WO2013145443A1 - 拡管方法 - Google Patents

拡管方法 Download PDF

Info

Publication number
WO2013145443A1
WO2013145443A1 PCT/JP2012/080783 JP2012080783W WO2013145443A1 WO 2013145443 A1 WO2013145443 A1 WO 2013145443A1 JP 2012080783 W JP2012080783 W JP 2012080783W WO 2013145443 A1 WO2013145443 A1 WO 2013145443A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
heat transfer
expansion
range
expanding
Prior art date
Application number
PCT/JP2012/080783
Other languages
English (en)
French (fr)
Inventor
陽一 石上
貴志 金伏
崇 香川
宏和 門脇
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP12873184.1A priority Critical patent/EP2832468B1/en
Priority to US14/387,676 priority patent/US20150047194A1/en
Publication of WO2013145443A1 publication Critical patent/WO2013145443A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/26Making specific metal objects by operations not covered by a single other subclass or a group in this subclass heat exchangers or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/033Deforming tubular bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/023Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers with heating tubes, for nuclear reactors as far as they are not classified, according to a specified heating fluid, in another group
    • F22B1/025Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers with heating tubes, for nuclear reactors as far as they are not classified, according to a specified heating fluid, in another group with vertical U shaped tubes carried on a horizontal tube sheet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/002Component parts or details of steam boilers specially adapted for nuclear steam generators, e.g. maintenance, repairing or inspecting equipment not otherwise provided for
    • F22B37/007Installation or removal of nuclear steam generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • F22B37/104Connection of tubes one with the other or with collectors, drums or distributors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/06Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits having a single U-bend
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant
    • G21D1/006Details of nuclear power plant primary side of steam generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/26Safety or protection arrangements; Arrangements for preventing malfunction for allowing differential expansion between elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49391Tube making or reforming

Definitions

  • the present invention relates to a tube expansion method in which a heat transfer tube inserted into a tube hole of a tube plate is fixed to the tube hole by pushing it from the inside.
  • the tube expansion method described in Patent Document 1 discloses a tube expansion method in which a heat transfer tube is fixed to a tube plate of a heat exchanger such as a steam generator.
  • a heat transfer tube is fixed to a tube plate of a heat exchanger such as a steam generator.
  • each end portion of the corresponding heat transfer tube is inserted into a tube hole penetrating the tube plate in the plate thickness direction, and each end portion of the heat transfer tube inserted into the tube hole is a tube.
  • the roller is expanded in a range of a predetermined distance from the primary end surface of the plate toward the secondary end surface.
  • each heat transfer tube inserted into the tube hole is expanded by a roller in a range not yet expanded in the first step and the third step, and the heat transfer tube inserted into the tube hole The entire outer peripheral surface of each end is closely attached to the inner peripheral surface of the tube hole.
  • the tube hole of the tube plate is formed by a drill, and rarely a chip is caught by the drill, so that there is a case where a scratch along the circumferential direction is attached to the inner peripheral surface in the axial direction of the tube hole. is there.
  • the heat transfer tube expanded by the hydraulic expansion tube in the third step is expanded along the wound, thereby forming a recess on the inner peripheral surface. For this reason, there is a problem that residual stress is locally generated at the position of the concave portion, or stress concentration is generated due to thermal expansion during operation of the heat exchanger.
  • This invention solves the subject mentioned above, and the situation which a recessed part produces in the internal peripheral surface of a heat exchanger tube, when the damage
  • the tube expansion method of the present invention is a tube expansion method in which a heat transfer tube inserted into a tube hole of a tube plate is fixed by tube expansion, with respect to an inner peripheral surface in the axial direction of the tube hole. If there are scratches along the circumferential direction, the first fluid pressure expanding step of expanding the range including the scratches with a pressure of 15% to 70%, and then each range divided by removing the scratches Including a second hydraulic pressure expansion step of expanding the hydraulic pressure at a pressure of 100%.
  • the first liquid pressure tube expansion process is performed first, so that the outer peripheral surface of the heat transfer tube is pre-expanded so that the outer peripheral surface of the heat transfer tube becomes familiar with the inner peripheral surface of the tube hole. Then, by performing the second hydraulic pressure expanding step after that, each range divided except for the scratch is expanded, and the outer peripheral surface of the heat transfer tube is in close contact with the inner peripheral surface of the tube hole, even at the position of the scratch.
  • Heat transfer tubes have uniform inner diameter. As a result, when a scratch along the circumferential direction is attached to the inner circumferential surface in the axial direction of the tube hole, it is possible to prevent a situation in which a recess is formed on the inner circumferential surface of the heat transfer tube.
  • the tube expansion method of the present invention is a tube expansion method in which a heat transfer tube inserted into a tube hole of a tube plate is fixed by tube expansion, with respect to an inner peripheral surface in the axial direction of the tube hole.
  • the roller expansion is performed in a range A of a predetermined distance from the one end face of the tube sheet where the end portion of the heat transfer tube is located to the other end face so as not to cause the flaw.
  • One roller expanding step, and then, excluding the range A, a range of a predetermined distance from the other end surface of the tube sheet toward the one end surface and including the flaw is 15% to 70%.
  • the range D that has not yet been expanded between the range A and the range B Characterized in that it comprises a second roller expanding process of the roller tube expansion, the.
  • the first hydraulic pressure expansion process is first performed on the hydraulic pressure expansion pipe so that the outer peripheral surface of the heat transfer tube becomes familiar with the inner peripheral surface of the tube hole in the range B including the flaw. It is expanded. Then, by performing the second hydraulic pressure expansion step after that, each range C divided by removing the scratch is expanded, and the outer peripheral surface of the heat transfer tube is in close contact with the inner peripheral surface of the tube hole, so that the position of the scratch
  • the heat transfer tubes have a uniform inner diameter.
  • the end of the heat transfer tube is brought into close contact with the tube hole by the first roller expanding step, and then each hydraulic pressure expanding step is performed, and then the first roller expanding step and each hydraulic pressure are performed by the second roller expanding step.
  • FIG. 1 is an explanatory view of a tube hole expanded by the tube expansion method concerning an embodiment of the invention.
  • FIG. 2 is a process diagram of the tube expansion method according to the embodiment of the present invention.
  • FIG. 3 is an explanatory diagram of a roller tube expansion tool used in the tube expansion method according to the embodiment of the present invention.
  • FIG. 4 is an explanatory diagram of a hydraulic pipe expanding tool used in the pipe expanding method according to the embodiment of the present invention.
  • FIG. 5 is an explanatory diagram of a hydraulic pipe expanding tool used in the pipe expanding method according to the embodiment of the present invention.
  • FIG. 6 is an explanatory diagram showing a configuration of a steam generator to which the tube expansion method according to the embodiment of the present invention is applied.
  • FIG. 7 is a schematic diagram illustrating an example of a nuclear facility to which a steam generator is applied.
  • FIG. 6 is an explanatory diagram showing a configuration of a steam generator to which the pipe expansion method according to the present embodiment is applied
  • FIG. 7 is a schematic diagram showing an example of a nuclear facility to which the steam generator is applied.
  • the steam generator 101 has a body portion 102.
  • the trunk portion 102 has a hollow cylindrical shape that extends in the vertical direction and is hermetically sealed.
  • the lower half portion has a slightly smaller diameter than the upper half portion.
  • the body portion 102 is provided with a tube group outer tube 103 having a cylindrical shape disposed at a predetermined distance from the inner wall surface of the body portion 102 in the lower half portion thereof.
  • the lower end portion of the tube group outer tube 103 extends to the vicinity of the tube plate 104 disposed below in the lower half of the body portion 102.
  • a heat transfer tube group 105 ⁇ / b> A is provided in the tube group outer tube 103.
  • the heat transfer tube group 105A includes a plurality of heat transfer tubes 105 having an inverted U shape.
  • the above-described inverted U-shaped arc portion of the heat transfer tube 105 is arranged at the upper end portion thereof.
  • the heat transfer tube 105 constitutes a heat transfer tube layer in which the arc portions having large diameters are arranged from the center toward the outside, and the upper end portion of the heat transfer tube group 105A is changed by changing the diameter while overlapping the heat transfer tube layers. It has a hemispherical shape.
  • the hemispherical portion of the heat transfer tube group 105A is a bracing member for suppressing fluid excitation vibration that may occur when the primary cooling water passes through the heat transfer tubes 105 between the arc portions of the heat transfer tube layers.
  • 105a is provided.
  • Each heat transfer tube 105 has a U-shaped arc portion facing upward, a lower end portion is inserted and supported in the tube hole 104a of the tube plate 104, and an intermediate portion is connected to the tube via a plurality of tube support plates 106. It is supported by the group outer cylinder 103.
  • the tube support plate 106 is formed with a large number of tube holes 106a, and the heat transfer tubes 105 are inserted into the tube holes 106a to support the heat transfer tubes 105.
  • the body 102 has a water chamber mirror 107 joined to the lower end thereof.
  • the water chamber mirror 107 is partitioned into an inlet side water chamber 107A and an outlet side water chamber 107B by a partition plate 108 with an opening edge formed in a bowl shape joined to the tube plate 104.
  • One end of each heat transfer tube 105 communicates with the inlet side water chamber 107A, and the other end of each heat transfer tube 105 communicates with the outlet side water chamber 107B.
  • the inlet-side water chamber 107A is formed with an inlet-side nozzle 107Aa that communicates with the outside of the trunk 102
  • the outlet-side water chamber 107B is formed with an outlet-side nozzle 107Ba that communicates with the exterior of the trunk 102.
  • the inlet side nozzle 107Aa is connected to a cooling water pipe 124 (see FIG. 7) through which primary cooling water is sent from the pressurized water reactor, and the outlet side nozzle 107Ba receives the primary cooling water after heat exchange.
  • a cooling water pipe 124 (see FIG. 7) to be sent to the pressurized water reactor is connected.
  • the inlet-side water chamber 107A and the outlet-side water chamber 107B are formed with work manholes that allow an operator to enter the water chambers 107A and 107B during maintenance and inspection. .
  • a steam / water separator 109 that separates the feed water into steam and hot water, and moisture that removes the moisture from the separated steam to bring it closer to dry steam.
  • a separator 110 is provided. Between the steam separator 109 and the heat transfer tube group 105A, a water supply pipe 111 for supplying secondary cooling water from the outside into the body portion 102 is inserted. Further, the body 102 has a steam discharge port 112 formed at the upper end thereof. In addition, the body portion 102 has a pipe plate in which the secondary cooling water supplied from the water supply pipe 111 into the body portion 102 flows between the body portion 102 and the tube group outer cylinder 103 in the lower half portion thereof.
  • a water supply passage 113 is formed that is folded back at 104 and raised along the heat transfer tube group 105A.
  • the steam outlet 112 is connected to a cooling water pipe (not shown) for sending steam to the turbine, and the water supply pipe 111 is a two-way steam that has been cooled by a condenser (not shown).
  • a cooling water pipe (not shown) for supplying the next cooling water is connected.
  • the steam generator 101 described above is applied to a nuclear facility 120 as shown in FIG.
  • the nuclear facility 120 shown in FIG. 7 is a pressurized water reactor (PWR).
  • a reactor vessel 121, a pressurizer 122, a steam generator 101, and a pump 123 are sequentially connected by a cooling water pipe 124 to constitute a circulation path of primary cooling water.
  • a circulation path for secondary cooling water is formed between the steam generator 101 and the turbine (not shown).
  • the nuclear reactor vessel 121 includes a vessel main body 121a and a vessel lid 121b mounted on the upper portion thereof so that a fuel assembly (not shown) can be inserted and removed.
  • the container lid 121b is provided so as to be openable and closable with respect to the container main body 121a.
  • the container body 121a has a cylindrical shape with an upper opening and a lower hemispherical shape that is closed, and an upper side is provided with an inlet-side nozzle 121c and an outlet-side nozzle 121d that supply and discharge light water as primary cooling water. It has been.
  • a cooling water pipe 124 is connected to the outlet side nozzle 121d so as to communicate with the inlet side nozzle 107Aa of the steam generator 101.
  • the inlet side nozzle 121c is connected to a cooling water pipe 124 so as to communicate with the outlet side nozzle 107Ba of the steam generator 101.
  • the primary cooling water is heated in the reactor vessel 121 to become high temperature and high pressure, and steam is generated through the cooling water pipe 124 while being pressurized by the pressurizer 122 to maintain the pressure constant. Supplied to the vessel 101.
  • the heated primary cooling water is sent to the inlet-side water chamber 107A, circulates through the numerous heat transfer tubes 105, and reaches the outlet-side water chamber 107B.
  • the secondary cooling water cooled by the condenser is sent to the water supply pipe 111 and rises along the heat transfer pipe group 105 ⁇ / b> A through the water supply path 113 in the trunk portion 102.
  • the cooled primary cooling water is returned to the pressurized water reactor from the outlet side water chamber 107B.
  • the secondary cooling water that has exchanged heat with the high-pressure and high-temperature primary cooling water rises in the body portion 102 and is separated into steam and hot water by the steam separator 109.
  • the separated steam is removed from the moisture by the moisture separator 110 and sent from the steam outlet 112 to the turbine.
  • the turbine is driven by the secondary cooling water steam.
  • the power of the turbine is transmitted to a generator (not shown) to generate electricity.
  • the steam used for driving the turbine is condensed into water and supplied to the steam generator 101.
  • the primary cooling water after heat exchange in the steam generator 101 is recovered to the pump 123 side via the cooling water pipe 124.
  • the heat transfer tube 105 is arranged before the upper half of the trunk portion 102, the steam separator 109, the moisture separator 110, and the water supply pipe 111 provided in the upper half. Is attached to the lower half of the body 102 of the body.
  • the tube group outer cylinder 103, the tube plate 104, and each tube support plate 106 are attached in a state where the lower half portion of the body portion 102 is placed horizontally on a gantry (not shown).
  • the tube plate 104 and the tube support plate 106 are provided with tube holes 104 a and 106 a for inserting the end portions of the heat transfer tubes 105.
  • the heat transfer tube 105 is attached to the lower half portion of the trunk portion 102. Both ends of the heat transfer tube 105 are inserted into the tube holes 106 a of the tube support plates 106 from the upper half side (upper side in FIG. 6) of the lower half of the body portion 102, and into the tube holes 104 a of the tube plate 104.
  • the circular arc portion that is inserted and formed into a U-shape is arranged in a hemispherical shape on the upper side of the lower half portion of the body portion 102.
  • the heat transfer tubes 105 inserted into the tube holes 106a and 104a of the tube support plate 106 and the tube plate 104 are horizontally arranged in order from the center to the outside with the smallest arc portion formed in a U shape.
  • a single heat transfer tube layer arranged in a row is used as a reference.
  • the bracing member 105a is arrange
  • FIG. 1 is an explanatory diagram of a tube hole that is expanded by the tube expansion method according to the present embodiment.
  • the tube hole 104a is formed by the drill on the tube plate 104, but chips are caught on the drill.
  • FIG. 1 (a) there may be a case where a scratch 104b along the circumferential direction is attached to the inner circumferential surface in the direction of the axis S1 of the tube hole 104a.
  • FIG. 1 is an explanatory diagram of a tube hole that is expanded by the tube expansion method according to the present embodiment.
  • the heat transfer tube 105 expanded by the fluid pressure expansion tube is expanded along the wound 104b, so that the recess 105d is formed on the inner peripheral surface. Can be done. For this reason, there is a problem that residual stress is locally generated at the position of the recess 105d, or stress concentration is generated due to thermal expansion during operation of the heat exchanger.
  • FIG. 2 is a process diagram of the tube expansion method according to the present embodiment
  • FIG. 3 is an explanatory diagram of a roller tube expansion tool used in the tube expansion method according to the present embodiment
  • the inner peripheral surface of the tube hole 104a is inspected, and the inspection results in the middle of the tube hole 104a in the axis S1 direction.
  • the axis S1 direction distance L1 from the primary side (one side) end surface 104c of the tube sheet 104 to the secondary side (other side) end surface 104d the tube An axial S1 direction distance L2 from the primary side end face 104c of the plate 104 to the base end of the scratch 104b, and an axial S1 direction distance L3 from the primary side end surface 104c of the tube sheet 104 to the terminal end of the scratch 104b are measured.
  • a roller A is expanded by a roller expansion tool 2 (see FIG. 3) in a predetermined distance range A that faces the surface 104d and does not reach the scratch 104b (first roller expansion step).
  • the range A is a range of about several mm from the primary end surface 104c of the tube sheet 104 toward the secondary end surface 104d.
  • the roller tube expansion tool 2 is provided with a gauge 2 b at the tip of a mandrel 2 a that can be inserted into the heat transfer tube 105.
  • the gauge 2b has a roller 2c attached around it so as to be able to rotate and revolve. Then, the roller tube expansion tool 2 is inserted into the heat transfer tube 105, and a rotational torque is applied from the base end side of the mandrel 2 a, so that the roller 2 c rotates and revolves, and the tube expansion force is transmitted to the heat transfer tube 105.
  • a range of a predetermined distance from the secondary side end face 104d (slightly primary side) of the tube sheet 104 toward the primary side end face 104c is hydraulically expanded at a pressure of 15% to 70% by the hydraulic pressure expansion tool 1 (see FIGS. 4 and 5) (first hydraulic pressure expansion process).
  • the pressure of 15% to 70% is a pressure when the pressure in the subsequent hydraulic pressure expansion pipe (second hydraulic pressure expansion process) is 100%.
  • the slightly primary side of the end surface 104 d on the secondary side of the tube sheet 104 is a position where it enters the primary side by a slight amount from the end surface 104 d on the secondary side of the tube sheet 104.
  • each of the ranges C divided by removing the scratches 104b in the above-mentioned range B is obtained using the hydraulic tube 1 (see FIGS. 4 and 5). Liquid pressure expansion is performed at a pressure of 100% (second liquid pressure expansion process).
  • the hydraulic expansion tool 1 includes a base portion 11, a liquid introduction portion 12 extending from one end of the base portion 11, and extending from the other end of the base portion 11 and inserted into the heat transfer tube 105.
  • a mandrel portion 13 formed based on a cylindrical shape is disposed along the axis S2.
  • the liquid introduction part 12 is a part into which a liquid from a liquid supply apparatus (not shown) is introduced, and is also a coupling part inserted into the liquid supply part of the liquid supply apparatus. For this reason, the O-ring 14 is provided on the outer peripheral surface of the liquid introduction part 12 so as to prevent liquid leakage from the space between the liquid introduction part 12 and the liquid supply part.
  • the mandrel part 13 has a first cylindrical part 13A arranged in the middle, and has a second cylindrical part 13B and a third cylindrical part 13C respectively extending from both ends of the first cylindrical part 13A toward the axis S2. ing.
  • the first cylindrical portion 13A has a larger outer diameter than the second cylindrical portion 13B and the third cylindrical portion 13C.
  • the second cylindrical portion 13B is continuous with the base portion 11, and the third cylindrical portion 13C is provided on the side opposite to the base portion 11 in the axis S2 direction.
  • through holes 12a, 11a, 13a are continuously formed.
  • the through hole 13a extends in a direction intersecting the axis S2 at the position of the first cylindrical portion 13A and penetrates the side portion of the first cylindrical portion 13A.
  • the second cylindrical part 13 ⁇ / b> B and the third cylindrical part 13 ⁇ / b> C are inserted so that O-rings 15 and 16 are movable in the direction of the axis S ⁇ b> 2, respectively. These O-rings 15 and 16 abut against the first cylindrical portion 13A and are restricted from moving.
  • the O-rings 15 and 16 are dimensioned to contact the outer peripheral surfaces of the second cylindrical portion 13B and the third cylindrical portion 13C and the inner peripheral surface of the heat transfer tube 105 before the pipe expansion.
  • the second cylindrical portion 13B and the third cylindrical portion 13C are arranged such that the annular guide members 17 and 18 move in the direction of the axis S2 outside the O-rings 15 and 16 in the direction of the axis S2 with the first cylindrical portion 13A as the center. It is inserted as possible. Further, the second cylindrical portion 13B and the third cylindrical portion 13C are inserted outside the annular guide members 17 and 18 with the first cylindrical portion 13A in the center so that the annular deformable members 19 and 20 are movable in the direction of the axis S2. Has been.
  • the annular locking members 21 and 22 are fixed to the outside of the annular deformable members 19 and 20 with the first cylindrical portion 13A as the center.
  • the annular locking members 21 and 22 are provided with annular positioning members 23 and 24 on the outer peripheral surface thereof.
  • the annular positioning members 23 and 24 are formed so that the outer diameter thereof is approximately the same as the inner diameter of the heat transfer tube 105 before the pipe expansion.
  • This hydraulic pipe expanding tool 1 inserts the mandrel part 13 into the heat transfer pipe 105 as shown in FIG.
  • the annular positioning members 23 and 24 are supported so that the axis S ⁇ b> 2 of the mandrel portion 13 is positioned at the center of the heat transfer tube 105.
  • the liquid is ejected to the outside of the first cylindrical portion 13A through the through holes 12a, 11a, and 13a.
  • the O-rings 15 and 16 move outward with the first cylindrical portion 13A as the center, abut against the annular guide members 17 and 18 and spread outward in the radial direction.
  • the annular deformation members 19 and 20 pressed by 18 are held by the annular locking members 21 and 22 and deformed radially outward. For this reason, the pressure of the liquid increases between the O-rings 15 and 16, and this expands the heat transfer tube 105.
  • This hydraulic pressure expanding tool 1 determines the distance in the axis S2 direction that can be expanded in accordance with the distance in the axis S2 direction of the annular locking members 21, 22.
  • the above-described ranges B and C of the hydraulic expansion pipe can be set by changing the distance in the axis S2 direction of the annular locking members 21 and 22 of the hydraulic expansion tool 1.
  • the range B including the wound 104b is reduced by 15%.
  • the first hydraulic pipe expansion process is performed first, so that the outer peripheral surface of the heat transfer tube 105 is pre-expanded so that the outer peripheral surface of the heat transfer tube 105 becomes familiar with the inner peripheral surface of the tube hole 104a in the range B including the flaw 104b. Then, by performing a second hydraulic pressure expansion process thereafter, each range C divided except for the scratches 104b is expanded and the outer peripheral surface of the heat transfer tube 105 is in close contact with the inner peripheral surface of the tube hole 104a.
  • the heat transfer tube 105 has a uniform inner diameter even at the position of the scratch 104b.
  • the tube plate 104 on which the end portion of the heat transfer tube 105 is located when the flaw 104b along the circumferential direction is attached to the inner circumferential surface in the direction of the axis S1 of the tube hole 104a.
  • each of the ranges C divided by excluding the scratches 104b in the range B is expanded by a second hydraulic pressure expanding step at a pressure of 100%, and then the range A and the range B
  • the second roller that expands the range D that has not yet been expanded between the rollers It includes a tube step.
  • the outer peripheral surface of the heat transfer tube 105 becomes familiar with the inner peripheral surface of the tube hole 104a in the range B including the scratch 104b by first performing the first hydraulic pressure expansion step for the hydraulic expansion tube. So that it is pre-expanded. Then, by performing a second hydraulic pressure expansion process thereafter, each range C divided except for the scratches 104b is expanded and the outer peripheral surface of the heat transfer tube 105 is in close contact with the inner peripheral surface of the tube hole 104a.
  • the heat transfer tube 105 has a uniform inner diameter even at the position of the scratch 104b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Plasma & Fusion (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

 管板(104)の管穴(104a)に挿入された伝熱管(105)を拡管により固定する拡管方法において、管穴の軸(S1)方向の途中の内周面に対して周方向に沿う傷(104b)が付いた場合、傷を含む範囲を、15%~70%の圧力で液圧拡管する第一液圧拡管工程と、次に、傷を除いて分割した各範囲を、100%の圧力でそれぞれ液圧拡管する第二液圧拡管工程と、を含む。

Description

拡管方法
 本発明は、管板の管穴へと挿入した伝熱管を内方から押し広げることで管穴に固定させる拡管方法に関する。
 従来、例えば、特許文献1に記載の拡管方法では、蒸気発生器などの熱交換器の管板に伝熱管を固定する拡管方法が開示されている。かかる拡管方法は、第一工程として、管板を板厚方向に貫通する管穴内に、対応する伝熱管の各端部を挿入し、管穴内に挿入された伝熱管の各端部の、管板の一次側の端面から二次側の端面に向かって所定距離の範囲を、ローラ拡管する。次に、第二工程として、拡管された伝熱管の外周面と、管穴の内周面との間の隙間を塞ぐように、伝熱管の外周面および管穴の内周面に沿って、管板の一次側の端面にシール溶接を行う。次に、第三工程として、管穴内に挿入された伝熱管の各端部の、管板の二次側の端面から一次側の端面に向かって所定距離の範囲を、液圧拡管する。次に、第四工程として、管穴内に挿入された伝熱管の各端部の、第一工程および第三工程においてまだ拡管されていない範囲を、ローラ拡管し、管穴内に挿入された伝熱管の各端部の外周面全体を、管穴の内周面と密着させる。
特開2008-025918号公報
 ところで、管板の管穴は、ドリルにより形成されるもので、希に切屑がドリルに引っ掛かることで、管穴の軸方向の途中の内周面に対して周方向に沿う傷が付く場合がある。この場合、上述した従来の拡管方法で拡管した場合、第3工程の液圧拡管により拡管された伝熱管が、傷に沿って拡管されることで内周面に凹部ができてしまう。このため、凹部の位置で局部的に残留応力が発生したり、熱交換器の運転時の熱膨張により応力集中が発生したりする問題がある。
 本発明は、上述した課題を解決するものであり、管穴の軸方向の途中の内周面に対して周方向に沿う傷が付いた場合に、伝熱管の内周面に凹部が生じる事態を防ぐことのできる拡管方法を提供することを目的とする。
 上述の目的を達成するために、本発明の拡管方法は、管板の管穴に挿入された伝熱管を拡管により固定する拡管方法において、前記管穴の軸方向の途中の内周面に対して周方向に沿う傷が付いた場合、前記傷を含む範囲を、15%~70%の圧力で液圧拡管する第一液圧拡管工程と、次に、前記傷を除いて分割した各範囲を、100%の圧力でそれぞれ液圧拡管する第二液圧拡管工程と、を含むことを特徴とする。
 この拡管方法によれば、最初に第一液圧拡管工程を行うことで、傷を含む範囲において管穴の内周面に対して伝熱管の外周面が馴染むように予拡管される。そして、その後に第二液圧拡管工程を行うことで、傷を除いて分割した各範囲が本拡管されて管穴の内周面に対して伝熱管の外周面が密着しつつ傷の位置でも伝熱管が均等の内径となる。この結果、管穴の軸方向の途中の内周面に対して周方向に沿う傷が付いた場合に、伝熱管の内周面に凹部が生じる事態を防ぐことができる。
 上述の目的を達成するために、本発明の拡管方法は、管板の管穴に挿入された伝熱管を拡管により固定する拡管方法において、前記管穴の軸方向の途中の内周面に対して周方向に沿う傷が付いた場合、前記伝熱管の端部が位置する前記管板の一側の端面から他側の端面に向かい前記傷に至らない所定距離の範囲Aをローラ拡管する第一ローラ拡管工程と、次に、前記範囲Aを除き、前記管板の他側の端面から一側の端面に向かう所定距離の範囲であって前記傷を含む範囲Bを、15%~70%の圧力で液圧拡管する第一液圧拡管工程と、次に、前記範囲Bにおいて前記傷を除いて分割した各範囲Cを、100%の圧力でそれぞれ液圧拡管する第二液圧拡管工程と、次に、前記範囲Aと前記範囲Bとの間において未だ拡管されていない範囲Dを、ローラ拡管する第二ローラ拡管工程と、を含むことを特徴とする。
 この拡管方法によれば、液圧拡管について、最初に第一液圧拡管工程を行うことで、傷を含む範囲Bにおいて管穴の内周面に対して伝熱管の外周面が馴染むように予拡管される。そして、その後に第二液圧拡管工程を行うことで、傷を除いて分割した各範囲Cが本拡管されて管穴の内周面に対して伝熱管の外周面が密着しつつ傷の位置でも伝熱管が均等の内径となる。この結果、管穴の軸方向の途中の内周面に対して周方向に沿う傷が付いた場合に、伝熱管の内周面に凹部が生じる事態を防ぐことができる。しかも、第一ローラ拡管工程により伝熱管の端部を管穴に密着させておき、その後に各液圧拡管工程を行い、かつその後に第二ローラ拡管工程により第一ローラ拡管工程と各液圧拡管工程との境目を拡管することで、伝熱管の端部を位置決めして高精度の拡管を行うことができる。
 本発明によれば、管穴の軸方向の途中の内周面に対して周方向に沿う傷が付いた場合に、伝熱管の内周面に凹部が生じる事態を防ぐことができる。
図1は、本発明の実施の形態に係る拡管方法により拡管される管穴の説明図である。 図2は、本発明の実施の形態に係る拡管方法の工程図である。 図3は、本発明の実施の形態に係る拡管方法に用いられるローラ拡管工具の説明図である。 図4は、本発明の実施の形態に係る拡管方法に用いられる液圧拡管工具の説明図である。 図5は、本発明の実施の形態に係る拡管方法に用いられる液圧拡管工具の説明図である。 図6は、本発明の実施の形態に係る拡管方法が適用される蒸気発生器の構成を示す説明図である。 図7は、蒸気発生器が適用される原子力設備の一例を示す概略図である。
 以下に、本発明に係る実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、下記実施の形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。
 図6は、本実施の形態に係る拡管方法が適用される蒸気発生器の構成を示す説明図であり、図7は、蒸気発生器が適用される原子力設備の一例を示す概略図である。
 図6に示すように、蒸気発生器101は、胴部102を有している。胴部102は、上下方向に延在され、かつ密閉された中空円筒形状をなし、上半部に対して下半部が若干小径とされている。胴部102は、その下半部内に、当該胴部102の内壁面と所定間隔をもって配置された円筒形状をなす管群外筒103が設けられている。この管群外筒103は、その下端部が、胴部102の下半部内の下方に配置された管板104近傍まで延設されている。管群外筒103内には、伝熱管群105Aが設けられている。伝熱管群105Aは、逆U字形状をなす複数の伝熱管105からなる。伝熱管群105Aは、その上端部に、伝熱管105の上述した逆U字形状の円弧部が配置されている。伝熱管105は、中央から外側に向けて円弧部の径が大きなものを配列した伝熱管層を構成し、この伝熱管層を、重ねつつ径を変えることで、伝熱管群105Aの上端部を半球形状に形成している。この伝熱管群105Aの半球形状部分は、各伝熱管層の円弧部の間に、一次冷却水が各伝熱管105内を通過する際に発生し得る流体励起振動を抑制するための振止部材105aが設けられている。そして、各伝熱管105は、U字形状の円弧部を上方に向け、下端部が管板104の管穴104aに挿通支持されているとともに、中間部が複数の管支持板106を介して管群外筒103に支持されている。管支持板106は、多数の管穴106aが形成されており、この管穴106aに各伝熱管105が挿通されることで各伝熱管105を支持する。
 胴部102は、その下端部に水室鏡107が接合されている。水室鏡107は、椀状に形成された開口縁が管板104に接合された状態で、その内部が仕切板108により入口側水室107Aと出口側水室107Bとに区画されている。入口側水室107Aは、各伝熱管105の一端部が連通され、出口側水室107Bは、各伝熱管105の他端部が連通されている。また、入口側水室107Aは、胴部102の外部に通じる入口側管台107Aaが形成され、出口側水室107Bは、胴部102の外部に通じる出口側管台107Baが形成されている。そして、入口側管台107Aaは、加圧水型原子炉から一次冷却水が送られる冷却水配管124(図7参照)が連結され、出口側管台107Baは、熱交換された後の一次冷却水を加圧水型原子炉に送る冷却水配管124(図7参照)が連結される。また、図には明示しないが、入口側水室107Aおよび出口側水室107Bは、保守や点検時に作業者が水室107A,107B内に進入することのできる作業用のマンホールが形成されている。
 また、胴部102は、その上半部内に、給水を蒸気と熱水とに分離する気水分離器109、および分離された蒸気の湿分を除去して乾き蒸気に近い状態とする湿分分離器110が設けられている。気水分離器109と伝熱管群105Aとの間には、外部から胴部102内に二次冷却水の給水を行う給水管111が挿入されている。さらに、胴部102は、その上端部に、蒸気排出口112が形成されている。また、胴部102は、その下半部内に、給水管111からこの胴部102内に給水された二次冷却水を、胴部102と管群外筒103との間を流下させて管板104にて折り返させ、伝熱管群105Aに沿って上昇させる給水路113が形成されている。なお、蒸気排出口112は、タービンに蒸気を送る冷却水配管(図示せず)が連結され、給水管111は、タービンで使用された蒸気が復水器(図示せず)で冷却された二次冷却水を供給するための冷却水配管(図示せず)が連結される。
 上述した蒸気発生器101は、図7に示すように、原子力設備120に適用される。図7に示す原子力設備120は、加圧水型原子炉(PWR:Pressurized Water Reactor)である。この原子力設備120は、原子炉容器121、加圧器122、蒸気発生器101およびポンプ123が、冷却水配管124により順次連結されて、一次冷却水の循環経路が構成されている。また、蒸気発生器101とタービン(図示省略)との間には、二次冷却水の循環経路が構成されている。
 原子炉容器121は、燃料集合体(図示省略)が挿抜できるように、容器本体121aとその上部に装着される容器蓋121bとにより構成されている。容器蓋121bは、容器本体121aに対して開閉可能に設けられている。容器本体121aは、上方が開口し、下方が半球形状とされて閉塞された円筒形状をなし、上部に一次冷却水としての軽水を給排する入口側管台121cおよび出口側管台121dが設けられている。出口側管台121dは、蒸気発生器101の入口側管台107Aaに連通するように冷却水配管124が接続されている。また、入口側管台121cは、蒸気発生器101の出口側管台107Baに連通するように冷却水配管124が接続されている。
 この原子力設備120では、一次冷却水が原子炉容器121にて加熱されて高温・高圧となり、加圧器122にて加圧されて圧力を一定に維持されつつ、冷却水配管124を介して蒸気発生器101に供給される。蒸気発生器101では、加熱された一次冷却水は、入口側水室107Aに送られ、多数の伝熱管105内を通って循環して出口側水室107Bに至る。一方、復水器で冷却された二次冷却水は、給水管111に送られ、胴部102内の給水路113を通って伝熱管群105Aに沿って上昇する。このとき、胴部102内で、高圧高温の一次冷却水と二次冷却水との間で熱交換が行われる。そして、冷やされた一次冷却水は出口側水室107Bから加圧水型原子炉に戻される。一方、高圧高温の一次冷却水と熱交換を行った二次冷却水は、胴部102内を上昇し、気水分離器109で蒸気と熱水とに分離される。そして、分離された蒸気は、湿分分離器110で湿分が除去されて蒸気排出口112からタービンに送られる。タービンは、二次冷却水の蒸気により駆動される。そして、タービンの動力が発電機(図示省略)に伝達されて発電される。タービンの駆動に供された蒸気は、凝縮して水となり蒸気発生器101に供給される。一方、蒸気発生器101で熱交換後の一次冷却水は、冷却水配管124を介してポンプ123側に回収される。
 上述した蒸気発生器101に係り、伝熱管105は、胴部102の上半部や、当該上半部に設けられる気水分離器109、湿分分離器110および給水管111が配置される以前の胴部102の下半部に取り付けられる。この場合、胴部102の下半部は、架台(図示せず)の上に横置きされた状態で、管群外筒103、管板104および各管支持板106が取り付けられる。管板104および管支持板106は、伝熱管105の端部を挿入するための管穴104a,106aが設けられている。
 この胴部102の下半部に伝熱管105が取り付けられる。伝熱管105は、胴部102の下半部における上半部側(図6の上側)から、両端部を各管支持板106の管穴106aに挿入され、かつ管板104の管穴104aに挿入されて、U字形状に形成された円弧部が、胴部102の下半部における上側にて半球形状に配置されることになる。
 管支持板106および管板104の管穴106a,104aに挿入される伝熱管105は、U字形状に形成された円弧部の径が最も小さいものを中央から外側に向けて順次大きなものを水平に複数配列してなる1層の伝熱管層が基準とされる。そして、この伝熱管層が積層されつつ、各伝熱管層の間の所定位置に振止部材105aが配置される。これにより、伝熱管105の円弧部の部分が半球形状に形成される。
 図1は、本実施の形態に係る拡管方法により拡管される管穴の説明図である。上述したように、伝熱管層(伝熱管105)を管板104の管穴104aに挿入する場合、管板104に対して管穴104aがドリルにより形成されるが、当該ドリルに切屑が引っ掛かることで、図1(a)に示すように、管穴104aの軸S1方向の途中の内周面に対して周方向に沿う傷104bが付く場合がある。この場合、従来の拡管方法で拡管した場合、図1(b)に示すように、液圧拡管により拡管された伝熱管105が、傷104bに沿って拡管されることで内周面に凹部105dができてしまう。このため、凹部105dの位置で局部的に残留応力が発生したり、熱交換器の運転時の熱膨張により応力集中が発生したりする問題がある。
 そこで、本実施形態の拡管方法により伝熱管105の拡管を行い、上記問題を解決する。図2は、本実施の形態に係る拡管方法の工程図であり、図3は、本実施の形態に係る拡管方法に用いられるローラ拡管工具の説明図であり、図4および図5は、本実施の形態に係る拡管方法に用いられる液圧拡管工具の説明図である。
 まず、図2(a)に示すように、管板104に管穴104aを加工した後、当該管穴104aの内周面を検査し、当該検査により管穴104aの軸S1方向の途中の内周面に対して周方向に沿う傷104bが発見された場合、管板104の一次側(一側)の端面104cから二次側(他側)の端面104dまでの軸S1方向距離L1、管板104の一次側の端面104cから傷104bの基端までの軸S1方向距離L2、および管板104の一次側の端面104cから傷104bの終端までの軸S1方向距離L3を計測する。すなわち、管穴104aの軸S1方向全距離L1と、管板104の一次側の端面104cから軸S1方向での傷104bの範囲(L3-L2)とを確認する。
 次に、図2(b)に示すように、管穴104aに伝熱管105が挿入された後、伝熱管105の端部が位置する管板104の一次側の端面104cから二次側の端面104dに向かい傷104bに至らない所定距離の範囲Aをローラ拡管工具2(図3参照)によりローラ拡管する(第一ローラ拡管工程)。なお、範囲Aとは、管板104の一次側の端面104cから二次側の端面104dに向かい、数mm程度の範囲である。そして、この範囲Aの拡管後、管板104の一次側の端面104cにおいて、拡管された伝熱管105の端部の外周面と、管穴104aの端部の内周面との間の僅かな隙間を塞ぐように、伝熱管105の外周面および管穴104aの内周面に沿ってシール溶接を行う。
 ローラ拡管工具2は、図3に示すように、伝熱管105に挿入し得るマンドレル2aの先端部に、ゲージ2bが設けられている。ゲージ2bは、その周囲にローラ2cが自転および公転可能に取り付けられている。そして、そのローラ拡管工具2を伝熱管105に挿入し、マンドレル2aの基端側から回転トルクを与えることで、ローラ2cが自転および公転し、伝熱管105に拡管力を伝える。
 次に、図2(c)に示すように、前記範囲Aを除き、管板104の二次側の端面104d(のやや一次側)から一次側の端面104cに向かう所定距離の範囲であって傷104bを含む範囲Bを、液圧拡管工具1(図4および図5参照)により15%~70%の圧力で液圧拡管する(第一液圧拡管工程)。なお、15%~70%の圧力とは、後の液圧拡管(第二液圧拡管工程)における圧力を100%とした場合の圧力である。また、管板104の二次側の端面104dのやや一次側とは、管板104の二次側の端面104dから僅かな分だけ一次側に入り込んだ位置である。
 次に、図2(d)および図2(e)に示すように、前記範囲Bにおいて、傷104bを除いて分割した各範囲Cを、液圧拡管工具1(図4および図5参照)により100%の圧力でそれぞれ液圧拡管する(第二液圧拡管工程)。
 液圧拡管工具1は、図4および図5に示すように、基部11と、基部11の一端から延設した液体導入部12と、基部11の他端から延設して伝熱管105に挿入されるように円柱形状に基づき形成されたマンドレル部13とが軸S2に沿って配置されている。
 液体導入部12は、図示しない液体供給装置からの液体が導入される部分であって、当該液体供給装置の液体供給部に挿入される結合部でもある。このため、液体導入部12は、液体供給部との間からの液漏れを防ぐように、その外周面上にOリング14が設けられている。
 マンドレル部13は、第一円柱部13Aを中間に配置し、この第一円柱部13Aの両端から軸S2方向に向けて各々延設された第二円柱部13Bおよび第三円柱部13Cを有している。第一円柱部13Aは、第二円柱部13Bおよび第三円柱部13Cよりも外径が大きく形成されている。第二円柱部13Bは、基部11に連続し、第三円柱部13Cは、軸S2方向において基部11と相反する側に設けられている。
 そして、液体導入部12から、軸S2方向に、基部11および第二円柱部13Bを経て第一円柱部13Aの途中に至り、貫通穴12a,11a,13aが連続して形成されている。貫通穴13aは、第一円柱部13Aの位置で軸S2に対して交差する方向に延在し、第一円柱部13Aの側部に貫通する。
 マンドレル部13において、第二円柱部13Bおよび第三円柱部13Cは、それぞれOリング15,16が軸S2方向に移動可能に挿通されている。これらOリング15,16は、第一円柱部13Aに対しては当接して移動を規制される。Oリング15,16は、第二円柱部13Bおよび第三円柱部13Cの外周面、および拡管前の伝熱管105の内周面に接触する寸法とされている。また、第二円柱部13Bおよび第三円柱部13Cは、第一円柱部13Aを中央とした各Oリング15,16の軸S2方向の外側に、環状ガイド部材17,18が軸S2方向に移動可能に挿通されている。また、第二円柱部13Bおよび第三円柱部13Cは、第一円柱部13Aを中央とした各環状ガイド部材17,18の外側に、環状変形部材19,20が軸S2方向に移動可能に挿通されている。また、第二円柱部13Bおよび第三円柱部13Cは、第一円柱部13Aを中央とした各環状変形部材19,20の外側に環状係止部材21,22が固定されている。また、環状係止部材21,22は、その外周面上に、環状位置決部材23,24が配置されている。環状位置決部材23,24は、その外径が拡管前の伝熱管105の内径と略同等の大きさになるよう成形されている。
 この液圧拡管工具1は、図4に示すように、マンドレル部13を伝熱管105に挿入する。この際、環状位置決部材23,24により、マンドレル部13の軸S2が伝熱管105の中心に位置するように支持される。そして、液体供給装置から液体を圧送することで、当該液体が貫通穴12a,11a,13aを経て第一円柱部13Aの外側に噴出する。すると、液体に押されてOリング15,16が第一円柱部13Aを中央とした外側に移動しつつ、環状ガイド部材17,18に当接して径方向外側に広がるとともに、環状ガイド部材17,18に押圧された環状変形部材19,20が環状係止部材21,22に留められて径方向外側に変形する。このため、Oリング15,16間で液体の圧力が高まり、これが拡管力となって伝熱管105を拡管する。
 この液圧拡管工具1は、環状係止部材21,22の軸S2方向の距離に応じて拡管し得る軸S2方向の距離が決まる。すなわち、上述した液圧拡管の範囲B,Cは、当該液圧拡管工具1の環状係止部材21,22の軸S2方向の距離を変更することにより設定することが可能である。
 次に、図2に戻り、図2(e)および図2(f)に示すように、前記範囲Aと前記範囲Bとの間において未だ拡管されていない範囲Dを、ローラ拡管する(第二ローラ拡管工程)。
 このように、本実施の形態の拡管方法は、管穴104aの軸S1方向の途中の内周面に対して周方向に沿う傷104bが付いた場合、傷104bを含む範囲Bを、15%~70%の圧力で液圧拡管する第一液圧拡管工程と、次に、傷104bを除いて分割した各範囲Cを、100%の圧力でそれぞれ液圧拡管する第二液圧拡管工程と、を含む。
 この拡管方法によれば、最初に第一液圧拡管工程を行うことで、傷104bを含む範囲Bにおいて管穴104aの内周面に対して伝熱管105の外周面が馴染むように予拡管される。そして、その後に第二液圧拡管工程を行うことで、傷104bを除いて分割した各範囲Cが本拡管されて管穴104aの内周面に対して伝熱管105の外周面が密着しつつ傷104bの位置でも伝熱管105が均等の内径となる。この結果、管穴104aの軸S1方向の途中の内周面に対して周方向に沿う傷104bが付いた場合に、伝熱管105の内周面に凹部105dが生じる事態を防ぐことが可能になる。
 また、本実施の形態の拡管方法は、管穴104aの軸S1方向の途中の内周面に対して周方向に沿う傷104bが付いた場合、伝熱管105の端部が位置する管板104の一次側(一側)の端面から二次側(他側)の端面に向かい傷104bに至らない所定距離の範囲Aをローラ拡管する第一ローラ拡管工程と、次に、前記範囲Aを除き、管板104の他側の端面から一側の端面に向かう所定距離の範囲であって傷104bを含む範囲Bを、15%~70%の圧力で液圧拡管する第一液圧拡管工程と、次に、前記範囲Bにおいて傷104bを除いて分割した各範囲Cを、100%の圧力でそれぞれ液圧拡管する第二液圧拡管工程と、次に、前記範囲Aと前記範囲Bとの間において未だ拡管されていない範囲Dを、ローラ拡管する第二ローラ拡管工程と、を含む。
 この拡管方法によれば、液圧拡管について、最初に第一液圧拡管工程を行うことで、傷104bを含む範囲Bにおいて管穴104aの内周面に対して伝熱管105の外周面が馴染むように予拡管される。そして、その後に第二液圧拡管工程を行うことで、傷104bを除いて分割した各範囲Cが本拡管されて管穴104aの内周面に対して伝熱管105の外周面が密着しつつ傷104bの位置でも伝熱管105が均等の内径となる。この結果、管穴104aの軸S1方向の途中の内周面に対して周方向に沿う傷104bが付いた場合に、伝熱管105の内周面に凹部105dが生じる事態を防ぐことが可能になる。しかも、第一ローラ拡管工程により伝熱管105の端部を管穴104aに密着させておき、その後に各液圧拡管工程を行い、かつその後に第二ローラ拡管工程により第一ローラ拡管工程と各液圧拡管工程との境目を拡管することで、伝熱管105の端部を位置決めして高精度の拡管を行うことが可能になる。
 1 液圧拡管工具
 2 ローラ拡管工具
 104 管板
 104a 管穴
 104b 傷
 104c 一次側(一側)の端面
 104d 二次側(他側)の端面
 105 伝熱管
 S1 軸

Claims (2)

  1.  管板の管穴に挿入された伝熱管を拡管により固定する拡管方法において、
     前記管穴の軸方向の途中の内周面に対して周方向に沿う傷が付いた場合、
     前記傷を含む範囲を、15%~70%の圧力で液圧拡管する第一液圧拡管工程と、
     次に、前記傷を除いて分割した各範囲を、100%の圧力でそれぞれ液圧拡管する第二液圧拡管工程と、
     を含むことを特徴とする拡管方法。
  2.  管板の管穴に挿入された伝熱管を拡管により固定する拡管方法において、
     前記管穴の軸方向の途中の内周面に対して周方向に沿う傷が付いた場合、
     前記伝熱管の端部が位置する前記管板の一側の端面から他側の端面に向かい前記傷に至らない所定距離の範囲Aをローラ拡管する第一ローラ拡管工程と、
     次に、前記範囲Aを除き、前記管板の他側の端面から一側の端面に向かう所定距離の範囲であって前記傷を含む範囲Bを、15%~70%の圧力で液圧拡管する第一液圧拡管工程と、
     次に、前記範囲Bにおいて前記傷を除いて分割した各範囲Cを、100%の圧力でそれぞれ液圧拡管する第二液圧拡管工程と、
     次に、前記範囲Aと前記範囲Bとの間において未だ拡管されていない範囲Dを、ローラ拡管する第二ローラ拡管工程と、
     を含むことを特徴とする拡管方法。
PCT/JP2012/080783 2012-03-29 2012-11-28 拡管方法 WO2013145443A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12873184.1A EP2832468B1 (en) 2012-03-29 2012-11-28 Tube expansion method
US14/387,676 US20150047194A1 (en) 2012-03-29 2012-11-28 Tube expansion method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-077915 2012-03-29
JP2012077915A JP5868761B2 (ja) 2012-03-29 2012-03-29 拡管方法

Publications (1)

Publication Number Publication Date
WO2013145443A1 true WO2013145443A1 (ja) 2013-10-03

Family

ID=49258776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080783 WO2013145443A1 (ja) 2012-03-29 2012-11-28 拡管方法

Country Status (4)

Country Link
US (1) US20150047194A1 (ja)
EP (1) EP2832468B1 (ja)
JP (1) JP5868761B2 (ja)
WO (1) WO2013145443A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116140451A (zh) * 2022-07-22 2023-05-23 广东思豪流体技术有限公司 一种异型薄壁小口径铜管的制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5794944B2 (ja) * 2012-03-29 2015-10-14 三菱重工業株式会社 拡管方法
CN105466251B (zh) * 2015-03-03 2017-07-04 何六珠 一种模组式管板换热器及其换热方法
RU2685220C1 (ru) * 2017-09-18 2019-04-17 Александр Валентинович Разуваев Устройство первого контура двухконтурной ядерной энергетической установки
WO2020258019A1 (zh) * 2019-06-24 2020-12-30 奥美森智能装备股份有限公司 一种热交换器工装的快速切换位置装置及锁紧装置
CN113305223B (zh) * 2021-06-01 2023-03-24 浙江申吉钛业股份有限公司 基于优化扩孔器的单工步换热器格栅安装方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09178393A (ja) * 1995-12-23 1997-07-11 Balcke Duerr Ag 熱交換器
WO2008010427A1 (fr) * 2006-07-21 2008-01-24 Mitsubishi Heavy Industries, Ltd. procédé de dilatation de tuyau
WO2012066945A1 (ja) * 2010-11-15 2012-05-24 三菱重工業株式会社 拡管工具

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE408273B (sv) * 1975-06-27 1979-06-05 Balcke Duerr Ag Sett for trycktet fastgoring av ror i en rorskiva, i synnerhet vid framstellning av vermevexlare
FR2579738B1 (fr) * 1985-03-29 1987-06-26 Framatome Sa Procede de reparation par chemisage d'un tube de generateur de vapeur
US5027507A (en) * 1989-03-01 1991-07-02 Westinghouse Electric Corp. Method for controlling leakage through degraded heat exchanger tubes in the tubesheet region of a nuclear generator
US5367768A (en) * 1992-12-17 1994-11-29 Mpr Associates, Inc. Methods of repairing inconel 600 nozzles of pressurized water reactor vessels
US6536252B1 (en) * 2002-02-19 2003-03-25 Babcock & Wilcox Canada Ltd. Non-metallic hydraulic expansion mandrel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09178393A (ja) * 1995-12-23 1997-07-11 Balcke Duerr Ag 熱交換器
WO2008010427A1 (fr) * 2006-07-21 2008-01-24 Mitsubishi Heavy Industries, Ltd. procédé de dilatation de tuyau
JP2008025918A (ja) 2006-07-21 2008-02-07 Mitsubishi Heavy Ind Ltd 拡管方法
WO2012066945A1 (ja) * 2010-11-15 2012-05-24 三菱重工業株式会社 拡管工具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2832468A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116140451A (zh) * 2022-07-22 2023-05-23 广东思豪流体技术有限公司 一种异型薄壁小口径铜管的制备方法
CN116140451B (zh) * 2022-07-22 2023-12-12 广东思豪流体技术有限公司 一种异型薄壁小口径铜管的制备方法

Also Published As

Publication number Publication date
EP2832468A1 (en) 2015-02-04
EP2832468B1 (en) 2016-11-30
JP5868761B2 (ja) 2016-02-24
JP2013202687A (ja) 2013-10-07
EP2832468A4 (en) 2015-12-02
US20150047194A1 (en) 2015-02-19

Similar Documents

Publication Publication Date Title
JP5868761B2 (ja) 拡管方法
KR101087517B1 (ko) 확관 방법
WO2014030719A1 (ja) 拡管治具、伝熱管の拡管方法、補修方法、閉塞方法及び電磁コイル
JP5794944B2 (ja) 拡管方法
JP6161236B2 (ja) 原子力用多孔板の洗浄装置
JP5713731B2 (ja) 伝熱管用施栓プラグ取付装置および伝熱管施栓方法
JP2014106048A (ja) 蒸気発生器の解体方法
JP5840049B2 (ja) 蒸気発生器製造方法
KR100453630B1 (ko) 증기발생기 전열관 보수용 슬리브의 수압확관 및 누수시험겸용장치
JP2012215339A (ja) 伝熱管シール溶接部の補修用具および伝熱管シール溶接部の補修方法
JP5822806B2 (ja) 伝熱管挿入治具および伝熱管挿入治具の製造方法
JP6076697B2 (ja) 蒸気発生器運搬方法
WO2013111444A1 (ja) 溶接方法および蒸気発生器水室
WO2012066945A1 (ja) 拡管工具
WO2012067039A1 (ja) 穴加工装置及び方法
WO2014030717A1 (ja) 振動抑制部材、振動抑制部材の配設方法及び蒸気発生器
JP6564723B2 (ja) 試験カプセル、試験片の再装荷方法及びカプセル容器の作製方法
JP5955173B2 (ja) 蒸気発生器解体方法
JP2010019701A (ja) 一次冷却材通路内への遮蔽体設置方法及び遮蔽装置
JPS58108395A (ja) 伝熱管を管板に接合する方法
JPS59110489A (ja) 原子炉用中間熱交換器の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873184

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14387676

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012873184

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012873184

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE