子ドット(半導体粒子)を挙げることができる。200~700nmの範囲内の波長の紫外~近赤外光により励起されたときに、400~1100nmの範囲内の波長の可視~近赤外光の発光を示すことが好ましい。
 蛍光有機色素としては、フルオレセイン系色素分子、ローダミン系色素分子、Alexa Fluor(インビトロジェン社製)系色素分子、BODIPY(インビトロジェン社製)系色素分子、カスケード系色素分子、クマリン系色素分子、エオジン系色素分子、NBD系色素分子、ピレン系色素分子、Texas Red系色素分子、シアニン系色素分子等を挙げることができる。
 具体的には、5-カルボキシ-フルオレセイン、6-カルボキシ-フルオレセイン、5,6-ジカルボキシ-フルオレセイン、6-カルボキシ-2’,4,4’,5’,7,7’-ヘキサクロロフルオレセイン、6-カルボキシ-2’,4,7,7’-テトラクロロフルオレセイン、6-カルボキシ-4’,5’-ジクロロ-2’,7’-ジメトキシフルオレセイン、ナフトフルオレセイン、5-カルボキシ-ローダミン、6-カルボキシ-ローダミン、5,6-ジカルボキシ-ローダミン、ローダミン 6G、テトラメチルローダミン、X-ローダミン、及びAlexa Fluor 350、Alexa Fluor 405、Alexa Fluor 430、Alexa Fluor 488、Alexa Fluor 500、Alexa Fluor 514、Alexa Fluor 532、Alexa Fluor 546、Alexa Fluor 555、Alexa Fluor 568、Alexa Fluor 594、Alexa Fluor 610、Alexa Fluor 633、Alexa Fluor 635、Alexa Fluor 647、Alexa Fluor 660、Alexa Fluor 680、Alexa Fluor 700、Alexa Fluor 750、BODIPY FL、BODIPY TMR、BODIPY 493/503、BODIPY 530/550、BODIPY 558/568、BODIPY 564/570、BODIPY 576/589、BODIPY 581/591、BODIPY 630/650、BODIPY 650/665(以上インビトロジェン社製)、メトキシクマリン、エオジン、NBD、ピレン、Cy5、Cy5.5、Cy7等を挙げることができる。単独でも複数種を混合したものを用いてもよい。
 量子ドットとしては、II-VI族化合物、III-V族化合物、又はIV族元素を成分として含有する量子ドット(それぞれ、「II-VI族量子ドット」、「III-V族量子ドット」、「IV族量子ドット」ともいう。)のいずれかを用いることができる。単独でも複数種を混合したものを用いてもよい。
 具体的には、CdSe、CdS、CdTe、ZnSe、ZnS、ZnTe、InP、InN、InAs、InGaP、GaP、GaAs、Si、Geが挙げられるが、これらに限定されない。
 上記量子ドットをコアとし、その上にシェルを設けた量子ドットを用いることもできる。以下、本明細書中シェルを有する量子ドットの表記法として、コアがCdSe、シェルがZnSの場合、CdSe/ZnSと表記する。例えば、CdSe/ZnS、CdS/ZnS、InP/ZnS、InGaP/ZnS、Si/SiO2、Si/ZnS、Ge/GeO2、Ge/ZnS等を用いることができるが、これらに限定されない。
 量子ドットは必要に応じて、有機ポリマー等により表面処理が施されているものを用いてもよい。例えば、表面カルボキシ基を有するCdSe/ZnS(インビトロジェン社製)、表面アミノ基を有するCdSe/ZnS(インビトロジェン社製)等が挙げられる。
〔蛍光物質内包ナノ粒子〕
 本実施の形態において蛍光物質内包ナノ粒子とは、蛍光物質がナノ粒子内部に分散されたものをいい、蛍光物質とナノ粒子自体とが化学的に結合していても、結合していなくてもよい。
 ナノ粒子を構成する素材は特に限定されるものではなく、ポリスチレン、ポリ乳酸、シリカ等を挙げることができる。
 本実施の形態で用いられる蛍光物質内包ナノ粒子は、公知の方法により作製することが可能である。例えば、蛍光有機色素を内包したシリカナノ粒子は、ラングミュア 8巻 2921ページ(1992)に記載されているFITC内包シリカ粒子の合成を参考に合成することができる。FITCの代わりに所望の蛍光有機色素を用いることで種々の蛍光有機色素内包シリカナノ粒子を合成することができる。
 量子ドットを内包したシリカナノ粒子は、ニュー・ジャーナル・オブ・ケミストリー 33巻 561ページ(2009)に記載されているCdTe内包シリカナノ粒子の合成を参考に合成することができる。
 蛍光有機色素を内包したポリスチレンナノ粒子は、米国特許4326008(1982)に記載されている重合性官能基をもつ有機色素を用いた共重合法や、米国特許5326692(1992)に記載されているポリスチレンナノ粒子への蛍光有機色素の含浸法を用いて作製することができる。
 量子ドットを内包したポリマーナノ粒子は、ネイチャー・バイオテクノロジー19巻631ページ(2001)に記載されているポリスチレンナノ粒子への量子ドットの含浸法を用いて作製することができる。
 本実施の形態で用いられる蛍光物質内包ナノ粒子の平均粒径は特に限定されないが、30~800nm程度のものを用いることができる。また、粒径のばらつきを示す変動係数(=(標準偏差/平均値)×100%)は特に限定されないが、20%以下のものを用いることが好ましい。平均粒径は、走査型電子顕微鏡(SEM)を用いて電子顕微鏡写真を撮影し十分な数の粒子について断面積を計測し、各計測値を円の面積としたときの円の直径を粒径として求めた。本願においては、1000個の粒子の粒径の算術平均を平均粒径とした。変動係数も、1000個の粒子の粒径分布から算出した値とした。
〔生体物質認識部位と蛍光物質内包ナノ粒子との結合〕
 本実施の形態に係る生体物質認識部位とは、目的とする生体物質と特異的に結合及び/又は反応する部位である。目的とする生体物質は、それと特異的に結合する物質が存在するものであれば特に限定されるものではないが、代表的にはタンパク質(ペプチド)および核酸(オリゴヌクレオチド、ポリヌクレオチド)、抗体等が挙げられる。したがって、そのような目的とする生体物質に結合する物質としては、前記タンパク質を抗原として認識する抗体やそれに特異的に結合する他のタンパク質等、および前記核酸にハイブリタイズする塩基配列を有する核酸等が挙げられる。具体的には、細胞表面に存在するタンパク質であるHER2に特異的に結合する抗HER2抗体、細胞核に存在するエストロゲン受容体(ER)に特異的に結合する抗ER抗体、細胞骨格を形成するアクチンに特異的に結合する抗アクチン抗体等があげられる。中でも抗HER2抗体及び抗ER抗体を蛍光物質内包ナノ粒子に結合させたものは、乳癌の投薬選定に用いることができ、好ましい。
 生体物質認識部位と蛍光物質内包ナノ粒子の結合の態様としては特に限定されず、共有結合、イオン結合、水素結合、配位結合、物理吸着及び化学吸着等が挙げられる。結合の安定性から共有結合等の結合力の強い結合が好ましい。
 また、生体物質認識部位と蛍光物質内包ナノ粒子の間を連結する有機分子があってもよい。例えば、生体物質との非特異的吸着を抑制するため、ポリエチレングリコール鎖を用いることができ、Thermo Scientific社製SM(PEG)12を用いることができる。
 蛍光物質内包シリカナノ粒子へ生体物質認識部位を結合させる場合、蛍光物質が蛍光有機色素の場合でも、量子ドットの場合でも同様の手順を適用することができる。例えば、無機物と有機物を結合させるために広く用いられている化合物であるシランカップリング剤を用いることができる。このシランカップリング剤は、分子の一端に加水分解でシラノール基を与えるアルコキシシリル基を有し、他端に、カルボキシル基、アミノ基、エポキシ基、アルデヒド基等の官能基を有する化合物であり、上記シラノール基の酸素原子を介して無機物と結合する。具体的には、メルカプトプロピルトリエトキシシラン、グリシドキシプロピルトリエトキシシラン、アミノプロピルトリエトキシシラン、ポリエチレングリコール鎖をもつシランカップリング剤(例えば、Gelest社製PEG-silane no.SIM6492.7)等が挙げられる。シランカップリング剤を用いる場合、二種以上を併用してもよい。
 蛍光有機色素内包シリカナノ粒子とシランカップリング剤との反応手順は、公知の手法を用いることができる。例えば、得られた蛍光有機色素内包シリカナノ粒子を純水中に分散させ、アミノプロピルトリエトキシシランを添加し、室温で12時間反応させる。反応終了後、遠心分離又はろ過により表面がアミノプロピル基で修飾された蛍光有機色素内包シリカナノ粒子を得ることができる。続いてアミノ基と抗体中のカルボキシル基とを反応させることで、アミド結合を介し抗体を蛍光有機色素内包シリカナノ粒子と結合させることができる。必要に応じて、EDC(1-Ethyl-3-[3-Dimethylaminopropyl]carbodiimide Hydrochloride:Pierce(登録商標)社製)のような縮合剤を用いることもできる。
 必要により、有機分子で修飾された蛍光有機色素内包シリカナノ粒子と直接結合しうる部位と、分子標的物質と結合しうる部位とを有するリンカー化合物を用いることができる。具体例として、アミノ基と選択的に反応する部位とメルカプト基と選択的に反応する部位の両方をもつsulfo-SMCC(Sulfosuccinimidyl 4[N-maleimidomethyl]-cyclohexane-1-carboxylate:Pierce社製)を用いると、アミノプロピルトリエトキシシランで修飾した蛍光有機色素内包シリカナノ粒子のアミノ基と、抗体中のメルカプト基を結合させることで、抗体結合した蛍光有機色素内包シリカナノ粒子ができる。
 蛍光物質内包ポリスチレンナノ粒子へ生体物質認識部位を結合させる場合、蛍光物質が蛍光有機色素の場合でも、量子ドットの場合でも同様の手順を適用することができる。すなわち、アミノ基等の官能基をもつポリスチレンナノ粒子へ蛍光有機色素、量子ドットを含浸することにより、官能基もつ蛍光物質内包ポリスチレンナノ粒子を得ることができ、以降EDC又はsulfo-SMCCを用いることで、抗体結合した蛍光物質内包ポリスチレンナノ粒子ができる。
 特定抗原を認識する抗体としては、M.アクチン,M.S.アクチン,S.M.アクチン,ACTH,Alk-1,α1-アンチキモトリプシン,α1-アンチトリプシン,AFP,bcl-2,bcl-6,β-カテニン,BCA 225,CA19-9,CA125,カルシトニン,カルレチニン,CD1a,CD3,CD4,CD5,CD8,CD10,CD15,CD20,CD21,CD23,CD30,CD31,CD34,CD43,CD45,CD45R,CD56,CD57,CD61,CD68,CD79a,"CD99, MIC2",CD138,クロモグラニン,c-KIT,c-MET,コラーゲン タイプIV,Cox-2,サイクリンD1,ケラチン,サイトケラチン(高分子量),パンケラチン,パンケラチン,サイトケラチン 5/6,サイトケラチン 7,サイトケラチン 8,サイトケラチン8/18,サイトケラチン 14,サイトケラチン 19,サイトケラチン 20,CMV,E-カドヘリン,EGFR,ER,EMA,EBV,第VIII因子関連抗原,ファッシン,FSH,ガレクチン-3,ガストリン,GFAP,グルカゴン,グリコフォリン A,グランザイムB,hCG,hGH,ヘリコバクターピロリ,HBc 抗原,HBs 抗原,ヘパトサイト特異抗原,HER2,HSV -I,HSV -II,HHV-8,IgA,IgG,IgM,IGF-1R,インヒビン,インスリン,カッパ L鎖,Ki67,ラムダ L鎖,LH,リゾチーム,マクロファージ,メランA,MLH-1,MSH-2,ミエロパーオキシダーゼ,ミオゲニン,ミオグロビン,ミオシン,ニューロフィラメント,NSE,p27 (Kip1),p53,p53,P63,PAX 5,PLAP,ニューモシスティス カリニ,ポドプラニン(D2-40),PGR,プロラクチン,PSA,前立腺酸性フォスファターゼ,Renal Cell Carcinoma,S100,ソマトスタチン,スペクトリン,シナプトフィジン,TAG-72,TdT,サイログロブリン,TSH,TTF-1,TRAcP,トリプターゼ,ビリン,ビメンチン,WT1,Zap-70が挙げられる。
〔染色方法〕
 以下、組織切片の染色方法について述べる。以下に説明する染色方法は病理切片組織に限定せず、細胞染色にも適用可能である。
 また、以下に説明する染色方法が適用できる切片の作製法は特に限定されず、公知の方法により作製されたものを用いることができる。
 1)脱パラフィン工程
 キシレンを入れた容器に病理切片を浸漬させ、パラフィンを除去する。温度は特に限定されるものではないが、室温で行うことができる。浸漬時間は、3分以上30分以下であることが好ましい。また、必要により浸漬途中でキシレンを交換してもよい。
 次いで、エタノールを入れた容器に病理切片を浸漬させ、キシレンを除去する。温度は特に限定されるものではないが、室温で行うことができる。浸漬時間は、3分以上30分以下であることが好ましい。また、必要により浸漬途中でエタノールを交換してもよい。
 次いで、水を入れた容器に病理切片を浸漬させ、エタノールを除去する。温度は特に限定されるものではないが、室温で行うことができる。浸漬時間は、3分以上30分以下であることが好ましい。また、必要により浸漬途中で水を交換してもよい。
 2)賦活化処理
 公知の方法にならい、目的とする生体物質の賦活化処理を行う。賦活化条件に特に定めはないが、賦活液としては、0.01Mクエン酸緩衝液(pH6.0)、1mMEDTA溶液(pH8.0)、5%尿素、0.1Mトリス塩酸緩衝液等を用いることができる。加熱機器は、オートクレーブ、マイクロウェーブ、圧力鍋、ウォーターバス等を用いることができる。温度は特に限定されるものではないが、室温で行うことができる。温度は50-130℃、時間は5-30分で行うことができる。
 次いで、PBS(Phosphate Buffered Saline:リン酸緩衝生理食塩水)を入れた容器に、賦活化処理後の切片を浸漬させ、洗浄を行う。温度は特に限定されるものではないが、室温で行うことができる。浸漬時間は、3分以上30分以下であることが好ましい。また、必要により浸漬途中でPBSを交換してもよい。
 3)生体物質認識部位が結合された蛍光物質内包ナノ粒子を用いた染色
 生体物質認識部位が結合された蛍光物質内包ナノ粒子のPBS分散液を病理切片に載せ、目的とする生体物質と反応させる。蛍光物質内包ナノ粒子と結合させる生体物質認識部位を変えることにより、さまざまな生体物質に対応した染色が可能となる。数種類の生体物質認識部位が結合された蛍光物質内包ナノ粒子を用いる場合には、それぞれの蛍光物質内包ナノ粒子PBS分散液を予め混合しておいてもよいし、別々に順次病理切片に載せてもよい。
 温度は特に限定されるものではないが、室温で行うことができる。反応時間は、30分以上24時間以下であることが好ましい。
 蛍光物質内包ナノ粒子による染色を行う前に、BSA含有PBS等、公知のブロッキング剤を滴下することが好ましい。
 次いで、PBSを入れた容器に、染色後の切片を浸漬させ、未反応蛍光物質内包ナノ粒子の除去を行う。温度は特に限定されるものではないが、室温で行うことができる。浸漬時間は、3分以上30分以下であることが好ましい。また、必要により浸漬途中でPBSを交換してもよい。カバーガラスを切片に載せ、封入する。必要に応じて市販の封入剤を使用してもよい。
 なお、HE染色を行う場合、カバーガラスによる封入前にHE染色を行う。
〔蛍光画像の取得〕
 染色した病理切片に対し顕微鏡画像取得装置1Aを用いて、広視野の顕微鏡画像(蛍光画像)を取得する。顕微鏡画像取得装置1Aおいて、染色試薬に用いた蛍光物質の吸収極大波長及び蛍光波長に対応した励起光源及び蛍光検出用光学フィルターを選択する。
 蛍光画像の視野は、3mm2以上であることが好ましく、30mm2以上であることがさらに好ましく、300mm2以上であることがさらに好ましい。
<蛍光輝点とFISHスコアとの関係>
 ここで、本件出願人は、以下に説明するように、一実施例として、Cy5内包シリカナノ粒子(以下、ナノ粒子1という。)を作製し、ナノ粒子1に対して抗HER2抗体を結合させた標識材料Aを作製した。また、CdSe/ZnS内包シリカナノ粒子(以下、ナノ粒子2という)を作製し、ナノ粒子2に対して抗HER2抗体を結合させた標識材料Bを作製した。そして、作製した標識材料A、B及び比較例としての標識材料C、Dを用いて予めFISHスコアを測定したヒト乳房組織の隣接切片を用いて免疫染色を行って視野を変えて複数の蛍光画像を取得し、各蛍光画像に現れている蛍光輝点の数を計測してFISHスコアとの関連を調べる実験を行った。
〔蛍光物質内包ナノ粒子の合成〕
(合成例1:蛍光有機色素内包シリカ:Cy5内包シリカナノ粒子の合成)
 下記工程(1)~(5)の方法により、Cy5内包シリカナノ粒子(ナノ粒子1)を作製した。
 工程(1):Cy5のN-ヒドロキシスクシンイミドエステル誘導体(GEヘルスケア社製)1mg(0.00126mmol)とテトラエトキシシラン400μL(1.796mmol)を混合した。
 工程(2):エタノール40mLと14%アンモニア水10mLを混合した。
 工程(3):工程(2)で作製した混合液を室温下で撹拌しているところに、工程(1)で調製した混合液を添加した。添加開始から12時間撹拌を行った。
 工程(4):反応混合物を10000Gで60分遠心分離を行い、上澄みを除去した。
 工程(5):エタノールを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順でエタノールと純水による洗浄を1回ずつ行った。
 得られたナノ粒子1を走査型電子顕微鏡(SEM;日立(登録商標)社製S-800型)で観察したところ、平均粒径は110nm、変動係数は12%であった。
(合成例2:量子ドット内包シリカ:発光波長655nmのCdSe/ZnS内包シリカナノ粒子の合成)
 下記工程(1)~(5)の方法により、CdSe/ZnS内包シリカナノ粒子(以下、ナノ粒子2という。)を作製した。
 工程(1):CdSe/ZnSデカン分散液(インビトロジェン社Qdot655)10μLとテトラエトキシシラン40μLを混合した。
 工程(2):エタノール4mLと14%アンモニア水1mLを混合した。
 工程(3):工程(2)で作製した混合液を室温下で撹拌しているところに、工程(1)で作製した混合液を添加した。添加開始から12時間撹拌を行った。
 工程(4):反応混合物を10000Gで60分遠心分離を行い、上澄みを除去した。
 工程(5):エタノールを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順でエタノールと純水による洗浄を1回ずつ行った。
 得られたナノ粒子2を走査型電子顕微鏡で観察したところ、平均粒径は130nm、変動係数は13%であった。
〔蛍光物質内包シリカナノ粒子への抗体の結合〕
 下記工程(1)~(12)の方法により、蛍光物質内包シリカナノ粒子に対して抗体を結合させた。ここでは、ナノ粒子1を用いた例を示すが、ナノ粒子2についても同様である。
 工程(1):1mgのナノ粒子1を純水5mLに分散させた。次いで、アミノプロピルトリエトキシシラン水分散液100μLを添加し、室温で12時間撹拌した。
 工程(2):反応混合物を10000Gで60分遠心分離を行い、上澄みを除去した。
 工程(3):エタノールを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順でエタノールと純水による洗浄を1回ずつ行った。
 得られたアミノ基修飾したシリカナノ粒子のFT-IR測定を行ったところ、アミノ基に由来する吸収が観測でき、アミノ基修飾されたことが確認できた。
 工程(4):工程(3)で得られたアミノ基修飾したシリカナノ粒子を、EDTA(エチレンジアミン四酢酸)を2mM含有したPBSを用いて3nMに調整した。
 工程(5):工程(4)で調整した溶液に、最終濃度10mMとなるようSM(PEG)12(サーモサイエンティフィック社製、succinimidyl-[(N-maleomidopropionamid)-dodecaethyleneglycol]ester)を混合し、1時間反応させた。
 工程(6):反応混合液を10000Gで60分遠心分離を行い、上澄みを除去した。
 工程(7):EDTAを2mM含有したPBSを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順による洗浄を3回行った。最後に500μLのPBSを用いて再分散させた。
 工程(8):抗HER2抗体100μgを100μLのPBSに溶解させたところに、1Mジチオスレイトール(DTT)を添加し、30分反応させた。
 工程(9):反応混合物についてゲルろ過カラムにより過剰のDTTを除去し、還元化抗HER2抗体溶液を得た。
 工程(10):ナノ粒子1を出発原料として工程(7)で得られた粒子分散液と工程(9)で得られた還元化抗HER2抗体溶液とをPBS中で混合し、1時間反応させた。
 工程(11):10mMメルカプトエタノール4μLを添加し、反応を停止させた。
 工程(12):反応混合物を10000Gで60分遠心分離を行い、上澄みを除去した後、EDTAを2mM含有したPBSを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順による洗浄を3回行った。最後に500μLのPBSを用いて再分散させ、抗HER2抗体が結合された蛍光物質内包シリカナノ粒子を得た。
 ナノ粒子1を出発原料として得られた抗HER2抗体が結合された蛍光物質内包シリカナノ粒子を標識材料A、ナノ粒子2を出発原料として得られた抗HER2抗体が結合された蛍光物質内包シリカナノ粒子を標識材料Bとする。
 また、比較例として、Cy5に抗HER2抗体を結合させ、還元化抗HER2抗体溶液(標識材料D)を得た。同様に、CdSeに抗HER2抗体を結合させたものを標識材料Cとして作製した。
〔蛍光物質内包ナノ粒子を用いた組織染色〕
 下記工程(1)~(10)の方法により、作製した抗体結合標識材料A~Dを用い、予めFISHスコアを測定したヒト乳房組織の隣接切片を用いて免疫染色を行った。染色切片はコスモバイオ社製の組織アレイスライド(CB-A712)を用いた。FISHスコアで1~9の24切片を用いた。
 工程(1):キシレンを入れた容器に病理切片を30分浸漬させた。途中3回キシレンを交換した。
 工程(2):エタノールを入れた容器に病理切片を30分浸漬させた。途中3回エタノールを交換した。
 工程(3):水を入れた容器に病理切片を30分浸漬させた。途中3回水を交換した。
 工程(4):10mMクエン酸緩衝液(pH6.0)に病理切片を30分浸漬させた。
 工程(5):121度で10分オートクレーブ処理を行った。
 工程(6):PBSを入れた容器に、オートクレーブ処理後の切片を30分浸漬させた。
 工程(7):1%BSA含有PBSを組織に載せて、1時間放置した。
 工程(8):1%BSA含有PBSで0.05nMに希釈した抗HER2抗体が結合された標識材料A~Dを、各組織切片に載せて3時間放置した。
 工程(9):PBSを入れた容器に、染色後の切片をそれぞれ30分浸漬させた。
 工程(10):Merck Chemicals社製Aquatexを滴下後、カバーガラスを載せ封入した。
〔実験結果〕  
 各標識材料A~Dを用いて染色した組織切片について、視野(観察面積)を変えて複数の蛍光画像を取得し、画像解析ソフトにより、各蛍光画像から蛍光輝点の数(輝点数)を計測した。
 なお、顕微鏡は、カールツアイス社製正立顕微鏡Axio Imager M2を用い、対物レンズを20倍に設定し、630~670nmの波長を有する励起光を照射して、組織切片から発せられる蛍光を結像し、顕微鏡設置カメラ(モノクロ)により蛍光画像(画像データ)を取得し、画像解析ソフトにより輝点数を計測した。なお、上記カメラは画素サイズ6.4μm×6.4μm、縦画素数1040個、横画素数1388個(撮像領域8.9mm×6.7mm)を有している。
 また、各標識材料A~Dについて、各視野において、計測された輝点数とFISHスコアとの相関係数Rを算出した。FISHスコアは、HER2遺伝子の過剰発現レベルと対応しており、FISHスコアの値が大きいほど、HER2遺伝子の過剰発現レベルが高いことを示している。
 図5は、標識材料A(Cy5内包標識材料)を用いた場合の、複数の異なる視野(0.3mm2、3mm2、32mm2、324mm2)の蛍光画像から計測された輝点数と、FISHスコアとの関係を示す図である。図中に示すR2の値は、輝点数とFISHスコアとの相関係数の2乗値である。
 図6は、標識材料B(CdSe内包標識材料)を用いた場合の、複数の異なる視野(0.3mm2、3mm2、32mm2、324mm2)の蛍光画像から計測された輝点数と、FISHスコアとの関係を示す図である。
 図7は、標識材料C(CdSe)を用いた場合の、複数の異なる視野(0.3mm2、3mm2、32mm2、324mm2)の蛍光画像から計測された輝点数と、FISHスコアとの関係を示す図である。
 図8は、標識材料D(Cy5)を用いた場合の、複数の異なる視野(0.3mm2、3mm2、32mm2、324mm2)の蛍光画像から計測された輝点数と、FISHスコアとの関係を示す図である。
 表1及び図9に、各標識材料A~Dについて、各視野(観察面積)の蛍光画像から計測された輝点数とFISHスコアとの相関係数の2乗値(R2)を示す。
Figure JPOXMLDOC01-appb-T000001
 
 標識材料Aを用いて組織切片を染色し、0.3mm2の視野の蛍光画像から輝点数を計測した場合には、輝点数とFISHスコアとの相関係数の2乗値(R2)は0.1241であり、輝点数とFISHスコアには、相関が見られなかった。0.3mm2の視野では、視野が狭すぎ、ばらつきが大きいためであると考えられる。
 標識材料Aを用いて組織切片を染色し、3mm2の視野の蛍光画像から輝点数を計測した場合には、輝点数とFISHスコアとの相関係数の2乗値(R2)は0.5387であった。この値は、相関係数Rに換算すると約0.734となり、輝点数とFISHスコアには、強い相関があるといえる。
 標識材料Aを用いて組織切片を染色し、32mm2の視野の蛍光画像から輝点数を計測した場合には、輝点数とFISHスコアとの相関係数の2乗値(R2)は0.9011であった。視野が32mm2の場合には、視野が3mm2の場合と比較して、さらに相関が強いといえる。
 標識材料Aを用いて組織切片を染色し、324mm2の視野の蛍光画像から輝点数を計測した場合には、輝点数とFISHスコアとの相関係数の2乗値(R2)は0.9887であった。視野が324mm2の場合には、視野が32mm2の場合と比較して、さらに相関が強いといえる。
 標識材料Bを用いた場合も同様に、3mm2以上の視野では、輝点数とFISHスコアには相関があり、視野が広いほど相関係数が大きくなることがわかった。
 また、標識材料A,Bを用いた場合の結果から、324mm2の視野では輝点数とFISHスコアとの相関係数の2乗値(R2)が十分1に近いことがわかった。
 一方、標識材料C又は標識材料Dを用いて組織切片を染色した場合には、輝点数とFISHスコアには、相関が見られなかった。
 また、観察対象となる組織切片の厚さ(通常は数μm)の上方、或いは下方部に顕微鏡のピントを若干ずらした場合であっても、上記の状況に大きな差異は見られなかった。
 以上の結果から、標識材料A,Bを用いて広視野で組織切片を観察した場合に、輝点数とFISHスコアとの相関が良好であり、輝点数に基づいてHER2の発現レベルを評価することが可能であることがわかった。すなわち、FISH法のような手間のかかる方法を用いなくても、特定の生体物質を認識する生体物質認識部位が結合した蛍光物質内包ナノ粒子の染色試薬で組織切片を染色し、これを顕微鏡で拡大結像して撮影することにより得られた3mm2以上の視野の画像から輝点数を計測することにより、特定の生体物質の発現レベルを評価することができ、FISH法に代わる方法として有効である。  
 標識材料A,Bは、蛍光物質を内包した粒子を用いており、蛍光物質単体を用いた標識材料C,Dと比較して高輝度であるため、画像から輝点の1点1点を捉えやすく、輝点数を精度良く計測することができる。
<病理診断支援システム100の動作>
 以下、病理診断支援システム100において、上記説明した蛍光画像及び明視野画像を取得して解析を行う動作について説明する。ここでは、特定のタンパク質(ここでは、乳癌組織におけるHER2タンパクとする。以下、特定タンパクと呼ぶ。)を認識する生体物質認識部位が結合した蛍光物質内包ナノ粒子を含む染色試薬を用いて染色された組織切片を観察対象とする場合例にとり説明するが、これに限定されるものではない。
 まず、顕微鏡画像取得装置1Aにおいて、(a1)~(a5)の手順により明視野画像及び蛍光画像が取得される。
(a1)操作者は、特定タンパクを認識する生体物質認識部位が結合した蛍光物質内包ナノ粒子を蛍光標識材料とした染色試薬、及びHE試薬により染色された組織切片を載置したスライドを顕微鏡画像取得装置1Aのスライド固定ステージに載置する。
(a2)明視野ユニットに設定し、撮影倍率、ピントの調整を行い、組織上の観察対象の領域を視野に納める。
(a3)撮像手段で撮影を行って明視野画像の画像データを生成し、画像処理装置2Aに画像データを送信する。
(a4)ユニットを蛍光ユニットに変更する。
(a5)視野及び撮影倍率を変えずに撮像手段で撮影を行って蛍光画像の画像データを生成し、画像処理装置2Aに画像データを送信する。
 このように、顕微鏡画像取得装置1Aにおいては、同一の組織切片のスライドから同一の撮影倍率で同一範囲(同一視野)の明視野画像及び蛍光画像を取得するので、明視野画像と蛍光画像の同一座標位置は組織切片の同一位置を示していることになり、両画像の位置合わせは不要である。
 なお、本願発明者等の検討によれば、HE染色と蛍光物質内包ナノ粒子による染色を同時に行う場合、組織の自家蛍光とエオジンの発光(バックグラウンド)に対し、10%(1.1倍)以上の発光量差を蛍光物質内包ナノ粒子の蛍光輝点が有していれば、8ビット(0~255階調)、12ビット(0~4095階調)の何れの処理系においても、顕微鏡画像(蛍光画像)から蛍光輝点の自動検出処理が可能であった。蛍光物質内包ナノ粒子による染色のみの場合においては、組織の自家蛍光に対し、10%(1.1倍)以上の発光量差を蛍光物質内包ナノ粒子が有していれば、8ビット(0~255階調)、12ビット(0~4095階調)の何れの処理系においても蛍光輝点の自動検出処理が可能であった。そのため、蛍光ユニットにおける励起光波長としては560~630nmの範囲のものを選択し、前記蛍光物質としては当該励起光により580~690nmの範囲、より好ましくは600~630nmの範囲にピークを有する蛍光を発するものを用いることが好ましい。この範囲にピークを有する蛍光物質であれば、上記範囲の励起光を選択したときに、エオジンの発光を含む組織の自家蛍光と蛍光物質内包ナノ粒子からの蛍光の発光差を確保して両者を区別して認識可能とする(両者の光量差10%(1.1倍)以上)を確保できるからである。
 なお、HE染色を同時に行わない場合においては、組織の自家蛍光が微弱なため励起光の波長の範囲は、一般的な200nm~700nmの範囲で特に限定せずとも自家蛍光と蛍光物質内包ナノ粒子からの蛍光の発光差を確保して両者を区別して認識可能とする(両者の光量差10%(1.1倍)以上)を確保することができる。
 画像処理装置2Aにおいては、明視野画像及び蛍光画像に基づき画像解析処理が実行される。
 図10に、画像処理装置2Aにおける画像解析処理のフローチャートを示す。図10に示す画像解析処理は、制御部21と記憶部25に記憶されているプログラムとの協働により実行される。
 まず、通信I/F24により顕微鏡画像取得装置1Aからの明視野画像が入力されると(ステップS1)、明視野画像から細胞核の領域の抽出が行われる(ステップS2)。
 図11に、ステップS2における処理の詳細フローを示す。ステップS2の処理は、制御部21と記憶部25に記憶されているプログラムとの協働により実行される。
 ステップS2においては、まず、明視野画像のモノクロ画像への変換が行われる(ステプS201)。
 次いで、モノクロ画像に対し予め定められた閾値を用いて閾値処理が施され、各画素の値が2値化される(ステップS202)。図12に、閾値処理後の二値画像の一例を示す。
 次いで、ノイズ処理が行われる(ステップS203)。ノイズ処理は、具体的には、二値画像にクロージング処理が施されることにより行うことができる。クロージング処理は、膨張処理を行ってから同じ回数分だけ収縮処理を行う処理である。膨張処理は、注目画素からn×n画素(nは2以上の整数)の範囲内にある画素に1つでも白が含まれている場合に注目画素を白に置き換える処理である。収縮処理は、注目画素からn×n画素の範囲内にある画素に1つでも黒が含まれている場合に注目画素を黒に置き換える処理である。クロージング処理により、ノイズ等の小さい領域を除去することができる。図13に、ノイズ処理後の画像の一例を示す。図13に示すように、ノイズ処理後には、細胞核が抽出された画像(細胞核画像)が得られる。
 次いで、ノイズ処理後の画像にラベリング処理が施され、抽出された細胞核のそれぞれにラベルLabel_nucleusが付与される(ステップS204)。ラベリング処理とは、連結している画素に同じラベル(番号)を付与していくことで画像内のオブジェクトを識別する処理である。ラベリング処理により、ノイズ処理後の画像から各細胞核を識別してラベルを付与することができる。
 なお、後述する蛍光輝点の抽出におけるラベルの番号と区別するため、コンピュータの保持できる最大値をMAXとし、現在までに行ったラベリング回数をLabel_tempとすると、新たな細胞核にはラベルLabel_nucleusとして、MAX-Label_tempが付与される。例えば、101個目の細胞核にラベルを付与する場合、Label_temp=100であるので、MAX=65536とすると、Label_nucleusとして65436が付与される。ラベリング処理後、処理は図10のステップS3に移行する。
 図10のステップS3においては、ステップS2で抽出された細胞核の領域に基づいて、明視野画像における細胞領域の推定が行われる(ステップS3)。ここでは、抽出された各細胞核の領域の重心を中心とした半径rの円領域を定め、定められた円領域が他の円領域と重ならない場合には、その定められた円領域を一つの細胞を含む細胞領域として推定し(図20A参照)、前記定められた複数の円領域が互いに重なり合う場合には、その重なり合う複数の円領域の外周に囲まれた領域を複数の細胞を含む細胞領域として推定する(図20B参照)。ここで、癌化した細胞の細胞膜の周囲には、特定タンパクの過剰発現が見られる。そこで、半径rは、細胞と、その細胞膜周囲に発現する特定タンパクが確実に包含されるサイズとする。
 なお、本実施の形態においては、細胞領域を推定するために各細胞核の重心から定める領域を円領域として説明するが、この領域は各細胞核の重心から細胞膜周囲の特定タンパクの発現領域までが包含される領域であればよく、その形状は特に限定されない。
 半径rは、入力される明視野画像の撮影倍率に応じて変化する。そこで、ステップS3においては、予め定められた基準となる細胞核サイズS_baseと、明視野画像から取得される正常の細胞核の平均細胞核サイズS_ave_inを比較することにより、入力された明視野画像の撮影倍率を決定し、決定した撮影倍率に基づいて半径rを決定する。ここで、癌化した細胞の細胞核は大きいため、撮影倍率を決定するための基準細胞核サイズ及び平均細胞核サイズには、癌化されていないと推定される正常な細胞核のサイズを用いる。
 図14に、ステップS3における処理の詳細フローを示す。ステップS3の処理は、制御部21と記憶部25に記憶されているプログラムとの協働により実行される。
 まず、明視野画像に撮影倍率決定用のROIが設定される(ステップS301)。ここで、顕微鏡画像取得装置1Aにおいて取得される明視野画像は、観察対象の組織切片が或る撮影倍率で拡大された画像である。ステップS301では、この撮影倍率を決定するためのROIが設定される。図15に、ステップS301において設定されるROIの一例を示す。図15に示すように、例えば、明視野画像の四隅のs画素×s画素の矩形領域がROI1~ROI4に設定される。明視野画像は、たいていの場合、医師が注目する切片上の領域を中央に合わせて撮影を行っていることから、画像の中央部は癌化している細胞の可能性が高い。そこで、画像中の四隅をROIとして設定する。
 次いで、設定された各ROI領域内の平均細胞核サイズS_ave_inが算出される(ステップS302)。
 図16に、ステップS302における処理の詳細フローを示す。ステップS302の処理は、制御部21と記憶部25に記憶されているプログラムとの協働により実行される。
 まず、ROI領域のみに、RGBなどの色情報をベースとした細胞核抽出用閾値を用いて閾値処理が行われ、各画素の値が2値化される(ステップS3021)。細胞核抽出用閾値は、予め定められている。図17Aに、元画像、図17Bに、図17Aの元画像に閾値処理を施した画像を示す。HE染色を施した明視野画像においては、図17Aに示すように、細胞核は周囲より高い濃度で描画される。よって、図17Bに示すように、閾値処理を施すことにより、細胞核候補を抽出することができる。
 次いで、閾値処理後の画像にクロージング処理が施され、ノイズ等の小さい領域が除去される(ステップS3022)。
 次いで、ROI領域から抽出されたオブジェクト(細胞核候補)の円形度Cが算出される(ステップS3023)。円形度Cは、以下の式(1)により求めることができる。
   C=(4π×Sk)÷(L×L) 式(1)
ここで、Skはオブジェクトの面積、Lは周囲長である。
 次いで、算出された円形度Cが予め定められた閾値Thcと比較される。C>Thcではないと判断されると(ステップS3024;NO)、処理はステップS3026に移行する。C>Thcであると判断されると(ステップS3024;YES)、オブジェクトの面積Skが加算される(ΣSk)とともに、カウンタmが1インクリメントされ(ステップS3025)、処理はステップS3026に移行する。図17Cに、図17Bで抽出された細胞核候補から円形度C>Thcの細胞核を抽出した結果を示す。
 ステップS3026においては、ROI領域の全てのオブジェクトについて円形度Cの算出が終了したか否かが判断され、まだ円形度Cの算出が終了していないオブジェクトがあると判断されると(ステップS3026;NO)、処理はステップS3023に戻り、次のオブジェクトについてステップS3023~ステップS3025の処理が実行される。ROI領域内の全てのオブジェクトの円形度算出が終了したと判断されると(ステップS3026;YES)、ΣSkがmで除算されることにより、平均細胞核サイズS_ave_inが算出され(ステップS3027)、処理は図14のステップS303に移行する。
 図14のステップS303においては、記憶部25に記憶されている基準細胞核サイズS_baseが参照される(ステップS303)。そして、平均細胞核サイズS_ave_inが基準細胞核サイズS_baseで除算されることにより、推定拡大率Magが算出される(ステップS304)。
 推定拡大率Magが算出されると、記憶部25に記憶されている倍率テーブル251と推定拡大率Magに基づいて、明視野画像の撮影倍率が決定される(ステップS305)。図18に、倍率テーブル251の一例を示す。ステップS305においては、倍率テーブル251と推定拡大率Magに基づいて、顕微鏡観察で使用される、例えば6つの撮影倍率のうち、何れの撮影倍率で撮影がされたかが決定される。なお、倍率テーブル251の内容は、図18に示すものに限定されるものではなく、顕微鏡画像取得装置1Aで撮影可能な撮影倍率により異なる。
 図19に、ステップS305における処理の詳細フローを示す。ステップS305の処理は、制御部21と記憶部25に記憶されているプログラムとの協働により実行される。
 まず、変数iに5が設定される(ステップS3051)。
 次いでMag≧Table[i]であるか否かが判断される(ステップS3052)。Mag≧Table[i]であると判断されると(ステップS3052;YES)、撮影倍率はTable[i]に決定され(ステップS3053)、処理は図14のステップS306に移行する。
 Mag≧Table[i]ではないと判断されると(ステップS3052;NO)、変数iがデクリメントされ(ステップS3054)、次いでi≧0であるか否かが判断される(ステップS3055)。i≧0であると判断されると(ステップS3055;YES)、処理はステップS3052に戻る。i≧0ではないと判断されると(ステップS3055;NO)、撮影倍率は等倍に決定され(ステップS3056)、処理は図14のステップS306に移行する。
 ステップS306においては、決定された撮影倍率と図10のステップS2で抽出された細胞核の領域に基づいて細胞領域が推定される(ステップS306)。記憶部25には、予め、倍率テーブル251に規定されている撮影倍率のそれぞれに対応する半径rが記憶されている。ステップS306においては、決定された撮影倍率に対応する半径rが取得され、各細胞核の重心を中心として半径rの円領域が定められる。細胞核の重心は、下記の[数1]により算出することができる。
Figure JPOXMLDOC01-appb-M000002
 そして、図20Aに示すように、定められた円領域が他の円領域と重ならない場合には、その定められた円領域が一つの細胞を含む細胞領域として推定される。図20Bに示すように、定められた複数の円領域が互いに重なり合う場合には、その重なり合う複数の円領域の外周に囲まれた領域が複数の細胞を含む細胞領域として推定される。
 細胞領域が決定されると、処理は図10のステップS6に移行する。
 一方、通信I/F24により顕微鏡画像取得装置1Aからの蛍光画像が入力されると(ステップS4)、蛍光画像から蛍光輝点が抽出される(ステップS5)。
 図21に、ステップS5における処理の詳細フローを示す。ステップS5の処理は、制御部21と記憶部25に記憶されているプログラムとの協働により実行される。
 まず、蛍光画像からR成分の抽出が行われる(ステップS501)。
 次いで、R成分が抽出された画像にTophat変換が施される(ステップS502)。Tophat変換は、入力画像の各画素の値から、入力画像に最小値フィルター及び最大値フィルターをこの順でかけた画像の、対応する画素の値を減算する処理である。最小値フィルターは、注目画素の近傍の画素(例えば、3×3画素)のうちの最小値で注目画素の値を置き換えるものである。最大値フィルターは、注目画素の近傍の画素(例えば、3×3画素)のうちの最大値で注目画素の値を置き換えるものである。Tophat変換により、濃淡プロファイル上の小突起(近傍の画素に比べて輝度の高い領域)を抽出することができる。これにより、蛍光輝点候補画像を得ることができる。図22に、蛍光輝点候補画像の一例を示す。
 次いで、蛍光輝点候補画像からノイズ除去が行われることにより、蛍光輝点が抽出された画像(蛍光輝点画像)が得られる(ステップS503)。図23に、図22に示す蛍光輝点候補画像におけるノイズ除去後に得られる蛍光輝点が抽出された画像を示す。
 そして、ノイズ除去後の画像にラベリング処理が施され、抽出された蛍光輝点のそれぞれにラベルLabel_pointが付与される(ステップS504)。Label_pointは、1から順に付与される。ラベリング処理の終了後、処理は図10のステップS6に移行する。
 図10のステップS6においては、細胞核画像の各画素と蛍光輝点画像の対応する画素の値が加算され(ステップS6)、この加算画像から、各細胞領域内の蛍光輝点・細胞核に関する特徴量が算出される(ステップS7)。
 ここで、癌が発現している領域では細胞が増殖するため、細胞領域が癌領域である場合、その領域内における細胞核の個数nは正常な場合に比べて多くなる。即ち、その領域における細胞核1個当たりの占める面積は小さくなる。そこで、ステップS7においては、特徴量の1つとして、細胞領域における細胞核の数を表す特徴量である、その領域における細胞核1個当たりの占める面積S/nが算出される。
 例えば、細胞領域の面積がπr2である場合、細胞核が1つしか含まれていない細胞領域では、細胞核の数nは1であり、細胞領域の面積はπr2であるので、細胞核1個あたりが占める面積S/nは、πr2である。細胞核が2つ含まれている細胞領域では、細胞核の数nは2であり、細胞領域の面積はπr2であるので、細胞核1個あたりが占める面積S/nは、πr2/2である。S/nは小さくなるほど癌の可能性は高くなる。
 また、癌が発現している領域では細胞が増殖するため、細胞核が偏在し、細胞数が増えるとともに、細胞間の距離が近くなる。そこで、ステップS7においては、特徴量の1つとして、細胞領域の細胞核の個数が多く、細胞核間の距離が近いほど大きな値を示すように設計された指標値Fnumが算出される。
 Fnumの算出にあたっては、まず、各細胞領域内において、細胞核Ni(i=1,・・・,n)から他の細胞核N1~Nn(ただしNiをのぞく)までの距離D(Ni)が算出される。例えば、細胞核Niと細胞核Ni+1のD(Ni)は[数2]により算出することができる。
Figure JPOXMLDOC01-appb-M000003
 次いで、D(Ni)の最小値Min(D(Ni))が算出される。
 例えば、図24に示すように、細胞領域内に3つの細胞核Ni、Ni+1、Ni+2(NiからNi+1までの距離>NiからNi+2の距離)が存在するとき、NiからNi+2までの距離がMin(D(Ni))として算出される。
 そして、各細胞領域毎に、算出されたMin(D(Ni))を用いて下記の[数3]によりFnumが算出される。
Figure JPOXMLDOC01-appb-M000004
  
 また、癌が発現している細胞の細胞膜周囲には特定のタンパクが過剰発現するため、細胞領域が癌領域である場合、その領域内における蛍光輝点の密度は高くなる。そこで、ステップS7においては、特徴量の1つとして、各細胞領域における蛍光輝点の密度Dが算出される。
 例えば、細胞領域内の蛍光輝点の数をH、面積をS、細胞核の個数をnとすると、細胞領域内の蛍光輝点密度Dは、下記の式(2)により求めることができる。
  D=(H/S)/n  式(2)
は、細胞領域における特定タンパクの発現量を定量的に示す指標であり、Dが大きくなるほどその細胞領域の癌の悪性度は高くなる。
 特徴量の算出が終了すると、算出された特徴量に基づいて、各細胞領域が癌領域であるか否かの判定及び癌領域におけるタンパク発現状況の判定が行われる(ステップS8)。
 図25に、図10のステップS8における処理の詳細フローを示す。ステップS8の処理は、制御部21と記憶部25に記憶されているプログラムとの協働により実行される。
 まず、判定対象の細胞領域が選択され、S/nが予め定められた閾値Ts/nより小さいか否かが判断される(ステップS801)。S/nが予め定められた閾値Ts/nより小さいくないと判断されると(ステップS801;NO)、その領域は癌領域ではない(非癌)と判定され(ステップS803)、処理はステップS809に移行する。
 S/nが予め定められた閾値Ts/nより小さいと判断されると(ステップS801;YES)、Fnumが予め定められた閾値TFnumを超えているか否かが判断される(ステップS802)。Fnumが予め定められた閾値TFnumを超えていないと判断されると(ステップS802;NO)、その領域は癌領域ではない(非癌)と判定され(ステップS803)、処理はステップS809に移行する。
 Fnumが予め定められた閾値TFnumを超えていると判断されると(ステップS803;YES)、その領域は癌であると判定され、Dと予め定められた閾値TDk1、TDk2、TDk3、TDk4とが比較される(ステップS804)。ここで、TDk1>TDk2>TDk3>TDk4である。
 D>TDk1であると判断されると(ステップS804;D>TDk1)、その細胞領域は特定タンパクの高発現領域であると判定され(ステップS805)、処理はステップS809に移行する。
 TDk1≧D>TDk2であると判断されると(ステップS804;TDk1≧D>TDk2)、その細胞領域は特定タンパクの中発現領域であると判定され(ステップS806)、処理はステップS809に移行する。
 TDk2≧D>TDk3であると判断されると(ステップS804;TDk2≧D>TDk3)、その細胞領域は特定タンパクの低発現領域であると判定され(ステップS807)、処理はステップS809に移行する。
 TDk3≧D>TDk4であると判断されると(ステップS804;TDk3≧D>TDk4)、その細胞領域は特定タンパクの極低発現領域であると判定され(ステップS808)、処理はステップS809に移行する。
 ステップS809においては、全ての細胞領域について判定が終了したか否かが判断される。全ての細胞領域についての判定が終了していないと判断されると(ステップS809;NO)、処理はステップS801に戻り、次の細胞領域について判定が実行される。全ての細胞領域について判定が終了したと判断されると(ステップS809;YES)、処理は図10のステップS9に移行する。
 図10のステップS9においては、明視野画像上に、高発現領域、中発現領域、低発現領域、極低発現領域がその分類に応じて異なる表示態様で区分け(例えば、色分け)された画像を含む解析結果画面231が生成され、表示部23に表示出力される(ステップS9)。
 図26に、解析結果画面231の一例を示す。図26に示すように、解析結果画面231には、明視野画像231aと、蛍光輝点画像231bと、タンパク発現状況表示231cと、が表示されている。
 タンパク発現状況表示231cには、明視野画像上に、特定タンパクの高発現領域、中発現領域、低発現領域、極低発現領域が色分けして表示されている。これらの色で表示された領域は、癌と判定された領域である。よって、医師は、この解析結果画面231を閲覧することで、組織切片の画像全体の中のどこに癌が存在するのかを一瞥して認識することができるので、広大な視野内での癌の見落としに対する注意喚起を行うことができる。また、癌と判定された領域は、特定タンパクの発現状況に応じて色分けして表示されるので、医師は、癌の悪性度の指標となる特定タンパクの過剰発現、その広がりを効率よく把握することが可能となり、適切な治療計画を立てることが可能となる。
 なお、解析結果画面231の表示方法は、図26に示すものに限定されない。例えば、タンパク発現状況表示231cのみを表示することとしてもよい。また、操作部22からの切り替え指示に応じて明視野画像とタンパク発現状況表示を切り替え表示することとしてもよい。また、解析結果画面231に表示する明視野画像231a、蛍光輝点画像231b、タンパク発現状況表示231cは、観察しやすいように何れか又は全てを拡大縮小して表示することとしてもよい。
 解析結果は、印刷ボタン231dや送信ボタン231eを押下することでプリント出力又は外部機器への出力が可能となる。
 操作部22により印刷ボタン231dが押下されると、制御部21により解析結果のデータが通信I/F24やLAN等の通信ネットワークを介して図示しないプリンタに送信され、解析結果が印刷出力される。また、操作部22により送信ボタン231eが押下されると、制御部21により解析結果のデータが通信I/F24やLAN等の通信ネットワークを介して外部機器(例えば、PACS(Picture Archiving and Communication System for medical application))に送信される。
 以上説明したように、画像処理装置2Aによれば、制御部21は、組織切片のスライドを撮影した明視野画像から細胞核の領域を抽出し、抽出された各細胞核の領域の重心から細胞膜周囲の特定タンパク発現領域を包含する所定の半径の円領域を定め、定められた円領域が他の円領域と重ならない場合には、その定められた円領域を一つの細胞を含む細胞領域として推定し、定められた複数の円領域が互いに重なり合う場合には、その重なり合う複数の円領域の外周に囲まれた領域を複数の細胞を含む細胞領域として推定する。また、制御部21は、同一視野で撮影した蛍光画像から蛍光輝点を抽出する。そして、推定された各細胞領域に含まれる細胞核及び蛍光輝点に基づいて、各細胞領域に関する特徴量を算出し、算出された特徴量に基づいて前記推定された各細胞領域が癌であるか否か及び癌であると判定された領域における特定タンパクの発現状況を判定し、判定結果を出力する。
 従って、医師は、組織切片の画像全体の中から見落とし無く、効率よく癌領域及び癌領域における特定タンパクの発現状況を把握することが可能となる。
 例えば、制御部21は、各細胞領域において細胞核1個当たりが占める面積、及び/又は各細胞領域における細胞核の偏在性を示す指標値に基づいて、各細胞領域が癌であるか否かを判定し、癌であると判定された細胞領域における蛍光輝点の密度に基づいて、当該領域の特定タンパクの発現状況を判定する。従って、癌化した領域では細胞が増殖する、細胞核間の距離が短くなる、という癌領域の細胞の特徴を利用して精度よく癌領域を抽出することが可能となる。また、蛍光輝点の密度を用いて癌領域と判定された領域における特定タンパクの発現状況を精度良く取得することができる。
 また、制御部21は、癌と判定された細胞領域について算出された蛍光輝点の特徴量が予め定められた複数の閾値を超えるか否かに基づいて、癌と判定された細胞領域における特定タンパクの発現状況を複数の段階に分類し、細胞形態画像上の癌と判定された細胞領域を特定タンパクの発現状況の分類結果に応じた態様で区分けした画像を判定結果として出力する。従って、医師は、細胞領域と推定された各領域が組織切片の画像全体の中のどこに癌が存在するのかを一瞥して認識することができるので、広大な視野内での癌の見落としに対する注意喚起を行うことができる。また、癌と判定された領域は、特定タンパクの発現状況に応じて異なる表示態様で表示されるので、医師は、癌の悪性度の指標となる特定タンパクの過剰発現、その広がりを効率よく把握することが可能となり、適切な治療計画を立てることが可能となる。
 なお、上記実施の形態における記述内容は、本発明の好適な一例であり、これに限定されるものではない。
 例えば、上記実施の形態においては、好ましい一例として、各細胞領域内の核1個当たりが占める面積及び細胞核の偏在性を表す指標値を用いて各細胞領域が癌であるか否かを判定し、癌領域であると判定された領域について、蛍光輝点の数を用いてタンパク質の発現状況を判定することとしたが、癌領域であるか否かの判定及びタンパク質の発現状況の判定手法はこれに限定されない。例えば、各細胞領域内の核1個当たりが占める面積又は細胞核の偏在性を表す指標値の何れかを用いて癌領域であるか否かを判定することとしてもよいし、蛍光輝点の数を用いて癌領域であるか否かを判定することとしてもよい。
 また、例えば、上記実施の形態においては、特定タンパクの例として乳癌におけるHER2タンパクを挙げたが、これに限定されない。診断対象となる病変(がん)種に応じて、蛍光画像を取得する際の生体物質認識部位を異なるものとすれば、病変種に応じた特定タンパクの発現量を定量的に示す特徴量を医師に提供することが可能となる。
 また、上記の説明では、本発明に係るプログラムのコンピュータ読み取り可能な媒体としてHDDや半導体の不揮発性メモリー等を使用した例を開示したが、この例に限定されない。その他のコンピュータ読み取り可能な媒体として、CD-ROM等の可搬型記録媒
体を適用することが可能である。また、本発明に係るプログラムのデータを通信回線を介して提供する媒体として、キャリアウエーブ(搬送波)も適用される。
 その他、病理診断支援システム100を構成する各装置の細部構成及び細部動作に関しても、発明の趣旨を逸脱することのない範囲で適宜変更可能である。
 なお、明細書、請求の範囲、図面及び要約を含む2012年3月30日に出願された日本特許出願No.2012-078722号の全ての開示は、そのまま本出願の一部に組み込まれる。
 医療の分野において、組織切片の顕微鏡画像を処理する医用画像処理装置として利用可能性がある。
100 病理診断支援システム
1A 顕微鏡画像取得装置
2A 画像処理装置
21 制御部
22 操作部
23 表示部
24 通信I/F
25 記憶部
26 バス
3A ケーブル

Claims (5)

  1.  組織切片における細胞の形態を表す細胞形態画像と、前記組織切片の同一範囲における特定タンパクの発現を蛍光輝点で表す蛍光画像を入力する入力手段と、
     前記細胞形態画像から細胞核の領域を抽出する細胞核抽出手段と、
     前記蛍光画像から蛍光輝点を抽出する蛍光輝点抽出手段と、
     前記細胞核抽出手段により抽出された各細胞核の領域の重心から細胞膜周囲の前記特定タンパクの発現領域を包含する所定の領域を定め、前記定められた領域が他の前記定められた領域と重ならない場合には、その定められた領域を一つの細胞を含む細胞領域として推定し、前記定められた複数の領域が互いに重なり合う場合には、その重なり合う複数の領域の外周に囲まれた領域を複数の細胞を含む細胞領域として推定する領域推定手段と、
     前記領域推定手段により推定された各細胞領域に含まれる細胞核及び蛍光輝点に基づいて、前記各細胞領域に関する特徴量を算出する特徴量算出手段と、
     前記算出された特徴量に基づいて前記領域推定手段により推定された各細胞領域が癌であるか否か及び癌であると判定された領域における前記特定タンパクの発現状況を判定する判定手段と、
     前記判定手段による判定結果を出力する出力手段と、
     を備える医用画像処理装置。
  2.  前記領域推定手段によって定められる領域は、前記細胞核抽出手段により抽出された各細胞核の領域の重心を中心とし細胞膜周囲の前記特定タンパクの発現領域を包含する所定の半径の円領域である請求項1に記載の医用画像処理装置。
  3.  前記特徴量算出手段は、前記領域推定手段により推定された各細胞領域に含まれる細胞核に基づいて、前記各細胞領域において細胞核1個当たりが占める面積、及び/又は前記各細胞領域における細胞核の偏在性を示す指標値を算出し、前記各細胞領域に含まれる蛍光輝点に基づいて、前記各細胞領域における蛍光輝点の密度を算出し、
     前記判定手段は、前記各細胞領域において細胞核1個当たりが占める面積、及び/又は前記各細胞領域における細胞核の偏在性を示す指標値に基づいて、前記各細胞領域が癌であるか否かを判定し、前記癌であると判定された細胞領域における蛍光輝点の密度に基づいて、当該領域の前記特定タンパクの発現状況を判定する請求項1又は2に記載の医用画像処理装置。
  4.  前記判定手段は、前記癌と判定された細胞領域について算出された蛍光輝点の特徴量が予め定められた複数の閾値を超えるか否かに基づいて、前記癌と判定された細胞領域における前記特定タンパクの発現状況を複数の段階に分類し、
     前記出力手段は、前記細胞形態画像上の前記癌と判定された細胞領域を前記特定タンパクの発現状況の分類結果に応じた態様で区分けした画像を前記判定結果として出力する請求項1~3の何れか一項に記載の医用画像処理装置。
  5.  コンピュータを、
     組織切片における細胞の形態を表す細胞形態画像と、前記組織切片の同一範囲における特定タンパクの発現を蛍光輝点で表す蛍光画像を入力する入力手段、
     前記細胞形態画像から細胞核の領域を抽出する細胞核抽出手段、
     前記蛍光画像から蛍光輝点を抽出する蛍光輝点抽出手段、
     前記細胞核抽出手段により抽出された各細胞核の領域の重心から細胞膜周囲の前記特定タンパクの発現領域を包含する所定の領域を定め、前記定められた領域が他の前記定められた領域と重ならない場合には、その定められた領域を一つの細胞を含む細胞領域として推定し、前記定められた複数の領域が互いに重なり合う場合には、その重なり合う複数の領域の外周に囲まれた領域を複数の細胞を含む細胞領域として推定する領域推定手段、 前記領域推定手段により推定された各細胞領域に含まれる細胞核及び蛍光輝点に基づいて、前記各細胞領域に関する特徴量を算出する特徴量算出手段、
     前記算出された特徴量に基づいて前記領域推定手段により推定された各細胞領域が癌であるか否か及び癌であると判定された領域における前記特定タンパクの発現状況を判定する判定手段、
     前記判定手段による判定結果を出力する出力手段、
     として機能させるためのプログラム。
PCT/JP2013/058919 2012-03-30 2013-03-27 医用画像処理装置及びプログラム WO2013146843A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/387,415 US9189678B2 (en) 2012-03-30 2013-03-27 Medical image processor and storage medium
JP2014507943A JP5804194B2 (ja) 2012-03-30 2013-03-27 医用画像処理装置及びプログラム
EP13769898.1A EP2833138B1 (en) 2012-03-30 2013-03-27 Medical image processor and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-078722 2012-03-30
JP2012078722 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013146843A1 true WO2013146843A1 (ja) 2013-10-03

Family

ID=49260092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058919 WO2013146843A1 (ja) 2012-03-30 2013-03-27 医用画像処理装置及びプログラム

Country Status (4)

Country Link
US (1) US9189678B2 (ja)
EP (1) EP2833138B1 (ja)
JP (1) JP5804194B2 (ja)
WO (1) WO2013146843A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093518A1 (ja) * 2013-12-18 2015-06-25 コニカミノルタ株式会社 画像処理装置、病理診断支援システム、画像処理プログラム及び画像処理方法
JP5768948B1 (ja) * 2014-03-27 2015-08-26 コニカミノルタ株式会社 画像処理装置および画像処理プログラム
WO2015145643A1 (ja) * 2014-03-27 2015-10-01 コニカミノルタ株式会社 画像処理装置および画像処理プログラム
WO2015146938A1 (ja) * 2014-03-26 2015-10-01 コニカミノルタ株式会社 組織評価方法、画像処理装置、病理診断支援システム及びプログラム
JP2016001141A (ja) * 2014-06-12 2016-01-07 コニカミノルタ株式会社 診断支援情報生成方法、画像処理装置、診断支援情報生成システム及び画像処理プログラム
WO2016093090A1 (ja) * 2014-12-09 2016-06-16 コニカミノルタ株式会社 画像処理装置及び画像処理プログラム
JP2016118428A (ja) * 2014-12-19 2016-06-30 コニカミノルタ株式会社 画像処理装置、画像処理システム、画像処理プログラム及び画像処理方法
WO2016129061A1 (ja) * 2015-02-10 2016-08-18 コニカミノルタ株式会社 生体物質定量方法、病理診断支援システム及びプログラム
WO2016203907A1 (ja) * 2015-06-16 2016-12-22 コニカミノルタ株式会社 画像処理装置、画像処理方法、および画像処理用のプログラム
WO2016204027A1 (ja) * 2015-06-18 2016-12-22 コニカミノルタ株式会社 目的生体物質の解析装置、解析システム、解析方法および解析プログラム
JPWO2016042963A1 (ja) * 2014-09-19 2017-09-07 コニカミノルタ株式会社 画像処理装置、画像処理方法、及びプログラム
EP3249401A4 (en) * 2015-01-22 2017-11-29 Konica Minolta, Inc. Biological substance quantitation method, pathological diagnosis support system, and program
WO2018143406A1 (ja) * 2017-02-06 2018-08-09 コニカミノルタ株式会社 画像処理装置及びプログラム
JP2018534563A (ja) * 2015-10-23 2018-11-22 ノバルティス・エイジーNovartis AG 腫瘍組織を含むサンプルにスコアを付ける方法
WO2019012771A1 (ja) * 2017-07-11 2019-01-17 浜松ホトニクス株式会社 試料観察装置及び試料観察方法
JP2019109241A (ja) * 2013-10-10 2019-07-04 シスメックス株式会社 被検物質検出方法、及び、蛍光検出方法
WO2019188647A1 (ja) * 2018-03-30 2019-10-03 コニカミノルタ株式会社 画像処理方法、画像処理装置及びプログラム
JP2020135515A (ja) * 2019-02-21 2020-08-31 廣美 畑中 医用画像にaiの判断で進行度合いを表示する測計方法。
WO2023008369A1 (ja) 2021-07-30 2023-02-02 キヤノン株式会社 細胞自家蛍光の画像を用いて細胞を分類する方法及び解析装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014235494A (ja) * 2013-05-31 2014-12-15 富士ゼロックス株式会社 画像処理装置及びプログラム
JP6197659B2 (ja) * 2014-01-20 2017-09-20 富士ゼロックス株式会社 検出制御装置、プログラム及び検出システム
US9784665B1 (en) * 2014-12-29 2017-10-10 Flagship Biosciences, Inc. Methods for quantitative assessment of muscle fibers in muscular dystrophy
JP6765871B2 (ja) * 2016-06-22 2020-10-07 キヤノン株式会社 放射線撮影装置、放射線撮影システム、放射線撮影方法、及びプログラム
US10890576B2 (en) 2016-06-23 2021-01-12 Konica Minolta, Inc. Image processing device, image processing method, and recording medium
CN106875394B (zh) * 2016-12-22 2020-01-10 浙江工业大学 相差显微镜细胞主要信息粘连情况的分离与分组方法
WO2018157074A1 (en) * 2017-02-24 2018-08-30 Massachusetts Institute Of Technology Methods for diagnosing neoplastic lesions
JP7076698B2 (ja) * 2017-11-17 2022-05-30 国立研究開発法人国立がん研究センター 画像解析方法、画像解析装置、プログラム、学習済み深層学習アルゴリズムの製造方法および学習済み深層学習アルゴリズム
WO2019156957A1 (en) 2018-02-06 2019-08-15 Massachusetts Institute Of Technology Swellable and structurally homogenous hydrogels and methods of use thereof
CN110853022B (zh) * 2019-11-14 2020-11-06 腾讯科技(深圳)有限公司 病理切片图像的处理方法、装置、系统及存储介质
KR102640083B1 (ko) * 2023-08-16 2024-02-23 주식회사 딥바이오 생체 조직 이미지를 분석하여 종양 조직의 지역적 특성을측정하는 방법 및 이를 수행하는 컴퓨팅 시스템

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4326008A (en) 1976-08-27 1982-04-20 California Institute Of Technology Protein specific fluorescent microspheres for labelling a protein
US5326692A (en) 1992-05-13 1994-07-05 Molecular Probes, Inc. Fluorescent microparticles with controllable enhanced stokes shift
JP2002514319A (ja) 1997-03-03 2002-05-14 バクス リサーチ ラボラトリーズ インコーポレイテッド バーチャル顕微鏡スライドを作成する方法および装置
WO2004042392A1 (ja) * 2002-11-07 2004-05-21 Fujitsu Limited 画像解析支援方法、画像解析支援プログラムおよび画像解析支援装置
JP2008268027A (ja) * 2007-04-20 2008-11-06 Nikon Corp 画像解析方法と、蛍光検出装置
JP2009115813A (ja) * 2008-12-26 2009-05-28 Tokiwa Yakuhin Kogyo Kk アトピー性皮膚炎の局所病態の非侵襲的評価方法
JP2009115599A (ja) 2007-11-06 2009-05-28 Nec Corp 評価システム、評価方法および評価プログラム
JP2012078722A (ja) 2010-10-05 2012-04-19 Mitsubishi Electric Corp 情報提供システム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6259807B1 (en) * 1997-05-14 2001-07-10 Applied Imaging Corp. Identification of objects of interest using multiple illumination schemes and finding overlap of features in corresponding multiple images
US7272252B2 (en) * 2002-06-12 2007-09-18 Clarient, Inc. Automated system for combining bright field and fluorescent microscopy
US7050613B2 (en) * 2002-11-07 2006-05-23 Fujitsu Limited Method for supporting cell image analysis
US20050265588A1 (en) * 2004-02-03 2005-12-01 Bioimagene, Inc. Method and system for digital image based flourescent in situ hybridization (FISH) analysis
CA2596101A1 (en) * 2004-03-16 2005-09-29 Amnis Corporation Method for imaging and differential analysis of cells
DE102004028372A1 (de) * 2004-06-11 2006-01-05 Universität Bremen Verfahren und Vorrichtung zur Segmentierung einer digitalen Abbildung von Zellen
US20060041385A1 (en) * 2004-08-18 2006-02-23 Bauer Kenneth D Method of quantitating proteins and genes in cells using a combination of immunohistochemistry and in situ hybridization
US8428331B2 (en) * 2006-08-07 2013-04-23 Northeastern University Phase subtraction cell counting method
US8244021B2 (en) * 2006-12-20 2012-08-14 Ventana Medical Systems, Inc. Quantitative, multispectral image analysis of tissue specimens stained with quantum dots
US8559693B2 (en) * 2007-10-11 2013-10-15 British Columbia Cancer Agency Branch Systems and methods for automated characterization of genetic heterogeneity in tissue samples
JP5259207B2 (ja) * 2008-02-05 2013-08-07 オリンパス株式会社 細胞画像解析装置及びその方法並びにそのソフトウェア
JP5407015B2 (ja) * 2008-07-10 2014-02-05 国立大学法人徳島大学 画像処理装置、画像処理方法、コンピュータ実行可能な画像処理プログラム、及び顕微鏡システム
US8300938B2 (en) * 2010-04-09 2012-10-30 General Electric Company Methods for segmenting objects in images
EP2601513B1 (en) * 2010-08-05 2014-05-14 Cambridge Research & Instrumentation, Inc. Enhancing visual assessment of samples
EP2613151B1 (en) * 2010-09-02 2016-06-29 Tohoku University Method for determining cancer onset or cancer onset risk

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4326008A (en) 1976-08-27 1982-04-20 California Institute Of Technology Protein specific fluorescent microspheres for labelling a protein
US5326692A (en) 1992-05-13 1994-07-05 Molecular Probes, Inc. Fluorescent microparticles with controllable enhanced stokes shift
US5326692B1 (en) 1992-05-13 1996-04-30 Molecular Probes Inc Fluorescent microparticles with controllable enhanced stokes shift
JP2002514319A (ja) 1997-03-03 2002-05-14 バクス リサーチ ラボラトリーズ インコーポレイテッド バーチャル顕微鏡スライドを作成する方法および装置
WO2004042392A1 (ja) * 2002-11-07 2004-05-21 Fujitsu Limited 画像解析支援方法、画像解析支援プログラムおよび画像解析支援装置
JP2008268027A (ja) * 2007-04-20 2008-11-06 Nikon Corp 画像解析方法と、蛍光検出装置
JP2009115599A (ja) 2007-11-06 2009-05-28 Nec Corp 評価システム、評価方法および評価プログラム
JP2009115813A (ja) * 2008-12-26 2009-05-28 Tokiwa Yakuhin Kogyo Kk アトピー性皮膚炎の局所病態の非侵襲的評価方法
JP2012078722A (ja) 2010-10-05 2012-04-19 Mitsubishi Electric Corp 情報提供システム

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LANGMUIR, vol. 8, 1992, pages 2921
NATURE BIOTECHNOLOGY, vol. 19, 2001, pages 631
NEW JOURNAL OF CHEMISTRY, vol. 33, 2009, pages 561
See also references of EP2833138A4

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019109241A (ja) * 2013-10-10 2019-07-04 シスメックス株式会社 被検物質検出方法、及び、蛍光検出方法
WO2015093518A1 (ja) * 2013-12-18 2015-06-25 コニカミノルタ株式会社 画像処理装置、病理診断支援システム、画像処理プログラム及び画像処理方法
JP5822054B1 (ja) * 2013-12-18 2015-11-24 コニカミノルタ株式会社 画像処理装置、病理診断支援システム、画像処理プログラム及び画像処理方法
WO2015146938A1 (ja) * 2014-03-26 2015-10-01 コニカミノルタ株式会社 組織評価方法、画像処理装置、病理診断支援システム及びプログラム
JP5835536B1 (ja) * 2014-03-26 2015-12-24 コニカミノルタ株式会社 組織評価方法、画像処理装置、病理診断支援システム及びプログラム
WO2015145644A1 (ja) 2014-03-27 2015-10-01 コニカミノルタ株式会社 画像処理装置および画像処理プログラム
WO2015145643A1 (ja) * 2014-03-27 2015-10-01 コニカミノルタ株式会社 画像処理装置および画像処理プログラム
JP5804220B1 (ja) * 2014-03-27 2015-11-04 コニカミノルタ株式会社 画像処理装置および画像処理プログラム
US9558393B2 (en) 2014-03-27 2017-01-31 Konica Minolta, Inc. Image processing device and storage medium for image processing
JP5768948B1 (ja) * 2014-03-27 2015-08-26 コニカミノルタ株式会社 画像処理装置および画像処理プログラム
US9384550B2 (en) 2014-03-27 2016-07-05 Konica Minolta, Inc. Image processing device and storage medium for image processing
EP3124956A4 (en) * 2014-03-27 2017-09-13 Konica Minolta, Inc. Image processing device and image processing program
JP2016001141A (ja) * 2014-06-12 2016-01-07 コニカミノルタ株式会社 診断支援情報生成方法、画像処理装置、診断支援情報生成システム及び画像処理プログラム
JPWO2016042963A1 (ja) * 2014-09-19 2017-09-07 コニカミノルタ株式会社 画像処理装置、画像処理方法、及びプログラム
JPWO2016093090A1 (ja) * 2014-12-09 2017-09-14 コニカミノルタ株式会社 画像処理装置及び画像処理プログラム
US10509023B2 (en) 2014-12-09 2019-12-17 Konica Minolta, Inc. Image processing apparatus and computer readable medium for image processing
WO2016093090A1 (ja) * 2014-12-09 2016-06-16 コニカミノルタ株式会社 画像処理装置及び画像処理プログラム
JP2016118428A (ja) * 2014-12-19 2016-06-30 コニカミノルタ株式会社 画像処理装置、画像処理システム、画像処理プログラム及び画像処理方法
US10746740B2 (en) 2015-01-22 2020-08-18 Konica Minolta, Inc. Biological substance quantitation method, pathological diagnosis support system, and recording medium storing computer readable program
EP3249401A4 (en) * 2015-01-22 2017-11-29 Konica Minolta, Inc. Biological substance quantitation method, pathological diagnosis support system, and program
WO2016129061A1 (ja) * 2015-02-10 2016-08-18 コニカミノルタ株式会社 生体物質定量方法、病理診断支援システム及びプログラム
US10234391B2 (en) 2015-02-10 2019-03-19 Konica Minolta, Inc. Biological substance quantitation method, pathological diagnosis support system and recording medium storing computer readable program
JPWO2016129061A1 (ja) * 2015-02-10 2017-11-24 コニカミノルタ株式会社 生体物質定量方法、病理診断支援システム及びプログラム
US10309900B1 (en) 2015-02-10 2019-06-04 Konica Minolta, Inc. Biological substance quantitation method, pathological diagnosis support system and recording medium storing computer readable program
JPWO2016203907A1 (ja) * 2015-06-16 2018-04-05 コニカミノルタ株式会社 画像処理装置、画像処理方法、および画像処理用のプログラム
US10641706B2 (en) 2015-06-16 2020-05-05 Konica Minolta, Inc. Cell morphology image processing and corrections
WO2016203907A1 (ja) * 2015-06-16 2016-12-22 コニカミノルタ株式会社 画像処理装置、画像処理方法、および画像処理用のプログラム
WO2016204027A1 (ja) * 2015-06-18 2016-12-22 コニカミノルタ株式会社 目的生体物質の解析装置、解析システム、解析方法および解析プログラム
JPWO2016204027A1 (ja) * 2015-06-18 2018-04-05 コニカミノルタ株式会社 目的生体物質の解析装置、解析システム、解析方法および解析プログラム
US10801959B2 (en) 2015-06-18 2020-10-13 Konica Minolta, Inc. Objective biological substance analysis device, analysis system, analysis method, and recording medium storing computer readable analysis program
JP2018534563A (ja) * 2015-10-23 2018-11-22 ノバルティス・エイジーNovartis AG 腫瘍組織を含むサンプルにスコアを付ける方法
WO2018143406A1 (ja) * 2017-02-06 2018-08-09 コニカミノルタ株式会社 画像処理装置及びプログラム
JPWO2018143406A1 (ja) * 2017-02-06 2019-12-26 コニカミノルタ株式会社 画像処理装置及びプログラム
JP2022058674A (ja) * 2017-07-11 2022-04-12 浜松ホトニクス株式会社 試料観察装置及び試料観察方法
JP7329086B2 (ja) 2017-07-11 2023-08-17 浜松ホトニクス株式会社 試料観察装置及び試料観察方法
CN110892251A (zh) * 2017-07-11 2020-03-17 浜松光子学株式会社 试样观察装置和试样观察方法
US12031911B2 (en) 2017-07-11 2024-07-09 Hamamatsu Photonics K.K. Sample observation device and sample observation method
WO2019012771A1 (ja) * 2017-07-11 2019-01-17 浜松ホトニクス株式会社 試料観察装置及び試料観察方法
CN110892251B (zh) * 2017-07-11 2023-09-15 浜松光子学株式会社 试样观察装置和试样观察方法
JP7014794B2 (ja) 2017-07-11 2022-02-01 浜松ホトニクス株式会社 試料観察装置及び試料観察方法
JPWO2019012771A1 (ja) * 2017-07-11 2020-05-07 浜松ホトニクス株式会社 試料観察装置及び試料観察方法
US11353402B2 (en) 2017-07-11 2022-06-07 Hamamatsu Photonics K.K. Sample observation device and sample observation method
WO2019188647A1 (ja) * 2018-03-30 2019-10-03 コニカミノルタ株式会社 画像処理方法、画像処理装置及びプログラム
JP7259844B2 (ja) 2018-03-30 2023-04-18 コニカミノルタ株式会社 画像処理方法、画像処理装置及びプログラム
JPWO2019188647A1 (ja) * 2018-03-30 2021-05-13 コニカミノルタ株式会社 画像処理方法、画像処理装置及びプログラム
JP2020135515A (ja) * 2019-02-21 2020-08-31 廣美 畑中 医用画像にaiの判断で進行度合いを表示する測計方法。
WO2023008369A1 (ja) 2021-07-30 2023-02-02 キヤノン株式会社 細胞自家蛍光の画像を用いて細胞を分類する方法及び解析装置

Also Published As

Publication number Publication date
EP2833138A1 (en) 2015-02-04
EP2833138B1 (en) 2017-08-09
US9189678B2 (en) 2015-11-17
US20150086103A1 (en) 2015-03-26
JPWO2013146843A1 (ja) 2015-12-14
JP5804194B2 (ja) 2015-11-04
EP2833138A4 (en) 2016-01-13

Similar Documents

Publication Publication Date Title
JP5804194B2 (ja) 医用画像処理装置及びプログラム
JP5892238B2 (ja) 医用画像処理装置及びプログラム
JP6350527B2 (ja) 画像処理装置、病理診断支援システム、画像処理プログラム及び病理診断支援方法
JP6443450B2 (ja) 画像処理装置、画像処理方法、及びプログラム
JP5822054B1 (ja) 画像処理装置、病理診断支援システム、画像処理プログラム及び画像処理方法
JP6635108B2 (ja) 画像処理装置、画像処理方法、及び画像処理プログラム
JP6597316B2 (ja) 画像処理装置及びプログラム
JP6763407B2 (ja) 画像処理装置及びプログラム
JP5887823B2 (ja) 組織評価方法
JP6493398B2 (ja) 診断支援情報生成方法、画像処理装置、診断支援情報生成システム及び画像処理プログラム
WO2018143406A1 (ja) 画像処理装置及びプログラム
JP6375925B2 (ja) 画像処理装置、画像処理システム、画像処理プログラム及び画像処理方法
JP6337629B2 (ja) 診断支援情報生成方法、画像処理装置、診断支援情報生成システム及び画像処理プログラム
JP6702339B2 (ja) 画像処理装置及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769898

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507943

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013769898

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14387415

Country of ref document: US

Ref document number: 2013769898

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE