WO2013146597A1 - 加圧流動炉システムの起動方法 - Google Patents

加圧流動炉システムの起動方法 Download PDF

Info

Publication number
WO2013146597A1
WO2013146597A1 PCT/JP2013/058328 JP2013058328W WO2013146597A1 WO 2013146597 A1 WO2013146597 A1 WO 2013146597A1 JP 2013058328 W JP2013058328 W JP 2013058328W WO 2013146597 A1 WO2013146597 A1 WO 2013146597A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressurized fluidized
fluidized furnace
supplied
combustion
furnace
Prior art date
Application number
PCT/JP2013/058328
Other languages
English (en)
French (fr)
Inventor
隆文 山本
和由 寺腰
邦彦 古閑
敢 折戸
Original Assignee
月島機械株式会社
三機工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 月島機械株式会社, 三機工業株式会社 filed Critical 月島機械株式会社
Priority to KR1020147027670A priority Critical patent/KR102067302B1/ko
Priority to CN201380016610.4A priority patent/CN104204670B/zh
Priority to US14/387,184 priority patent/US10006631B2/en
Priority to EP13768721.6A priority patent/EP2833061B1/en
Publication of WO2013146597A1 publication Critical patent/WO2013146597A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/16Fluidised bed combustion apparatus specially adapted for operation at superatmospheric pressures, e.g. by the arrangement of the combustion chamber and its auxiliary systems inside a pressure vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L5/00Blast-producing apparatus before the fire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/10001Use of special materials for the fluidized bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/10002Treatment devices for the fluidizing gas, e.g. cooling, filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/10006Pressurized fluidized bed combustors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/99006Arrangements for starting combustion

Definitions

  • the present invention relates to a method for starting a pressurized fluidized furnace system for burning an object to be treated such as sewage sludge, biomass, municipal waste, and more specifically, cracking of fluidized sand deposited at the bottom of the pressurized fluidized furnace. It is related with the starting method of the pressurization fluidized-furnace system which reduces the consumption frequency of the auxiliary
  • a pressurized fluidized furnace system has been known as an incineration facility that focuses on effectively taking out the energy of combustion exhaust gas discharged from an incinerator by burning an object to be treated such as sewage sludge, biomass, and municipal waste.
  • the pressurized fluidized furnace system is a pressurized fluidized furnace that combusts a workpiece, a turbine that is rotated by combustion exhaust gas discharged from the pressurized fluidized furnace, and is rotated as the turbine rotates to supply compressed air. It is the system characterized by having the supercharger which mounts the compressor which carries out.
  • the conventional method for starting up the pressurized fluidized furnace system is that the fluidized sand heated to about 550 ° C. with the temperature rise of the pressurized fluidized furnace comes into contact with the normal temperature water sprayed in the furnace, so that the fluidized sand There is a concern that the consumption of fluidized sand may increase because cracks occur in the sand.
  • the startup method of the pressurized fluidized furnace system described in Non-Patent Document 1, Patent Documents 1 and 2 uses auxiliary fuel such as heavy oil and city gas to maintain the exhaust gas temperature and the exhaust gas flow rate until the self-sustained operation is completed. There is a risk that the consumption is high.
  • the main problem of the present invention is to eliminate such problems.
  • a pressurized fluidizing furnace for burning a workpiece having a water-containing organic substance by filling fluidized sand at the bottom, a turbine rotated by combustion exhaust gas discharged from the pressurized fluidized furnace, and a turbine rotation.
  • a supercharger that includes a compressor that rotates with movement and supplies compressed air as combustion air to the pressurized fluidized furnace, a starter fan that supplies combustion air to the pressurized fluidized furnace, and the pressurized fluidized furnace
  • a method of starting a pressurized fluidized furnace system comprising heating means for heating the inside, Drive the starter blower to supply combustion air to the pressurized fluidized furnace, The fluidized sand is heated by the heating means to raise the temperature of the freeboard part of the pressurized fluidized furnace, After the temperature of the free board portion is raised to 750 to 900 ° C., an object to be treated is supplied to the pressurized fluidized furnace to increase combustion exhaust gas, The starter blower is stopped after the turbocharger is driven by the combustion exhaust gas to supply the combustion air to the pressurized fluidized furnace.
  • the third invention is characterized in that, in the configuration of the first or second invention, the supply of the object to be processed is started when the pressure in the pressurized fluidized furnace becomes constant for a predetermined time.
  • the operation of the supercharger is more preferably started without increasing the amount of combustion exhaust gas with a water gun or the like. be able to.
  • the flue gas supplied to the turbine after the flue gas supplied to the turbine reaches a predetermined temperature, it branches from the flow path from the discharge side of the starter blower to the compressor suction side.
  • the bypass flow path disposed between the compressor discharge side flow path is closed, and combustion air is supplied from the starter blower to the compressor supply port via the air flow path.
  • the fifth invention is characterized in that, in the configurations of the first to fourth inventions, the object to be processed is supplied to the pressurized fluidized furnace while being increased at a constant rate.
  • the sixth invention is characterized in that, in the configurations of the first to fourth inventions, the workpieces are supplied to the pressurized fluidized furnace while being increased stepwise.
  • the object to be processed Since the object to be processed is supplied to the pressurized fluidized furnace while being increased stepwise, the method for supplying the object to be processed can be easily performed, and fluctuations in the supply amount of the object to be processed can be suppressed. Moreover, the fluctuation
  • the material to be treated is supplied in an amount of 20 to 30% by mass of the rated throughput of the pressurized fluidized furnace, After the combustion air supplied from the supercharger reaches 50 vol% or more of the rated capacity, the object to be processed is supplied in an amount of 40 to 50% by mass of the rated processing amount.
  • the pressurized fluidized furnace includes a starter burner for heating the fluidized sand filled in the bottom as a heating means, and an auxiliary fuel combustion device, The temperature of the fluidized sand is raised to 650 to 700 ° C. by the starter burner, and then the fluidized sand is heated to 750 to 850 ° C. by the auxiliary fuel combustion device.
  • the pressurized fluidized furnace system 1 includes a storage device 10 that stores an object to be processed such as sludge, a pressurized fluidized furnace 20 that combusts the object to be processed supplied from the storage device 10, An air preheater 40 for heating the combustion air supplied to the pressurized fluidized furnace 20 by the combustion exhaust gas discharged from the pressure fluidized furnace 20, a dust collector 50 for removing dust and the like in the combustion exhaust gas, and pressurization driven by the combustion exhaust gas A supercharger 60 for supplying combustion air to the fluidized furnace 20, a white smoke prevention preheater 70 for heating the white smoke prevention air supplied to the flue gas treatment tower 80 by the combustion exhaust gas discharged from the supercharger 60, and And a flue gas treatment tower 80 for removing impurities in the combustion exhaust gas.
  • a storage device 10 that stores an object to be processed such as sludge
  • a pressurized fluidized furnace 20 that combusts the object to be processed supplied from the storage device 10
  • An air preheater 40
  • the object to be treated stored in the storage device 10 is mainly sewage sludge dehydrated to a moisture content of 70 to 85% by mass, and the object to be treated contains combustible organic matter.
  • a to-be-processed object is a water-containing organic substance, it will not be restrict
  • a fixed amount feeder 11 for supplying a predetermined amount of the object to be processed to the pressurized fluidized furnace 20 is disposed in the lower part of the storage device 10, and the object to be processed is pumped to the pressurized fluidized furnace 20 on the downstream side of the quantitative feeder 11.
  • a dosing pump 12 is provided.
  • the pressurized fluidized furnace 20 is a combustion furnace having a predetermined particle size as a fluidized medium and filled with solid particles such as fluidized sand in the lower part of the furnace, and a fluidized bed (hereinafter referred to as a fluidized bed) by combustion air supplied into the furnace.
  • the material to be processed supplied from the outside and auxiliary fuel supplied as necessary are burned while maintaining the fluid state of the sand layer.
  • the pressurized fluidized furnace 20 includes at least one of an auxiliary fuel combustion device 21 and a starting burner 22 as heating means. As shown in FIGS.
  • an auxiliary fuel combustion device 21 for heating the fluidized sand having a particle size of about 400 to 600 ⁇ m filled in the pressurized fluidized furnace 20 is disposed at the lower part of the side wall on one side.
  • a starter burner 22 that heats the fluidized sand at the time of start-up is disposed in a portion near the upper side of the auxiliary fuel combustion device 21, and a workpiece supply port 13 ⁇ / b> B is provided in the upper portion of the starter burner 22.
  • a water gun 23 for cooling the combustion exhaust gas is disposed at the upper part of the pressurized fluidized furnace 20, and cooling water can be sprayed into the furnace as necessary.
  • the auxiliary fuel combustion device 21 is arranged above the combustion air supply pipe (dispersion pipe) 24 in order to heat the fluidized sand filled in the pressurized fluidized furnace 20. Further, a plurality of auxiliary fuel combustion devices 21 are arranged in parallel in the same manner as the combustion air supply pipe 24.
  • the auxiliary fuel combustion device 21 is supplied with auxiliary fuel such as city gas or heavy oil from an auxiliary fuel supply device 29 installed outside the furnace. A gas gun or an oil gun can be used as the auxiliary fuel combustion device 21.
  • the starting burner 22 is disposed so as to fall and incline toward the center of the pressurized fluidized furnace 20 in order to heat the upper surface of the fluidized sand at the time of starting. Similar to the auxiliary fuel combustion device 21, auxiliary fuel is supplied to the start burner 22 from an auxiliary fuel supply device 29 outside the furnace. Further, as the combustion air of the starter burner 22, the blown air generated by the starter blower 65 through the pipe 96 is used.
  • a combustion air supply pipe 24 that supplies combustion air to the inside of the pressurized fluidized furnace 20 is disposed under the side wall on the other side of the pressurized fluidized furnace 20.
  • the thinned side wall at the top of the pressurized fluidized furnace 20 is heated with combustion gas generated by the combustion of the auxiliary fuel, the object to be processed, sand filtered water, water existing in the object to be processed, etc.
  • a discharge port 90 ⁇ / b> A is formed for discharging the water vapor generated in step 1 to the outside of the furnace.
  • combustion gas or a gas in which combustion gas and water vapor are mixed is referred to as combustion exhaust gas.
  • the combustion air supply pipe 24 is disposed below the auxiliary fuel combustion device 21 in order to supply combustion air evenly to the auxiliary fuel supplied from the auxiliary fuel combustion device 21.
  • a plurality of temperature sensors (not shown) for measuring the in-furnace temperature are installed on the side wall of the pressurized flow furnace 20 at predetermined intervals along the height direction.
  • the installation locations are the sand layer and the freeboard section, which are 2 to 3 places each, 4 to 6 places in total.
  • a thermocouple or the like can be used as the temperature sensor.
  • the free board portion refers to the upper layer portion of the sand layer in the pressurized fluidized bed combustion furnace 11.
  • the air preheater 40 is installed at the rear stage of the pressurized fluidized furnace 20 and indirectly exchanges heat between the combustion exhaust gas discharged from the pressurized fluidized furnace 20 and the combustion air, thereby raising the combustion air to a predetermined temperature. It is a device that warms up. As shown in FIGS. 1 and 3, the air preheater 40 has a combustion exhaust gas supply port 90 ⁇ / b> B from the pressurized fluidized furnace 20 formed at the upper portion of one side wall, and a lower vicinity portion of the supply port 90 ⁇ / b> B. Is formed with a discharge port 91 ⁇ / b> A through which combustion air is discharged from the air preheater 40.
  • the combustion exhaust gas supply port 90 ⁇ / b> B is connected to the discharge port 90 ⁇ / b> A of the pressurized fluidized furnace 20 through the pipe 90, and the combustion air exhaust port 91 ⁇ / b> A is supplied to the combustion air of the pressurized fluidized furnace 20 through the tube 91. Connected to the rear of the tube 24.
  • a discharge port 92A for discharging the combustion exhaust gas from the air preheater 40 is formed in the lower part on the other side of the air preheater 40, and a supply port for supplying combustion air into the device in a region near the upper side of the discharge port 92A 95B is formed.
  • the air preheater a shell and tube heat exchanger is preferable.
  • the dust collector 50 is provided in the subsequent stage of the air preheater 40 and is a device that removes impurities such as dust and finely divided fluidized sand contained in the combustion exhaust gas delivered from the air preheater 40.
  • a filter installed in the dust collector 50 for example, a ceramic filter or a bag filter can be used.
  • a supply port 92B for supplying combustion exhaust gas into the device is formed in a lower portion of one side wall.
  • a discharge port 93A for discharging clean combustion exhaust gas from which impurities and the like have been removed to the outside of the device is formed.
  • the combustion exhaust gas supply port 92 ⁇ / b> B is connected to the combustion exhaust gas discharge port 92 ⁇ / b> A of the air preheater 40 through a pipe 92.
  • a vacuum filter (not shown) is provided at a portion between the supply port 92B formed in the lower portion and the discharge port 93A formed in the upper portion in the vertical direction. Impurities and the like in the combustion exhaust gas removed by the filter are temporarily stored at the bottom in the dust collector 50 and then periodically discharged to the outside.
  • the supercharger 60 is provided at the rear stage of the dust collector 50, and is rotated by the turbine 61 rotated by the combustion exhaust gas sent from the dust collector 50, the shaft 63 that transmits the rotation of the turbine 61, and the shaft 63.
  • the compressor 62 generates compressed air by being transmitted.
  • the generated compressed air is supplied to the pressurized fluidized furnace 20 as combustion air.
  • a supply port 93 ⁇ / b> B for supplying clean combustion exhaust gas from which impurities have been removed by the dust collector 50 into the apparatus is formed at a lower portion of the side wall of the turbocharger 60 on the turbine 61 side (a portion orthogonal to the shaft 63).
  • a discharge port 97A for discharging combustion exhaust gas to the outside of the device is formed on the downstream side of the side wall (portion parallel to the shaft 63). Further, the combustion exhaust gas supply port 93 ⁇ / b> B is connected to the discharge port 93 ⁇ / b> A of the dust collector 50 through the pipe 93.
  • the pipe 93 is provided with temperature measuring means 93D for measuring the combustion exhaust gas temperature.
  • a supply port 67B for sucking air into the equipment is formed, and above the side wall on the turbine 61 side (perpendicular to the shaft 63).
  • a discharge port 94A for discharging compressed air obtained by increasing the pressure of the sucked air to 0.05 to 0.3 MPa is formed in the device.
  • the outside air supply port 67 ⁇ / b> B sucks air through the pipes 16 and 67. Further, it is also connected to a starter blower 65 that supplies combustion air to the pressurized fluidized furnace 20 at the time of start-up via pipes 66 and 67.
  • the pipe 67 is provided with pressure measuring means 67C for measuring the pressure in the pipe.
  • the compressed air discharge port 94 ⁇ / b> A is connected to the supply port 95 ⁇ / b> B of the air preheater 40 via the pipes 94, 95 and to the rear part of the starting burner 22 of the pressurized fluidized furnace 20 via the pipes 94, 96. Yes.
  • the starter blower 65 is a device that supplies the flowing air of the pressurized fluidized furnace 20 and the combustion air to the starting burner 22 when the pressurized fluidized furnace system 1 is started.
  • the starter blower 65 reduces the water vapor generated in the pressurized fluidized furnace 20 due to the interruption of the supply of the object to be processed from the storage device 10 and the rotation speed of the turbine 61 of the supercharger 60 becomes low.
  • the start blower 65 is connected to the discharge side pipe 94 of the compressor 62 via the pipes 66 and 68.
  • a damper 68 ⁇ / b> C that communicates a portion of the pipe 68 far from the connection point with the pipe 67 as viewed from the starter fan 65 is disposed in the middle portion of the pipe 68 that is a bypass flow path.
  • the damper 68C communicates the pipe 68 from the time when the pressurized fluidized furnace 20 is started (when the starter burner 22 is ignited) until the temperature rise of the pressurized fluidized furnace 20 is completed.
  • the pipe 68 is shut off. That is, during the temperature rise from the start of the pressurized fluidized furnace 20, the air generated by the starter blower 65 is burned by the starter burner via the pipe 96 to the starter burner 22 provided in the pressurized fluidized furnace 20.
  • the compressor of the supercharger 60 is supplied as air, and further supplied to the combustion air supply pipe 24 through the pipe 95 and the air preheater 40, and through the pipe 67 which is an unclosed air flow path. After the combustion air is supplied also to the 62 side and the temperature rise of the pressurized fluidized furnace 20 is completed, only the air that has passed through the compressor 62 is closed via the air preheater 40 by closing the damper 68C. Is supplied to the combustion air supply pipe 24 as combustion air.
  • the white smoke prevention preheater 70 prevents the white smoke of the combustion exhaust gas discharged from the chimney 87 to the outside, and the white smoke prevention supplied from the combustion exhaust gas discharged from the supercharger 60 and the white smoke prevention fan. It is a device that indirectly exchanges heat with industrial air. By the heat exchange treatment, the combustion exhaust gas is cooled and the white smoke prevention air is heated. The flue gas that has been heat-exchanged and cooled by the white smoke prevention preheater 70 is sent to the subsequent flue gas treatment tower 80.
  • a shell and tube heat exchanger, a plate heat exchanger, or the like can be used as the white smoke preventing preheater 70.
  • the flue gas treatment tower 80 is a device that prevents discharge of impurities and the like contained in the combustion exhaust gas outside the equipment, and a chimney 87 is disposed on the upper part of the flue gas treatment tower 80.
  • the flue gas treatment tower 80 has a supply port 98 ⁇ / b> B for supplying the combustion exhaust gas discharged from the white smoke prevention preheater 70 into the apparatus at the lower part of the side wall on one side.
  • a supply port 99B is formed in the lower portion of the side wall on one side of the chimney 87 to supply the white smoke prevention air, which is heated and discharged from the white smoke prevention preheater 70 and exchanged with the exhaust gas, into the chimney 87.
  • the combustion exhaust gas supply port 98B is connected to a combustion exhaust gas discharge port 98A formed in the lower portion of the white smoke prevention preheater 70 via a pipe 98, and the white smoke prevention air supply port 99B is connected to the pipe.
  • 99 is connected to a white smoke prevention air discharge 99 ⁇ / b> A formed in the upper part of the white smoke prevention preheater 70.
  • the white smoke prevention air of the white smoke prevention preheater 70 is supplied to the white smoke prevention preheater 70 via the pipe 103 by the white smoke prevention air blower 101 and indirectly exchanged with the combustion exhaust gas. It is heated and discharged from the discharge port 99A.
  • the combustion exhaust gas at the outlet which tends to be wet and condensed in the air, is mixed with warm and dry white smoke prevention air at the supply port 99B to reduce the relative humidity of the combustion exhaust gas. To prevent white smoke.
  • a spray pipe 84 for spraying water supplied from the outside into the apparatus is arranged on the upper side wall on the other side of the flue gas treatment tower 80, and the intermediate part and the lower part are respectively connected via a circulation pump 83.
  • a spray pipe 85 for spraying caustic soda water containing caustic soda stored at the bottom of the flue gas treatment tower 80 into the apparatus is disposed. Further, the caustic soda water stored in the flue gas processing tower 80 is supplied from a caustic soda tank (not shown) via a caustic soda pump (not shown), and is always maintained at an appropriate amount.
  • the combustion exhaust gas supplied to the flue gas treatment tower 80 is mixed with white smoke prevention air after removing impurities and the like, and is discharged from the chimney 87 to the outside.
  • the starting method of the pressurized fluidized furnace system 1 of this embodiment is demonstrated based on FIG.
  • This activation method is an activation method that prevents the fluid sand from being rapidly cooled and broken by water sprayed from the water gun 23.
  • the starter blower 65 that sucks outside air is started, and combustion air is supplied from the starter blower 65 to the starter burner 22.
  • the combustion air discharged from the starter blower 65 is supplied to the rear portion of the starter burner 22 through the pipes 66, 68 and 96.
  • the damper 66C disposed in the pipe 66 is connected to the control device, and is opened when the starter blower 65 operates, so that the pipe 66 communicates.
  • a damper 68 ⁇ / b> C that is disposed in the pipe 68 and communicates with a portion far from the connection point with the pipe 67 as viewed from the starter fan 65 is connected to the control device, and the pipe 68 communicates.
  • a part of the combustion air discharged from the starter blower 65 may be supplied to the starter burner 22 via the compressor 62 and the pipe 94 of the supercharger 60, but is discharged from the starter blower 65. More than half of the combustion air may be supplied to the start burner 22 without passing through the compressor 62.
  • the auxiliary fuel supply device 29 arranged outside the furnace is started, and auxiliary fuel such as heavy oil and city gas is supplied from the auxiliary fuel supply device 29 to the starter burner 22.
  • auxiliary fuel discharged from the auxiliary fuel supply device 29 is supplied to the rear portion of the starting burner 22 via the pipes 30 and 31.
  • the flow rate adjustment valve 31C disposed in the pipe 31 is connected to a control device (not shown) and adjusts the flow rate (supply amount) of auxiliary fuel.
  • the combustion air and auxiliary fuel supplied to the starter burner 22 are mixed by the starter burner 22 and combusted, and hot air is ejected from the discharge port at the front of the starter burner 22.
  • the hot air ejected from the starter burner 22 is ejected toward the upper surface of the fluidized sand filled in the bottom of the pressurized fluidized furnace 20 to raise the temperature of the sand layer to about 650 to 700 ° C.
  • combustion air is continuously supplied from the starter blower 65 to the combustion air supply pipe 24.
  • the combustion air discharged from the starter blower 65 is supplied to the rear portion of the combustion air supply pipe 24 through the pipes 66, 68, 96, 95, the air preheater 40, and the pipe 91.
  • the flow rate adjusting valve 95C disposed in the pipe 95 is connected to a control device, and the pipe 95 is communicated so as to flow an appropriate flow rate.
  • a part of the combustion air discharged from the starter blower 65 may be supplied to the combustion air supply pipe 24 via the compressor 62 and the pipe 94 of the supercharger 60, but from the starter blower 65. More than half of the discharged combustion air may be supplied to the combustion air supply pipe 24 without passing through the compressor 62.
  • Auxiliary fuel is supplied from the auxiliary fuel supply device 29 to the auxiliary fuel combustion device 21.
  • the auxiliary fuel discharged from the auxiliary fuel supply device 29 is supplied to the rear portion of the auxiliary fuel combustion device 21 through the pipes 30 and 32.
  • the flow rate adjustment valve 32C disposed in the pipe 31 is controlled by a control device (not shown) to adjust the flow rate (supply amount) of auxiliary fuel.
  • the combustion air supplied to the combustion air supply pipe 24 is discharged from the hole at the tip of the combustion air supply pipe 24 to the packed bed of fluidized sand, and the auxiliary fuel supplied to the auxiliary fuel combustion device 21 is the auxiliary fuel combustion device.
  • 21 is discharged to the packed bed of fluidized sand from the hole at the front, and combustion air and auxiliary fuel are mixed and combusted in the fluidized sand gap to generate hot air, and the temperature of the fluidized sand is raised to 750-850 ° C. Let warm. Further, the freeboard temperature of the pressurized fluidized furnace 20 (the temperature at the upper part in the pressurized fluidized furnace 20) rises in response to the temperature rise of the fluidized sand and is raised to about 850 ° C.
  • the combustion exhaust gas discharged from the pressurized fluidized furnace 20 is supplied to the air preheater 40 through the pipe 90 and then passes through the dust collector 50.
  • the combustion exhaust gas discharged from the dust collector 50 is supplied to the smoke processing tower 80 via the pipe 93C and then discharged to the outside from the chimney 87. At this time, a part of the combustion exhaust gas may be supplied to the turbine 61 of the supercharger 60.
  • the combustion of the start burner 22 is stopped. That is, the damper 96C of the pipe 96 is disconnected from the control device, the pipe 96 is closed to stop the supply of combustion air, and the flow rate adjustment valve 31C of the pipe 31 is closed to stop the supply of auxiliary fuel.
  • the quantitative feeder 11 When the temperature of the free board portion in the pressurized fluidized furnace 20 is raised to about 750 to 900 ° C., and the combustion air flow rate and the pressure in the furnace become constant for about 1 to 10 seconds, the quantitative feeder 11 Then, the charging pump 12 is started, and the workpiece is supplied into the pressurized fluidized furnace 20 from the supply port 13B of the pressurized fluidized furnace 20.
  • the organic substance contained in the object to be processed supplied into the pressurized fluidized furnace 20 burns to generate combustion gas, and the moisture contained in the object to be treated is the upper part in the pressurized fluidized furnace 20 or flows. Boils in contact with sand and generates water vapor.
  • the supply amount of the object to be processed is preferably 20 to 30% of the rated processing amount of the pressurized fluidized furnace 20.
  • the amount is less than 20% of the rated processing amount, the amount of combustion exhaust gas generated is small, and the time for the supercharger 60 to shift to the self-sustained operation becomes long.
  • the supply amount is more than 30% of the rated processing amount, the fluid sand breaks due to the water contained in the object to be processed, and the particle size cannot be sufficiently prevented.
  • the rated processing amount refers to the mass of the workpiece to be supplied from the supply port 13B to the pressurized fluidized furnace 20 during the self-sustained operation of the supercharger 60.
  • combustion air is supplied from the starter blower 65 to the compressor 62.
  • the combustion air discharged from the starter blower 65 is supplied to the compressor 62 via the pipes 66 and 67. Further, the outside air can be supplied to the compressor 62 as combustion air through the pipes 16, 66, and 67.
  • the supplied combustion air is pressurized to 0.05 to 0.3 Mpa by the compressor 62 and then supplied to the rear portion of the combustion air supply pipe 24 through the pipes 94, 96, 95, the air preheater 40, and the pipe 91.
  • the damper 68C arrange
  • the rated throughput is set in the pressurized fluidized furnace 20 from the supply port 13B of the pressurized fluidized furnace 20.
  • a lower amount of workpiece is supplied.
  • the supply amount is preferably 40 to 50% of the rated processing amount.
  • the supply amount of the object to be processed is less than 40% of the rated processing amount, a small amount of combustion exhaust gas is generated, and the time required for the amount of combustion air discharged from the supercharger 60 to increase to a predetermined amount becomes long. . Further, if the supply amount is more than 50% of the rated treatment amount, it becomes difficult to keep the temperature of the fluid sand in the pressurized fluidized furnace 20 constant by the water contained in the workpiece.
  • the combustion exhaust gas increases, and the rotation speed of the supercharger 60 increases, the amount of air that can be sucked by the compressor 62 increases. Therefore, the amount of combustion air supplied from the starter blower 65 is decreased while increasing the amount of combustion air supplied to the compressor 62 of the supercharger 60 via the pipes 16, 66 and 67. Adjustment of the amount of combustion air may reduce the rotation speed of a blower, and may adjust the damper 66C opening degree. Thereafter, when the pressure measured by the pressure detection means 67C installed in the pipe 67 becomes lower than the atmospheric pressure, the starter blower 65 is stopped.
  • the pressurized fluidized furnace system 1 is in a self-sustained operation in which the turbine 61 is driven by the combustion exhaust gas and the necessary amount of combustion air for the object to be processed is supplied by the compressed air discharged from the compressor 62.
  • the start-up blower 65 is stopped when the pressure measured by the pressure detection means 67C installed in the pipe 67 is lower than the atmospheric pressure, but it does not stop immediately and is supercharged. After the combustion air discharged from the compressor 62 of the machine 60 reaches 85% or more of the rated capacity, after supplying the processed material of the rated processing amount into the pressurized flow furnace 20, the starter blower 65 is stopped. It is also possible.
  • a sand filtration water pump (not shown) is started and water is supplied to the water gun 23 from the sand filtration water pump.
  • the water supplied to the water gun 23 is sprayed from the water gun 23 toward the fluidized sand, boils in contact with the free board portion in the pressurized fluidized furnace 20 or the fluidized sand, and generates water vapor.
  • Combustion exhaust gas generated by combustion of combustion air in the pressurized fluidized furnace 20 and auxiliary fuel and steam generated by boiling of water are mixed with a pipe 90, an air preheater 40, a pipe 92, a dust collector 50, and a pipe.
  • the turbine 61 is supplied to the turbine 61 of the supercharger 60 through 93, and the turbine 61 is rotated.
  • the compressor 62 of the supercharger 60 starts to rotate as the turbine 61 rotates.
  • combustion air is supplied from the starter blower 65 to the compressor 62.
  • the combustion air discharged from the starter blower 65 is supplied to the compressor 62 through the pipes 66 and 67, and after being pressurized to 0.05 to 0.3 MPa by the compressor 62, the pipes 94, 96, and 95 are preheated.
  • the air is supplied to the rear portion of the combustion air supply pipe 24 via the vessel 40 and the pipe 91.
  • the damper 68C disposed in the pipe 68 is closed.
  • the quantitative feeder 11 and the charging pump 12 of the storage device 10 are activated, and the object to be processed is supplied into the pressurized fluidized furnace 20 from the supply port 13B of the pressurized fluidized furnace 20. Thereafter, the supply of sand filtered water to the water gun 23 is stopped.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Incineration Of Waste (AREA)
  • Air Supply (AREA)

Abstract

【課題】低コストで流動砂の割れを抑制する加圧流動炉システムの起動方法を提案する。【解決手段】加圧流動炉の底部に充填した流動砂を加熱し、加圧流動炉のフリーボード部の温度を昇温させ、フリーボード部の温度が750~900℃に昇温した後、加圧流動炉に含水有機物質を有する被処理物を供給する。

Description

加圧流動炉システムの起動方法
 本発明は、下水汚泥、バイオマス、都市ゴミ等の被処理物を燃焼する加圧流動炉システムの起動方法に関するものであり、より詳細には、加圧流動炉の底部に堆積した流動砂の割れを防止して流動砂の交換頻度を低減し、流動砂の加熱に使用する補助燃料の消費を低減する加圧流動炉システムの起動方法に関するものである。
 従来、下水汚泥、バイオマス、都市ゴミ等の被処理物を燃焼し、焼却炉から排出される燃焼排ガスの持つエネルギーを有効に取り出すことに着目した焼却設備として、加圧流動炉システムが知られている。加圧流動炉システムは、被処理物を燃焼させる加圧流動炉と、加圧流動炉から排出される燃焼排ガスによって回動されるタービンとタービンの回動に伴って回動され圧縮空気を供給するコンプレッサーを内装する過給機を有することを特徴とするシステムである。加圧流動動炉システムでは、被処理物を燃焼させた際に生じる燃焼排ガスによって過給機のタービンを駆動し、コンプレッサーから排出される圧縮空気によって被処理物の必要燃焼空気全量を供給する自立運転が可能となる。自立運転が可能となることで、従来、必要であった流動ブロワおよび誘引ファンが不要となり、ランニングコストが低減することが知られている。
 この加圧流動炉システムの起動方法として、加圧流動炉の底部に充填した流動砂を約550℃に加熱した後に、加圧流動炉の上部に配置されたウォータガンから流動砂に向けて砂ろ過水を噴霧し、加圧流動炉で発生する燃焼排ガスを増加させ、加圧流動炉に燃焼空気を供給する方法が提案されている(非特許文献1、特許文献1、2参照)。
「第18回廃棄物学会研究発表会講演論文集2007」廃棄物学会、2007年11月1日発行、p579~581
特開2007-170704号公報 特開2008-25966号公報
 しかしながら、従来の加圧流動炉システムの起動方法は、加圧流動炉の昇温に伴い約550℃に加熱された流動砂と炉内に噴霧された常温の水が接触することで、流動砂に割れが発生して小粒となるために、流動砂の消費量が増えるという虞があった。
 また、非特許文献1、特許文献1、2に記載された加圧流動炉システムの起動方法は、自立運転完了まで排ガス温度および排ガス流量の維持のために重油、都市ガス等の補助燃料を使用する必要があり、その消費が多いという虞があった。
 そこで、本発明の主たる課題は、かかる問題点を解消することにある。
 上記課題を解決した本発明及び作用効果は、次のとおりである。
 第1発明は、底部に流動砂を充填して含水有機物質を有する被処理物を燃焼させる加圧流動炉と、該加圧流動炉から排出される燃焼排ガスによって回動するタービンとタービンの回動に伴って回動し圧縮空気を加圧流動炉に燃焼空気として供給するコンプレッサーを内装する過給機と、前記加圧流動炉に燃焼空気を供給する起動用送風機と、前記加圧流動炉内を加熱する加熱手段とを備えた加圧流動炉システムの起動方法であって、
 前記起動用送風機を駆動して燃焼空気を加圧流動炉に供給し、
 前記加熱手段により前記流動砂を加熱して加圧流動炉のフリーボード部の温度を昇温し、
 前記フリーボード部の温度が750~900℃に昇温した後に、前記加圧流動炉に被処理物を供給して燃焼排ガスを増加させ、
 該燃焼排ガスによって前記過給機を駆動させて該燃焼空気を加圧流動炉に供給した後に、前記起動用送風機を停止させることを特徴とする。
 (作用効果)
 加圧流動炉のフリーボード部の温度が750~900℃に昇温した後に、加圧流動炉に被処理物を供給して燃焼排ガスを増加させ、燃焼排ガスによって過給機を駆動させて燃焼空気を加圧流動炉に供給するので、ヒートショックによる流動砂の割れを抑制し、流動砂の交換頻度を低減することができる。また、被処理物に内在された有機物質を燃焼させることによって加圧流動炉に要求される重油、都市ガス等の補助燃料の消費を低減することもできる。
 第2発明は、第1発明の構成において、前記加圧流動炉に被処理物の燃焼に使用される燃焼空気よりも多くの燃焼空気を、前記起動用送風機と過給機によって供給することを特徴とする。
 (作用効果)
 加圧流動炉に被処理物の燃焼に使用される燃焼空気よりも多くの燃焼空気を、起動用送風機と過給機によって供給するので、被処理物が完全燃焼し一酸化炭素等の有害物質の発生を抑制することができる。
 第3発明は、第1又は2発明の構成において、前記加圧流動炉の炉内圧力が所定の時間一定となった場合に、前記被処理物の供給を開始することを特徴とする。
 (作用効果)
 加圧流動炉内の圧力が所定の時間一定となった場合に、被処理物の供給を開始するので、ウォータガンなどで燃焼排ガスを増量させることなく過給機の運転をより好適に開始することができる。
 第4発明は、第1~3発明の構成において、前記タービンに供給される燃焼排ガスが所定の温度となった後に、前記起動用送風機の吐出側から前記コンプレッサー吸込側への流路から分岐して前記コンプレッサー吐出側の流路との間に配置されたバイパス流路を閉塞し、前記起動用送風機から空気流路を介してコンプレッサーの供給口に燃焼空気を供給することを特徴とする。
 (作用効果)
 過給機の供給口における燃焼排ガスが所定の温度となった後、起動用送風機から過給機を介して加圧流動炉へ燃焼空気の供給を開始するので、ウォータガンなどで燃焼排ガスを増量させることなく過給機の運転を開始することができる。
 第5発明は、第1~4発明の構成において、前記被処理物を一定の割合で増加させながら加圧流動炉に供給することを特徴とする。
 (作用効果)
 被処理物を一定の割合で増加させながら加圧流動炉に供給するので、加圧流動炉の温度の変動を抑制でき、安定して過給機の自立運転に移行することができる。
 第6発明は、第1~4発明の構成において、前記被処理物を階段的に増加させながら加圧流動炉に供給することを特徴とする。
 (作用効果)
 被処理物を階段的に増加させながら加圧流動炉に供給するので、被処理物の供給方法を簡易に行うことができ、被処理物の供給量の変動を抑制することができる。また、加圧流動炉の温度の変動を抑制でき、安定して過給機の自立運転に移行することができる。
 第7発明は、第6発明の構成において、前記加圧流動炉の定格処理量の20~30質量%の前記被処理物を供給し、
 前記過給機から供給される燃焼空気が定格容量の50vol%以上になった後に、定格処理量の40~50質量%の前記被処理物を供給することを特徴とする。
 (作用効果)
 加圧流動炉の定格処理量の20~30質量%の被処理物を加圧流動炉に供給しているので、被処理物の供給開始時に発生する流動砂の温度の降温を防止することができる。
 また、過給機から供給される燃焼空気を定格容量の50vol%以上とした後に、定格処理量の40~50質量%の被処理物を加圧流動炉に供給するので、加圧流動炉の温度の変動をより抑制でき、短時間で過給機の自立運転に移行することができる。
 第8発明は、第1~7発明の構成において、前記加圧流動炉は、加熱手段として底部に充填した流動砂を加熱する始動用バーナーと補助燃料燃焼装置とを備え、
 前記流動砂を前記始動用バーナーによって650~700℃に昇温した後に、前記流動砂を前記補助燃料燃焼装置によって750~850℃に昇温させることを特徴とする。
 (作用効果)
 始動用バーナーで加圧流動炉の流動砂の表面部を加熱した後、補助燃料燃焼装置で流動砂の中心部を加熱するので、流動砂を効率良く昇温でき、補助燃料の消費を抑制することができる。
 以上の発明によれば、過給機の自立運転前から被処理物を投入することが可能となるので低コストで流動砂の割れを抑制することが可能となる。
加圧流動炉システムの説明図である。 図1の部分拡大図である。 図1の部分拡大図である。 図1の部分拡大図である。 本実施形態の起動方法のフローチャートである。 比較の起動方法のフローチャートである。
 以下、本発明の本実施形態について添付図面を参照しつつ詳説する。なお、理解を容易にするため、便宜的に方向を示して説明しているが、これらにより構成が限定されるものではない。
 加圧流動炉システム1は、図1に示すように、汚泥等の被処理物を貯留する貯留装置10と、貯留装置10から供給された被処理物を燃焼する加圧流動炉20と、加圧流動炉20から排出された燃焼排ガスによって加圧流動炉20に供給する燃焼空気を加熱する空気予熱器40と、燃焼排ガス中の粉塵等を除去する集塵機50と、燃焼排ガスによって駆動され加圧流動炉20に燃焼空気を供給する過給機60と、過給機60から排出された燃焼排ガスによって排煙処理塔80に供給する白煙防止用空気を加熱する白煙防止用予熱器70と、燃焼排ガス内の不純物を除去する排煙処理塔80を備えている。
 (貯留装置)
 貯留装置10に貯留される被処理物は、主に含水率を70~85%質量に脱水処理された下水汚泥であり、被処理物には、燃焼可能な有機物が含有されている。なお、被処理物は、含水有機物であれば下水汚泥に制限されることはなく、バイオマス、都市ゴミ等であっても良い。
 貯留装置10の下部には、所定量の被処理物を加圧流動炉20に供給する定量フィーダ11が配置され、定量フィーダ11の下流側には、被処理物を加圧流動炉20に圧送する投入ポンプ12が設けられている。なお、投入ポンプ12としては、一軸ネジ式ポンプ、ピストンポンプ等が使用できる。
 (加圧流動炉)
 加圧流動炉20は、流動媒体として所定の粒径を有する、流動砂等の固体粒子が炉内の下部に充填された燃焼炉であり、炉内に供給される燃焼空気によって流動層(以下、砂層という。)の流動状態を維持しつつ、外部から供給される被処理物および必要に応じて供給される補助燃料を燃焼させるものである。加圧流動炉20は、加熱手段として補助燃料燃焼装置21、始動用バーナー22の少なくとも1つを備えている。 図1、図2に示すように、一側の側壁の下部には、加圧流動炉20の内部に充填された粒径約400~600μmの流動砂を加熱する補助燃料燃焼装置21が配置され、補助燃料燃焼装置21の上側近傍の部位には、始動時に流動砂を加熱する始動用バーナー22が配置され、始動用バーナー22の上側の部位には、被処理物の供給口13Bが設けられている。また、加圧流動炉20の上部には、燃焼排ガスを冷却するためのウォータガン23が配置され、必要に応じ冷却水を炉内に噴霧することができる。
 補助燃料燃焼装置21は、加圧流動炉20に充填された流動砂を加熱するために、燃焼空気供給管(分散管)24の上側に配置されている。また、補助燃料燃焼装置21は、燃焼空気供給管24と同様に複数本が並列に配置されている。補助燃料燃焼装置21は、炉外に設置された補助燃料供給装置29から都市ガスや重油等の補助燃料が供給されている。なお、補助燃料燃焼装置21として、ガスガンやオイルガンを使用することもできる。
 始動用バーナー22は、始動時に流動砂の上面を加熱するために、加圧流動炉20の中心部に向かって立下がり傾斜して配置されている。なお、補助燃料燃焼装置21と同様に、始動用バーナー22には、炉外の補助燃料供給装置29から補助燃料が供給されている。また、始動用バーナー22の燃焼空気は、配管96を介して起動用送風機65の発生した送風空気が使用される。
 加圧流動炉20の他側の側壁の下部には、加圧流動炉20の内部に燃焼空気を供給する燃焼空気供給管24が配置されている。加圧流動炉20の上部の細径化された側壁には、補助燃料、被処理物等の燃焼によって発生した燃焼ガスや、砂ろ過水、被処理物に内在する水等が加熱されることで生じた水蒸気などを炉外に排出する排出口90Aが形成されている。なお、本発明では、燃焼ガス、又は燃焼ガスと水蒸気が混合したガスを燃焼排ガスという。
 燃焼空気供給管24は、補助燃料燃焼装置21から供給された補助燃料に均等に燃焼空気を供給するために、補助燃料燃焼装置21の下側に配置される。
 加圧流動炉20の側壁には、炉内温度を測定するための温度センサ(図示省略)が高さ方向にそって所定間隔で複数設置されている。設置個所は、砂層およびフリーボード部であり、それぞれ2箇所から3箇所、計4~6箇所となる。温度センサとしては、熱電対等を使用することが出来る。ここで、フリーボード部とは、加圧流動層燃焼炉11の内部において砂層の上層部を指す。これら温度センサは、それぞれの設置位置における炉内温度を示す電気信号を制御装置(図示省略)に出力する。
 (空気予熱器)
 空気予熱器40は、加圧流動炉20の後段に設置され、加圧流動炉20から排出された燃焼排ガスと燃焼空気とを間接的に熱交換することにより、燃焼空気を所定の温度まで昇温する機器である。
 空気予熱器40は、図1、図3に示すように、一側の側壁の上部には、加圧流動炉20からの燃焼排ガスの供給口90Bが形成され、供給口90Bの下側近傍部位には、燃焼空気を空気予熱器40から排出する排出口91Aが形成されている。また、燃焼排ガスの供給口90Bは、配管90を介して加圧流動炉20の排出口90Aに接続され、燃焼空気の排出口91Aは、配管91を介して加圧流動炉20の燃焼空気供給管24の後部に接続されている。
 空気予熱器40の他側の下部には、燃焼排ガスを空気予熱器40から排出する排出口92Aが形成され、排出口92Aの上側近傍の部位には、燃焼空気を機器内に供給する供給口95Bが形成されている。空気予熱器としては、シェルアンドチューブ式熱交換器が好ましい。
 (集塵機)
 集塵機50は、空気予熱器40の後段に設けられており、空気予熱器40から送出される燃焼排ガスに含まれるダスト、細粒化された流動砂等の不純物を除去する機器である。
 集塵機50に内装されるフィルタとしては、例えばセラミックフィルタやバグフィルタを用いることができ、集塵機50は、一側の側壁の下部には、燃焼排ガスを機器内に供給する供給口92Bが形成され、上部には、不純物等が取除かれた清浄な燃焼排ガスを機器外に排出する排出口93Aが形成されている。また、燃焼排ガスの供給口92Bは、配管92を介して空気予熱器40の燃焼排ガスの排出口92Aに接続されている。
 集塵機50内には、下部に形成された供給口92Bと上部に形成された排出口93Aの上下方向に間の部位にバフィルタ(図示省略)が内装されている。フィルタで取除かれた燃焼排ガス中の不純物等は、集塵機50内の底部に一時的に貯留された後、定期的に外部に排出される。
 (過給機)
 過給機60は、集塵機50の後段に設けられており、集塵機50から送出される燃焼排ガスによって回動されるタービン61と、タービン61の回動を伝達する軸63と、軸63によって回動を伝達されることによって圧縮空気を生成するコンプレッサー62とから構成されている。生成された圧縮空気は、燃焼空気として加圧流動炉20へ供給される。
 過給機60のタービン61側の側壁の下部(軸63と直交する部位)には、集塵機50によって不純物が除去された清浄な燃焼排ガスを機器内に供給する供給口93Bが形成され、タービン61側の側壁の下流側(軸63と平行する部位)には、燃焼排ガスを機器外に排出する排出口97Aが形成されている。また、燃焼排ガスの供給口93Bは、配管93を介して集塵機50の排出口93Aに接続されている。なお、配管93には燃焼排ガス温度を測定する温度測定手段93Dが設置される。
 過給機60のコンプレッサー62側の側壁の上流側(軸63と平行する部位)には、空気を機器内に吸気する供給口67Bが形成され、タービン61側の側壁の上側(軸63と直交する部位)には、吸気された空気を0.05~0.3MPaに昇圧した圧縮空気を機器外に排出する排出口94Aが形成されている。また、外気の供給口67Bは、配管16、67を介して、空気を吸気する。また、配管66,67を介して始動時に加圧流動炉20に燃焼空気を供給する起動用送風機65とも接続される。また、配管67には、配管内の圧力を測定する圧力測定手段67Cが設置されている。一方、圧縮空気の排出口94Aは、配管94、95を介して空気予熱器40の供給口95Bと、配管94、96を介して加圧流動炉20の始動用バーナー22の後部に接続されている。
 (起動用送風機)
 起動用送風機65は、加圧流動炉システム1の始動時に、加圧流動炉20の流動空気および、始動用バーナー22に燃焼空気を供給する機器である。また、起動用送風機65は、貯留装置10からの被処理物の供給の中断等によって、加圧流動炉20で発生する水蒸気が低減し、過給機60のタービン61の回転数が低回転になり、コンプレッサー62による外気の吸気が低減した場合に、強制的にコンプレッサー62に外気を供給する機能を併せ持っている。
 起動ブロア65は、配管66、68を介して、コンプレッサー62の吐出側配管94と接続される。さらに配管94、96を介して加圧流動炉20に配置された始動用バーナー22の後部に接続され、配管94、95を介して空気予熱器40の燃焼空気の供給口95Bに接続され、配管66、67を介して過給機60のコンプレッサー62の供給口67Bに接続されている。
 バイパス流路である配管68の中間部には、配管68の、起動用送風機65から見て配管67との接続点から遠い部位の連通を行うダンパ68Cが配置されている。ダンパ68Cは、加圧流動炉20の始動時(始動用バーナー22の着火時)から加圧流動炉20の昇温が完了するまで配管68を連通し、加圧流動炉20の昇温完了後に、配管68を遮断する。すなわち、加圧流動炉20の始動時から昇温中は、起動用送風機65によって発生された空気を、加圧流動炉20に設けられた始動用バーナー22へ配管96を介して始動用バーナー燃焼空気として供給し,さらに、配管95及び空気予熱器40を介して燃焼空気供給管24に燃焼空気を供給し、且つ閉じられていない空気流路である配管67を介して過給機60のコンプレッサー62側にも燃焼空気を供給し、加圧流動炉20の昇温が完了後は、ダンパ68Cの閉鎖により、コンプレッサー62を通過した空気のみが、空気予熱器40を介して加圧流動炉20の燃焼空気供給管24に燃焼空気として供給される。
 (白煙防止用予熱器)
 白煙防止用予熱器70は、煙突87から外部に排出される燃焼排ガスの白煙を防止するために、過給機60から排出された燃焼排ガスと白煙防止ファンから供給される白煙防止用空気とを間接的に熱交換する機器である。熱交換処理により、燃焼排ガスは冷却されるとともに白煙防止用空気は昇温される。白煙防止用予熱器70によって熱交換され冷却された燃焼排ガスは、後段の排煙処理塔80に送出される。白煙防止用予熱器70としてシェルアンドチューブ式熱交換器やプレート式熱交換器等を用いることができる。
 (排煙処理塔)
 排煙処理塔80は、機器外に燃焼排ガスに含まれる不純物等の排出を防止する機器であり、排煙処理塔80の上部には煙突87が配置されている。
 排煙処理塔80は、図1、図4に示すように、一側の側壁の下部には、白煙防止用予熱器70から排出された燃焼排ガスを機器内に供給する供給口98Bが形成され、煙突87の一側の側壁の下部には、白煙防止用予熱器70から排ガスと熱交換され温まって排出された白煙防止用空気を煙突87内に供給する供給口99Bが形成されている。また、燃焼排ガスの供給口98Bは、配管98を介して白煙防止用予熱器70の下部に形成された燃焼排ガスの排出口98Aに接続され、白煙防止用空気の供給口99Bは、配管99を介して白煙防止用予熱器70の上部に形成された白煙防止用空気の排出99Aに接続されている。
 白煙防止用予熱器70の白煙防止用空気は、白煙防止用空気送風機101により配管103を介して白煙防止用予熱器70に供給され、間接的に燃焼排ガスと熱交換されて、排出口99Aから暖められて排出される。煙突87では、湿潤で空気中凝結して霧状になりがちな出口の燃焼排ガスに、暖められて乾いた白煙防止用空気を供給口99Bで混合して、燃焼排ガスの相対湿度を低下させることで白煙防止を図る。
 排煙処理塔80の他側の側壁の上部には、外部から供給される水を機器内に噴霧する噴霧管84が配置され、中間部と、下部には、それぞれ、循環ポンプ83を介して排煙処理塔80の底部に貯留された苛性ソーダが含有された苛性ソーダ水を機器内に噴霧する噴霧管85が配置されている。また、排煙処理塔80に貯留された苛性ソーダ水は、図示しない苛性ソーダポンプを介して図示しない苛性ソーダタンクから供給され、常時適正量に維持されている。
 排煙処理塔80に供給された燃焼排ガスは、不純物等を除去されたのち白煙防止用空気と混合され、煙突87から外部に排出される。
 次に、加圧流動炉システムの起動方法を説明する。
 (加圧流動炉システムの起動方法)
 本実施形態の加圧流動炉システム1の起動方法を図5に基づいて説明する。本起動方法は、ウォータガン23から噴霧される水により、流動砂が急冷され、割れることを防止する起動方法である。
 外気を吸気する起動用送風機65を起動し、起動用送風機65から始動用バーナー22に燃焼空気を供給する。起動用送風機65から排出された燃焼空気は、配管66、68、96を介して始動用バーナー22の後部に供給される。なお、配管66に配置されているダンパ66Cは、制御装置と接続され、起動用送風機65が動作する際は開放されて配管66は連通する。また、配管68に配置されている、起動用送風機65から見て配管67との接続点から遠い部位の連通を行うダンパ68Cは、制御装置と接続され配管68は連通する。このとき、起動用送風機65から排出された燃焼空気の一部が、過給機60のコンプレッサー62、配管94を介して始動用バーナー22に供給されることもあるが、起動用送風機65から排出された半分以上の燃焼空気が、コンプレッサー62を介することなく始動用バーナー22に供給されれば良い。
 炉外に配置された補助燃料供給装置29を起動し、補助燃料供給装置29から始動用バーナー22に重油、都市ガス等の補助燃料を供給する。補助燃料供給装置29から排出された補助燃料は、配管30、31を介して始動用バーナー22の後部に供給される。なお、配管31に配置されている流量調整バルブ31Cは、制御装置(図示省略)と接続されており補助燃料の流量(供給量)を調整する。
 始動用バーナー22に供給された燃焼空気と補助燃料は、始動用バーナー22で混合され、燃焼し、始動用バーナー22の先部の排出口から熱風を噴出する。始動用バーナー22から噴出された熱風は、加圧流動炉20の底部に充填された流動砂の上面に向かって噴出され、砂層の温度を約650~700℃に昇温させる。
 次に、引続いて起動用送風機65から燃焼空気供給管24に燃焼空気を供給する。起動用送風機65から排出された燃焼空気は、配管66、68、96、95、空気予熱器40、配管91を介して燃焼空気供給管24の後部に供給される。なお、配管95に配置されている流量調整バルブ95Cは、制御装置と接続され配管95は適当な流量を流すよう連通される。このとき、起動用送風機65から排出された燃焼空気の一部が、過給機60のコンプレッサー62、配管94を介して燃焼空気供給管24に供給されることもあるが、起動用送風機65から排出された半数以上の燃焼空気が、コンプレッサー62を介さずに燃焼空気供給管24に供給されれば良い。
 補助燃料供給装置29から補助燃料燃焼装置21に補助燃料を供給する。補助燃料供給装置29から排出された補助燃料は、配管30、32を介して補助燃料燃焼装置21の後部に供給される。なお、配管31に配置されている流量調整バルブ32Cは、制御装置(図示省略)によって制御され補助燃料の流量(供給量)を調整する。
 燃焼空気供給管24に供給された燃焼空気は、燃焼空気供給管24の先部の孔から流動砂の充填層に排出され、補助燃料燃焼装置21に供給された補助燃料は、補助燃料燃焼装置21の先部の孔から流動砂の充填層に排出され、流動砂の空隙内で燃焼空気と補助燃料は混合され、燃焼し、熱風を発生し、流動砂の温度を750~850℃に昇温させる。また、加圧流動炉20のフリーボード温度(加圧流動炉20内の上部の温度)は、流動砂の昇温に対応して昇温し、約850℃に昇温される。加圧流動炉20から排出された燃焼排ガスは、配管90を介して、空気予熱器40に供給され、その後、集塵機50を通過する。集塵機50から排出された燃焼排ガスは、配管93Cを介して排煙処理塔80へ供給されたのち、煙突87から外部へ排出される。このとき、燃焼排ガスの一部が、過給機60のタービン61に供給されても良い。
 次に、流動砂の空隙内で燃焼空気供給管24から供給された燃焼空気と補助燃料燃焼装置21に供給された補助燃料による燃焼が安定した後に、始動用バーナー22の燃焼を停止する。すなわち、配管96のダンパ96Cを制御装置と非接続にして配管96を閉塞して燃焼空気の供給を停止し、配管31の流量調整バルブ31Cを閉塞して補助燃料の供給を停止する。
 加圧流動炉20内のフリーボード部の温度が約750~900℃に昇温した後、燃焼空気流量及び炉内圧力が1~10秒程度の間、一定となった場合に、定量フィーダ11と投入ポンプ12を起動し、加圧流動炉20の供給口13Bから加圧流動炉20内に被処理物を供給する。加圧流動炉20内に供給された被処理物に含有された有機物質は、燃焼し燃焼ガスを発生し、被処理物に含有された水分は、加圧流動炉20内の上部、あるいは流動砂と接触して沸騰し、水蒸気を発生する。
 このように加圧流動炉20へ供給される燃焼空気の流量、炉内圧力等の炉内の条件が一定となったことを条件に、被処理物の供給を開始することにより、炉内状態の急激に変動することを抑制することが出来る。
 被処理物の供給量は、加圧流動炉20の定格処理量の20~30%にするのが好適である。定格処理量の20%未満であると、発生する燃焼排ガス量が少量であり、過給機60が自立運転に移行する時間が長時間となる。また、供給量が定格処理量の30%超であると、被処理物に含有された水により流動砂が割れ、小粒化を十分に防止することができない。ここで定格処理量とは、過給機60が自立運転中に供給口13Bから加圧流動炉20に供給される被処理物の質量をいう。
 過給機60の燃焼排ガスの供給口93Bの近傍の配管93に設置した温度測定手段93Dによって検出される燃焼排ガス温度が、500~650℃に達すると、配管93Cに設置されたダンパを閉方向に駆動させ、燃焼排ガスを過給機60のタービン61に供給し、タービン61を回動させる。一方、過給機60のコンプレッサー62は、タービン61の回動に伴って回動を開始する。   
 次に、タービン61の回動の開始に伴い、起動用送風機65からコンプレッサー62に燃焼空気を供給する。起動用送風機65から排出される燃焼空気は、配管66、67を介してコンプレッサー62に供給される。また、配管16、66、67を介して、外気を燃焼空気としてコンプレッサー62に供給可能となっている。供給された燃焼空気はコンプレッサー62によって0.05~0.3Mpaに昇圧された後に、配管94、96、95、空気予熱器40、配管91を介して燃焼空気供給管24の後部に供給される。なお、バイパス流路である配管68に配置されているダンパ68Cは閉塞する。このように、バイパス流路である配管68を閉鎖することで、起動用送風機65から排出される燃焼空気は、その全量を空気流路をなす配管67を介してコンプレッサー62に供給される。
 次に、過給機60のコンプレッサー62から排出された燃焼空気が、定格容量の50%以上になった後に、加圧流動炉20の供給口13Bから加圧流動炉20内に定格処理量を下回る量の被処理物を供給する。その供給量は、定格処理量の40~50%であることが好ましい。加圧流動炉20内に供給する被処理物を定格処理量の40~50%にすることによって、被処理物から発生する燃焼排ガス、水蒸気の量が多くなり、過給機60から排出される燃焼空気量を比較的短時間で増やすことができる。ここで定格容量とは、加圧焼却炉20で定格処理量の処理物を燃焼させるときに必要な燃焼空気量をいう。
 被処理物の供給量が定格処理量の40%未満であると、発生する燃焼排ガスが少量であり、過給機60から排出される燃焼空気量が所定量に増えるまでに要する時間が長くなる。また、供給量が定格処理量の50%超であると、被処理物に含有された水により加圧流動炉20内の流動砂の温度を一定に維持するのが困難となる。
 被処理物が供給され、燃焼排ガスが増加し、過給機60の回転数が増えると、コンプレッサー62が吸引できる空気量が増える。そこで、配管16、66、67を介して過給機60のコンプレッサー62に供給される燃焼空気量を増やしつつ、起動用送風機65から供給する燃焼空気量を減少させる。燃焼空気量の調整は、送風機の回転数を低下させても良いし、ダンパ66C開度を調整しても良い。その後、配管67に設置した圧力検出手段67Cにより測定された圧力が大気圧より低くなった場合に、起動用送風機65を停止する。この結果、加圧流動炉システム1は、燃焼排ガスによってタービン61を駆動し、コンプレッサー62から排出される圧縮空気により被処理物の必要燃焼空気量を全量供給する自立運転となる。
 次に、過給機60のコンプレッサー62から排出される燃焼空気が、定格容量の85%以上になった後、加圧流動炉20内に定格処理量の被処理物を供給する。また、燃焼空気が定格容量の85%以上になった後に、被処理物の供給量を定格処理量にすることにより、加圧流動炉20内の温度変化、圧力変化を抑制し、加圧流動炉20内の燃焼状態、燃焼排ガスの排出量を安定させることができる。
 なお、他の実施形態として、起動用送風機65の停止条件を、配管67に設置した圧力検出手段67Cにより測定された圧力が大気圧より低くなった場合としつつも、直ちに停止せず、過給機60のコンプレッサー62から排出される燃焼空気が、定格容量の85%以上になった後、加圧流動炉20内に定格処理量の被処理物を供給した後に、起動用送風機65を停止することも可能である。
 (加圧流動炉システムの他の起動方法)
 次に、比較例として加圧流動炉システム1の他の起動方法について図6に基づいて説明する。なお、加圧流動炉20のフリーボード温度が約850℃に昇温し、始動用バーナー22の燃焼を停止する迄の起動方法は、前述した起動方法と同一手段を採用しているので重複する説明を省略する。  
 フリーボード部の温度が約850℃に昇温した後に、砂ろ過水ポンプ(図示せず)を起動し、砂ろ過水ポンプからウォータガン23に水を供給する。ウォータガン23に供給された水は、ウォータガン23から流動砂に向けて噴霧され、加圧流動炉20内のフリーボード部、あるいは流動砂と接触して沸騰し、水蒸気を発生する。
 加圧流動炉20内の燃焼空気と補助燃料の燃焼により発生した燃焼排ガスと、水の沸騰により発生した水蒸気が混合した燃焼排ガスは、配管90、空気予熱器40、配管92、集塵機50、配管93を介して過給機60のタービン61に供給され、タービン61を回動させる。一方、過給機60のコンプレッサー62は、タービン61の回動に伴って回動を開始する。
 次に、タービン61の回動の開始に伴い、起動用送風機65からコンプレッサー62に燃焼空気を供給する。起動用送風機65から排出される燃焼空気は、配管66、67を介してコンプレッサー62に供給され、コンプレッサー62によって0.05~0.3MPaに昇圧された後に、配管94、96、95、空気予熱器40、配管91を介して燃焼空気供給管24の後部に供給される。なお、配管68に配置されているダンパ68Cは閉塞する。
 次に、燃焼排ガスの増加によってコンプレッサー62が外部から吸引する空気量が増え、コンプレッサー62被処理物の燃焼に必要な量に達したあと、起動用送風機65を停止する。
 次に、貯留装置10の定量フィーダ11と投入ポンプ12を起動し、加圧流動炉20の供給口13Bから加圧流動炉20内に被処理物を供給する。その後、ウォータガン23への砂ろ過水の供給を停止する。
 他の起動方法によって起動させた場合、流動砂に割れが確認されたが、前述した本起動方法によって起動させた場合には、流動砂の割れは確認できなかった。
1    加圧流動炉システム
10   貯留装置
11   定量フィーダ
12   投入ポンプ
20   加圧流動炉
21   補助燃料燃焼装置
22   始動用バーナー
24   燃焼空気供給管
29   補助燃料供給装置
40   空気予熱器  
50   集塵機
60   過給機
61   タービン
62   コンプレッサー
65   起動用送風機
70   白煙防止用予熱器
80   排煙処理塔
    

Claims (8)

  1.  底部に流動砂を充填して含水有機物質を有する被処理物を燃焼させる加圧流動炉と、該加圧流動炉から排出される燃焼排ガスによって回動するタービンとタービンの回動に伴って回動し圧縮空気を加圧流動炉に燃焼空気として供給するコンプレッサーを内装する過給機と、前記加圧流動炉に燃焼空気を供給する起動用送風機と、前記加圧流動炉内を加熱する加熱手段とを備えた加圧流動炉システムの起動方法であって、
     前記起動用送風機を駆動して燃焼空気を加圧流動炉に供給し、
     前記加熱手段により前記流動砂を加熱して加圧流動炉のフリーボード部の温度を昇温し、
     前記フリーボード部の温度が750~900℃に昇温した後に、前記加圧流動炉に被処理物を供給して燃焼排ガスを増加させ、
     該燃焼排ガスによって前記過給機を駆動させて燃焼空気を加圧流動炉に供給した後に、前記起動用送風機を停止させる
     ことを特徴とする加圧流動炉システムの起動方法。
  2.  前記加圧流動炉に被処理物の燃焼に使用される燃焼空気よりも多くの燃焼空気を、前記起動用送風機と過給機によって供給する請求項1記載の加圧流動炉システムの起動方法。
  3.  前記加圧流動炉の炉内圧力が所定の時間一定となった場合に、前記被処理物の供給を開始する請求項請求項1又は2記載の加圧流動炉システムの起動方法。
  4.  前記タービンに供給される燃焼排ガスが所定の温度となった後に、前記起動用送風機の吐出側から前記コンプレッサー吸込側への流路から分岐して前記コンプレッサー吐出側の流路との間に配置されたバイパス流路を閉塞し、前記起動用送風機から空気流路を介してコンプレッサーの供給口に燃焼空気を供給する1~3のいずれか1項に記載の加圧流動炉システムの起動方法。
  5.  前記被処理物を一定の割合で増加させながら加圧流動炉に供給する請求項1~4のいずれか1項に記載の加圧流動炉システムの起動方法。
  6.  前記被処理物を階段的に増加させながら加圧流動炉に供給する請求項1~4のいずれか1項に記載の加圧流動炉システムの起動方法。
  7.  前記加圧流動炉の定格処理量の20~30質量%の前記被処理物を供給し、
     前記過給機から供給される燃焼空気が定格容量の50vol%以上になった後に、定格処理量の40~50質量%の前記被処理物を供給する請求項6記載の加圧流動炉システムの起動方法。
  8.  前記加圧流動炉は、前記加熱手段として底部に充填した流動砂を加熱する始動用バーナーと補助燃料燃焼装置とを備え、
     前記流動砂を前記始動用バーナーによって650~700℃に昇温した後に、前記流動砂を前記補助燃料燃焼装置によって750~850℃に昇温させる請求項1~7のいずれか1項に記載の加圧流動炉システムの起動方法。
PCT/JP2013/058328 2012-03-26 2013-03-22 加圧流動炉システムの起動方法 WO2013146597A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147027670A KR102067302B1 (ko) 2012-03-26 2013-03-22 가압유동로 시스템의 기동 방법
CN201380016610.4A CN104204670B (zh) 2012-03-26 2013-03-22 用于起动加压流化床焚烧炉系统的方法
US14/387,184 US10006631B2 (en) 2012-03-26 2013-03-22 Method for starting up pressurized fluidized bed incinerator system
EP13768721.6A EP2833061B1 (en) 2012-03-26 2013-03-22 Activation method for pressurized fluidized furnace system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012069487A JP5956210B2 (ja) 2012-03-26 2012-03-26 加圧流動炉システムの起動方法
JP2012-069487 2012-03-26

Publications (1)

Publication Number Publication Date
WO2013146597A1 true WO2013146597A1 (ja) 2013-10-03

Family

ID=49259850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058328 WO2013146597A1 (ja) 2012-03-26 2013-03-22 加圧流動炉システムの起動方法

Country Status (6)

Country Link
US (1) US10006631B2 (ja)
EP (1) EP2833061B1 (ja)
JP (1) JP5956210B2 (ja)
KR (1) KR102067302B1 (ja)
CN (1) CN104204670B (ja)
WO (1) WO2013146597A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10985608B2 (en) 2016-12-13 2021-04-20 General Electric Company Back-up power system for a component and method of assembling same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7373427B2 (ja) * 2020-02-13 2023-11-02 株式会社神鋼環境ソリューション 廃棄物処理設備および廃棄物処理設備の立ち上げ方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6346326B2 (ja) * 1978-03-10 1988-09-14 Babcock Hitachi Kk
JPH06300237A (ja) * 1993-04-14 1994-10-28 Babcock Hitachi Kk 流動層燃焼方法およびその装置
JP2989605B2 (ja) * 1987-09-08 1999-12-13 バブコツク日立株式会社 流動層式焼却方法
JP2001065844A (ja) * 1999-08-27 2001-03-16 Kubota Corp 焼却灰の球状化方法およびその装置
JP2002022126A (ja) * 2000-07-12 2002-01-23 Babcock Hitachi Kk ごみガス化溶融システム及びその運転制御方法
JP2007170704A (ja) 2005-12-20 2007-07-05 Public Works Research Institute 加圧流動焼却設備及びその立上げ方法
JP2008025966A (ja) 2006-07-25 2008-02-07 Public Works Research Institute 加圧焼却炉設備及びその立上げ方法
JP2010054169A (ja) * 2008-08-29 2010-03-11 Kubota Corp 流動層式焼却装置の運転制御方法及び流動層式焼却装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3153091B2 (ja) * 1994-03-10 2001-04-03 株式会社荏原製作所 廃棄物の処理方法及びガス化及び熔融燃焼装置
US3761568A (en) * 1971-02-16 1973-09-25 Univ California Method and apparatus for the destructive decomposition of organic wastes without air pollution and with recovery of chemical byproducts
SE457560B (sv) * 1984-06-13 1989-01-09 Abb Stal Ab Saett att taenda en braennkammare med en fluidiserad baedd och kraftanlaeggning foer utnyttjande av saettet
US5114682A (en) * 1988-11-18 1992-05-19 Stone & Webster Engineering Corporation Apparatus for recovering heat energy from catalyst regenerator flue gases
JP3006625B2 (ja) * 1990-10-03 2000-02-07 バブコツク日立株式会社 加圧流動層ボイラ
JPH0650509A (ja) * 1992-07-31 1994-02-22 Ishikawajima Harima Heavy Ind Co Ltd 加圧流動層ボイラの緊急運転方法
ID26163A (id) * 1997-12-18 2000-11-30 Ebara Corp Sistem penggasan bahan bakar
JP3700075B2 (ja) * 1999-01-21 2005-09-28 株式会社日立製作所 加圧流動床複合発電プラント
JP2003114004A (ja) * 2001-10-04 2003-04-18 Babcock Hitachi Kk 加圧流動層ボイラの緊急減圧システム
US20040109853A1 (en) * 2002-09-09 2004-06-10 Reactive Surfaces, Ltd. Biological active coating components, coatings, and coated surfaces
JP4771309B2 (ja) * 2005-12-20 2011-09-14 独立行政法人土木研究所 加圧流動焼却設備及びその立上げ方法
JP5067653B2 (ja) * 2006-07-25 2012-11-07 独立行政法人土木研究所 加圧焼却炉設備及びその運転方法
US9388817B1 (en) * 2011-03-24 2016-07-12 Sandia Corporation Preheating of fluid in a supercritical Brayton cycle power generation system at cold startup

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6346326B2 (ja) * 1978-03-10 1988-09-14 Babcock Hitachi Kk
JP2989605B2 (ja) * 1987-09-08 1999-12-13 バブコツク日立株式会社 流動層式焼却方法
JPH06300237A (ja) * 1993-04-14 1994-10-28 Babcock Hitachi Kk 流動層燃焼方法およびその装置
JP2001065844A (ja) * 1999-08-27 2001-03-16 Kubota Corp 焼却灰の球状化方法およびその装置
JP2002022126A (ja) * 2000-07-12 2002-01-23 Babcock Hitachi Kk ごみガス化溶融システム及びその運転制御方法
JP2007170704A (ja) 2005-12-20 2007-07-05 Public Works Research Institute 加圧流動焼却設備及びその立上げ方法
JP2008025966A (ja) 2006-07-25 2008-02-07 Public Works Research Institute 加圧焼却炉設備及びその立上げ方法
JP2010054169A (ja) * 2008-08-29 2010-03-11 Kubota Corp 流動層式焼却装置の運転制御方法及び流動層式焼却装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"2007 Journal of the 18th Annual Conference of Japan Society of Material Cycles and Waste Management", JAPAN SOCIETY OF MATERIAL CYCLES AND WASTE MANAGEMENT, 1 November 2007 (2007-11-01), pages 579 - 581

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10985608B2 (en) 2016-12-13 2021-04-20 General Electric Company Back-up power system for a component and method of assembling same

Also Published As

Publication number Publication date
KR20140147830A (ko) 2014-12-30
EP2833061B1 (en) 2018-06-06
CN104204670B (zh) 2018-04-20
EP2833061A4 (en) 2015-12-23
JP2013200086A (ja) 2013-10-03
US20150040808A1 (en) 2015-02-12
US10006631B2 (en) 2018-06-26
KR102067302B1 (ko) 2020-01-16
EP2833061A1 (en) 2015-02-04
CN104204670A (zh) 2014-12-10
JP5956210B2 (ja) 2016-07-27

Similar Documents

Publication Publication Date Title
JP5482792B2 (ja) 有機性廃棄物処理システム及び方法
JP5438145B2 (ja) 加圧流動炉システム
JP5187731B2 (ja) 加圧流動焼却設備及び加圧流動焼却設備の立ち上げ運転方法
JP5956210B2 (ja) 加圧流動炉システムの起動方法
JP2013200086A5 (ja)
JP5438146B2 (ja) 加圧流動炉システム
JP5956211B2 (ja) 加圧流動炉システムの運転方法
RU2373467C1 (ru) Устройство для рециркуляции агента сушки
JP5907621B2 (ja) 加圧流動炉システムの不純物の搬送方法
JP2013200087A5 (ja)
JP5491550B2 (ja) 加圧流動炉システム及びその制御方法
JP5832944B2 (ja) 加圧流動炉システムの非常停止方法
JP2016223758A (ja) 木質バイオマス焚温風暖房機の構造と制御方法
JP5518938B2 (ja) 加圧流動炉システムの流動媒体の搬送方法
JP2013200088A5 (ja)
JP2019037914A (ja) 懸濁液からの懸濁物回収装置及び回収方法
JP2013204898A (ja) 加圧流動炉システム及び加圧流動炉システムの臭気処理方法
JP5392739B2 (ja) 加圧流動焼却設備及び加圧流動焼却設備の立ち上げ運転方法
TW202108231A (zh) 混合式鍋爐-乾燥機及方法
KR20180053837A (ko) 다단식 보일러용 열교환 기구
KR20000056617A (ko) 사이클론 소각기 및 폐열 이용 건조기로 구성된 슬러지 소각시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768721

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14387184

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147027670

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013768721

Country of ref document: EP