WO2013140927A1 - アルツハイマー病の治療薬および/または予防薬のスクリーニング方法 - Google Patents

アルツハイマー病の治療薬および/または予防薬のスクリーニング方法 Download PDF

Info

Publication number
WO2013140927A1
WO2013140927A1 PCT/JP2013/054199 JP2013054199W WO2013140927A1 WO 2013140927 A1 WO2013140927 A1 WO 2013140927A1 JP 2013054199 W JP2013054199 W JP 2013054199W WO 2013140927 A1 WO2013140927 A1 WO 2013140927A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
cells
alzheimer
disease
amount
Prior art date
Application number
PCT/JP2013/054199
Other languages
English (en)
French (fr)
Inventor
治久 井上
亮輔 高橋
孝之 近藤
修永 岩田
将 浅井
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to US14/385,990 priority Critical patent/US20150064734A1/en
Priority to JP2014506090A priority patent/JP6335117B2/ja
Priority to EP13763448.1A priority patent/EP2829605B1/en
Publication of WO2013140927A1 publication Critical patent/WO2013140927A1/ja
Priority to US15/276,616 priority patent/US20170010256A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5058Neurological cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0619Neurons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0622Glial cells, e.g. astrocytes, oligodendrocytes; Schwann cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/37Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving peptidase or proteinase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5073Stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2503/00Use of cells in diagnostics
    • C12N2503/02Drug screening
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/46Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
    • G01N2333/47Assays involving proteins of known structure or function as defined in the subgroups
    • G01N2333/4701Details
    • G01N2333/4709Amyloid plaque core protein
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/28Neurological disorders
    • G01N2800/2814Dementia; Cognitive disorders
    • G01N2800/2821Alzheimer

Definitions

  • the present invention relates to a method for screening for a therapeutic and / or prophylactic agent for Alzheimer's disease and a kit for the same.
  • Alzheimer's disease is a kind of protein misfolding disease in which amyloid ⁇ protein (A ⁇ ) is deposited in the brain, and is known as a neurodegenerative disease caused by cytotoxicity due to A ⁇ deposition (Non-patent Document 1).
  • a ⁇ amyloid ⁇ protein
  • Non-patent Document 1 Non-patent Document 1
  • starting treatment as early as possible leads to effective treatment, so the development of early diagnosis is an important issue in an aging society.
  • NINCDS-ADRDA and DSM-IV are used as clinical diagnostic criteria for Alzheimer's disease. Although this criterion is excellent for diagnosing positive dementia, the possibility of being diagnosed as negative in the early stages of illness cannot be denied, and a definitive diagnosis cannot be achieved. Moreover, it is impossible to make a diagnosis before onset. Since Alzheimer's disease has been shown to be caused by the accumulation of A ⁇ , the conventional diagnosis of Alzheimer's disease is based on a decrease in the A ⁇ 42 / A ⁇ 40 ratio in cerebrospinal fluid and phosphorylated tau protein (p -tau), and p-tau / (A ⁇ 42 / A ⁇ 40), which is a combination of these, has been used as an indicator.
  • p -tau phosphorylated tau protein
  • iPS cells mouse and human induced pluripotent stem cells
  • Yamanaka et al. Succeeded in establishing iPS cells by introducing 4 genes of Oct3 / 4, Sox2, Klf4 and c-Myc into human skin-derived fibroblasts (Patent Document 1 and Non-Patent Document 2).
  • the iPS cells obtained in this way can be differentiated into cells of each tissue after being prepared using cells derived from the patient to be treated, it is possible to reproduce the disease state in vitro It is considered.
  • Non-Patent Document 3 iPS cells derived from familial Alzheimer's disease patients with mutations in presenilin were produced by the above method, successfully induced to differentiate into nerve cells, and extracellular secretion of A ⁇ 42 from these nerve cells was enhanced Has been reported (Non-Patent Document 3).
  • Non-patent Document 4 Although there are various arguments for this result, it is unclear which diagnostic index is useful for screening for drugs showing therapeutic effects.
  • Non-patent Document 5 This leaves room for doubt as to whether A ⁇ deposition, such as senile plaque formation, causes Alzheimer's disease.
  • An object of the present invention is to provide a novel method for screening for a therapeutic or preventive drug for Alzheimer's disease and a kit therefor.
  • the present inventors have reproduced Alzheimer's disease pathology in nerve cells or astrocytes induced to differentiate from somatic cell-derived iPS cells of Alzheimer's disease patients.
  • Successful That is, in neuronal cells or astrocytes induced to differentiate, findings such as accumulation of A ⁇ oligomers in the cells, ER stress amount and increase in oxidative stress such as production of reactive oxygen species were found.
  • the present invention has been completed by finding that these indexes are decreased by adding an existing drug for treating or preventing Alzheimer's disease.
  • a method for screening for a therapeutic and / or prophylactic agent for Alzheimer's disease comprising the following steps: (A) A step of bringing a candidate substance into contact with an induced pluripotent stem (iPS) cell prepared from a somatic cell of an Alzheimer's disease patient or an iPS cell-derived neuronal cell or astrocyte into which 693 glutamate-deficient mutant APP has been introduced , (B) a step of measuring the amount of A ⁇ oligomer in the nerve cell or astrocyte, and (c) when the amount of the A ⁇ oligomer is decreased as compared with the case where the amount is not contacted with the candidate substance, the candidate substance Selecting as a therapeutic or prophylactic agent for Alzheimer's disease.
  • iPS induced pluripotent stem
  • a method for screening for a therapeutic and / or prophylactic agent for Alzheimer's disease comprising the following steps: (A) contacting a candidate substance with iPS cells prepared from somatic cells of Alzheimer's disease patients or iPS cell-derived neurons or astrocytes into which 693 glutamate-deficient mutant APP has been introduced; (B) measuring at least one index selected from the group consisting of the amount of ER stress, caspase 4 activity, transgelin amount and oxidative stress in the nerve cells or astrocytes, and (c) the amount or activity Selecting the candidate substance as a therapeutic or prophylactic agent for Alzheimer's disease when the ratio is decreased as compared to the case where the candidate substance is not contacted with the candidate substance.
  • a method for screening for a therapeutic and / or prophylactic agent for Alzheimer's disease comprising the following steps: (A) contacting a candidate substance with an induced pluripotent stem (iPS) cell produced from a somatic cell of an Alzheimer's disease patient or an iPS cell-derived nerve cell into which 693 glutamate-deficient mutant APP has been introduced; (B) a step of measuring the number of viable cells of the nerve cell or a substitute value thereof, and (c) the candidate when the number of the viable cells or the substitute value thereof is increased compared to a case where the number of viable cells or the substitute value thereof is not contacted with a candidate substance.
  • iPS induced pluripotent stem
  • a substance as a therapeutic or prophylactic agent for Alzheimer's disease [12] The method according to [11], wherein the iPS cell-derived nerve cell is a cell that accumulates A ⁇ oligomers. [13] The method according to [11] or [12], wherein the somatic cell of the Alzheimer's disease patient is a somatic cell having an APP 693 glutamate deletion mutation. [14] A kit for screening for a therapeutic and / or prophylactic agent for Alzheimer's disease comprising iPS cell-derived neurons and / or astrocytes having a mutant APP.
  • kits according to [14] further comprising a reagent for measuring at least one index selected from the group consisting of A ⁇ oligomer, BiP, cleaved caspase 4, Transgelin, PRDX4 and reactive oxygen species.
  • the kit according to [14] or [15] wherein the APP mutation is a 693rd glutamic acid deletion mutation. Is to provide.
  • the present invention makes it possible to screen for Alzheimer's disease therapeutic agents and / or preventive agents using a novel tool. Therefore, the present invention is extremely useful for the early treatment or prevention of Alzheimer's disease.
  • FIG. 1 shows the results of evaluation of the prepared control and AD (E693 ⁇ ) -iPSCs and induction of differentiation into cerebral cortical neurons.
  • A A photograph showing the morphology (phase image) of iPS cells established from somatic cells of an Alzheimer's disease patient (E693 ⁇ ), and the expression of NANOG (green) and TRA1-60 (red), which are pluripotent stem cell markers.
  • B Comparison of genomic DNA sequences of iPS cells established from somatic cells of patients with control iPS cells (Control) and Alzheimer's disease (AD (E693 ⁇ )). In iPS cells derived from somatic cells of Alzheimer's disease patients, E693 is homozygous and deficient (E693 ⁇ ).
  • the mesoderm represents cartilage
  • the endoderm represents the intestinal tract-like epithelium
  • the ectoderm represents the neural tube-like tissue.
  • SOX17 indicates endoderm
  • Tuj1 indicates ectoderm.
  • cerebral cortical transcription marker (CTIP2, SATB2 or TBR1) shows red color.
  • FIG. 2 shows the results of evaluation of the prepared AD (V717L) -iPSCs and sporadic Alzheimer's disease (AD (sporadic))-iPSCs and induction of differentiation into neurons.
  • A Morphology (phase image) of iPS cells established from somatic cells of Alzheimer's disease patients (V717L and sporadic), and expression of pluripotent stem cell markers NANOG (green) and TRA1-60 (red) Photo showing.
  • FIG. 1 Comparison of genomic DNA sequences of control iPS cells (Control) and iPS cells established from somatic cells of Alzheimer's disease (AD (V717L)) patients.
  • AD Alzheimer's disease
  • APP V717 has a heterozygous mutation (V717L).
  • C Neuronal markers (Tuj1) and cerebral cortical transcriptional markers (TBR1 and SATB2) in cerebral cortical neurons differentiated from control, AD (E693 ⁇ ), AD (V717L) and sporadic iPSCs ) Shows the relative expression level of the protein.
  • the graph represents the ratio of the number of positive cells of each marker to the number of nuclei (DAPI).
  • FIG. 3 shows the amount of extracellular secretion of each A ⁇ from neurons or astrocytes induced to differentiate from control (control), AD (E693 ⁇ ), AD (V717L) and sporadic iPSCs.
  • A The extracellular secretion amount of A ⁇ 40 and A ⁇ 42 and the ratio of A ⁇ 42 / A ⁇ 40 in the neuron are shown.
  • FIG. 4 shows the accumulation of A ⁇ oligomers in neurons differentiated from iPS cells (AD (E693 ⁇ )) derived from somatic cells of Alzheimer's disease patients.
  • A A photograph showing the localization of A ⁇ oligomers in neurons (control or AD (E693 ⁇ )) induced to differentiate from iPS cells.
  • FIG. 5 shows the amount of A ⁇ oligomer accumulated.
  • A In nerve cells (control, AD (E693 ⁇ ), AD (V717L) and AD (sporadic)) induced to differentiate from iPS cells under the conditions of addition (+) of BSI (-) The graph of the accumulation amount of A (beta) oligomer is shown.
  • FIG. 6 shows accumulation of A ⁇ oligomers and ER stress response in neurons (AD (E693 ⁇ )) induced to differentiate from iPS cells derived from somatic cells of Alzheimer's disease patients.
  • A A photograph showing the localization of A ⁇ oligomer (green) in organelles (red) in sputum cells.
  • BiP indicates ER
  • EEA1 indicates early endosome
  • LAMP2 indicates late endosome / lysosome.
  • a ⁇ oligomers are those detected by NU-1 monoclonal antibody.
  • B shows the results of Western blot analysis of ER stress markers (BiP and activated caspase 4) in neurons (control and AD (E693 ⁇ )) induced to differentiate from iPS cells in the presence and absence of BSI Photo.
  • FIG. 7 shows the analysis results of other markers in nerve cells (AD (E693 ⁇ )) induced to differentiate from iPS cells derived from somatic cells of Alzheimer's disease patients.
  • AD nerve cells
  • FIG. 7 shows the analysis results of other markers in nerve cells (AD (E693 ⁇ )) induced to differentiate from iPS cells derived from somatic cells of Alzheimer's disease patients.
  • A A photograph showing the results of Western blot analysis of Transgelin.
  • B shows the expression level of AD relative to the control of peroxidation activity-related genes in gene ontology analysis.
  • C Photographs showing the results of Western blot analysis of peroxiredoxin-4 in neurons (control and AD (E693 ⁇ )) induced to differentiate from iPS cells in the presence and absence of BSI.
  • D shows the quantification data of peroxiredoxin-4.
  • FIG. 8 shows neuronal cells (control, AD (E693 ⁇ ), AD (V717L) and AD (sporadic)) induced to differentiate from iPS cells derived from somatic cells of Alzheimer's disease patients in the presence and absence of BSI.
  • the photograph which shows the result of the Western blot analysis of the ER stress marker gene (BiP and activated caspase 4) and the oxidative stress marker gene (peroxiredoxin-4).
  • BiP and Peroxiredoxin-4 were confirmed to have significantly higher expression in AD (E693 ⁇ ) -1, AD (E693 ⁇ ) -2, AD (E693 ⁇ ) -3 and AD (sporadic) -2 in the absence of BSI (** p ⁇ 0.005).
  • FIG. 9 shows ER stress marker genes (BiP and activated caspase) in astrocytes (control, AD (E693 ⁇ ), AD (V717L) and AD (sporadic)) induced to differentiate from iPS cells derived from somatic cells of Alzheimer's disease patients. 4) A photograph showing the results of Western blot analysis of the oxidative stress marker gene (peroxiredoxin-4).
  • BiP and Peroxiredoxin-4 were confirmed to have significantly higher expression in AD (E693 ⁇ ) -1, AD (E693 ⁇ ) -2, AD (E693 ⁇ ) -3 and AD (sporadic) -2 in the absence of BSI .
  • active caspase 4 it was confirmed that expression was significantly higher in AD (E693 ⁇ ) -1, AD (E693 ⁇ ) -2, and AD (E693 ⁇ ) -3 in the absence of BSI.
  • FIG. 10 shows neuronal cells (control, AD (E693 ⁇ ), AD (V717L) and AD (sporadic)) induced to differentiate from iPS cells derived from somatic cells of Alzheimer's disease patients in the presence and absence of BSI.
  • FIG. 11 shows reactive oxygen species (ROS) in astrocytes (control, AD (E693 ⁇ ), AD (V717L) and AD (sporadic)) induced to differentiate from iPS cells derived from somatic cells of Alzheimer's disease patients. The result of having measured the quantity of is shown.
  • A Photographs showing typical examples of staining with CellROX (white) and DAPI staining (blue) in each astrocyte (control, AD (E693 ⁇ ) and AD (sporadic)).
  • B The graph of the result of having quantified the ROS positive area value detected by CellROX is shown.
  • FIG. 12 shows data obtained by observing the reduction of ER stress by A ⁇ oligomers by Docosahexaenoic acid (DHA).
  • DHA Docosahexaenoic acid
  • FIG. 13 shows the results of adding DHA to neurons induced to differentiate from iPS cells of Alzheimer's disease patients.
  • (C) Data obtained by quantifying the results of dot blot analysis of A ⁇ oligomer using NU1 antibody using densitometry. Data show mean ⁇ SD (n 3 / group).
  • FIG. 14 shows cell viability of nerve cells (control, AD (E693 ⁇ ) and AD (sporadic)) induced to differentiate from iPS cells derived from somatic cells of Alzheimer's disease patients.
  • B A photograph showing a typical example of a fluorescence image for a neuron having EGFP (green) induced by a synapsin I promoter in each neuron (control, AD (E693 ⁇ ) and AD (sporadic)).
  • the present invention provides a therapeutic and / or prophylactic agent for Alzheimer's disease, comprising a step of contacting a candidate substance with a neural cell or astrocyte derived from an induced pluripotent stem cell (iPS cell) produced from a somatic cell of an Alzheimer's disease patient.
  • iPS cell induced pluripotent stem cell
  • an iPS cell is used to introduce a specific nuclear reprogramming substance into a somatic cell in the form of DNA or protein, or by using an agent for the endogenous mRNA and protein of the nuclear reprogramming substance.
  • Artificial stem cells derived from somatic cells that have almost the same properties as ES cells, such as differentiation pluripotency and self-renewal proliferation ability, which can be produced by increasing expression (K. Takahashi and S. Yamanaka (2006) Cell, 126: 663-676, K. Takahashi et al. (2007) Cell, 131: 861-872, J. Yu et al. (2007) Science, 318: 1917-1920, M. Nakagawa et al. (2008) Nat.
  • the nuclear reprogramming substance is not particularly limited as long as it is a gene specifically expressed in ES cells, a gene that plays an important role in maintaining undifferentiation of ES cells, or a gene product thereof.
  • nucleotide sequences of mouse and human cDNA of each nuclear reprogramming substance and amino acid sequence information of the protein encoded by the cDNA refer to NCBI accession numbers described in WO 2007/069666, and L-Myc, Lin28 , Lin28b, Esrrb, Esrrg and Glis1 mouse and human cDNA sequences and amino acid sequence information can be obtained by referring to the following NCBI accession numbers, respectively.
  • a person skilled in the art can prepare a desired nuclear reprogramming substance by a conventional method based on the cDNA sequence or amino acid sequence information.
  • nuclear reprogramming substances may be introduced into somatic cells in the form of proteins, for example, by lipofection, binding to cell membrane permeable peptides, microinjection, or in the form of DNA, for example, It can be introduced into somatic cells by techniques such as viruses, plasmids, artificial chromosomes, vectors, lipofection, liposomes, and microinjection.
  • Virus vectors include retrovirus vectors, lentivirus vectors (cells, 126, pp.663-676, 2006; Cell, 131, pp.861-872, 2007; Science, 318, pp.1917-1920, 2007 ), Adenovirus vectors (Science, 322, 945-949, 2008), adeno-associated virus vectors, Sendai virus vectors (Proc Jpn Acad Ser B Phys Biol Sci. 85, 348-62, 2009) and the like.
  • artificial chromosome vectors include human artificial chromosomes (HAC), yeast artificial chromosomes (YAC), and bacterial artificial chromosomes (BAC, PAC).
  • a plasmid for mammalian cells can be used (Science, 322: 949-953, 2008).
  • the vector can contain regulatory sequences such as a promoter, an enhancer, a ribosome binding sequence, a terminator, and a polyadenylation site so that a nuclear reprogramming substance can be expressed.
  • promoter used examples include EF1 ⁇ promoter, CAG promoter, SR ⁇ promoter, SV40 promoter, LTR promoter, CMV (cytomegalovirus) promoter, RSV (rous sarcoma virus) promoter, MoMuLV (Moloney murine leukemia virus) LTR, HSV- A TK (herpes simplex virus thymidine kinase) promoter or the like is used.
  • EF1 ⁇ promoter, CAG promoter, MoMuLV LTR, CMV promoter, SR ⁇ promoter and the like can be mentioned.
  • drug resistance genes for example, kanamycin resistance gene, ampicillin resistance gene, puromycin resistance gene, etc.
  • thymidine kinase gene diphtheria toxin gene and other selectable marker sequences
  • green fluorescent protein (GFP) green fluorescent protein
  • GUS ⁇ -glucuronidase
  • reporter gene sequences such as FLAG, and the like.
  • the above vector contains a LoxP sequence before and after the gene or promoter encoding the nuclear reprogramming substance and the gene encoding the nuclear reprogramming substance that binds to it. You may have.
  • transposons include, for example, piggyBac, which is a transposon derived from lepidopterous insects (Kaji, K. et al., (2009), Nature, 458: 771-775, Woltjenet al., (2009), Nature , 458: 766-770, WO 2010/012077).
  • the vector replicates without chromosomal integration and is episomal, so that the origin and replication of lymphotropic herpesvirus (lymphotrophic herpes virus), BK virus and bovine papillomavirus
  • sequence which concerns on may be included. Examples include EBNA-1 and oriP or LargeLT and SV40ori sequences (WO 2009/115295, WO 2009/157201 and WO 2009/149233).
  • an expression vector for polycistronic expression may be used.
  • the gene coding sequence may be linked by an IRES or foot-and-mouth disease virus (FMDV) 2A coding region (Science, 322: 949-953, 2008 and WO 2009/092042 2009/152529).
  • HDAC histone deacetylase
  • VPA valproate PA
  • MC 1293 sodium butyrate
  • M344 small molecule inhibitors
  • siRNA and shRNA against HDAC e.g., HDAC1 siRNA (Smartpool® (Millipore), HuSH 29mer shRNA Nucleic acid expression inhibitors such as Constructs against HDAC1 (OriGene) etc.
  • DNA methyltransferase inhibitors eg 5'-azacytidine
  • G9a Histone methyltransferase inhibitors eg, small molecule inhibitors such as BIX-01294 (Cell Stem Cell, 2: 525-528 (2008)), siRNA and shRNA against G9a (eg, G9a siRNA (human) (Santa Cruz Biotechnology) Etc.), etc.], L-channel calcium agonist (for example, Bayk8644) (Cell Stem Cell, 3, 568-574 (2008)), p53 inhibitors (eg siRNA and shRNA against p53) (Cell Stem Cell, 3, 475-479 (2008)), Wnt Signaling activator (eg soluble Wnt3a ) (Cell Stem Cell, 3, 132-135 (2008)), growth factors such as LIF or bFGF, ALK5 inhibitors (eg, SB431542) (Nat.
  • small molecule inhibitors such as BIX-01294 (Cell Stem Cell, 2: 525-528 (2008)
  • siRNA and shRNA against G9a eg, G9a siRNA (
  • Examples of the drug in the method for increasing the expression of the endogenous protein of the nuclear reprogramming substance by the drug include 6-bromoindirubin-3'-oxime, indirubin-5-nitro-3'-oxime, valproic acid, 2- (3- (6-methylpyridin-2-yl) -lH-pyrazol-4-yl) -1,5-naphthyridine, 1- (4-methylphenyl) -2- (4,5,6,7-tetrahydro-2-imino- 3 (2H) -benzothiazolyl) ethanone HBr (pifithrin-alpha), prostaglandin J2, and prostaglandin E2 are exemplified (WO 2010/068955).
  • Examples of the culture medium for iPS cell induction include (1) DMEM, DMEM / F12 or DME medium containing 10-15% FBS (these media include LIF, penicillin / streptomycin, puromycin, L-glutamine). , (2) ES cell culture medium containing bFGF or SCF, such as mouse ES cell culture medium (for example, TX-WES medium, thrombos. X) or primate ES cell culture medium (for example, primate (human & monkey) ES cell culture medium (Reprocell, Kyoto, Japan), mTeSR-1).
  • mouse ES cell culture medium for example, TX-WES medium, thrombos. X
  • primate ES cell culture medium for example, primate (human & monkey) ES cell culture medium (Reprocell, Kyoto, Japan), mTeSR-1).
  • a somatic cell and a nuclear reprogramming substance are brought into contact with each other in a DMEM or DMEM / F12 medium containing 10% FBS in the presence of 5% CO 2 at 37 ° C.
  • Culture for ⁇ 7 days then re-spread the cells on feeder cells (eg, mitomycin C-treated STO cells, SNL cells, etc.), and bFGF-containing primate ES cells approximately 10 days after contact between the somatic cells and the nuclear reprogramming substance
  • the cells can be cultured in a culture medium and ES cell-like colonies can be generated about 30 to about 45 days or more after the contact.
  • the cells may be cultured under conditions of an oxygen concentration as low as 5-10%.
  • 10% FBS-containing DMEM medium for example, LIF, penicillin / streptomycin, puromycin, L-glutamine, mitomycin C-treated STO cells, SNL cells, etc.
  • Non-essential amino acids, ⁇ -mercaptoethanol, etc. can be included as appropriate.
  • ES-like colonies after about 25 to about 30 days or more.
  • the medium is replaced with a fresh medium once a day from the second day after the start of the culture.
  • the number of somatic cells used for nuclear reprogramming is not limited, but ranges from about 5 ⁇ 10 3 to about 5 ⁇ 10 6 cells per 100 cm 2 of culture dish.
  • a marker gene-expressing cell When a gene containing a drug resistance gene is used as a marker gene, a marker gene-expressing cell can be selected by culturing in a medium (selective medium) containing the corresponding drug.
  • the marker gene is a fluorescent protein gene
  • the marker gene-expressing cells can be obtained by observing with a fluorescence microscope, by adding a luminescent substrate in the case of a luminescent enzyme gene, and by adding a chromogenic substrate in the case of a chromogenic enzyme gene. Can be detected.
  • a “somatic cell” may be any cell other than a germ cell derived from a mammal (eg, human, mouse, monkey, pig, rat, etc.), for example, keratinized epithelial cell (Eg, keratinized epidermal cells), mucosal epithelial cells (eg, epithelial cells of the tongue surface), exocrine glandular epithelial cells (eg, mammary cells), hormone-secreting cells (eg, adrenal medullary cells), cells for metabolism and storage (Eg, hepatocytes), luminal epithelial cells that make up the interface (eg, type I alveolar cells), luminal epithelial cells (eg, vascular endothelial cells) in the inner chain, and ciliated cells that are capable of transporting (Eg, airway epithelial cells), extracellular matrix secreting cells (eg, fibroblasts), contractile cells (eg, smooth muscle cells), blood and immune system cells (e
  • undifferentiated progenitor cells including somatic stem cells
  • terminally differentiated mature cells can be used as the source of somatic cells in the invention.
  • undifferentiated progenitor cells include tissue stem cells (somatic stem cells) such as neural stem cells, hematopoietic stem cells, mesenchymal stem cells, and dental pulp stem cells.
  • the mammal individual from which somatic cells are collected is not particularly limited, but is preferably a human.
  • the iPS cells used in the present invention are preferably prepared by collecting somatic cells from a patient with known Alzheimer's disease. More preferably, an iPS cell is produced from a somatic cell obtained from a patient with known Alzheimer's disease, and a cell that accumulates A ⁇ oligomers when induced from the iPS cell to a neuron or an astrocyte is obtained. IPS cells are produced from somatic cells of patients.
  • a ⁇ means amyloid ⁇ protein, which is a fragment produced from amyloid precursor protein (APP) by being cleaved by ⁇ - and ⁇ -secretase.
  • a ⁇ oligomer means a dimer (dimer), trimer (trimer), tetramer (tetramer) or higher polymer of A ⁇ .
  • a ⁇ used in the present invention may be any amino acid length of a protein composed of 40 amino acids (A ⁇ 40) or 42 amino acids (A ⁇ 42). However, when produced from 693 glutamic acid-deficient APP, A ⁇ 40 is 39 amino acids long and A ⁇ 42 is 41 amino acids long. Accumulation of A ⁇ oligomers means that these A ⁇ oligomers are aggregated in cells, and this accumulation can be detected by observing cells with an antibody against A ⁇ oligomers (for example, NU1 or 11A1).
  • patients with known Alzheimer's disease are not particularly limited, but examples include those who have a causative gene for familial Alzheimer's disease.
  • the causative gene includes amyloid precursor protein gene (APP) on chromosome 21, presenilin 1 gene on chromosome 14, presenilin 2 gene on chromosome 1 or apolipoprotein E gene ⁇ 4 allele on chromosome 19. Illustrated.
  • somatic cells having APP (E693 ⁇ ) deficient in APP's 693rd glutamic acid may be used as somatic cells of patients with known Alzheimer's disease.
  • APP is, for example, the gene of NCBI accession number NM_000484 or a protein encoded by this gene.
  • iPS cells into which APP (E693 ⁇ ) lacking the 693rd glutamate of APP has been introduced may be used instead of iPS cells prepared from somatic cells from a patient with known Alzheimer's disease.
  • iPS cells into which APP (E693 ⁇ ) lacking the 693rd glutamate of APP has been introduced may be used.
  • the introduction of the mutant APP can be performed using the same method as the method for introducing the nuclear reprogramming substance into the somatic cell described above.
  • the introduction of mutant APP may be performed in iPS cells, or may be performed in neural cells or astrocytes after differentiation induction described below.
  • iPS cells of neural cells as a method for inducing the differentiation of neural stem cells, but are not limited to, induction of differentiation method by high-density culturing on a fibroblast feeder layer (JP 2008-201792), stromal cells Differentiation induction method by co-culture (SDIA method) (for example, WO2001 / 088100, WO / 2003/042384), differentiation induction method by floating culture (SFEB method) (WO2005 / 123902) and combinations thereof Can do.
  • SDIA method stromal cells Differentiation induction method by co-culture
  • SFEB method differentiation induction method by floating culture
  • the iPS cell induced by the above-mentioned method is separated by any method to form an embryoid body (EB), and then adhered to a culture dish coated in any medium.
  • EB embryoid body
  • nerve cells can be induced.
  • the nerve cell is a cerebral cortical neuron.
  • neurons are BF1, ⁇ III tubulin, TuJ1, NeuN, 160 kDa neurofilament protein, MAP2ab, glutamate, synaptophysin, glutamate decarboxylase (GAD), tyrosine hydroxylase, GABA, serotonin, TBR1, CTIP2 and SATB2.
  • a separation solution having mechanical or protease activity and collagenase activity for example, Accutase (TM) and Accumax (TM) may be used.
  • the separation is preferably performed by separating iPS cells up to single cells, but may be in the form of a small mass or a mixture of small cells and single cells.
  • EB formation is usually performed by suspension culture, but is not limited thereto.
  • Suspension culture means culturing cells in a non-adherent state on a culture dish, and is not particularly limited, but artificially treated for the purpose of improving adhesion with cells (for example, coating treatment with an extracellular matrix or the like).
  • Not treated or artificially treated to suppress adhesion eg polyhydroxyethyl methacrylic acid (poly-HEMA), 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer or Pluronic® F-127 (Gibco) coating
  • MPC 2-methacryloyloxyethyl phosphorylcholine
  • Pluronic® F-127 Pluronic® F-127 (Gibco) coating
  • Examples of the coating agent for the culture dish used for adhesion culture include Matrigel (Becton Dickinson), collagen, gelatin, poly-L-lysine, poly-D-lysine, fibronectin, laminin, heparan sulfate proteoglycan, and entactin, and these Combinations are listed. Matrigel is preferable.
  • the medium used for culture can be used by adding an additive to the basic medium.
  • the basal medium is, for example, Neurobasal medium, Neural-Progenitor-basal medium, NS-A medium, BME medium, BGJb medium, CMRL--1066 medium, Glasgow-MEM medium, Improved-MEM-Zinc-Option medium, IMDM medium, Medium-199 medium, Eagle medium
  • the medium is not particularly limited as long as it can be used for culturing animal cells, such as MEM medium, ⁇ MEM medium, DMEM medium, DMEM / F12 medium, ham medium, RPMIRP1640 medium, Fischer's medium, and mixed medium thereof.
  • a mixture of Neurobasal medium and DMEM / F12 is preferred.
  • the additives are serum, retinoic acid, Wnt, BMP, bFGF, EGF, HGF, Sonic hedgehog (Shh), brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), neurotrophin -3 (NT-3), insulin-like growth factor 1 (IGF1), amino acids, vitamins, interleukins, insulin, transferrin, heparin, heparan sulfate, collagen, fibronectin, progesterone, selenite, B27-supplement (Gibco), B27-supplements (without vitamin A) (Gibco), N2-supplements (Gibco), ITS-supplements, antibiotics, inhibitors of AMPK and BMP signals (eg Doromorphin), ALK5 inhibitors (eg SB431542), Knockout Serum Replacement (KSR).
  • BDNF brain-derived neurotrophic factor
  • GDNF
  • Preferred additives are N2-supplements, Doromorphin, SB431542, B27-supplements (without vitamin A), BDNF, GDNF, NT-3 and KSR. These additives may be changed in stages, for example, KSR, Doromorphin and SB431542 combined additive, N2-supplement, Doromorphin and SB431542 combined additive or B27-supplement (without vitamin A) , A combination of BDNF, GDNF, and NT-3 can be used as appropriate.
  • More preferable embodiments of the culture medium and culture conditions include, but are not limited to, conditions performed in the following three stages: (Step 1) EBs are formed on DMEM / Ham's F12 containing 2 ⁇ M dorsomorphin, SB431542 and 5% KSR on a culture dish coated with MPC polymer, (Step 2) Adhesive culture with DMEM / Ham's F12 containing 2 ⁇ M dorsomorphin, SB431542 and N2-supplement on a matrigel-coated culture dish.
  • Step 3 Isolate cells with Accutase and add B27-supplement (without vitamin A), 10 ng / ml BDNF, 10 ng / ml GDNF and 10 ng / ml NT-3 on a matrigel-coated culture dish Cultivate in the containing neurobasal medium.
  • the concentration of iPS cells at the start of culture can be appropriately set so as to efficiently form neurons.
  • the concentration of iPS cells at the start of culture is not particularly limited.
  • the concentration is about 1 ⁇ 10 4 to about 5 ⁇ 10 6 cells / ml, preferably about 5 ⁇ 10 5 to about 2 ⁇ 10 6 cells / ml. is there.
  • culture temperature is not particularly limited, but is, for example, about 30 to 40 ° C., preferably about 37 ° C.
  • CO 2 concentration is, for example, about 1 to 10%, preferably about 5%.
  • O 2 concentration is 1-20%.
  • the O 2 concentration may be 1 to 10%.
  • the culture time for differentiation induction is not particularly limited, but is 28 days or more and 84 days or less, and when differentiation induction is performed by dividing into the above-mentioned stages, preferably stage 1 is 4 days or more and 12 days or less, preferably Is 8 days. Stage 2 is 8 days or more and 24 days or less, preferably 16 days. Stage 3 is from 16 days to 56 days, preferably 32 days or 48 days.
  • Method for Inducing Differentiation of Astrocytes as a method for inducing differentiation of astrocytes from iPS cells, (1) a step of producing neural progenitor cells from iPS cells, and (2) the obtained neural progenitor cells are neurotrophic factors (3) a step of dissociating the obtained cells, and (4) a culture solution containing a neurotrophic factor using a culture vessel in which the obtained cells are not coated.
  • the method including the process of adhesion culture in is illustrated.
  • neural progenitor cells mean cells that differentiate into neurons and glial cells, and are cells in which Nestin ⁇ or NCAM is expressed.
  • the neural progenitor cell means a cell equivalent to a neural stem cell, and unless otherwise specified, the two cells are not distinguished.
  • glial cells mean astrocytes and oligodendrocytes.
  • an astrocyte is a cell that expresses GFAP or S100 ⁇ , and preferably a cell that expresses GFAP.
  • GFAP is a gene having a sequence shown by NCBI IV Accession No. NM_001131019, NM_001242376 or NM_002055.
  • differentiation induction from iPS cells to neural progenitor cells may be performed by a method well known to those skilled in the art, and is not particularly limited.
  • a method well known to those skilled in the art for example, (1) an embryoid body is formed in a serum-free medium. Differentiation method (SFEB method) (Watanabe K, et al. Nat Neurosci. 8: 288-96, 2005), (2) ES cell culture method on stromal cells and differentiation (SDIA method) (Kawasaki H, et al. Neuron. 28: 31-40, 2000), (3) Methods of adding drugs on Matrigel and culturing (Chambers SM, et al. Nat Biotechnol.
  • SFEB method Differentiation method
  • SDIA method ES cell culture method on stromal cells and differentiation
  • Methods of adding drugs on Matrigel and culturing for example, (1) an embryoid body is formed in a serum-free medium.
  • SDIA method ES cell culture method on
  • a preferable differentiation induction method from iPS stem cells to neural progenitor cells a method including a step of culturing iPS cells in a culture solution containing a BMP inhibitor and a TGF ⁇ inhibitor can be used.
  • iPS cells may be isolated by any method and cultured by suspension culture, or may be cultured by adhesion using a coated culture vessel. May be. Preferably, adhesion culture is performed after suspension culture.
  • a method for separating human iPS cells for example, a method for separating mechanically, a separation solution having protease activity and collagenase activity (for example, Accutase (TM) and Accumax (TM), etc.) or only having collagenase activity. Examples include a separation method using a separation solution.
  • a method is used in which a human pluripotent stem cell is dissociated using a separation solution having protease activity and collagenase activity (particularly preferably, Accutase (TM)) and dispersed finely into a single cell.
  • a separation solution having protease activity and collagenase activity (particularly preferably, Accutase (TM)) and dispersed finely into a single cell.
  • TM Accutase
  • the human iPS cell used is a colony cultured until it becomes 80% confluent with respect to the used dish.
  • the suspension culture in this step means culturing cells in a non-adherent state in a culture vessel, and is not particularly limited, but artificially processed (for example, extracellular matrix for the purpose of improving adhesion to cells).
  • artificially processed for example, extracellular matrix for the purpose of improving adhesion to cells.
  • a culture vessel that has not been coated with, etc. or a treatment that artificially suppresses adhesion (for example, polyhydroxyethyl methacrylic acid (poly-HEMA) or nonionic surfactant polyol (Pluronic® F-127, etc.))
  • poly-HEMA polyhydroxyethyl methacrylic acid
  • Pluronic® F-127 nonionic surfactant polyol
  • the cells are cultured in an arbitrary medium in a coated culture vessel.
  • the coating agent include matrigel (BD), collagen, gelatin, laminin, heparan sulfate proteoglycan, entactin, and combinations thereof. Matrigel is preferable.
  • the medium in this step can be prepared using a medium used for animal cell culture as a basal medium.
  • the basal medium include IMDM medium, Medium 199 medium, Eagle's Minimum Essential Medium (EMEM) medium, ⁇ MEM medium, Dulbecco's modified Eagle's Medium (DMEM) medium, Ham's F12 medium, RPMI 1640 medium, Fischer Life's medium, Neurobasal's medium And a mixed medium thereof.
  • EMEM Eagle's Minimum Essential Medium
  • DMEM Dulbecco's modified Eagle's Medium
  • Ham's F12 medium RPMI 1640 medium
  • Fischer Life's medium Neurobasal's medium
  • the medium may contain serum or may be serum-free.
  • the medium can be, for example, albumin, transferrin, Knockout Serum Replacement (KSR) (serum substitute for FBS during ES cell culture), N2 supplement (Invitrogen), B27 supplement (Invitrogen), fatty acid, insulin, collagen It may contain one or more serum substitutes such as precursors, trace elements, 2-mercaptoethanol, 3'-thiolglycerol, lipids, amino acids, L-glutamine, Glutamax (Invitrogen), non-essential amino acids, vitamins, It may also contain one or more substances such as growth factors, small molecule compounds, antibiotics, antioxidants, pyruvate, buffers, inorganic salts.
  • a DMEM / F12 medium containing KSR, amino acid and L-glutamine or a DMEM / F12 medium containing N2 supplement, KSR, amino acid and L-glutamine is preferable.
  • the BMP inhibitor is a small molecule inhibitor involved in the inhibition of BMP signaling (BMP signaling) through the binding of BMP (bone morphogenetic protein) and BMP receptor (type I or type II), It is different from protein inhibitors such as Noggin, chordin, follistatin which are natural inhibitors. This inhibitor should have an effect of inducing differentiation of pluripotent stem cells into neural progenitor cells.
  • Small molecule BMP inhibitors with such properties include compounds that inhibit BMP2, BMP4, BMP6 or BMP7, which have the ability to activate transcription factors SMAD1, SMAD5 or SMAD8, such as Dorsomorphin (i.e., 6- [ 4- (2-piperidin-1-yl-ethoxy) phenyl] -3-pyridin-4-yl-pyrazolo [1,5-a] pyrimidine) and its derivatives (P.PB. Yu et al. (2007), Circulation, 116: II_60; PB Yu et al. (2008), Nat. Chem. Biol., 4: 33-41; J. Hao et al.
  • BMP2, BMP4, BMP6 or BMP7 which have the ability to activate transcription factors SMAD1, SMAD5 or SMAD8, such as Dorsomorphin (i.e., 6- [ 4- (2-piperidin-1-yl-ethoxy) phenyl] -3-pyridin-4-yl
  • LDN-193189 ie, 4- (6- (4- (piperazin-1-yl) phenyl) pyrazolo [1,5-a] pyrimidin-3-yl) is used as a BMP type I receptor kinase inhibitor. ) quinoline) and derivatives thereof are exemplified (Yu PB et al. Nat Med, 14: 1363-9, 2008). LDN-193189 is commercially available, for example, available from Stemgent.
  • the concentration in the medium is 0.1 mM, 0.2 mM, 0.3 mM, 0.4 mM, 0.5 mM, 0.6 mM, 0.7 mM, 0.8 mM, 0.9 mM, 1 mM, 2 mM, 3 mM, Examples are 4 mM, 5 mM, 10 mM, 20 mM, 30 mM, 40 mM, 50 mM, and 100 mM. Preferably, it is 2 mM.
  • the TGF ⁇ inhibitor is a small molecule inhibitor that interferes with TGF ⁇ family signaling, such as SB431542, SB202190 (above, RKLindemanndeet al., Mol. Cancer 2:20 (2003)), SB505124 (GlaxoSmithKline ), NPC30345, SD093, SD908, SD208 (Scios), LY2109761, LY364947, LY580276 (Lilly Research Laboratories) and the like, and SB431542 is preferred.
  • the concentration in the medium is 1 mM, 2 mM, 3 mM, 4 mM, 5 mM, 6 mM, 7 mM, 8 mM, 9 mM, 10 mM, 20 mM, 30 mM, 40 mM, 50 mM, 60 mM, 70 mM, 80 mM. , 90 mM, and 100 mM.
  • it is 10 mM.
  • the culture temperature is not limited to the following, but is about 30 to 40 ° C., preferably about 37 ° C., and the culture is performed in an atmosphere of CO 2 -containing air.
  • the CO 2 concentration is about 2-5%, preferably 5%.
  • the culture time is at least 20 days or longer, and examples thereof include 21 days, 24 days, 27 days, 30 days, 33 days, 36 days, 39 days, and 42 days. Preferably it is 24 days.
  • the culture solution used in the step of culturing neural progenitor cells of the present invention can be prepared using a medium used for culturing animal cells as a basal medium.
  • basal media include IMDM medium, Medium 199 medium, Eagle's Minimum Essential Medium (EMEM) medium, ⁇ MEM medium, Dulbecco's modified Eagle's Medium (DMEM) medium, Ham's F12 medium, RPMI 1640 medium, Fischer's medium, Neurobasal Medium (Life Technologies) And a mixed medium thereof.
  • Basal Medium may contain serum or may be serum-free.
  • the medium can be, for example, albumin, transferrin, Knockout Serum Replacement (KSR) (serum substitute for FBS during ES cell culture), N2 supplement (Invitrogen), B27 supplement (Invitrogen), fatty acid, insulin, collagen It may contain one or more serum substitutes such as precursors, trace elements, 2-mercaptoethanol, 3'-thiolglycerol, lipids, amino acids, L-glutamine, Glutamax (Invitrogen), non-essential amino acids, vitamins, It may also contain one or more substances such as growth factors, small molecule compounds, antibiotics, antioxidants, pyruvate, buffers, inorganic salts.
  • a preferred medium is Neurobasal Medium containing B27 supplement and Glutamax.
  • the culture solution used in the step of culturing neural progenitor cells desirably contains a neurotrophic factor.
  • a neurotrophic factor is a ligand to a membrane receptor that plays an important role in the survival and function maintenance of motor neurons, such as Nerve Growth Factor (NGF), Brain-derived Neurotrophic Factor (BDNF), Neurotrophin 3 (NT-3), Neurotrophin 4/5 (NT-4 / 5), Neurotrophin 6 (NT-6), basic FGF, acidic FGF, FGF-5, Epidermal Growth Factor (EGF), Hepatocyte Growth Factor (HGF) ), Insulin, Insulin Like Growth Factor 1 (IGF 1), Insulin Like Growth Factor 2 (IGF 2), Glia cell line-derived Neurotrophic Factor (GDNF), TGF-b2, TGF-b3, Interleukin 6 , Ciliary Neurotrophic Factor (CNTF) and LIF.
  • a preferred neurotrophic factor in the present invention is a factor selected from the group consisting of GDNF),
  • the cells may be cultured using a coated culture vessel.
  • the coating agent include matrigel (BD), collagen, gelatin, laminin, heparan sulfate proteoglycan, entactin, and combinations thereof. Matrigel is preferable.
  • the culture temperature is not limited to the following, but is about 30 to 40 ° C., preferably about 37 ° C., the culture is performed in an atmosphere of CO 2 -containing air, and the CO 2 concentration is preferably about 2 ⁇ 5%.
  • the culture period is not particularly limited because long-term culture does not cause any special problems, but is not limited to 20 days, 30 days, 40 days, 50 days, 60 days, 60 days, 70 days, 80 days, 90 days For example, the number of days or more. Preferably, it is 66 days or longer.
  • the concentration of the neurotrophic factor to be added described above may be appropriately selected by those skilled in the art depending on its potency, and may be used as 1 ng / ml, 2 ng / ml, 3 ng / ml, 4 ng / ml, 5 ng / ml, 6 ng / ml, 7ng / ml, 8ng / ml, 9ng / ml, 10ng / ml, 15ng / ml, 20ng / ml, 30ng / ml, 40ng / ml, 50ng / ml, 60ng / ml, 70ng / ml, 80ng / ml, Examples are 90 ng / ml and 100 ng / ml. Preferably, it is 10 ng / ml.
  • Step of dissociating cells In the step of dissociating cells, cells that are adhered to each other to form a population are dissociated (separated) into individual cells.
  • a method of dissociating cells for example, a method of dynamically dissociating, a dissociation solution having protease activity and collagenase activity (for example, Accutase (TM) and Accumax (TM)) or a dissociation solution having only collagenase activity is used.
  • the dissociation method that was used.
  • a method of dissociating cells using a dissociation solution having protease activity and collagenase activity is used.
  • An uncoated culture vessel means a cell culture dish, plate or flask that is commonly used by those skilled in the art, and the shape of the vessel is not particularly limited. It is a container that has not passed through.
  • a culture vessel made of polystyrene is preferable.
  • the coating agent include matrigel (BD), collagen, gelatin, laminin, heparan sulfate proteoglycan, and entactin. In this step, it is preferable to use a culture vessel that is not treated with at least these coating agents. .
  • a culture solution containing the same neurotrophic factor as described above can be used.
  • the culture period is not particularly limited because long-term culture does not cause any particular problems, but it is not limited to 5 days, 10 days, 15 days, 20 days, 25 days, 30 days, 35 days, 40 days
  • the number of days is 45 days or more, 50 days or more, or more. Preferably, it is 30 days or longer.
  • the obtained cells are further dissociated, and a culture solution containing no factor selected from the group consisting of GDNF, BDNF, and NT-3 using a culture vessel that is not coated is used.
  • Adhesive culture may be performed in the medium.
  • Dissociation of cells can be performed using the same method as described above, and it is desirable to use a dissociation solution having protease activity and collagenase activity.
  • a culture solution not containing a factor selected from the group consisting of GDNF, BDNF and NT-3 can be prepared using a medium used for culturing animal cells as a basal medium.
  • basal media include IMDM medium, MediumMedi199 medium, Eagle's Minimum Essential Medium (EMEM) medium, ⁇ MEM medium, Dulbecco's modified Eagle's Medium (DMEM) medium, Ham's F12 medium, RPMI 1640 medium, Fischer Life's medium, Neurosal's medium And a mixed medium thereof.
  • EMEM Eagle's Minimum Essential Medium
  • DMEM Dulbecco's modified Eagle's Medium
  • Ham's F12 medium RPMI 1640 medium
  • Fischer Life's medium Neurosal's medium
  • Neurobasal Medium may contain serum or may be serum-free.
  • the medium can be, for example, albumin, transferrin, Knockout Serum Replacement (KSR) (serum substitute for FBS during ES cell culture), N2 supplement (Invitrogen), B27 supplement (Invitrogen), fatty acid, insulin, collagen It may contain one or more serum substitutes such as precursors, trace elements, 2-mercaptoethanol, 3'-thiolglycerol, lipids, amino acids, L-glutamine, Glutamax (Invitrogen), non-essential amino acids, vitamins, It may also contain one or more substances such as growth factors, small molecule compounds, antibiotics, antioxidants, pyruvate, buffers, inorganic salts.
  • a preferred medium not containing a factor selected from the group consisting of GDNF, BDNF and NT-3 is DMEM / F12 containing N2 supplement and Glutamax or DMEM / F12 containing serum and Glutamax.
  • This process is not particularly limited because long-term culture does not cause any particular problem, but it is not limited to 5 days, 10 days, 15 days, 20 days, 25 days, 30 days, 30 days, 35 days, 40 days
  • the number of days is 45 days or more, 50 days or more, or more.
  • it is 20 days or more or 30 days or more.
  • the culture temperature is not limited to the following, but is about 30 to 40 ° C., preferably about 37 ° C.
  • the culture is performed in an atmosphere of CO 2 -containing air, and the CO 2 concentration is preferably Is about 2-5%.
  • the step of dissociating and culturing the present cell is preferably performed at least once in order to further increase the efficiency of obtaining astrocytes. For example, 2 times or more, 3 times or more, 4 times or more, or 5 times or more can be mentioned. More preferably 3 times.
  • the method includes the step of separating the cells and the step of culturing using a culture vessel that is not coated.
  • the present invention relates to an iPS cell-derived neural cell (nerve cell or astrocyte) obtained as described above in contact with a test substance, and using each index, Alzheimer 's screening method
  • a preferred iPS cell used in the present invention is an iPS cell derived from an Alzheimer's disease patient or an iPS cell into which an exogenous mutant APP has been introduced, and APP mutation or mutant APP refers to APP's 693 glutamic acid. This is an iPS cell having a deficient mutation.
  • the iPS cell used in the present invention is desirably an iPS cell in which accumulation of A ⁇ oligomers is confirmed in a nervous system cell prepared from the iPS cell.
  • examples of such iPS cells include iPS cells derived from sporadic Alzheimer's patients, iPS cells having mutations in endogenous APP, or iPS cells into which exogenous mutant APP has been introduced.
  • a therapeutic or prophylactic agent for Alzheimer's disease when the amount of A ⁇ is used as an indicator, can be screened by a method comprising the following steps; (A) a step of bringing a candidate substance into contact with iPS cell-derived neural cells (neuronal cells or astrocytes); (B) a step of measuring the amount of A ⁇ oligomer in the nerve cell, and (c) when the amount is decreased compared to the case where the amount is not contacted with a candidate substance, the candidate substance is treated with Alzheimer's disease or The process of selecting as a preventive drug.
  • Examples of a method for measuring the amount of A ⁇ oligomers in nerve cells include a method in which the obtained cells are washed and then measured using a cell lysate obtained using an arbitrary lysate. At this time, it can measure using an immunoassay.
  • Immunological assays include, for example, ELISA, Western blot, immunoprecipitation, slot or dot blot assay, immunohistochemical staining, radioimmunoassay (RIA), fluorescent immunoassay, immunoassay using avidin-biotin or streptavidin-biotin system, etc. Including but not limited to.
  • it is ELISA, for example, sandwich ELISA.
  • Examples of methods for measuring the amount of A ⁇ oligomers in other neurons include a method in which the obtained cells are subjected to immunohistochemical staining using an antibody against A ⁇ oligomers, and the stained area is measured using a cell image analyzer.
  • the An example of the cell image analyzer is an in-cell analyzer.
  • any test substance can be used as a candidate substance, and any known compound and novel compound may be used.
  • cell extracts, cell culture supernatants, microbial fermentation products, marine organisms Examples include extracts derived from plants, plant extracts, purified or crude proteins, peptides, non-peptide compounds, synthetic low-molecular compounds, natural compounds, and the like.
  • the test substance is also (1) biological library method, (2) synthetic library method using deconvolution, (3) “one-bead one-compound” live Can be obtained using any of a number of approaches in combinatorial library methods known in the art, including rally methods, and (4) synthetic library methods using affinity chromatography sorting.
  • Biological library methods using affinity chromatography sorting are limited to peptide libraries, but the other four approaches can be applied to small molecule compound libraries of peptides, non-peptide oligomers, or compounds (Lam (1997) Anticancer Drug Des. 12: 145-67).
  • Examples of methods for the synthesis of molecular libraries can be found in the art (DeWitt et al. (1993) Proc. Natl. Acad. Sci. USA 90: 6909-13; Erb et al. (1994) Proc. Natl. Acad. Sci. USA 91: 11422-6; Zuckermann et al. (1994) J. Med. Chem. 37: 2678-85; Cho et al.
  • the screening method comprises comparing the amount of A ⁇ oligomers in neural cells when not contacted with a test substance and the amount of A ⁇ oligomers in neural cells when contacted with a test substance.
  • the test substance is selected as a candidate substance for the prevention and treatment of Alzheimer's disease when the amount of A ⁇ oligomer upon contact is further reduced.
  • a method comprising the following steps: Drugs or prophylactics can be screened; (A) a step of bringing a candidate substance into contact with iPS cell-derived neural cells (neuronal cells or astrocytes); (B) measuring at least one index selected from the group consisting of the amount of ER stress, the activity of caspase 4, the amount of transgelin and the amount of oxidative stress in the nerve cells, and (c) the amount contacts with a candidate substance A step of selecting the candidate substance as a therapeutic or prophylactic agent for Alzheimer's disease when the amount is decreased as compared with the case where it is not.
  • endoplasmic reticulum (ER) stress means an adverse effect caused by accumulation of denatured protein that does not have a normal folding structure in the endoplasmic reticulum, and the amount of ER stress is the degree of endoplasmic reticulum stress response.
  • the endoplasmic reticulum stress response means decreasing the expression of a protein causing a denatured protein or increasing the amount of a molecular chaperone. Therefore, the amount of ER stress is measured, for example, by measuring the amount of ER stress marker such as molecular chaperone.
  • ER stress markers include, for example, BiP (Binding Immunoglobulin Protein), XBP-1 (X Box-binding Protein 1), eIF2A (Eukaryotic translation Initiation Factor 2 A), XIAP (X-chromosome-linked Inhibitor of Apoptosis) , ATF4 (Activating Transcription Factor 4), IRE1 (Inositol-Requiring Enzyme 1), PERK (PKR-Like ER Kinase) and ATF6 (Activating Transcription Factor 6).
  • BiP BiP
  • BiP BiP
  • XBP-1 X Box-binding Protein 1
  • eIF2A Eukaryotic translation Initiation Factor 2 A
  • XIAP X-chromosome-linked Inhibitor of Apoptosis
  • ATF4 Activating Transcription Factor 4
  • IRE1 Inositol-Requiring Enzyme 1
  • PERK PRR-Like
  • the amount of ER stress can be measured using, for example, an immunological measurement method.
  • Immunological assays include, for example, ELISA, Western blot, immunoprecipitation, slot or dot blot assay, immunohistochemical staining, radioimmunoassay (RIA), fluorescent immunoassay, immunoassay using avidin-biotin or streptavidin-biotin system, etc. Including but not limited to.
  • it is ELISA, for example, sandwich ELISA.
  • Other methods for measuring the amount of ER stress include a method in which the obtained cells are subjected to immunohistochemical staining using an antibody against an ER stress marker, and the stained region is measured using a cell image analyzer.
  • An example of the cell image analyzer is an in-cell analyzer.
  • test substance thus screened can be used as a preventive and therapeutic agent for Alzheimer's disease.
  • the activity of caspase 4 can be quantified by measuring the amount of active caspase 4.
  • the active caspase 4 is cleaved and has cysteine protease activity.
  • the active caspase 4 can be measured using an immunological assay using a cleavage site-specific antibody.
  • the activity can be measured using a commercially available fluorescent caspase substrate.
  • Transgelin is a gene represented by NCBI Accession NO. NM_001001522 or NM_003186, and its amount can be recognized in the form of mRNA or protein. Further, at this time, it may be an amount recognized by only a part of the gene. In the case of protein, it is sufficient to recognize a sequence having at least 3 to 6 amino acids in length.
  • Transgelin of the present invention When measuring the amount of Transgelin of the present invention in the form of mRNA, specific genes such as Northern blotting, Southern blotting, quantitative RT-PCR, real-time PCR, in situ hybridization, etc., mRNA and cDNA In a known method for specifically recognizing and detecting, it can be carried out using a primer or a probe according to a conventional method. Furthermore, when measuring the amount of Transgelin in the form of protein, it can be measured using an immunoassay.
  • oxidative stress means a phenomenon in which proteins, lipids or DNA are damaged by reactive oxygen species (ROS) or reactive nitrogen species (RNS).
  • the amount of oxidative stress is the amount of oxidatively modified group, expression It can be quantified by measuring the amount of enhanced oxidative stress-eliminating enzyme, RNS or ROS.
  • examples of the oxidative modification include phosphorylation, hydroxylation, nitration and carbonylation.
  • the oxidative stress-eliminating enzyme is an enzyme having a function of protecting cells against oxidative stress, and examples thereof include oxidoreductase, peroxidase, and a protein having peroxiredoxin activity.
  • the amount of oxidative stress is measured by, for example, DNA cleavage amount, 8-hydroxyguanosine, malondialdehyde, 4-hydroxynonenal, 8-isoprostan, PRDX1 (NCBI Accession NO. NM_002574), PRDX4 (NCBI Accession NO.NM_006406 ), PRDX5 (NCBI Accession NO.NM_012094), PXDN (NCBI Accession NO.NM_004528), MGST3 (NCBI Accession NO.
  • NM_004528 NM_004528
  • MED31 NCBI Accession NO.NM_016060
  • RNS eg, nitric oxide
  • ROS eg, hydrogen peroxide, superoxide anion radical or hydroxy radical
  • a therapeutic or prophylactic agent for Alzheimer's disease when the number of iPS cell-derived neurons is used as an indicator, can be screened by a method comprising the following steps; (A) contacting a candidate substance with a neuron derived from iPS cells, (B) a step of measuring the number of viable cells of the nerve cell or a substitute value thereof, and (c) the candidate when the number of the viable cells or the substitute value thereof is increased compared to a case where the number of viable cells or the substitute value thereof is not contacted with a candidate substance. Selecting a substance as a therapeutic or prophylactic agent for Alzheimer's disease.
  • the number of nerve cells in order to significantly detect the decrease in the number of nerve cells, may be measured after culturing the nerve cells in a culture solution containing no neurotrophic factor.
  • the number of nerve cells may be measured after adding hydrogen peroxide to the culture medium and culturing.
  • the hydrogen peroxide used at this time may be, for example, a concentration of 50 ⁇ M to 500 ⁇ M, preferably 100 ⁇ M to 400 ⁇ M, and more preferably, 200 ⁇ M.
  • measurement may be performed after specifically staining nerve cells, for example, BF1, ⁇ III tubulin, TuJ1, NeuN, 160 kDa neurofilament protein, MAP2ab , Glutamate, synaptophysin, glutamate decarboxylase (GAD), tyrosine hydroxylase, GABA, serotonin, Synapsin I, TBR1, CTIP2, and SATB2 may be used for staining.
  • these genes may not be directly stained, but may be stained with a marker gene induced by a promoter that expresses these genes. Examples of the marker gene include a gene encoding a protein exhibiting fluorescence such as GFP, RFP, and YFP.
  • the method for measuring the number of living cells may be performed by visually measuring the nerve cells obtained in step (a) using a microscope or the like. Viable cells may be stained and counted by methods well known to those skilled in the art. Alternatively, an automatic cell counting device or the like may be used. Moreover, you may use reciprocal numbers, such as the number of dead cells, such as LDH and trypan blue, as an alternative value of the number of living cells.
  • a kit for screening Alzheimer's disease prophylactic and therapeutic drugs comprises: (A) neuron or astrocyte derived from iPS cell having mutant APP, and / or (b) at least selected from the group consisting of A ⁇ oligomer, ADAM17, BACE1, BiP, cleaved caspase 4, PRDX4 and reactive oxygen species Reagents for measuring one index are included.
  • the kit for screening for preventive and therapeutic agents for Alzheimer's disease comprises (a) iPS cells having mutant APP, (b) differentiation induction of neural cells (neuronal cells or astrocytes). And (c) a reagent for measuring the amount of A ⁇ and / or the amount of ER stress and / or the amount of Transgelin and / or the number of nerve cells.
  • the screening kit for a prophylactic and therapeutic agent for Alzheimer's disease comprises (a) a somatic cell having a mutant APP, (b) a reprogramming substance for producing an iPS cell, (c) a nerve.
  • a reagent for inducing differentiation of a cell line nerve cell or astrocyte
  • a reagent for measuring the amount of A ⁇ and / or ER stress and / or the amount of Transgelin and / or the number of neurons comprises
  • the APP mutation is a mutation that can cause Alzheimer's disease, such as the E693 ⁇ mutation.
  • the reprogramming substance for producing iPS cells the reprogramming substance of the iPS cell production method described above can be used.
  • the reprogramming substance includes at least one factor selected from the group consisting of the OCT family, MYC family, KLF family, and SOX family.
  • the reagent for inducing differentiation of nerve cells or astrocytes As the reagent for inducing differentiation of nerve cells or astrocytes, the reagents described in the above differentiation induction method can be used.
  • the reagent for measuring the amount of A ⁇ oligomer, BiP, cleaved caspase 4, PRDX4, or ROS may be any substance that can recognize the index used in each measurement method. In some cases, it is a specific antibody, and in the case of ROS, a fluorescent probe that captures reactive oxygen species is exemplified.
  • the Alzheimer's disease prevention and treatment drug screening kit may contain any of the above test substances.
  • the screening kit for a preventive and therapeutic agent for Alzheimer's disease may further include a document or instructions describing the iPS cell production procedure and the differentiation induction procedure.
  • Example 1 Establishing iPS cells (iPSCs) Alzheimer's disease patients with E698 deletion mutation (E693 ⁇ ) in APP, Alzheimer's disease patients with 717th valine substitution mutation (V717L) and 2 sporadic cases
  • Skin fibroblasts (HDF) were prepared from explants obtained by 3 mm skin biopsy with the consent of Alzheimer's disease patients. After 1-2 weeks, fibroblasts grown from explants were passaged. The episomal vector was then used to introduce human cDNAs (SOX2, KLF4, OCT4, L-MYC, LIN28) as reprogramming factors and shRNA for p53 into HDF (Okita et al., Nat Methods. May; 8 (5): 409-12.2011).
  • fibroblasts were collected and replated on the SNL feeder cell layer. The next day, the medium was replaced with a medium for primate embryonic stem cells (Reprocell, Kanagawa, Japan) supplemented with 4 ng / ml bFGF (Wako Chemicals, Osaka, Japan). The medium was changed every other day. 30 days after introduction, iPS cell colonies were removed (AD (E693 ⁇ ) -1, AD (E693 ⁇ ) -2, AD (E693 ⁇ ) -3, AD (V717L) -1, AD (V717L) -2, AD, respectively) (Referred to as (V717L) -3, AD (sporadic) -1 and AD (sporadic) -2).
  • AD embryonic stem cells
  • One of the three control iPSC strains that do not have a mutation in the APP gene used in the present invention is an iPS cell prepared so far (Control-3 (409B2)) (Okita et al ., Nat Methods. May; 8 (5): 409-12.2011), two types were prepared with the consent of the non-AD person in the same manner as described above (Control-1 and 2). The properties of these iPS cells were confirmed by the method shown below.
  • Fluorescence images were obtained with FV1000 confocal laser microscope (OLYMPUS, Tokyo, Japan), LSM710 microscope (Carl Zeiss, Gottingen, Germany) or Delta Vision (Applied Precision, Issaquah, WA).
  • anti-NANOG antibody (1:10; R & D Systems) was used as a primary antibody.
  • iPSCs derived from control and AD patients expressed endogenous pluripotency markers (FIGS. 1A and 2A).
  • Example 2 Induction of differentiation-induced iPS cell-derived cerebral cortical neurons into cerebral cortical neurons (neuronal cells) of previously reported methods (Nat Biotechnol. 2009; 27: 275-280 and PLoS One. 2009; 4: e6722) A variation was used. Briefly, it is the following method.
  • the iPSCs obtained by the above method were dissociated to single cells, and contained 2 ⁇ M dorsomorphin and SB431542 in a U-type 96-well plate (Greiner bio-one) coated with Pluronic F-127 (Sigma-Aldrich).
  • EB Embryo by reaggregation in% DFK medium (DMEM / Ham's F12 (Gibco), 5% KSR (Gibco), NEAA (Invitrogen), L-glutamine (Sigma-Aldrich), 0.1 M 2-mercaptoethanol (Invitrogen))
  • DMEM DMEM / Ham's F12 (Gibco), 5% KSR (Gibco), NEAA (Invitrogen), L-glutamine (Sigma-Aldrich), 0.1 M 2-mercaptoethanol (Invitrogen))
  • EB Embryo by reaggregation in% DFK medium (DMEM / Ham's F12 (Gibco), 5% KSR (Gibco), NEAA (Invitrogen), L-glutamine (Sigma-Aldrich), 0.1 M 2-mercaptoethanol (Invitrogen))
  • EB Embryo by reaggregation in% DFK
  • the obtained EB was transferred to a 6-well plate coated with Matrigel (Becton Dickinson), and DF medium (DMEM / Ham's F12, NEAA, L-glutamine, 0.1 containing 2 ⁇ M dorsomorphin, SB431542 and N2 supplement (Invitrogen)) M 2-mercaptoethanol) (patterning stage (P2): 8 to 24 days).
  • DF medium DMEM / Ham's F12, NEAA, L-glutamine, 0.1 containing 2 ⁇ M dorsomorphin, SB431542 and N2 supplement (Invitrogen)
  • P2 patterning stage
  • cerebral cortical neurons (hereinafter also referred to as nerve cells) induced by differentiation from iPSCs derived from control and AD (E693 ⁇ ) patients, cortical neuron subtype markers TBR1, CTIP2, and SATB2 Expression was observed, confirming that each iPSCs differentiated into cerebral cortical neurons (FIGS. 1E and F).
  • Example 3 Induction of differentiation into astrocytes (1) Induction of neural progenitor cells
  • the iPSCs obtained by the above method were dissociated by Accutase (Innovative Cell Technologies). Dissociated iPSCs were added to DFK 5% medium (5% KSR (Invitrogen), L-glutamine (Sigma-Aldrich) and 0.1M 2-mercaptoethanol (Invitrogen) supplemented with 2 ⁇ M Dorsomorphin (Sigma-Aldrich) and 10 ⁇ M SB431542 (Cayman Chemical).
  • DMEM / Ham's F12 Gib's F12 (Gibco) supplemented with ethanol and seeded into U-bottom 96-well plates coated with 2% Pluronic F-127 (Sigma-Aldrich) ethanol solution to form embryoid bodies (EB) And cultured for 8 days by suspension culture. Subsequently, the obtained EB was transferred to a 6-well plate coated with Matrigel (BD), and cultured for 16 days in DFK 5% medium supplemented with 1 ⁇ N2 supplement (Invitrogen), 2 ⁇ M Dorsomorphin and 10 ⁇ M SB431542 ( For 24 days in total, neural progenitor cells were obtained.
  • BD Matrigel
  • the obtained neural progenitor cells were dissociated by Accutase (Innovative Cell Technologies), and using a Matrigel-coated 12-well plate, 1x B27 without Vitamin A (Invitrogen), 1x Glutamax (Invitrogen), The cells were cultured for 66 days by adhesion culture in Neurobasal medium (Invitrogen) supplemented with 10 ng / ml BDNF, 10 ng / ml GDNF and 10 ng / ml NT-3 (90 days in total).
  • the obtained cells were dissociated using Accutase, transferred to an uncoated 6-cm dish, 1x B27 without Vitamin A, 1x Glutamax, 10 ng / ml BDNF, 10 ng / ml GDNF and 10 ng / ml
  • the cells were cultured in Neurobasal medium supplemented with NT-3 for 30 days by adhesion culture (120 days in total). At this time, cells that did not adhere were killed by anoikis.
  • the adherent cells were dissociated by Accutase, transferred to an uncoated 6-cm dish, and cultured in DMEM / F12, Glutamax (Invitrogen) supplemented with 1x N2 supplement for 30 days (total 150). Days).
  • the cells obtained twice were dissociated and cultured under the same conditions for 30 days to obtain GFAP-positive astrocytes (total 200 days).
  • Example 4 To test the previous hypothesis that A ⁇ -secreting extracellular A ⁇ in AD-iPSCs-derived neurons can be reduced in AD-iPSCs-derived neurons, we determined the amount of extracellular A ⁇ 40 and A ⁇ 42 in neurons and astrocytes. Analyzed. The amount of extracellular A ⁇ 40 and A ⁇ 42 was determined as described previously (Yahata et al., PLoS One. 6 (9): e25788. 2011) by collecting the culture supernatants cultured for 2 days and the midpoint of A ⁇ Sample supernatants were measured by sandwich ELISA (Wako) using a combination of a monoclonal antibody specific for A ⁇ 40 and a monoclonal antibody specific for the C-terminus of A ⁇ 40 or A ⁇ 42.
  • AD extracellular A ⁇ 40 and A ⁇ 42 were significantly decreased in AD (E693 ⁇ ) -iPSCs-derived neurons and astrocytes (FIGS. 3A and B).
  • AD extracellular A ⁇ 40
  • a ⁇ 42 / A ⁇ 40 at this time was calculated, no change was observed in the nerve cells, and in the astrocytes, there was a decrease in the nerve cells derived from AD (E693 ⁇ ) -iPSCs.
  • AD (V717L) -iPSCs-derived neurons it was confirmed that the amount of A ⁇ 42 secreted increased significantly.
  • AD ⁇ -secretase inhibitor IV
  • Example 5 Accumulation of A ⁇ oligomers in AD-iPS cell-derived neurons and astrocytes
  • an A ⁇ oligomer-specific antibody NU-1 (Gong Y et al., Proc Natl Acad Sci US A. 100: 10417-22.2003) or 11A1
  • immunocytochemical analysis of iPSC-derived neurons and astrocytes revealed that A ⁇ oligomers exist
  • AD-iPSCs-derived neurons This increase in A ⁇ oligomers in AD-iPSCs-derived neurons was shown to be suppressed to the same level as the control by treatment with BSI. Further, when dot blot analysis was similarly performed on neurons and astrocytes derived from control iPSCs, AD (E693 ⁇ ) -iPSCs, AD (V717L) -iPSCs and sporadic AD-iPSCs, all AD (E693 ⁇ ) ⁇ It was confirmed that the amount of A ⁇ oligomer was significantly increased in neurons and astrocytes derived from iPSCs and one case of sporadic AD-iPSCs (FIGS. 5A, 5B and 5C).
  • Example 6 Search for other specific markers of Alzheimer's disease APP processing by ⁇ - and ⁇ -secretase activities is known to proceed primarily within the vesicular endosomal fraction. Therefore, we confirmed the presence of A ⁇ oligomer-positive punctate structures in intracellular organelles and vesicle fractions in AD (E693 ⁇ ) -iPSCs-derived neurons. ) Co-stained with the marker BiP, the early endosomal marker EEA1 and the lysosomal marker LAMP2 (FIG. 6A).
  • BiP and active caspase 4 protein which is an ER stress marker
  • BiP and active caspase 4 were expressed at higher levels in AD (E693 ⁇ ) -iPSCs-derived neurons than in the control.
  • BSI ⁇ -secretase inhibitor
  • the expression of these ER stress markers was suppressed in neurons derived from AD-iPSCs (FIGS. 6B, 6C and FIG. 8). Based on the above, it is considered that ER stress is caused by APP-E693 ⁇ type mutant A ⁇ .
  • Example 7 Gene expression analysis using DNA microarray
  • AD E693 ⁇
  • iPSCs oxidative stress-related categories including peroxiredoxin activity, oxidoreductase activity, and peroxidase activity were enhanced in neurons derived from AD (E693 ⁇ ) -iPScs.
  • glycosylation-related categories were diminished, suggesting that endoplasmic reticulum / Golgi function is unstable in Alzheimer's disease neurons.
  • PRDX4 peroxiredoxin-4
  • PRDX4 peroxiredoxin-4
  • FIG. 7B the expression level of PRDX4 was measured by Western blotting, it was found to be increased 3-fold in AD-iPScs-derived neurons (FIGS. 7C, 7D and FIG. 8). Since this increase was attenuated by the addition of BSI, oxidative stress is thought to be caused by the formation of A ⁇ oligomers.
  • ROS reactive oxygen species
  • Example 8 After addition the effect of DHA docosahexaenoic acid (DHA) (Nacalai) 1 ⁇ M, to the culture medium at a concentration of 5 ⁇ M and 15 ⁇ M, AD (E693 ⁇ ) BiP protein in -iPSCs derived neural cells, the expression level of activated caspase-4 and PRDX4 As a result, it was confirmed that the expression level was decreased as compared with the non-addition group (DMSO) (FIGS. 12A, 12B, 12C and 12D). Furthermore, when 5 ⁇ M DHA was added to iPSCs-derived neurons and cultured, it was confirmed that the expression of ROS was reduced in neurons derived from AD (E693 ⁇ ) -iPSCs (FIGS.
  • DHA docosahexaenoic acid
  • EGFP-positive neurons in which a vector expressing EGFP (Synapsin :: EGFP) by the Synapsin I promoter was introduced using a lentivirus in neurons 65 days after induction. It was broken. Briefly, B27 and neurotrophic factors (BDNF, GDNF and NT-3) 5 days after iPSCs-derived neurons with EGFP (Synapsin :: EGFP) induced by the Synapsin I promoter were transferred onto Matrigel coat. The medium was replaced with a medium containing or not containing DHA, and the number of EGFP positive neurons was measured using an INCELL Analyzer 2000 every 48 hours thereafter (FIGS. 14A and 14B).
  • BDNF neurotrophic factors
  • LDH lactate dehydrogenase
  • DHA is effective against cell death caused by hydrogen peroxide.
  • Table 1 below. That is, when A ⁇ oligomer is used as an index, DHA cannot be selected, but at least BSI can be selected as a drug candidate. Based on the above, BSI or DHA, which is a potential therapeutic and / or prophylactic agent for Alzheimer's disease, is added in the amount of A ⁇ oligomers, BiP or active caspase 4 as an ER stress marker, PRDX4 or peroxidexin activity-related gene It was confirmed that it was found that ROS was used as an index.
  • the present invention is based on the fact that the state of Alzheimer's disease can be reproduced in nerve cells that have been induced to differentiate from somatic cell-derived iPS cells of Alzheimer's disease patients. Therefore, it is possible to screen for therapeutic or preventive agents for Alzheimer's disease using the cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Neurology (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Neurosurgery (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Developmental Biology & Embryology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本発明は、アルツハイマー病患者の体細胞由来のiPS細胞から分化誘導された神経細胞等におけるAβオリゴマー、BiP、切断カスパーゼ4、PRDX4またはROSの量を指標としてアルツハイマー病の治療薬または予防薬をスクリーニングする方法を提供する。

Description

アルツハイマー病の治療薬および/または予防薬のスクリーニング方法
 本発明は、アルツハイマー病の治療薬および/または予防薬をスクリーニングする方法およびそのためのキットに関する。
 アルツハイマー病は、アミロイドβタンパク質(Aβ)が脳内に沈着するタンパク質ミスフォールディング病の一種であり、Aβ沈着による細胞毒性により引き起こされる神経変性疾患として知られている(非特許文献1)。アルツハイマー病 は、可能な限り早期に治療を開始することが効果的な治療に繋がることから、早期診断法の開発が高齢化社会における重要な課題となっている。
 現在、アルツハイマー病の臨床診断基準としてNINCDS-ADRDA、DSM-IVが用いられている。この規準では、認知症の陽性を診断することには優れているものの、発病初期の段階では陰性と診断される可能性は否定できず、確定診断には至らない。ましてや、発症前に診断を下すことも不可能である。また、アルツハイマー病はAβの蓄積が発症の原因となることが明らかにされていることから、従来のアルツハイマー病の診断は、脳脊髄液中のAβ42/Aβ40比の減少とリン酸化タウタンパク質(p-tau)の上昇、さらにこれらを組み合わせたp-tau/(Aβ42/Aβ40)を指標として行われてきた。しかしながら、これらの診断指標においては、その値が上昇している時期には神経細胞死がすでに進行していることが多い。したがって、これらの指標を用いた場合においても早期診断や発病予測を行うことは極めて困難な状況である。現時点では、アルツハイマー病の治療薬については、アリセプトなどのいくつかの薬剤が存在するものの、いずれも病状の進行を遅らせる効果を有するのみであるため、早期診断方法や根本的な治療薬の開発が求められていた。
 一方、再生医療の分野等では、生体材料として利便性のある細胞から所望の細胞型へ転換する技術が望まれており、最近においては、マウスおよびヒトの人工多能性幹細胞(iPS細胞)が相次いで樹立された。Yamanakaらは、ヒトの皮膚由来線維芽細胞にOct3/4, Sox2, Klf4及びc-Mycの4遺伝子を導入することにより、iPS細胞を樹立することに成功した(特許文献1および非特許文献2)。このようにして得られるiPS細胞は、治療対象となる患者由来の細胞を用いて作製された後、各組織の細胞へと分化させることができるため、in vitroで病態を再現することが可能と考えられている。実際、上記の方法で、プレセニリンに変異を有する家族性アルツハイマー病患者由来のiPS細胞が作製され、神経細胞への分化誘導に成功し、この神経細胞からのAβ42の細胞外分泌が亢進していることが報告されている(非特許文献3)。
 一方、免疫応答を利用して細胞外Aβを取り除く臨床研究が実施され、細胞外Aβは減少したが、臨床症状の改善は見られなかったとの結果が得られている(非特許文献4)。本結果には様々な議論があるが、いずれの診断指標が治療効果を示す薬剤のスクリーニングに有用であるかは不明である。
 近年、アミロイド前駆体タンパク質(APP)内に変異(E693Δ)を有する家族性アルツハイマー病が日本で報告されているが、アミロイド親和性化合物をプローブとして用いた陽電子放射型断層撮影法(PET)では患者脳内のAβ沈着が確認されていない(非特許文献5)。このことから、老人斑形成のようなAβの沈着がアルツハイマー病の発症を引き起こすか否かについては疑問の余地が残る。
WO 2007/069666
Bucciantini M, et al., Nature. 416:507-511 (2002) Takahashi, K, et al., Cell. 131:861-872 (2007) Yagi, T, et al., Hum Mol Genet. 20:4530-4539 (2011) Holmes, C, et al., Lancet 372:16-223 (2008) Tomiyama, T, et al., Ann. Neurol. 63, 377-387 (2008)
 本発明の課題は、アルツハイマー病の治療薬または予防薬をスクリーニングする新規の方法およびそのためのキットを提供することにある。
 本発明者らは上記の課題を解決すべく鋭意検討を行った結果、アルツハイマー病患者の体細胞由来のiPS細胞から分化誘導された神経細胞またはアストロサイトにおいて、アルツハイマー病の病態を再現することに成功した。すなわち、分化誘導された神経細胞またはアストロサイトでは、細胞内におけるAβオリゴマーの蓄積、ERストレス量および活性酸素種の産生などの酸化ストレスの増加などの所見が見出された。さらに、既存のアルツハイマー病の治療薬または予防薬とされている薬剤を添加することでこれらの指標が減少することを見出し本発明の完成に至った。
 すなわち、本発明は:
[1] アルツハイマー病の治療薬および/または予防薬をスクリーニングする方法であって、以下の工程:
(a)候補物質を、アルツハイマー病患者の体細胞から作製された人工多能性幹(iPS)細胞または693のグルタミン酸の欠損変異APPを導入したiPS細胞由来の神経細胞もしくはアストロサイトと接触させる工程、
(b)前記神経細胞内またはアストロサイト内のAβオリゴマーの量を測定する工程、および
(c)前記Aβオリゴマーの量が候補物質と接触させなかった場合と比較して減少した場合、前記候補物質をアルツハイマー病の治療薬または予防薬として選出する工程、を含む、方法。
[2]
 前記神経細胞またはアストロサイトが、Aβオリゴマーを蓄積する細胞である、[1]に記載の方法。
[3] 前記アルツハイマー病患者の体細胞が、APPの693のグルタミン酸の欠損変異を有する体細胞である、[1]または[2]に記載の方法。
[4] アルツハイマー病の治療薬および/または予防薬をスクリーニングする方法であって、以下の工程:
(a)候補物質を、アルツハイマー病患者の体細胞から作製されたiPS細胞または693のグルタミン酸の欠損変異APPを導入したiPS細胞由来の神経細胞またはアストロサイトと接触させる工程、
(b)前記神経細胞内またはアストロサイト内のERストレス量、カスパーゼ4活性、Transgelin量および酸化ストレス量から成る群から選択される少なくとも一つの指標を測定する工程、および
(c)前記量または活性が候補物質と接触させなかった場合と比較して減少した場合、前記候補物質をアルツハイマー病の治療薬または予防薬として選出する工程、を含む、方法。
[5] 前記ERストレス量の測定が、ERストレスマーカー量の測定により行われる、[4]に記載の方法。
[6] 前記ERストレスマーカーが、免疫グロブリン結合タンパク質(BiP)である、[5]に記載の方法。
[7] 前記カスパーゼ4活性の測定が、切断カスパーゼ4の量を測定することにより行われる、[4]に記載の方法。
[8] 前記酸化ストレス量の測定が、PRDX4または活性酸素種の量を測定することにより行われる、[4]に記載の方法。
[9] 前記神経細胞またはアストロサイトが、Aβオリゴマーを蓄積する細胞である、[4]に記載の方法。
[10] 前記アルツハイマー病患者の体細胞が、APPの693のグルタミン酸の欠損変異を有する体細胞である、[4]~[9]のいずれかに記載の方法。
[11] アルツハイマー病の治療薬および/または予防薬をスクリーニングする方法であって、以下の工程:
(a)候補物質を、アルツハイマー病患者の体細胞から作製された人工多能性幹(iPS)細胞または693のグルタミン酸の欠損変異APPを導入したiPS細胞由来の神経細胞と接触させる工程、
(b)前記神経細胞の生細胞数またはその代替値を測定する工程、および
(c)前記生細胞数またはその代替値が候補物質と接触させなかった場合と比較して増加した場合、前記候補物質をアルツハイマー病の治療薬または予防薬として選出する工程。
[12] 前記iPS細胞由来の神経細胞が、Aβオリゴマーを蓄積する細胞である、[11]に記載の方法。
[13] 前記アルツハイマー病患者の体細胞が、APPの693のグルタミン酸の欠損変異を有する体細胞である、[11]または[12]に記載の方法。
[14] 変異型APPを有するiPS細胞由来の神経細胞および/またはアストロサイトを含む、アルツハイマー病の治療薬および/または予防薬をスクリーニングするためのキット。
[15] Aβオリゴマー、BiP、切断カスパーゼ4、Transgelin、PRDX4および活性酸素種からなる群から選択される少なくとも一つの指標を測定するための試薬さらに含む、[14]に記載のキット。
[16] 前記APPの変異が、693番目のグルタミン酸の欠損変異である、[14]または[15]に記載のキット。
を提供するものである。
 本発明により、新規のツールを用いたアルツハイマー病の治療薬および/または予防薬のスクリーニングが可能となる。したがって、本発明は、アルツハイマー病の早期治療または予防のために極めて有用である。
図1は、作製された対照(control)およびAD(E693Δ)-iPSCsの評価および大脳皮質ニューロンへの分化誘導の結果を示す。(A)アルツハイマー病患者(E693Δ)の体細胞から樹立されたiPS細胞の形態(位相画像)、ならびに多能性幹細胞マーカーであるNANOG (緑色)およびTRA1-60 (赤色)の発現を示す写真。(B)対照iPS細胞(Control)とアルツハイマー病(AD(E693Δ))患者の体細胞から樹立されたiPS細胞のゲノムDNA配列の比較を示す。アルツハイマー病患者の体細胞由来のiPS細胞においては、E693がホモ接合型で欠損している(E693Δ)。(C)樹立されたiPS細胞のin vivoにおける三胚葉への分化(テラトーマ)を示す写真。中胚葉は軟骨を示し、内胚葉は腸管様上皮を示し、外胚葉は神経管様組織を示す。(D)樹立されたiPS細胞のin vitroにおける三胚葉への分化を示す写真。α平滑筋アクチンは中胚葉を示し、SOX17は内胚葉を示し、Tuj1は外胚葉を示す。(E)樹立された各iPS細胞のin vitroにおける大脳皮質ニューロンへの分化を示す写真。神経細胞マーカー(Tuj1)は緑色を示し、大脳皮質転写マーカー(CTIP2、SATB2またはTBR1)は赤色を示す。(F) 対照(control)およびAD(E693Δ)-iPSCsから分化誘導された大脳皮質ニューロンにおける神経細胞マーカーと大脳皮質転写マーカーのmRNA相対的発現量を示す。発現レベルは、iPS細胞の発現レベルで標準化されている。 図2は、作製されたAD(V717L)-iPSCsおよび孤発性アルツハイマー病(AD(sporadic))-iPSCsの評価および神経細胞への分化誘導の結果を示す。(A)アルツハイマー病患者(V717Lおよび孤発性)の体細胞から樹立されたiPS細胞の形態(位相画像)、ならびに多能性幹細胞マーカーであるNANOG (緑色)およびTRA1-60 (赤色)の発現を示す写真。(B)対照iPS細胞(Control)とアルツハイマー病(AD(V717L))患者の体細胞から樹立されたiPS細胞のゲノムDNA配列の比較を示す。アルツハイマー病患者(AD(V717L))の体細胞由来のiPS細胞においては、APPのV717がヘテロの変異を起こしている(V717L)。(C) 対照(control)、AD(E693Δ)、AD(V717L)および孤発性(sporadic)のiPSCsから分化誘導された大脳皮質ニューロンにおける神経細胞マーカー(Tuj1)と大脳皮質転写マーカー(TBR1およびSATB2)のタンパク質の相対的発現量を示す。グラフは、核(DAPI)の数に対する各マーカーの陽性細胞数の比で表す。 図3は、対照(control)、AD(E693Δ)、AD(V717L)および孤発性(sporadic)のiPSCsから分化誘導された神経細胞またはアストロサイトからの各Aβの細胞外分泌量を示す。(A)神経細胞のAβ40およびAβ42の細胞外分泌量ならびにAβ42/Aβ40の比を表す。各細胞はBSI添加(+)および非添加(-)条件での結果を示す。データは mean ±S.D. (n = 3)で示し、*は、p < 0.006(Aβ40およびAβ42)またはp < 0.001(Aβ42/ Aβ40)での他のアストロサイトに対して統計学的な有意差を示す。 (B)アストロサイトのAβ40およびAβ42の細胞外分泌量ならびにAβ42/Aβ40の比を表す。データは mean ±S.D. (n = 3)で示し、*は、p < 0.006(Aβ40およびAβ42)またはp < 0.001(Aβ42/ Aβ40)での他のアストロサイトに対して統計学的な有意差を示す。 図4は、アルツハイマー病患者の体細胞由来のiPS細胞(AD(E693Δ))から分化誘導された神経細胞におけるAβオリゴマーの蓄積を示す。(A)iPS細胞から分化誘導された神経細胞(対照またはAD(E693Δ))におけるAβオリゴマーの局在を示す写真。iPS細胞から分化誘導された神経細胞(MAP2陽性細胞)は赤色を示し、Aβオリゴマー特異的抗体であるNU-1モノクローナル抗体で検出されたAβオリゴマーは緑色を示す。Aβオリゴマーの蓄積は、AD患者(AD(E693Δ))由来の神経細胞において多いが、対照の神経細胞においてはわずかである。また、β-セクレターゼ阻害剤(BSI)は、AD患者由来の神経細胞(AD(E693Δ))におけるAβオリゴマーの蓄積を減少させる。(B) MAP2陽性領域内におけるNU-1陽性領域(%)として定量化されたAβオリゴマーの蓄積を示す。データは、平均±SDを示す(n = 3/群)。(C)NU-1抗体を用いたドットブロット解析の像を示す写真。(D)得られた像を定量化したグラフを示す。データは、平均±SDを示す(n = 3/群)。BSIは、AD患者由来(AD(E693Δ))の神経細胞におけるAβオリゴマーを減少させる。*は、p < 0.05での統計学的な有意を示す。 図5は、Aβオリゴマーの蓄積量を示す。(A) BSIの添加条件(+)および非添加条件(-)でのiPS細胞から分化誘導された神経細胞(対照(control)、AD(E693Δ)、AD(V717L)およびAD(sporadic))におけるAβオリゴマーの蓄積量のグラフを示す。蓄積量は、NU1抗体を用いたドットプロット解析結果を定量化して得られた。データは、平均±SDを示す(n = 3/群)。*は、他の神経細胞に対してp < 0.005での統計的な有意差を有することを示し、#は、BSI非添加の対応する神経細胞に対してp < 0.005での統計的な有意差を有することを示す。(B) BSIの添加条件(+)および非添加条件(-)でのiPS細胞から分化誘導された神経細胞(対照、AD(E693Δ)、AD(V717L)およびAD(sporadic))におけるAβオリゴマーの蓄積量のグラフを示す。蓄積量は、11A1抗体を用いたドットプロット解析結果を定量化して得られた。データは、平均±SDを示す(n = 3/群)。*は、他の神経細胞に対してp < 0.005での統計的な有意差を有することを示す。(C) iPS細胞から分化誘導されたアストロサイト(対照、AD(E693Δ)、AD(V717L)およびAD(sporadic))におけるAβオリゴマーの蓄積量のグラフを示す。蓄積量は、NU1抗体を用いたドットプロット解析結果を定量化して得られた。データは、平均±SDを示す(n = 3/群)。*は、他のアストロサイトに対してp < 0.001での統計的な有意差を有することを示す。(D)野生型APPをレンチウィルスで発現させた神経細胞およびAPP-E693Δをレンチウィルスで発現させた神経細胞におけるAβオリゴマーの局在を示す写真。iPS細胞から分化誘導された神経細胞(MAP2陽性細胞)は赤色を示し、Aβオリゴマー特異的抗体であるNU-1抗体で検出されたAβオリゴマーは緑色を示す。 図6は、アルツハイマー病患者の体細胞由来のiPS細胞から分化誘導された神経細胞(AD(E693Δ))におけるAβオリゴマーの蓄積およびERストレス応答を示す。(A) 細胞内小器官(赤色)におけるAβオリゴマー(緑色)の局在を示す写真。BiPはERを示し、EEA1は初期エンドソームを示し、LAMP2は後期エンドソーム/リソソームを示す。Aβオリゴマーは、NU-1モノクローナル抗体により検出されたものを示す。(B) BSIの存在下および非存在下でのiPS細胞から分化誘導された神経細胞(対照およびAD(E693Δ))におけるERストレスマーカー(BiPおよび活性型カスパーゼ4)のウエスタンブロット解析の結果を示す写真。(C)BiPの定量化データを示す。データは、平均±SDを示す(n = 3/群)。(D)活性型(切断型)カスパーゼ4の定量化データを示す。データは、平均±SDを示す(n = 3/群)。図中*は、p<0.05および**は、p<0.01(Tukey検定)を意味する。 図7は、アルツハイマー病患者の体細胞由来のiPS細胞から分化誘導された神経細胞(AD(E693Δ))における他のマーカーの解析結果を示す。(A)Transgelinのウエスタンブロット解析の結果を示す写真。(B)遺伝子オントロジー解析における過酸化活性関連遺伝子の対照に対するADの発現量を示す。(C)BSIの存在下および非存在下でのiPS細胞から分化誘導された神経細胞(対照およびAD(E693Δ))におけるperoxiredoxin-4のウエスタンブロット解析の結果を示す写真。(D)peroxiredoxin-4の定量化データを示す。データは、平均±SDを示す(n = 3/群)。図中*は、p<0.05および**は、p<0.01(Tukey検定)を意味する。(E)活性酸素種(reactive oxygen species,ROS)(緑色)とHoechst33342(青色)の染色像の典型例を示す写真。(F)DAPI観測数に対するROS陽性領域値として定量化した結果のグラフを示す。データは、平均±SDを示す(n = 3/群)。図中*は、p<0.05および**は、p<0.01(Tukey検定)を意味する。 図8は、BSIの存在下および非存在下でのアルツハイマー病患者の体細胞由来のiPS細胞から分化誘導された神経細胞(対照、AD(E693Δ) 、AD(V717L)およびAD(sporadic))におけるERストレスマーカー遺伝子(BiPおよび活性型カスパーゼ4)および酸化ストレスマーカー遺伝子(peroxiredoxin-4)のウエスタンブロット解析の結果を示す写真。BiPおよびPeroxiredoxin-4では、BSI非存在下のAD(E693Δ)-1、AD(E693Δ)-2、AD(E693Δ)-3およびAD(sporadic)-2において有意に発現が高いことが確認された(**p < 0.005)。活性型カスパーゼ4では、BSI非存在下のAD(E693Δ)-1、AD(E693Δ)-2、AD(E693Δ)-3において有意に発現が高いことが確認された(**p < 0.005)。 図9は、アルツハイマー病患者の体細胞由来のiPS細胞から分化誘導されたアストロサイト(対照、AD(E693Δ) 、AD(V717L)およびAD(sporadic))におけるERストレスマーカー遺伝子(BiPおよび活性型カスパーゼ4)および酸化ストレスマーカー遺伝子(peroxiredoxin-4)のウエスタンブロット解析の結果を示す写真。BiPおよびPeroxiredoxin-4では、BSI非存在下のAD(E693Δ)-1、AD(E693Δ)-2、AD(E693Δ)-3およびAD(sporadic)-2において有意に発現が高いことが確認された。活性型カスパーゼ4では、BSI非存在下のAD(E693Δ)-1、AD(E693Δ)-2、AD(E693Δ)-3において有意に発現が高いことが確認された。 図10は、BSIの存在下および非存在下でのアルツハイマー病患者の体細胞由来のiPS細胞から分化誘導された神経細胞(対照、AD(E693Δ)、AD(V717L)およびAD(sporadic))における活性酸素種(reactive oxygen species,ROS)の量を測定した結果を示す。(A)各神経細胞(対照、AD(E693Δ) およびAD(sporadic))における3'-(p-hydroxyphenyl) fluorescein(HPF)による染色(緑色)、CellROXによる染色(赤色)ならびにDAPIの染色(青色)の典型例を示す写真。(B)HPFにより検出したROS陽性領域値をDAPI観測数に対して定量化した結果のグラフを示す。データは、平均±SDを示す(n = 3/群)。図中**は、p<0.001を意味する。(C)CellROXにより検出したROS陽性領域値をDAPI観測数に対して定量化した結果のグラフを示す。データは、平均±SDを示す(n = 3/群)。図中**は、p<0.001を意味する。 図11は、アルツハイマー病患者の体細胞由来のiPS細胞から分化誘導されたアストロサイト(対照、AD(E693Δ)、AD(V717L)およびAD(sporadic))における活性酸素種(reactive oxygen species,ROS)の量を測定した結果を示す。(A)各アストロサイト(対照、AD(E693Δ) およびAD(sporadic))におけるCellROXによる染色(白色)およびDAPIの染色(青色)の典型例を示す写真。(B)CellROXにより検出したROS陽性領域値を定量化した結果のグラフを示す。データは、平均±SDを示す(n = 3/群)。 図12は、Docosahexaenoic acid (DHA)によるAβオリゴマーによるERストレスの軽減を観察したデータを示す。(A)各濃度(1μM、5μM または15μM)のDHAまたは溶媒としてのDMSOを培地中へ添加した後の各iPS細胞由来の神経細胞(対照およびAD(E693Δ))のライセートにおけるBiP、活性型カスパーゼ4およびperoxiredoxin-4のウエスタンブロット解析の結果を示す写真。(B)BiPのウエスタンブロット解析の結果をデンシドメトリーを用いて定量化したデータを示す。データは、平均±SDを示す(n = 3/群)。図中*は、p<0.05および**は、p<0.01(Tukey検定)を意味する。(C)活性型カスパーゼ4のウエスタンブロット解析の結果をデンシドメトリーを用いて定量化したデータを示す。データは、平均±SDを示す(n = 3/群)。図中**は、p<0.01(Tukey検定)を意味する。(D) peroxiredoxin-4のウエスタンブロット解析の結果をデンシドメトリーを用いて定量化したデータを示す。データは、平均±SDを示す(n = 3/群)。図中*は、p<0.05および**は、p<0.01(Tukey検定)を意味する。(E)DHA添加後のreactive oxygen species (ROS)(緑色)とHoechst33342(青色)の染色像の典型例を示す写真。(F)DAPI観測数に対するROS陽性領域値として定量化した結果のグラフを示す。データは、平均±SDを示す(n = 3/群)。図中*は、p<0.05および**は、p<0.01(Tukey検定)を意味する。 図13は、アルツハイマー病患者のiPS細胞から分化誘導された神経細胞へDHAを添加した結果を示す。(A) 5μMまたは15μMのDHAもしくは溶媒としてのDMSOを培地中へ添加した後の各iPS細胞由来の神経細胞(対照およびAD(sporadic)-2)のライセートにおけるBiP、活性型カスパーゼ4およびperoxiredoxin-4のウエスタンブロット解析の結果を示す写真。(B)ウエスタンブロット解析の結果をデンシドメトリーを用いて定量化したデータを示す。データは、平均±SDを示す(n = 3/群)。図中*は、p<0.005を意味する。(C)AβオリゴマーをNU1抗体を用いてドットブロット解析した結果をデンシトメトリーを用いて定量化したデータを示す。データは、平均±SDを示す(n = 3/群)。 図14は、アルツハイマー病患者の体細胞由来のiPS細胞から分化誘導された神経細胞(対照、AD(E693Δ)およびAD(sporadic))の細胞生存率を示す。(A)DHAの存在下および非存在下でのcontrolおよびAD神経細胞の細胞生存率を示す。シナプシンIプロモーターで誘導されたEGFPが陽性である細胞数から算出した。データは、平均±SDを示す(n = 3/群)。図中*は、p<0.001を意味する。(B)各神経細胞(対照、AD(E693Δ) およびAD(sporadic))におけるシナプシンIプロモーターで誘導されたEGFP(緑色)を有する神経細胞に対する蛍光像の典型例を示す写真。(C)DHA処理16日後の各神経細胞(対照、AD(E693Δ)およびAD(sporadic))におけるLDH活性量を示す。データは、平均±SDを示す(n = 3/群)。図中*は、p<0.05を意味する。
 本発明は、候補物質を、アルツハイマー病患者の体細胞から作製された人工多能性幹細胞(iPS細胞)由来の神経細胞またはアストロサイトと接触させる工程を含む、アルツハイマー病の治療薬および/または予防薬をスクリーニングする方法、ならびに、キットを提供する。
iPS細胞の製造方法
 本発明において、iPS細胞は、ある特定の核初期化物質を、DNAまたはタンパク質の形態で体細胞に導入することまたは薬剤によって当該核初期化物質の内在性のmRNAおよびタンパク質の発現を上昇させることによって作製することができる、ES細胞とほぼ同等の特性、例えば分化多能性と自己複製による増殖能、を有する体細胞由来の人工の幹細胞である(K. Takahashi and S. Yamanaka (2006) Cell, 126: 663-676、K. Takahashi et al. (2007) Cell, 131: 861-872、J. Yu et al. (2007) Science, 318: 1917-1920、M. Nakagawa et al. (2008) Nat. Biotechnol., 26: 101-106、国際公開WO 2007/069666および国際公開WO 2010/068955)。核初期化物質は、ES細胞に特異的に発現している遺伝子またはES細胞の未分化維持に重要な役割を果たす遺伝子もしくはその遺伝子産物であればよく、特に限定されないが、例えば、Oct3/4, Klf4, Klf1, Klf2, Klf5, Sox2, Sox1, Sox3, Sox15, Sox17, Sox18, c-Myc, L-Myc, N-Myc, TERT, SV40 Large T antigen, HPV16 E6, HPV16 E7, Bmil, Lin28, Lin28b, Nanog, Esrrb, EsrrgまたはGlis1が例示される。これらの初期化物質は、iPS細胞樹立の際には、組み合わされて使用されてもよい。例えば、上記初期化物質を、少なくとも1つ、2つもしくは3つ含む組み合わせであり、好ましくは4つを含む組み合わせである。
 上記の各核初期化物質のマウスおよびヒトcDNAのヌクレオチド配列並びに当該cDNAにコードされるタンパク質のアミノ酸配列情報は、WO 2007/069666に記載のNCBI accession numbersを参照すること、またL-Myc、Lin28、Lin28b、Esrrb、EsrrgおよびGlis1のマウスおよびヒトのcDNA配列およびアミノ酸配列情報については、それぞれ下記NCBI accessionnumbersを参照することにより取得できる。当業者は、当該cDNA配列またはアミノ酸配列情報に基づいて、常法により所望の核初期化物質を調製することができる。
遺伝子名  マウス     ヒト
L-Myc    NM_008506    NM_001033081
Lin28    NM_145833    NM_024674
Lin28b   NM_001031772  NM_001004317
Esrrb    NM_011934    NM_004452
Esrrg    NM_011935    NM_001438
Glis1    NM_147221    NM_147193
 これらの核初期化物質は、タンパク質の形態で、例えばリポフェクション、細胞膜透過性ペプチドとの結合、マイクロインジェクションなどの手法によって体細胞内に導入してもよいし、あるいは、DNAの形態で、例えば、ウイルス、プラスミド、人工染色体などのベクター、リポフェクション、リポソーム、マイクロインジェクションなどの手法によって体細胞内に導入することができる。ウイルスベクターとしては、レトロウイルスベクター、レンチウイルスベクター(以上、Cell, 126, pp.663-676, 2006; Cell, 131, pp.861-872, 2007; Science, 318, pp.1917-1920, 2007)、アデノウイルスベクター(Science, 322, 945-949, 2008)、アデノ随伴ウイルスベクター、センダイウイルスベクター(Proc Jpn Acad Ser B Phys Biol Sci. 85, 348-62, 2009)などが例示される。また、人工染色体ベクターとしては、例えばヒト人工染色体(HAC)、酵母人工染色体(YAC)、細菌人工染色体(BAC、PAC)などが含まれる。プラスミドとしては、哺乳動物細胞用プラスミドを使用しうる(Science, 322:949-953, 2008)。ベクターには、核初期化物質が発現可能なように、プロモーター、エンハンサー、リボゾーム結合配列、ターミネーター、ポリアデニル化サイトなどの制御配列を含むことができる。使用されるプロモーターとしては、例えばEF1αプロモーター、CAGプロモーター、SRαプロモーター、SV40プロモーター、LTRプロモーター、CMV(サイトメガロウイルス)プロモーター、RSV(ラウス肉腫ウイルス)プロモーター、MoMuLV(モロニーマウス白血病ウイルス)LTR、HSV-TK(単純ヘルペスウイルスチミジンキナーゼ)プロモーターなどが用いられる。なかでも、EF1αプロモーター、CAGプロモーター、MoMuLV LTR、CMVプロモーター、SRαプロモーターなどが挙げられる。さらに、必要に応じて、薬剤耐性遺伝子(例えばカナマイシン耐性遺伝子、アンピシリン耐性遺伝子、ピューロマイシン耐性遺伝子など)、チミジンキナーゼ遺伝子、ジフテリアトキシン遺伝子などの選択マーカー配列、緑色蛍光タンパク質(GFP)、βグルクロニダーゼ(GUS)、FLAGなどのレポーター遺伝子配列などを含むことができる。また、上記ベクターには、体細胞への導入後、核初期化物質をコードする遺伝子もしくはプロモーターとそれに結合する核初期化物質をコードする遺伝子を共に切除するために、それらの前後にLoxP配列を有してもよい。別の好ましい一実施態様においては、トランスポゾンを用いて染色体に導入遺伝子を組み込んだ後に、プラスミドベクターもしくはアデノウイルスベクターを用いて細胞に転移酵素を作用させ、導入遺伝子を完全に染色体から除去する方法が用いられ得る。好ましいトランスポゾンとしては、例えば、鱗翅目昆虫由来のトランスポゾンであるpiggyBac等が挙げられる(Kaji, K. et al., (2009), Nature, 458: 771-775、Woltjenet al., (2009), Nature, 458: 766-770 、WO 2010/012077)。さらに、ベクターには、染色体への組み込みがなくとも複製されて、エピソーマルに存在するように、リンパ指向性ヘルペスウイルス(lymphotrophic herpes virus)、BKウイルスおよび牛乳頭腫(Bovine papillomavirus)の起点とその複製に係る配列を含んでいてもよい。例えば、EBNA-1およびoriPもしくはLarge TおよびSV40ori配列を含むことが挙げられる(WO 2009/115295、WO 2009/157201およびWO 2009/149233)。また、複数の核初期化物質を同時に導入するために、ポリシストロニックに発現させる発現ベクターを用いてもよい。ポリシストロニックに発現させるためには、遺伝子をコードする配列の間は、IRESまたは口蹄病ウイルス(FMDV)2Aコード領域により結合されていてもよい(Science, 322:949-953, 2008およびWO 2009/092042 2009/152529)。
 核初期化に際して、iPS細胞の誘導効率を高めるために、上記の因子の他に、例えば、ヒストンデアセチラーゼ(HDAC)阻害剤[例えば、バルプロ酸 (VPA)(Nat. Biotechnol., 26(7): 795-797 (2008))、トリコスタチンA、酪酸ナトリウム、MC 1293、M344等の低分子阻害剤、HDACに対するsiRNAおよびshRNA(例、HDAC1 siRNA Smartpool(登録商標) (Millipore)、HuSH 29mer shRNA Constructs against HDAC1 (OriGene)等)等の核酸性発現阻害剤など]、DNAメチルトランスフェラーゼ阻害剤(例えば5'-azacytidine)(Nat. Biotechnol., 26(7): 795-797 (2008))、G9aヒストンメチルトランスフェラーゼ阻害剤[例えば、BIX-01294 (Cell Stem Cell, 2: 525-528 (2008))等の低分子阻害剤、G9aに対するsiRNAおよびshRNA(例、G9a siRNA(human) (Santa Cruz Biotechnology)等)等の核酸性発現阻害剤など]、L-channel calcium agonist (例えばBayk8644) (Cell Stem Cell, 3, 568-574 (2008))、p53阻害剤(例えばp53に対するsiRNAおよびshRNA)(Cell Stem Cell, 3, 475-479 (2008))、Wnt Signaling activator(例えばsoluble Wnt3a)(Cell Stem Cell, 3, 132-135 (2008))、LIFまたはbFGFなどの増殖因子、ALK5阻害剤(例えば、SB431542)(Nat. Methods, 6: 805-8 (2009))、mitogen-activated protein kinase signalling阻害剤、glycogen synthase kinase-3阻害剤(PloS Biology, 6(10), 2237-2247 (2008))、miR-291-3p、miR-294、miR-295などのmiRNA (R.L. Judson et al., Nat. Biotech., 27:459-461 (2009))、等を使用することができる。
 薬剤によって核初期化物質の内在性のタンパク質の発現を上昇させる方法における薬剤としては、6-bromoindirubin-3'-oxime、indirubin-5-nitro-3'-oxime、valproic acid、2-(3-(6-methylpyridin-2-yl)-lH-pyrazol-4-yl)-1,5-naphthyridine、1-(4-methylphenyl)-2-(4,5,6,7-tetrahydro-2-imino-3(2H)-benzothiazolyl)ethanone HBr(pifithrin-alpha)、prostaglandin J2および prostaglandin E2等が例示される(WO 2010/068955)。
 iPS細胞誘導のための培養培地としては、例えば(1) 10~15%FBSを含有するDMEM、DMEM/F12またはDME培地(これらの培地にはさらに、LIF、penicillin/streptomycin、puromycin、L-グルタミン、非必須アミノ酸類、β-メルカプトエタノールなどを適宜含むことができる。)、(2) bFGFまたはSCFを含有するES細胞培養用培地、例えばマウスES細胞培養用培地(例えばTX-WES培地、トロンボX社)または霊長類ES細胞培養用培地(例えば霊長類(ヒト&サル)ES細胞用培地(リプロセル、京都、日本)、mTeSR-1)、などが含まれる。
 培養法の例としては、たとえば、37℃、5%CO2存在下にて、10%FBS含有DMEMまたはDMEM/F12培地中で体細胞と核初期化物質 (DNAまたはタンパク質) を接触させ約4~7日間培養し、その後、細胞をフィーダー細胞 (たとえば、マイトマイシンC処理STO細胞、SNL細胞等) 上にまきなおし、体細胞と核初期化物質の接触から約10日後からbFGF含有霊長類ES細胞培養用培地で培養し、該接触から約30~約45日またはそれ以上ののちにES細胞様コロニーを生じさせることができる。また、iPS細胞の誘導効率を高めるために、5-10%と低い酸素濃度の条件下で培養してもよい。
 あるいは、その代替培養法として、フィーダー細胞 (たとえば、マイトマイシンC処理STO細胞、SNL細胞等) 上で10%FBS含有DMEM培地(これにはさらに、LIF、ペニシリン/ストレプトマイシン、ピューロマイシン、L-グルタミン、非必須アミノ酸類、β-メルカプトエタノールなどを適宜含むことができる。)で培養し、約25~約30日またはそれ以上ののちにES様コロニーを生じさせることができる。
 上記培養の間には、培養開始2日目以降から毎日1回新鮮な培地と培地交換を行う。また、核初期化に使用する体細胞の細胞数は、限定されないが、培養ディッシュ100cm2あたり約5×103~約5×106細胞の範囲である。
 マーカー遺伝子として薬剤耐性遺伝子を含む遺伝子を用いた場合は、対応する薬剤を含む培地(選択培地)で培養を行うことによりマーカー遺伝子発現細胞を選択することができる。またマーカー遺伝子が蛍光タンパク質遺伝子の場合は蛍光顕微鏡で観察することによって、発光酵素遺伝子の場合は発光基質を加えることによって、また発色酵素遺伝子の場合は発色基質を加えることによって、マーカー遺伝子発現細胞を検出することができる。
 本明細書中で使用する「体細胞」は、哺乳動物(例えば、ヒト、マウス、サル、ブタ、ラット等)由来の生殖細胞以外のいかなる細胞であってもよく、例えば、角質化する上皮細胞(例、角質化表皮細胞)、粘膜上皮細胞(例、舌表層の上皮細胞)、外分泌腺上皮細胞(例、乳腺細胞)、ホルモン分泌細胞(例、副腎髄質細胞)、代謝・貯蔵用の細胞(例、肝細胞)、境界面を構成する内腔上皮細胞(例、I型肺胞細胞)、内鎖管の内腔上皮細胞(例、血管内皮細胞)、運搬能をもつ繊毛のある細胞(例、気道上皮細胞)、細胞外マトリックス分泌用細胞(例、線維芽細胞)、収縮性細胞(例、平滑筋細胞)、血液と免疫系の細胞(例、Tリンパ球)、感覚に関する細胞(例、桿細胞)、自律神経系ニューロン(例、コリン作動性ニューロン)、感覚器と末梢ニューロンの支持細胞(例、随伴細胞)、中枢神経系の神経細胞とグリア細胞(例、星状グリア細胞)、色素細胞(例、網膜色素上皮細胞)、およびそれらの前駆細胞 (組織前駆細胞) 等が挙げられる。細胞の分化の程度や細胞を採取する動物の齢などに特に制限はなく、未分化な前駆細胞 (体性幹細胞も含む) であっても、最終分化した成熟細胞であっても、同様に本発明における体細胞の起源として使用することができる。ここで未分化な前駆細胞としては、たとえば神経幹細胞、造血幹細胞、間葉系幹細胞、歯髄幹細胞等の組織幹細胞(体性幹細胞)が挙げられる。
 本発明において、体細胞を採取する由来となる哺乳動物個体は特に制限されないが、好ましくはヒトである。
 本発明において用いるiPS細胞は、アルツハイマー病の罹患が既知である患者から体細胞を採取して作製されることが望ましい。より好ましくは、当該アルツハイマー病の罹患が既知である患者から得られた体細胞からiPS細胞を作製し、このiPS細胞から神経細胞またはアストロサイトへと誘導した際にAβオリゴマーを蓄積する細胞を得られる患者の体細胞よりiPS細胞を作製することである。
 本発明において、Aβとは、アミロイドβタンパク質を意味し、アミロイド前駆体タンパク質(APP)からβ-及びγ-セクレターゼにより切断されて産生する断片である。また、Aβオリゴマーとは、Aβの二量体(ダイマー)、三量体(トリマー)、四量体(テトラマー)またはそれ以上の重合体を意味する。また、本発明で用いるAβは、40アミノ酸長(Aβ40)または42アミノ酸長(Aβ42)で構成されるタンパク質のいずれのアミノ酸長であってもよい。ただし、693のグルタミン酸の欠損変異したAPPから産生される場合は、Aβ40は、39アミノ酸長であり、Aβ42は、41アミノ酸長を意味する。また、Aβオリゴマーを蓄積するとは、これらのAβオリゴマーが細胞内で凝集していることであり、この蓄積は、Aβオリゴマーに対する抗体(例えば、NU1または11A1)で細胞を観察することによって検出できる。
 本発明において、アルツハイマー病の罹患が既知である患者とは、特に限定されないが、家族性アルツハイマー病の原因遺伝子を有する者が例示される。当該原因遺伝子としては、21番染色体のアミロイド前駆体蛋白遺伝子(APP)、14番染色体のプレセニリン1遺伝子、1番染色体のプレセニリン2遺伝子の変異型、または19番染色体のアポリポ蛋白E遺伝子ε4アリルが例示される。本発明では、アルツハイマー病の罹患が既知である患者の体細胞として、APPの693番目のグルタミン酸が欠損しているAPP(E693Δ)を有する体細胞を用いてもよい。本発明においてAPPは、例えば、NCBIのアクセッション番号NM_000484の遺伝子またはこの遺伝子によってコードされるタンパク質である。
 本発明においては、アルツハイマー病の罹患が既知である患者から体細胞から作製したiPS細胞の代わりに、APPの693番目のグルタミン酸が欠損しているAPP(E693Δ)を導入したiPS細胞を用いてもよい。変異型APPの導入においては、前述した核初期化物質の体細胞内への導入方法と同一の方法を用いて行うことができる。変異型APPの導入は、iPS細胞で行われても良く、または後述する分化誘導後の神経細胞またはアストロサイトにおいて行われても良い。
神経細胞の分化誘導法
 前述のiPS細胞から、神経幹細胞を分化誘導する方法として、特に限定されないが、線維芽細胞フィーダー層上で高密度培養による分化誘導法(特開2008-201792)、ストローマ細胞との共培養による分化誘導法(SDIA法)(例えば、WO2001/088100、WO/2003/042384)、浮遊培養による分化誘導法(SFEB法)(WO2005/123902)およびその組み合わせによる方法を利用することができる。
 神経細胞の他の態様として、前述の方法で誘導されたiPS細胞を、任意の方法で分離し、胚葉体(EB)を形成させた後、任意の培地中コーティング処理された培養皿で接着培養することで、神経細胞の誘導を行うことができる。好ましくは、神経細胞は、大脳皮質ニューロンである。
 本発明において、神経細胞は、BF1、βIIIチューブリン、TuJ1、NeuN、160kDaの神経フィラメントタンパク質、MAP2ab、グルタメート、シナプトフィジン、グルタミン酸デカルボキシラーゼ(GAD)、チロシンヒドロキシラーゼ、GABA、セロトニン、TBR1、CTIP2およびSATB2からなる群から選択される少なくとも一つの遺伝子を発現している細胞であり、好ましくは、TBR1、CTIP2およびSATB2からなる群から選択される少なくとも一つの遺伝子を発現している細胞である。
 本発明において、分離の方法としては、力学的もしくはプロテアーゼ活性とコラゲナーゼ活性を有する分離溶液(例えば、Accutase(TM)およびAccumax(TM)が挙げられる)を用いてもよい。
 分離は、iPS細胞を単一細胞まで分離させることが好ましいが、小塊または小塊と単一細胞の混合物の形態であってもよい。
 EBの形成は、通常、浮遊培養により行われるがこれに限定されない。
 浮遊培養とは、細胞を培養皿へ非接着の状態で培養することであり、特に限定されないが、細胞との接着性を向上させる目的で人工的に処理(例えば、細胞外マトリックス等によるコーティング処理)されていないもの、もしくは、人工的に接着を抑制する処理(例えば、ポリヒドロキシエチルメタクリル酸(poly-HEMA)、2-メタクリロイルオキシエチルホスホリルコリン(MPC)ポリマーまたはPluronic F-127(Gibco)によるコーティング処理)したものを使用して行うことができる。好ましくは、浮遊培養のために、PluronicF-127コーティングされた培養皿が使用され得る。
 接着培養に用いる培養皿のコーティング剤としては、例えば、マトリゲル(Becton Dickinson)、コラーゲン、ゼラチン、ポリ-L-リジン、ポリ-D-リジン、フィブロネクチン、ラミニン、ヘパラン硫酸プロテオグリカン、またはエンタクチン、およびこれらの組み合わせが挙げられる。好ましくは、マトリゲルである。
 本発明において、培養に用いる培地は、基本培地へ添加剤を加えて用いることができる。ここで、基本培地は、例えば、Neurobasal培地、Neural Progenitor Basal培地、NS-A培地、BME培地、BGJb培地、CMRL 1066培地、Glasgow MEM培地、Improved MEM Zinc Option培地、IMDM培地、Medium 199培地、Eagle MEM培地、αMEM培地、DMEM培地、DMEM/F12培地、ハム培地、RPMI 1640培地、Fischer's培地、およびこれらの混合培地など、動物細胞の培養に用いることのできる培地であれば特に限定されない。好ましくは、Neurobasal培地およびDMEM/F12の混合物である。ここで、添加剤は、血清、レチノイン酸、Wnt、BMP、bFGF、EGF、HGF、Sonic hedgehog (Shh)、脳由来神経栄養因子(BDNF)、グリア細胞由来神経栄養因子(GDNF)、ニューロトロフィン-3(NT-3)、インスリン様増殖因子1(IGF1)、アミノ酸、ビタミン類、インターロイキン類、インスリン、トランスフェリン、ヘパリン、ヘパラン硫酸、コラーゲン、フィブロネクチン、プロゲステロン、セレナイト、B27-サプリメント(Gibco)、B27-サプリメント(ビタミンA不含)(Gibco)、N2-サプリメント(Gibco)、ITS-サプリメント、抗生物質、AMPKおよびBMPシグナルの阻害剤(例えば、Doromorphin)、ALK5阻害剤(例えば、SB431542)、Knockout Serum Replacement(KSR)が挙げられる。好ましい添加剤は、N2-サプリメント、Doromorphin、SB431542、B27-サプリメント(ビタミンA不含)、BDNF、GDNF、NT-3および KSRである。これらの添加剤は、段階的に変化させてもよく、例えば、KSR、DoromorphinおよびSB431542を組み合わせた添加剤、N2-サプリメント、DoromorphinおよびSB431542を組み合わせた添加剤またはB27-サプリメント(ビタミンA不含)、BDNF、GDNFおよびNT-3を組み合わせた添加剤を適宜変化させて用いることができる。
 培地および培養条件のより好ましい態様としては、次の3段階に分けて行う条件を挙げることができるがこれらに限定されない:
(段階1)MPCポリマーによるコーティング処理した培養皿上で、2μM dorsomorphin、SB431542および5% KSRを含有するDMEM/Ham's F12で、EBを形成させる、
(段階2)マトリゲルをコーティングした培養皿上で、2μM dorsomorphin、SB431542およびN2-サプリメントを含有するDMEM/Ham's F12で、接着培養する、
(段階3)Accutaseにより細胞を分離し、マトリゲルをコーティングした培養皿上で、B27-サプリメント(ビタミンA不含)、10 ng/ml BDNF、10 ng/ml GDNFおよび10 ng/ml NT-3を含有するneurobasal培地中で培養する。
 培養開始時のiPS細胞の濃度は、効率的に神経細胞を形成させるように適宜設定できる。培養開始時のiPS細胞の濃度は、特に限定されないが、例えば、約1×104~約5×106細胞/ml、好ましくは、約5×105~約2×106細胞/mlである。
 培養温度、CO2濃度等の他の培養条件は適宜設定できる。培養温度は、特に限定されるものではないが、例えば約30~40℃、好ましくは約37℃である。また、CO2濃度は、例えば約1~10%、好ましくは約5%である。O2濃度は、1~20%である。また、O2濃度は、1~10%であってもよい。
 分化誘導の培養時間は、特に限定されないが、28日以上84日以下であり、上記の段階に分けて分化誘導を行う場合、好ましくは、段階1は、4日以上12日以下であり、好ましくは、8日間である。段階2は、8日以上24日以下であり、好ましくは、16日間である。段階3は、16日以上56日以下であり、好ましくは、32日間または48日間である。
アストロサイトの分化誘導法
 本発明において、iPS細胞から、アストロサイトを分化誘導する方法として、(1)iPS細胞から神経前駆細胞を製造する工程、(2)得られた神経前駆細胞を神経栄養因子を含有する培養液中で培養する工程、(3)得られた細胞を解離させる工程、および(4)得られた細胞をコーティング処理されていない培養容器を用いて神経栄養因子を含有する培養液中で接着培養する工程を含む方法が例示される。
 本発明において、神経前駆細胞とは、ニューロンおよびグリア細胞へ分化する細胞を意味し、Nestin またはNCAMが発現している細胞である。本明細書において神経前駆細胞は、神経幹細胞と同等の細胞を意味し、特別の断りがなければ、この2つの細胞を区別しない。さらに、グリア細胞とは、アストロサイトおよびオリゴデンドロサイト等を意味する。
 また本発明において、アストロサイトとは、GFAPまたはS100βを発現する細胞であり、好ましくはGFAPを発現する細胞である。GFAPは、NCBI のAccession番号NM_001131019、NM_001242376またはNM_002055において示される配列を有する遺伝子である。
<神経前駆細胞の製造>
 本発明において、iPS細胞から神経前駆細胞への分化誘導は、当業者に周知の方法を用いてもよく、特に限定されないが、例えば、(1)無血清培地中で胚様体を形成させて分化させる方法(SFEB法)(Watanabe K, et al. Nat Neurosci. 8:288-96, 2005)、(2)ストローマ細胞上でES細胞を培養して分化させる方法(SDIA法)(Kawasaki H, et al. Neuron. 28:31-40, 2000)、(3)マトリゲル上に薬剤を添加して培養する方法(Chambers SM, et al. Nat Biotechnol. 27:275-80, 2009)などが挙げられる。iPS幹細胞から神経前駆細胞への好ましい分化誘導方法は、iPS細胞をBMP阻害剤およびTGFβ阻害剤を含有する培養液中で培養する工程を含む方法を用いることができる。
 本発明の好ましいiPS細胞から神経前駆細胞への分化誘導法として、iPS細胞を、任意の方法で分離し、浮遊培養により培養してもよく、あるいはコーティング処理された培養容器を用いて接着培養してもよい。好ましくは、浮遊培養の後に接着培養させることが好ましい。ここで、ヒトiPS細胞の分離方法としては、例えば、力学的に分離する方法、プロテアーゼ活性とコラゲナーゼ活性を有する分離溶液(例えば、Accutase(TM)およびAccumax(TM)など)またはコラゲナーゼ活性のみを有する分離溶液を用いた分離方法が挙げられる。好ましくは、プロテアーゼ活性とコラゲナーゼ活性を有する分離溶液(特に好ましくは、Accutase(TM))を用いてヒト多能性幹細胞を解離し、力学的に細かく単一細胞へ分散する方法が用いられる。ここで、使用されるヒトiPS細胞は、使用したディッシュに対して80%コンフルエントになるまで培養されたコロニーであることが好ましい。
 本工程における浮遊培養とは、細胞を培養容器へ非接着の状態で培養することであり、特に限定はされないが、細胞との接着性を向上させる目的で人工的に処理(例えば、細胞外マトリックス等によるコーティング処理)されていない培養容器、若しくは、人工的に接着を抑制する処理(例えば、ポリヒドロキシエチルメタクリル酸(poly-HEMA)または非イオン性の界面活性ポリオール(Pluronic F-127等)によるコーティング処理)した培養容器を使用して行うことができる。
 また、接着培養においては、コーティング処理された培養容器にて、任意の培地中で培養する。コーティング剤としては、例えば、マトリゲル(BD)、コラーゲン、ゼラチン、ラミニン、ヘパラン硫酸プロテオグリカン、またはエンタクチン、およびこれらの組み合わせが挙げられる。好ましくは、マトリゲルである。
 本工程における培地は、動物細胞の培養に用いられる培地を基礎培地として調製することができる。基礎培地としては、例えばIMDM培地、Medium 199培地、Eagle's Minimum Essential Medium (EMEM)培地、αMEM培地、Dulbecco's modified Eagle's Medium (DMEM)培地、Ham's F12培地、RPMI 1640培地、Fischer's培地、Neurobasal Medium(ライフテクノロジーズ)およびこれらの混合培地などが包含される。好ましくは、DMEM培地とHam's F12培地とを等量ずつ混合させたDMEM/F12培地である。培地には、血清が含有されていてもよいし、あるいは無血清でもよい。必要に応じて、培地は、例えば、アルブミン、トランスフェリン、Knockout Serum Replacement(KSR)(ES細胞培養時のFBSの血清代替物)、N2サプリメント(Invitrogen)、B27サプリメント(Invitrogen)、脂肪酸、インスリン、コラーゲン前駆体、微量元素、2-メルカプトエタノール、3'-チオールグリセロールなどの1つ以上の血清代替物を含んでもよいし、脂質、アミノ酸、L-グルタミン、Glutamax(Invitrogen)、非必須アミノ酸、ビタミン、増殖因子、低分子化合物、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類などの1つ以上の物質も含有し得る。好ましくは、KSR、アミノ酸およびL-グルタミンを含有するDMEM/F12培地またはN2サプリメント、KSR、アミノ酸およびL-グルタミンを含有するDMEM/F12培地である。
 本工程では、培地にBMP阻害剤およびTGFβ阻害剤をさらに添加することが好ましい。ここで、BMP阻害剤とは、BMP(bone morphogenetic protein)とBMP受容体(I型又はII型)との結合を介するBMPシグナル伝達(BMP signaling)の阻害に関与する低分子阻害剤であり、天然の阻害剤であるNoggin、chordin、follistatinなどのタンパク質性阻害剤とは異なる。この阻害剤は、多能性幹細胞を神経前駆細胞へ分化誘導する作用を有しているべきである。このような性質をもつ低分子BMP阻害剤には、転写因子SMAD1、SMAD5又はSMAD8を活性化する能力をもつBMP2、BMP4、BMP6又はBMP7を阻害する化合物である、例えばDorsomorphin (すなわち、6-[4-(2-piperidin-1-yl-ethoxy)phenyl]-3-pyridin-4-yl-pyrazolo[1,5-a]pyrimidine)及びその誘導体が包含される(P. B. Yu et al. (2007), Circulation, 116:II_60; P.B. Yu et al. (2008), Nat. Chem. Biol., 4:33-41; J. Hao et al. (2008), PLoS ONE (www.plozone.org), 3(8):e2904)。Dorsomorphinは市販されており、例えばSigma-Aldrichなどから入手可能である。Dorsomorphinは、BMP受容体へのBMPの結合を阻害することによって上記のBMPシグナル伝達を阻害する生物活性を有する。この他にも、BMP I型受容体キナーゼ阻害剤としてLDN-193189(すなわち、4-(6-(4-(piperazin-1-yl)phenyl)pyrazolo[1,5-a]pyrimidin-3-yl)quinoline)及びその誘導体が例示される (Yu PB et al. Nat Med, 14: 1363-9, 2008)。LDN-193189は市販されており、例えばStemgent社などから入手可能である。
 例えば、BMP阻害剤がDorsomorphinである場合、培地中の濃度は、0.1mM、0.2mM、0.3mM、0.4mM、0.5mM、0.6mM、0.7mM、0.8mM、0.9mM、1mM、2mM、3mM、4mM、5mM、10mM、20mM、30mM、40mM、50mM、100mMが例示される。好ましくは、2mMである。
 さらに、TGFβ阻害剤とは、TGFβファミリーのシグナル伝達に干渉する低分子阻害剤であり、例えばSB431542、SB202190(以上、R.K.Lindemann et al., Mol. Cancer 2:20(2003))、SB505124 (GlaxoSmithKline)、 NPC30345 、SD093、 SD908、SD208 (Scios)、LY2109761、LY364947、 LY580276 (Lilly Research Laboratories)などが包含され、SB431542が好ましい。
 例えば、TGFβ阻害剤がSB431542である場合、培地中の濃度は、1mM、2mM、3mM、4mM、5mM、6mM、7mM、8mM、9mM、10mM、20mM、30mM、40mM、50mM、60mM、70mM、80mM、90mM、100mMが例示される。好ましくは、10mMである。
 培養温度は、以下に限定されないが、約30~40℃、好ましくは約37℃であり、CO2含有空気の雰囲気下で培養が行われる。CO2濃度は、約2~5%、好ましくは5%である。培養時間は、少なくとも20日以上であり、例えば21日、24日、27日、30日、33日、36日、39日または42日が挙げられる。好ましくは24日である。
<神経前駆細胞を神経栄養因子を含有する培養液中で培養する工程>
 本発明の神経前駆細胞を培養する工程において用いる培養液は、動物細胞の培養に用いられる培地を基礎培地として調製することができる。基礎培地としては、例えばIMDM培地、Medium 199培地、Eagle's Minimum Essential Medium (EMEM)培地、αMEM培地、Dulbecco's modified Eagle's Medium (DMEM)培地、Ham's F12培地、RPMI 1640培地、Fischer's培地、Neurobasal Medium(ライフテクノロジーズ)およびこれらの混合培地などが包含される。好ましくは、Neurobasal Mediumである。培地には、血清が含有されていてもよいし、あるいは無血清でもよい。必要に応じて、培地は、例えば、アルブミン、トランスフェリン、Knockout Serum Replacement(KSR)(ES細胞培養時のFBSの血清代替物)、N2サプリメント(Invitrogen)、B27サプリメント(Invitrogen)、脂肪酸、インスリン、コラーゲン前駆体、微量元素、2-メルカプトエタノール、3'-チオールグリセロールなどの1つ以上の血清代替物を含んでもよいし、脂質、アミノ酸、L-グルタミン、Glutamax(Invitrogen)、非必須アミノ酸、ビタミン、増殖因子、低分子化合物、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類などの1つ以上の物質も含有し得る。好ましい培地は、B27サプリメントおよびGlutamaxを含有するNeurobasal Mediumである。
 本発明において、神経前駆細胞を培養する工程において用いる培養液は、神経栄養因子を含有していることが望ましい。ここで、神経栄養因子とは、運動ニューロンの生存と機能維持に重要な役割を果たしている膜受容体へのリガンドであり、例えば、Nerve Growth Factor (NGF)、Brain-derived Neurotrophic Factor (BDNF)、Neurotrophin 3 (NT-3)、Neurotrophin 4/5 (NT-4/5)、Neurotrophin 6 (NT-6)、basic FGF、acidic FGF、FGF-5、Epidermal Growth Factor (EGF)、Hepatocyte Growth Factor (HGF)、Insulin、Insulin Like Growth Factor 1 (IGF 1)、Insulin Like Growth Factor 2 (IGF 2)、Glia cell line-derived Neurotrophic Factor (GDNF)、TGF-b2、TGF-b3、Interleukin 6 (IL-6)、Ciliary Neurotrophic Factor (CNTF)およびLIFなどが挙げられる。本発明において好ましい神経栄養因子は、GDNF、BDNFおよびNT-3から成るグループより選択される因子である。
 また、神経前駆細胞を培養する工程において、コーティング処理された培養容器を用いて培養してもよい。コーティング剤としては、例えば、マトリゲル(BD)、コラーゲン、ゼラチン、ラミニン、ヘパラン硫酸プロテオグリカン、またはエンタクチン、およびこれらの組み合わせが挙げられる。好ましくは、マトリゲルである。
 培養条件について、培養温度は、以下に限定されないが、約30~40℃、好ましくは約37℃であり、CO2含有空気の雰囲気下で培養が行われ、CO2濃度は、好ましくは約2~5%である。
 培養期間は、長期の培養により特段の問題が起きないため、特に限定されないが、20日以上、30日以上、40日以上、50日以上、60日以上、70日以上、80日以上、90日以上、またはそれ以上の日数が挙げられる。好ましくは、66日以上である。
 上記に示した添加する神経栄養因子の濃度については、当業者がその効力により適宜選択して用いてよく、1ng/ml、2ng/ml、3ng/ml、4ng/ml、5ng/ml、6ng/ml、7ng/ml、8ng/ml、9ng/ml、10ng/ml、15ng/ml、20ng/ml、30ng/ml、40ng/ml、50ng/ml、60ng/ml、70ng/ml、80ng/ml、90ng/mlおよび100ng/mlが例示される。好ましくは、10ng/mlである。
<細胞を解離させる工程>
 細胞を解離させる工程においては、互いに接着して集団を形成している細胞を個々の細胞に解離(分離)させる。細胞を解離させる方法としては、例えば、力学的に解離する方法、プロテアーゼ活性とコラゲナーゼ活性を有する解離溶液(例えば、Accutase(TM)およびAccumax(TM)など)またはコラゲナーゼ活性のみを有する解離溶液を用いた解離方法が挙げられる。好ましくは、プロテアーゼ活性とコラゲナーゼ活性を有する解離溶液(特に好ましくは、Accutase(TM))を用いて細胞を解離する方法が用いられる。
<解離させた細胞をコーティング処理されていない培養容器を用いて神経栄養因子を含有する培養液中で接着培養する工程>
 コーティング処理されていない培養容器とは、当業者が汎用的に用いている細胞培養用ディッシュ、プレートまたはフラスコを意味し、その形状は特に限定されない容器であり、培養に際して、別途コーティング剤による処理工程を経ていない容器である。好ましくは、ポリスチレン製の培養容器である。コーティング剤としては、例えば、マトリゲル(BD)、コラーゲン、ゼラチン、ラミニン、ヘパラン硫酸プロテオグリカン、またはエンタクチンが挙げられ、本工程では、少なくともこれらのコーティング剤にて処理を行わない培養容器を用いることが好ましい。
 細胞を解離後の培養においては、上記と同様の神経栄養因子を含有する培養液を用いることができる。培養期間は、長期の培養により特段の問題が起きないため、特に限定されないが、5日以上、10日以上、15日以上、20日以上、25日以上、30日以上、35日以上、40日以上、45日以上、50日以上、またはそれ以上の日数が挙げられる。好ましくは、30日以上である。
<追加工程>
 本発明では、アストロサイトを製造するにあたり、さらに得られた細胞を解離させ、コーティング処理されていない培養容器を用いてGDNF、BDNFおよびNT-3から成るグループより選択される因子を含有しない培養液中で接着培養しても良い。細胞の解離は、上記と同様の方法を用いて行うことができ、プロテアーゼ活性とコラゲナーゼ活性を有する解離溶液を用いて行うことが望ましい。
 本発明において、GDNF、BDNFおよびNT-3から成るグループより選択される因子を含有しない培養液は、動物細胞の培養に用いられる培地を基礎培地として調製することができる。基礎培地としては、例えばIMDM培地、Medium 199培地、Eagle's Minimum Essential Medium (EMEM)培地、αMEM培地、Dulbecco's modified Eagle's Medium (DMEM)培地、Ham's F12培地、RPMI 1640培地、Fischer's培地、Neurobasal Medium(ライフテクノロジーズ)およびこれらの混合培地などが包含される。好ましくは、Neurobasal Mediumである。培地には、血清が含有されていてもよいし、あるいは無血清でもよい。必要に応じて、培地は、例えば、アルブミン、トランスフェリン、Knockout Serum Replacement(KSR)(ES細胞培養時のFBSの血清代替物)、N2サプリメント(Invitrogen)、B27サプリメント(Invitrogen)、脂肪酸、インスリン、コラーゲン前駆体、微量元素、2-メルカプトエタノール、3'-チオールグリセロールなどの1つ以上の血清代替物を含んでもよいし、脂質、アミノ酸、L-グルタミン、Glutamax(Invitrogen)、非必須アミノ酸、ビタミン、増殖因子、低分子化合物、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類などの1つ以上の物質も含有し得る。好ましいGDNF、BDNFおよびNT-3から成るグループより選択される因子を含有しない培養液は、N2サプリメントおよびGlutamaxを含有するDMEM/F12または血清およびGlutamaxを含有するDMEM/F12である。
 本工程は、長期の培養により特段の問題が起きないため、特に限定されないが、5日以上、10日以上、15日以上、20日以上、25日以上、30日以上、35日以上、40日以上、45日以上、50日以上、またはそれ以上の日数が挙げられる。好ましくは、20日以上または30日以上である。
 本工程の培養条件について、培養温度は、以下に限定されないが、約30~40℃、好ましくは約37℃であり、CO2含有空気の雰囲気下で培養が行われ、CO2濃度は、好ましくは約2~5%である。
 本細胞の解離と培養を行う工程は、アストロサイトの取得効率をより高めるため、少なくとも1回以上行われることが好ましい。例えば、2回以上、3回以上、4回以上または5回以上が挙げられる。より好ましくは3回である。
<アストロサイトの選択方法>
 上述した神経前駆細胞を神経栄養因子を含有する培養液中で培養する工程後には、アストロサイトに加えニューロンも同時に製造され得る。しかしながら、アストロサイトはニューロンなどと比較して、コーティング処理されていない培養容器に接着しやすいので、この方法を用いると、アストロサイトとニューロンが混在する細胞群から高効率でアストロサイトを選択的に得ることができる。詳細には、上述した細胞を分離する工程およびコーティング処理されていない培養容器を用いて培養する工程を含む方法である。
アルツハイマー病の予防および治療薬のスクリーニング方法
 本発明は、前述のように得られたiPS細胞由来の神経系細胞(神経細胞またはアストロサイト)と試験物質とを接触させ、各指標を用いて、アルツハイマー病の予防および治療薬の候補物質をスクリーニングする方法を提供する。本発明において使用される、好ましいiPS細胞は、アルツハイマー病患者由来のiPS細胞または外来性の変異型APPを導入されたiPS細胞であり、APPの変異または変異型APPとは、APPの693のグルタミン酸の欠損変異を有するiPS細胞である。
 他の態様として、本発明において使用されるiPS細胞としては、当該iPS細胞から作製された神経系細胞においてAβオリゴマーの蓄積が確認されるiPS細胞であることが望ましい。本発明では、このようなiPS細胞として、孤発型アルツハイマー患者由来のiPS細胞、内在性のAPPに変異を有するiPS細胞または外来性の変異APPを導入されたiPS細胞が例示される。
 本発明の一つの態様として、指標としてAβの量を用いる場合、次の工程を含む方法によってアルツハイマー病の治療薬または予防薬をスクリーニングすることができる;
(a)候補物質を、iPS細胞由来の神経系細胞(神経細胞またはアストロサイト)と接触させる工程、
(b)前記神経細胞内のAβオリゴマーの量を測定する工程、および
(c)前記量が候補物質と接触させなかった場合と比較して減少した場合、前記候補物質をアルツハイマー病の治療薬または予防薬として選出する工程。
 神経細胞内のAβオリゴマーの量を測定する方法として、得られた細胞を洗浄後、任意の溶解液を用いて得られた細胞溶解液を用いて測定する方法が例示される。この時、免疫学的測定法を用いて測定することができる。免疫学的測定法は、例えば、ELISA、ウエスタンブロット、免疫沈降、スロットもしくはドットブロットアッセイ、免疫組織染色、ラジオイムノアッセイ(RIA)、蛍光イムノアッセイ、アビジン-ビオチンまたはストレプトアビジン-ビオチン系を用いるイムノアッセイなどを含むがこれらに限定されない。好ましくは、ELISAであり、例えば、sandwich ELISAである。他の神経細胞内のAβオリゴマーの量を測定する方法として、得られた細胞をAβオリゴマーに対する抗体を用いて免疫組織染色を行い、染色領域を細胞画像解析装置を用いて測定する方法が例示される。細胞画像解析装置として、例えばインセルアナライザーが挙げられる。
 本発明のスクリーニング方法においては、任意の試験物質を候補物質として用いることができ、いかなる公知化合物および新規化合物であってもよく、例えば、細胞抽出物、細胞培養上清、微生物発酵産物、海洋生物由来の抽出物、植物抽出物、精製タンパク質または粗タンパク質、ペプチド、非ペプチド化合物、合成低分子化合物、天然化合物等が挙げられる。本発明において、試験物質はまた、(1)生物学的ライブラリー法、(2)デコンヴォルーションを用いる合成ライブラリー法、(3)「1ビーズ1化合物(one-bead one-compound)」ライブラリー法、及び(4)アフィニティクロマトグラフィ選別を使用する合成ライブラリー法を含む当技術分野で公知のコンビナトリアルライブラリー法における多くのアプローチのいずれかを使用して得ることができる。アフィニティクロマトグラフィ選別を使用する生物学的ライブラリー法はペプチドライブラリーに限定されるが、その他の4つのアプローチはペプチド、非ペプチドオリゴマー、または化合物の低分子化合物ライブラリーに適用できる(Lam (1997) Anticancer Drug Des. 12: 145-67)。分子ライブラリーの合成方法の例は、当技術分野において見出され得る(DeWitt et al. (1993) Proc. Natl. Acad.Sci. USA 90: 6909-13; Erb et al. (1994) Proc. Natl. Acad. Sci. USA 91: 11422-6;Zuckermann et al. (1994) J. Med. Chem. 37: 2678-85; Cho et al. (1993) Science 261: 1303-5; Carell et al. (1994) Angew. Chem. Int. Ed. Engl. 33: 2059; Carell etal. (1994) Angew. Chem. Int. Ed. Engl. 33: 2061; Gallop et al. (1994) J. Med. Chem. 37: 1233-51)。化合物ライブラリーは、溶液(Houghten (1992) Bio/Techniques 13: 412-21を参照のこと)またはビーズ(Lam (1991) Nature 354: 82-4)、チップ(Fodor (1993) Nature 364: 555-6)、細菌(米国特許第5,223,409号)、胞子(米国特許第5,571,698号、同第5,403,484号、及び同第5,223,409号)、プラスミド(Cull et al. (1992)Proc. Natl. Acad. Sci. USA 89: 1865-9)若しくはファージ(Scott and Smith (1990)Science 249: 386-90; Devlin (1990) Science 249: 404-6; Cwirla et al. (1990) Proc. Natl. Acad. Sci. USA 87: 6378-82; Felici (1991) J. Mol. Biol. 222: 301-10; 米国特許出願第2002103360号)として作製され得る。
 スクリーニングの方法は、一つの態様において、試験物質と接触させない場合の神経系細胞内のAβオリゴマーの量と、試験物質と接触させた場合の神経系細胞内のAβオリゴマーの量とを比較して、接触時のAβオリゴマーの量がより減少した場合に、試験物質をアルツハイマー病の予防および治療薬の候補物質として選択する方法である。
 本発明の他の態様において、指標としてERストレス量、カスパーゼ4の活性、Transgelin および酸化ストレス量から成る群から選択される少なくとも一つの指標を用いる場合、次の工程を含む方法によってアルツハイマー病の治療薬または予防薬をスクリーニングすることができる;
(a)候補物質を、iPS細胞由来の神経系細胞(神経細胞またはアストロサイト)と接触させる工程、
(b)前記神経細胞内のERストレス量、カスパーゼ4の活性、Transgelin量 および酸化ストレス量から成る群から選択される少なくとも一つの指標を測定する工程、および
(c)前記量が候補物質と接触させなかった場合と比較して減少した場合、前記候補物質をアルツハイマー病の治療薬または予防薬として選出する工程。
 本発明において、小胞体(ER)ストレスとは、正常な折りたたみ構造を有していない変性タンパク質が小胞体に蓄積することにより引き起こされる悪影響を意味し、ERストレス量は、小胞体ストレス応答の程度を測定することによって行われ得る。ここで、小胞体ストレス応答とは、変性タンパク質の原因となるタンパク質の発現を低下させること、または分子シャペロンの量を増加させることなどを意味する。従って、ERストレス量の測定は、例えば、分子シャペロンなどのERストレスマーカー量を測定することにより行われる。ここで、ERストレスマーカーは、例えば、BiP (Binding Immunoglobulin Protein)、XBP-1 (X Box-binding Protein 1)、eIF2A (Eukaryotic translation Initiation Factor 2 A)、XIAP(X-chromosome-linked Inhibitor of Apoptosis)、ATF4 (Activating Transcription Factor 4)、IRE1 (Inositol-Requiring Enzyme 1)、PERK (PKR-Like ER Kinase)およびATF6 (Activating Transcription Factor 6)を含むがこれらに限定されない。好ましくは、ERストレスマーカーは、BiPである。
 ERストレス量は、例えば、免疫学的測定法を用いて測定することができる。免疫学的測定法は、例えば、ELISA、ウエスタンブロット、免疫沈降、スロットもしくはドットブロットアッセイ、免疫組織染色、ラジオイムノアッセイ(RIA)、蛍光イムノアッセイ、アビジン-ビオチンまたはストレプトアビジン-ビオチン系を用いるイムノアッセイなどを含むがこれらに限定されない。好ましくは、ELISAであり、例えば、sandwich ELISAである。
 他のERストレス量を測定する方法として、得られた細胞をERストレスマーカーに対する抗体を用いて免疫組織染色を行い、染色領域を細胞画像解析装置を用いて測定する方法が例示される。細胞画像解析装置として、例えばインセルアナライザーが挙げられる。
 このようにして、スクリーニングされた試験物質は、アルツハイマー病の予防および治療薬として使用し得る。
 本発明において、カスパーゼ4の活性とは、活性型のカスパーゼ4の量を測定することで定量できる。ここで、活性型のカスパーゼ4は、切断されシステインプロテアーゼ活性を有する。活性型カスパーゼ4の測定には、切断部位特異抗体を用いて免疫学的測定法を用いて測定することができる。この他にも、市販されている蛍光カスパーゼ基質を用いてその活性を測定することができる。
 本発明において、Transgelinとは、NCBIのAccession NO. NM_001001522またはNM_003186で表される遺伝子であり、mRNAまたはタンパク質の形態にてその量を認識することができる。またこの時、遺伝子の一部のみで認識される量であってもよく、mRNAの場合、ORF配列において連続した少なくとも15塩基長の塩基配列を有する配列もしくはその相補鎖を認識することで良く、タンパク質の場合、連続した少なくとも3から6アミノ酸長を有する配列を認識することで良い。
 本発明のTransgelinの量をmRNAの形態で測定する場合、ノーザンブロット法、サザンブロット法、定量的RT-PCR法、リアルタイムPCR法、in situハイブリダーゼーション法などといった、特定の遺伝子、mRNAおよびcDNAを特異的に認識し、また検出する公知の方法において、常法に従ってプライマーまたはプローブとして利用して行うことができる。さらに、Transgelinの量をタンパク質の形態で測定する場合、免疫学的測定法を用いて測定することができる。
 本発明において、酸化ストレスとは、活性酸素種(ROS)または活性窒素種(RNS)によりタンパク質、脂質またはDNAが障害される現象を意味し、酸化ストレス量は、酸化修飾された基質量、発現亢進した酸化ストレス消去酵素の量、RNSまたはROSの量を測定することで定量できる。ここで、酸化修飾とは、リン酸化、水酸化、ニトロ化およびカルボニル化などが例示される。また、酸化ストレス消去酵素とは、酸化ストレスに対して細胞を保護する働きを有する酵素で、オキシドレダクターゼ、ペルオキシダーゼおよびペルオキシレドキシン活性を有するタンパク質が例示される。酸化ストレス量の測定は、例えば、DNA切断量、8-ヒドロキシグアノシン、マロンジアルデヒド、4-ヒドロキシノネナール、8-イソプロスタン、PRDX1(NCBIのAccession NO. NM_002574)、PRDX4(NCBIのAccession NO.NM_006406)、PRDX5(NCBIのAccession NO. NM_012094)、PXDN(NCBIのAccession NO.NM_012293)、MGST3(NCBIのAccession NO. NM_004528)、MED31(NCBIのAccession NO.NM_016060)、RNS(例えば、一酸化窒素)およびROS(例えば、過酸化水素、スーパーオキサイドアニオンラジカルまたはハイドロキシラジカル)などの量を当業者に周知の方法を用いて測定する事によって成し得る。
 本発明の他の態様において、指標としてiPS細胞由来の神経細胞の数を用いる場合、次の工程を含む方法によってアルツハイマー病の治療薬または予防薬をスクリーニングすることができる;
(a)候補物質を、iPS細胞由来の神経細胞と接触させる工程、
(b)前記神経細胞の生細胞数またはその代替値を測定する工程、および
(c)前記生細胞数またはその代替値が候補物質と接触させなかった場合と比較して増加した場合、前記候補物質をアルツハイマー病の治療薬または予防薬として選出する工程。
 本発明において、神経細胞数の減少を顕著に検出するため、当該神経細胞を神経栄養因子を含まない培養液で培養した後、神経細胞数を測定しても良い。他の態様として、過酸化水素を培養液に添加して培養した後、神経細胞数を測定しても良い。この時用いる過酸化水素として、例えば、50μMから500μMの濃度であってもよく、好ましくは100μMから400μMであり、より好ましくは 、200μMである。
 本発明において、神経細胞のみを対象として測定するために、神経細胞を特異的に染色してから計測してもよく、例えば、BF1、βIIIチューブリン、TuJ1、NeuN、160kDaの神経フィラメントタンパク質、MAP2ab、グルタメート、シナプトフィジン、グルタミン酸デカルボキシラーゼ(GAD)、チロシンヒドロキシラーゼ、GABA、セロトニン、Synapsin I、TBR1、CTIP2およびSATB2からなる群から選択される少なくとも一つの遺伝子によって染色しても良い。また、これらの遺伝子を直接染色させず、これらの遺伝子を発現するプロモーターによって誘導されるマーカー遺伝子によって染色されても良い。マーカー遺伝子としては、GFP、RFP、YFP等の蛍光を呈するタンパク質をコードする遺伝子が例示される。
 本発明において、生細胞数を測定する方法としては、工程(a)にて得られた神経細胞を顕微鏡等を用いて目視にて計測することによっても行われてもよく、細胞は、MTTなど当業者に周知の方法によって生細胞を染色して計測してもよい。また、細胞自動カウント装置などを用いて行っても良い。また、LDHやトリパンブルーなど死細胞数等の逆数を生細胞数の代替値として用いてよい。
アルツハイマー病の予防および治療薬のスクリーニング用キット
 本発明に係るアルツハイマー病の予防および治療薬のスクリーニング用キットは、
(a)変異型APPを有するiPS細胞由来の神経細胞またはアストロサイト、および/または
(b)Aβオリゴマー、ADAM17、BACE1、BiP、切断カスパーゼ4、PRDX4および活性酸素種からなる群から選択される少なくとも一つの指標を測定するための試薬を含む。
 また他の態様において、本発明に係るアルツハイマー病の予防および治療薬のスクリーニング用キットは、(a)変異型APPを有するiPS細胞、(b)神経系細胞(神経細胞またはアストロサイト)を分化誘導するための試薬、および(c)Aβの量および/またはERストレス量および/またはTransgelinの量および/または神経細胞数を測定するための試薬を含む。
 さらなる態様において、本発明に係るアルツハイマー病の予防および治療薬のスクリーニング用キットは、(a)変異型APPを有する体細胞、(b)iPS細胞を製造するための初期化物質、(c)神経系細胞(神経細胞またはアストロサイト)を分化誘導するための試薬、および(d)Aβの量および/またはERストレス量および/またはTransgelinの量および/または神経細胞数を測定するための試薬を含む。
 本発明において、APPの変異は、アルツハイマー病の原因となり得る変異であり、例えば、E693Δ変異である。
 iPS細胞を製造するための初期化物質は、上述のiPS細胞の製造方法の初期化物質を用いることができる。核初期化に際して、iPS細胞の誘導効率を高めるために、他の因子を含んでもよい。好ましくは、初期化物質は、OCTファミリー、MYCファミリー、KLFファミリーおよびSOXファミリーからなる群から選択される因子を少なくとも一つ含む。
 神経細胞またはアストロサイトを分化誘導するための試薬は、上述の分化誘導法に記載した試薬を用いることができる。
 Aβオリゴマー、BiP、切断カスパーゼ4、PRDX4またはROSの量を測定するための試薬は、各測定方法において用いられる指標を認識し得る物質であれば何でもよく、例えば、当該試薬は、対象がタンパク質の場合では、特異的な抗体であり、ROSの場合では、活性酸素種を捕捉する蛍光プローブが例示される。
 アルツハイマー病の予防および治療薬のスクリーニング用キットには、上記の任意の試験物質を含むこともできる。
 アルツハイマー病の予防および治療薬のスクリーニング用キットには、さらに、iPS細胞の製造手順、分化誘導の手順を記載した書面や説明書を含んでもよい。
 本発明を以下の実施例でさらに具体的に説明するが、本発明の範囲はそれら実施例に限定されないものとする。
実施例1
iPS細胞(iPSCs)の樹立
 APP内にE698の欠損型変異(E693Δ)を有するアルツハイマー病患者、717番目のバリンがロイシンへ置換された変異(V717L)を有するアルツハイマー病患者および2名の孤発性アルツハイマー病患者より同意を得て3 mmの皮膚生検で得られた外植片から皮膚線維芽細胞(HDF)を作製した。1-2週間後、外植片から増殖させた線維芽細胞を継代した。次いで、エピソーマルベクターを用いて、初期化因子としてのヒトcDNAs(SOX2、KLF4、OCT4、L-MYC、LIN28)およびp53についてのshRNAをHDFに導入した(Okita et al., Nat Methods. May;8(5):409-12.2011)。導入の数日後、線維芽細胞を回収し、SNLフィーダー細胞層上に再播種した。翌日、培地を4 ng/ml bFGF (Wako Chemicals, Osaka, Japan)を補充した霊長類胚性幹細胞用培地(Reprocell, Kanagawa, Japan)で置換した。一日おきに培地を交換した。導入の30日後、iPS細胞コロニーを取り出した(それぞれ、AD(E693Δ)-1、AD(E693Δ)-2、AD(E693Δ)-3、AD(V717L)-1、AD(V717L)-2、AD(V717L)-3、AD(sporadic)-1およびAD(sporadic)-2と称す)。
 本発明で用いたAPP遺伝子に突然変異を有さない3種の対照iPSC株のうち1種の株は、これまでに作製されたiPS細胞を用い(Control-3(409B2))(Okita et al., Nat Methods. May;8(5):409-12.2011)、2種については上記と同様の方法にて非AD者より同意を得て作製した(Control-1および2)。これらのiPS細胞の性質は、下記に示す方法により確認した。
免疫細胞化学による解析
 4%パラホルムアルデヒド(pH 7.4)中、室温で30分間細胞を固定し、PBSで洗浄した。 0.2% Triton X-100を含むPBS中、室温で10分間細胞を透過処理し、PBSで洗浄した。10%ロバ血清を含むPBSを用いて、室温で60分間非特異的結合をブロックした。一次抗体を用いて、4℃で一晩細胞をインキュベートし、次いで、適当な蛍光タグ化二次抗体で標識した。核を標識するために、DAPI (Life Technologies)を用いた。FV1000共焦点レーザー顕微鏡(OLYMPUS, Tokyo, Japan)、LSM710顕微鏡(Carl Zeiss, Gottingen, Germany)またはDelta Vision (Applied Precision, Issaquah, WA)により蛍光像を得た。この時、一次抗体として、 抗NANOG抗体 (1:10; R&D Systems)を用いた。その結果、対照およびAD患者由来のiPSCsはいずれも内因性の多能性マーカーを発現していることが確認された(図1Aおよび図2A)。
核型分析および遺伝子型解析
 核型分析は、以前に示された方法により行われた。その結果、いずれのiPSCsも正常な核型を示した。一方、APP単一ヌクレオチド突然変異の遺伝子型解析は、ゲノムDNAのPCR増幅により行われ、直接塩基配列を決定することで行われた(3100 Genetic Analyzer, Applied Biosystems, Life Technologies, CA)。その結果、AD患者由来の2種類のiPSCsにおいて、APP内に変異(E693ΔおよびV717L)を有していることが確認された(図1Bおよび図2B)。
テラトーマ形成アッセイ
 未分化なiPSCsをCTK溶液により解離させ回収し、沈殿物をDMEM/F12に懸濁した。細胞をNOGマウス(Central Institute for Experimental Animals, Kawasaki, Japan)の皮下に移植した。移植の8週間後、腫瘍を切り出し、4%ホルムアルデヒドを含むPBSで固定した。パラフィン包理組織を薄切し、ヘマトキシリンおよびエオシンで染色した。その結果、本実施例で用いたiPSCsはいずれも三胚葉への分化(テラトーマ)を示し、多能性において区別できない程類似していた(一部の結果を図1Cに示す)。
in vitro分化
 誘導された対照iPSCsおよびAD-iPSCsをCTK溶液により解離させ回収し、細胞塊を、20%ノックアウト血清代替物(KSR, Life Technologies)、2 mM L-グルタミン、0.1M非必須アミノ酸、0.1 M 2-メルカプトエタノール(Life Technologies)、ならびに0.5%ペニシリンおよびストレプトマイシンを含有するDMEM/F12の入ったペトリ皿に移し、胚葉体(EB)を形成させた。この時、一日おきに培地を交換した。8日間培養後、分化を進行させるために、ゼラチン被覆カバーガラス上へ播種し、さらに8日間、 DMEM + 10%ウシ胎児血清中で培養した。その結果、本実施例で用いたiPSCsはいずれも三胚葉への分化を示し、多能性において区別できない程類似していた(一部の結果を図1Dに示す)。
バイサルファイトゲノムシークエンシング(Bisulfite Genomic Sequencing)
 重亜硫酸塩修飾のためiPSCからのゲノムDNA (1μg)を、EZ DNAメチル化Gold Kit (Zymoresearch, Irvine, CA)を用いて処理した。続いて、Oct-4プロモーター中に保存された1つのCpG領域およびNanogプロモーター中に保存された1つのCpG領域をExTaq Hot start version (TaKaRa BIO, Shiga, Japan)を用いてPCRにより増幅した。得られたPCR産物をpCR4ベクター(Life Technologies)にサブクローン化し、各10個のクローンを、Sp6ユニバーサルプライマーを用いて塩基配列決定を行うことにより確認した。その結果、本実施例で用いたiPSCsは、測定されたOct-4およびNanogプロモーターの各領域において高度に脱メチル化されていることが確認された。
実施例2
大脳皮質ニューロン(神経細胞)への分化誘導
 iPS細胞由来大脳皮質ニューロンを得るために、以前に報告された方法(Nat Biotechnol. 2009;27:275-280およびPLoS One. 2009;4:e6722)の変法を用いた。簡潔には、次の方法である。上記の方法で得られたiPSCsを単一細胞まで解離させ、Pluronic F-127(Sigma-Aldrich)をコーティングしたU型96ウェルプレート(Greiner bio-one)にて、2μM dorsomorphinおよびSB431542を含有する5% DFK培地(DMEM/Ham's F12 (Gibco), 5% KSR (Gibco), NEAA (Invitrogen), L-glutamine (Sigma-Aldrich), 0.1 M 2-mercaptoethanol (Invitrogen))中で再凝集させることで胚様体(EB)形成させた(神経誘導段階(P1):0 dayから8 day)。
 続いて、得られたEBをマトリゲル(Becton Dickinson)をコーティングした6ウェルプレートへ移し、2μM dorsomorphin、SB431542およびN2 supplement(Invitrogen)を含有するDF培地(DMEM/Ham's F12, NEAA, L-glutamine, 0.1 M 2-mercaptoethanol)中で培養した(パターニング段階(P2):8 dayから24 day)。この時、多くの神経前駆細胞(Nestin陽性細胞)が確認された。 さらに、Accutase(Innovative Cell Technologies, Inc.)を用いて分離し、マトリゲルをコーティングした24ウェルプレートへ移し、B27(Vitamin A不含) (Gibco)、10 ng/ml BDNF、10 ng/ml GDNFおよび10 ng/ml NT-3を含有するneurobasal(Gibco)培地中で、培養した(神経成熟段階(P3):24 dayから56 dayまたは24 dayから72 day)。
 56日間培養した結果、対照およびAD(E693Δ)患者由来のiPSCsから分化誘導された大脳皮質ニューロン(以下、神経細胞という場合がある)において、大脳皮質ニューロンサブタイプマーカーであるTBR1、CTIP2およびSATB2の発現が観察され、各iPSCsから大脳皮質ニューロンに分化していることが確認された(図1EおよびF)。
 同様に、72日間培養した結果、対照、AD(E693Δ)患者、AD(V717L)患者由来および孤発性AD患者のiPSCsから分化誘導された神経細胞において、TUJ1TBR1、およびSATB2の発現が観察され、各iPSCsから同程度に大脳皮質ニューロンに分化していることが確認された(図2C)。
実施例3
アストロサイトへの分化誘導
(1)神経前駆細胞の誘導
 上記の方法で得られたiPSCsをAccutase(Innovative Cell Technologies)により解離した。解離したiPSCsを、2μM Dorsomorphin(Sigma-Aldrich)および10μM SB431542(Cayman Chemical)を添加したDFK5%培地(5%KSR(Invitrogen)、L-glutamine(Sigma-Aldrich)および0.1M 2-mercaptoethanol(Invitrogen)を添加したDMEM/Ham's F12(Gibco))に懸濁、さらに2% Pluronic F-127(Sigma-Aldrich)ethanol溶液でコートしたU-bottom 96-wellプレートに播種し胚様体(EB)を形成させ、浮遊培養により8日間培養した。続いて、得られたEBを マトリゲル(BD)でコートした6-well プレートへ移し、1x N2 supplement(Invitrogen)、2μM Dorsomorphinおよび10μM SB431542を添加したDFK5%培地にて接着培養により16日間培養し(通算24日間)、神経前駆細胞を得た。
(2)アストロサイトの誘導
 得られた神経前駆細胞をAccutase(Innovative Cell Technologies)により解離させ、マトリゲルコートした12-wellプレートを用いて、1x B27 without Vitamin A(Invitrogen)、1x Glutamax(Invitrogen)、10ng/ml BDNF、10ng/ml GDNFおよび10ng/ml NT-3を添加したNeurobasal medium(Invitrogen)にて接着培養により66日間培養した(通算90日間)。続いて、得られた細胞をAccutaseを用いて解離させ、何もコートしていない  6-cmディッシュへ移し、1x B27 without Vitamin A、1x Glutamax、10ng/ml BDNF、10ng/ml GDNFおよび10ng/ml NT-3を添加したNeurobasal mediumにて接着培養により30日間培養した(通算120日間)。この時、接着しなかった細胞はアノイキスにより死滅した。この接着した細胞をAccutaseにより解離させ、何もコートしていない6-cmディッシュへ移し、1x N2 supplementを添加したDMEM/F12, Glutamax(Invitrogen)にて、接着培養により30日間培養した(通算150日間)。さらに、2度得られた細胞を解離させ同様の条件にて30日間培養し、GFAP陽性のアストロサイトを得た(通算200日間)。
実施例4
AD-iPSCs由来の神経細胞におけるAβ分泌
 細胞外AβがAD-iPSCs由来の神経細胞において減少し得るという以前の仮説を検証するために、神経細胞およびアストロサイトの細胞外のAβ40およびAβ42の量を解析した。細胞外のAβ40およびAβ42の量は、以前に記載されたとおり(Yahata et al., PLoS One. 6(9):e25788. 2011)、2日間培養した培養上清を回収し、Aβの中間点に特異的なモノクローナル抗体とAβ40もしくはAβ42のC末端に特異的なモノクローナル抗体の組み合わせを用いて、サンプル上清をサンドウィッチELISA(Wako)により測定された。この結果、細胞外のAβ40およびAβ42の量は共に、AD(E693Δ)-iPSCs由来の神経細胞およびアストロサイトにおいて有意に減少することが確認された(図3AおよびB)。この時のAβ42/ Aβ40の値を算出したところ、神経細胞においては変化が見られず、アストロサイトにおいてはAD(E693Δ)-iPSCs由来の神経細胞において減少していた。一方、AD(V717L)-iPSCs由来の神経細胞では、Aβ42の分泌量が有意に上昇することが確認された。さらに、この神経細胞において1 μMのβ- Secretase inhibitor IV (BSI)を添加してAβの分泌量の変化を確認したところ、AD(E693Δ)-iPSCs由来の神経細胞からのAβ40およびAβ42の分泌量に変化は見られなかったが、対照iPSCs、AD(V717L)-iPSCsおよび孤発性AD-iPSCs由来の神経細胞ではAβ40およびAβ42の分泌量が減少した。
実施例5
AD-iPS細胞由来の神経細胞およびアストロサイトにおけるAβオリゴマーの蓄積
 AD-iPSCs由来の神経細胞およびアストロサイトがAβオリゴマーを内包するか否かを調べるために、Aβオリゴマー特異的抗体であるNU-1 (Gong Y et al., Proc Natl Acad Sci U S A. 100:10417-22.2003)または11A1を用いて、iPSC由来の神経細胞およびアストロサイトの免疫細胞化学解析を行ったところ、Aβオリゴマーが点状存在し、AD(E693Δ)-iPSCs由来の神経細胞において著しく増加していることが見出された(図4A)。これらの点状構造は、AD-iPSCs由来のアストロサイトにおいても確認されたが、由来となった線維芽細胞においてはほとんど見出されなかった。さらに、MAP2陽性細胞におけるAβオリゴマーを特異的に染色し定量的に解析を行ったところ、Aβオリゴマー陽性の点状構造が、対照の神経細胞と比較してAD-iPSCs由来の神経細胞培養物において有意に増加していることが明らかとなった(図4B)。Aβに対する他の抗体である11A1を用いた場合にも同様の結果が得られた。続いて、ドットブロット解析を行ったところ、同様にAD(E693Δ)-iPSCs由来の神経細胞内に蓄積したAβオリゴマーが増加していることが観察された(図4CおよびD)。このAD-iPSCs由来の神経細胞におけるAβオリゴマーの増加はBSIで処理することにより対照と同等量まで抑制されることが示された。
 さらに、対照iPSCs、AD(E693Δ)-iPSCs、AD(V717L)-iPSCsおよび孤発性AD-iPSCs由来の神経細胞およびアストロサイトにおいて同様にドットブロット解析を行ったところ、全てのAD(E693Δ)-iPSCsおよび1例の孤発性AD-iPSCs由来の神経細胞およびアストロサイトにおいて、有意にAβオリゴマー量が増加することが確認できた(図5A、5Bおよび5C)。また、これらの増加はBSIで処理することにより対照と同等量まで抑制されることが示された。
 続いて、対照iPSCs由来の神経細胞において変異型APPであるE693Δ型を強制発現させたところ、強制発現しなかったiPSCs由来の神経細胞と比べてAβオリゴマー陽性の点状構造が多いことが確認された(図5D)。このことから、APP-E693Δ変異により、Aβオリゴマーの細胞内での蓄積が引き起こされることが示唆された。
実施例6
他のアルツハイマー病の特異的マーカーの探索
 β-およびγ-セクレターゼ活性によるAPPプロセッシングは、主に小胞エンドソーム画分内で進むことが知られている。そこで、AD(E693Δ)-iPSCs由来の神経細胞中の細胞内小器官および小胞画分におけるにAβオリゴマー陽性点状構造の存在を確認したところ、Aβオリゴマー陽性点状構造は、小胞体(ER)マーカーであるBiP、初期エンドソームマーカーであるEEA1およびリソソームマーカーであるLAMP2と共染色された(図6A)。さらに、ERストレスマーカーであるBiPまたは活性型カスパーゼ4のタンパク質の発現量を確認したところ、BiPおよび活性型カスパーゼ4は、対照よりもAD(E693Δ)-iPSCs由来の神経細胞において高発現していた(図6B、6C、6Dおよび図8)。
 一方、Aβの産生を抑制するβ-セクレターゼ阻害剤(BSI)により処理したところ、AD-iPSCs由来の神経細胞においてこれらのERストレスマーカーの発現が抑制された(図6B、6Cおよび図8)。以上より、APP-E693Δ型の変異AβによりERストレスが引き起こされていると考えられる。
実施例7
DNAマイクロアレイを用いた遺伝子発現解析
 APP-E693Δ型の神経細胞で発現が変化している分子を探索するためDNAマイクロアレイを用いた網羅的解析を行った。その結果。Transglinの発現量がAD(E693Δ)-iPSCsで上昇していることが見出された(図7A)。さらに、遺伝子オントロジー解析によりペルオキシレドキシン活性、オキシドレダクターゼ活性およびペルオキシダーゼ活性を含む酸化ストレス関連のカテゴリーがAD(E693Δ)-iPScs由来の神経細胞で亢進していることが明らかになった。一方、グリコシル化関連カテゴリーは減退しており、小胞体/ゴルジ体の機能がアルツハイマー病の神経細胞で不安定になっていることを示唆された。ここで、ペルオキシレドキシン活性に関与するPRDX4(peroxiredoxin-4)の発現は、対照と比較してAD-iPScs由来の神経細胞において高発現していた(図7B)。ウエスタンブロット法によりPRDX4の発現量を測定したところ、AD-iPScs由来の神経細胞において3倍増加していた(図7C、7Dおよび図8)。この増加は、BSI添加により減弱したことから、酸化ストレスは、Aβオリゴマーの形成により引き起こされると考えられる。
 同様に、AD(V717L)-iPSCsおよび孤発性AD-iPSCs由来の神経細胞およびアストロサイトにおいて調べたところ、1例の孤発性AD-iPSCs由来の神経細胞では、BiPおよびperoxiredoxin-4の発現がAD(E693Δ)-iPSCs由来の神経細胞と同様に増加することが確認された(図8)。また、AD(E693Δ)-iPSCsおよび1例の孤発性AD-iPSCs由来のアストロサイトにおいて、BiP、活性型カスパーゼ4およびperoxiredoxin-4の発現に同神経細胞と同じような傾向が見られた(図9)。
 続いて、AD(E693Δ)-iPSCs、AD(V717L)-iPSCsおよび孤発性AD-iPSCs由来の神経細胞およびアストロサイトにおいて活性酸素種(ROS)の量を蛍光染色法(HPF法(Sekisui Medical)およびCellROX法(Invitrogen))により測定したところ、AD(E693Δ)-iPScs由来および1例の孤発性AD-iPSCs由来の神経細胞およびアストロサイトで増加していることが確認された(図7E、7F、図10A、10B、10Cおよび図11)。このROS量の増加もBSIの添加により減弱したことから、ROSの産生も、Aβオリゴマーの形成により引き起こされていると考えられる。
実施例8
DHAの効果について
 ドコサヘキサエン酸(DHA)(Nacalai)を1μM、5μMおよび15μMの濃度で培地に添加した後、AD(E693Δ)-iPSCs由来の神経細胞におけるBiPタンパク質、活性型カスパーゼ4およびPRDX4の発現量を確認したところ、無添加群(DMSO)と比較してその発現量が減少していることが確認された(図12A、12B、12Cおよび12D)。さらに、5μM のDHAをiPSCs由来の神経細胞に添加して培養したところ、AD(E693Δ)-iPSCs由来の神経細胞においてROSの発現が減少していることが確認された(図12Eおよび12F)。
 同様に、1例の孤発性AD-iPSCs由来の神経細胞においてもDHAの効果を確認したところ、AD(E693Δ)-iPSCs由来の神経細胞と同様に有意にERストレスマーカー(BiPおよびperoxiredoxin-4)の発現量が抑制されることが確認された(図13Aおよび13B)。
 一方、DHAの添加では神経細胞におけるAβオリゴマーの蓄積量は変化しなかった(図13C)。
 そこで、DHAの効果を調べるため、AD(E693Δ)-iPSCsおよび1例の孤発性AD-iPSCs由来の神経細胞に対する細胞生存率を検討した。細胞生存率の測定は、誘導後65日目の神経細胞において、Synapsin IプロモーターによりEGFP (Synapsin::EGFP)が発現するベクターをレンチウィルスを用いて導入したEGFP陽性神経細胞を測定することによって行われた。簡潔には、Synapsin Iプロモーターにより誘導されるEGFP(Synapsin::EGFP)を有するiPSCs由来の神経細胞をマトリゲルコート上に移した5日後に、B27および神経栄養因子(BDNF、GDNFおよびNT-3)を除いたDHA含有または非含有培地へ交換し、48時間後から各時間において、EGFP陽性神経細胞の数をIN CELL Analyzer 2000を用いて測定した(図14Aおよび14B)。この時、神経細胞死は、EGFPの消失、細胞膜破壊、小疱形成等により決定され得る。神経細胞生存率は、最初の計測数に対する比によって算出した。さらに、細胞生存の検討は、Lactate dehydrogenase (LDH)法でも行った。LDH法は、Cytotoxicity Detection Kit (LDH) (Roche Diagnostics)を用いて細胞培養液中のLDH量を計測することによって行われた(図14C)。LDH法では、細胞死数をContorol-1に対する割合にて評価した。その結果、AD(E693Δ)-iPSCs由来の神経細胞は、神経栄養因子不在により引き起こされる細胞死がDHAによって抑制されることが確認された。この他にも、過酸化水素により惹起される細胞死に対してもDHAは有効であることが確認された。
 以上の結果を下記表1にまとめる。
Figure JPOXMLDOC01-appb-T000001
 つまり、Aβオリゴマーを指標とした場合、DHAを選出することはできないが、少なくともBSIは薬剤候補として選出することができる。
 以上より、アルツハイマー病の治療薬および/または予防薬として可能性のあるBSIまたはDHAを、Aβオリゴマー量、ERストレスマーカーであるBiPまたは活性型カスパーゼ4、ペルオキシドキシン活性関連遺伝子であるPRDX4または細胞中のROSを指標とすること見出されることが確認された。
 本発明は、アルツハイマー病患者の体細胞由来のiPS細胞から分化誘導された神経細胞において、アルツハイマー病の病態を再現できたことに基づくものである。したがって、当該細胞を用いてアルツハイマー病の治療薬または予防薬のスクリーニングを行うことが可能である。

Claims (16)

  1.  アルツハイマー病の治療薬および/または予防薬をスクリーニングする方法であって、以下の工程:
    (a)候補物質を、アルツハイマー病患者の体細胞から作製された人工多能性幹(iPS)細胞または693のグルタミン酸の欠損変異APPを導入したiPS細胞由来の、神経細胞またはアストロサイトと接触させる工程、
    (b)前記神経細胞内またはアストロサイト内のAβオリゴマーの量を測定する工程、および
    (c)前記Aβオリゴマーの量が候補物質と接触させなかった場合と比較して減少した場合、前記候補物質をアルツハイマー病の治療薬または予防薬として選出する工程、を含む、方法。
  2.  前記神経細胞またはアストロサイトが、Aβオリゴマーを蓄積する細胞である、請求項1に記載の方法。
  3.  前記アルツハイマー病患者の体細胞が、APPの693のグルタミン酸の欠損変異を有する体細胞である、請求項1または2に記載の方法。
  4.  アルツハイマー病の治療薬および/または予防薬をスクリーニングする方法であって、以下の工程:
    (a)候補物質を、アルツハイマー病患者の体細胞から作製されたiPS細胞または693のグルタミン酸の欠損変異APPを導入したiPS細胞由来の、神経細胞またはアストロサイトと接触させる工程、
    (b)前記神経細胞内またはアストロサイト内のERストレス量、カスパーゼ4活性、Transgelin量 および酸化ストレス量から成る群から選択される少なくとも一つの指標を測定する工程、および
    (c)前記量又は活性が候補物質と接触させなかった場合と比較して減少した場合、前記候補物質をアルツハイマー病の治療薬または予防薬として選出する工程、を含む、方法。
  5.  前記ERストレス量の測定が、ERストレスマーカー量の測定により行われる、請求項4に記載の方法。
  6.  前記ERストレスマーカーが、免疫グロブリン結合タンパク質(BiP)である、請求項5に記載の方法。
  7.  前記カスパーゼ4の活性の測定が、切断カスパーゼ4の量を測定することにより行われる、請求項4に記載の方法。
  8.  前記酸化ストレス量の測定が、PRDX4または活性酸素種の量を測定することにより行われる、請求項4に記載の方法。
  9.  前記神経細胞またはアストロサイトが、Aβオリゴマーを蓄積する細胞である、請求項4に記載の方法。
  10.  前記アルツハイマー病患者の体細胞が、APPの693のグルタミン酸の欠損変異を有する体細胞である、請求項4~9のいずれか一項に記載の方法。
  11.  アルツハイマー病の治療薬および/または予防薬をスクリーニングする方法であって、以下の工程:
    (a)候補物質を、アルツハイマー病患者の体細胞から作製された人工多能性幹(iPS)細胞または693のグルタミン酸の欠損変異APPを導入したiPS細胞由来の神経細胞と接触させる工程、
    (b)前記神経細胞の生細胞数またはその代替値を測定する工程、および
    (c)前記生細胞数またはその代替値が候補物質と接触させなかった場合と比較して増加した場合、前記候補物質をアルツハイマー病の治療薬または予防薬として選出する工程、を含む、方法。
  12.  前記神経細胞が、Aβオリゴマーを蓄積する細胞である、請求項11に記載の方法。
  13.  前記アルツハイマー病患者の体細胞が、APPの693のグルタミン酸の欠損変異を有する体細胞である、請求項11または12に記載の方法。
  14.  変異型APPを有するiPS細胞由来の神経細胞および/またはアストロサイトを含む、アルツハイマー病の治療薬および/または予防薬をスクリーニングするためのキット。
  15.  Aβオリゴマー、BiP、切断カスパーゼ4、Transgelin、PRDX4および活性酸素種からなる群から選択される少なくとも一つの指標を測定するための試薬さらに含む、請求項14に記載のキット。
  16.  前記APPの変異が、693番目のグルタミン酸の欠損変異である、請求項14または15に記載のキット。
PCT/JP2013/054199 2012-03-21 2013-02-20 アルツハイマー病の治療薬および/または予防薬のスクリーニング方法 WO2013140927A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/385,990 US20150064734A1 (en) 2012-03-21 2013-02-20 Method for screening therapeutic and/or prophylactic agents for alzheimer's disease
JP2014506090A JP6335117B2 (ja) 2012-03-21 2013-02-20 アルツハイマー病の治療薬および/または予防薬のスクリーニング方法
EP13763448.1A EP2829605B1 (en) 2012-03-21 2013-02-20 Method for screening therapeutic and/or prophylactic agents for alzheimer's disease
US15/276,616 US20170010256A1 (en) 2012-03-21 2016-09-26 Method for screening therapeutic and/or prophylactic agents for alzheimer's disease

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012064094 2012-03-21
JP2012-064094 2012-03-21

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/385,990 A-371-Of-International US20150064734A1 (en) 2012-03-21 2013-02-20 Method for screening therapeutic and/or prophylactic agents for alzheimer's disease
US15/276,616 Division US20170010256A1 (en) 2012-03-21 2016-09-26 Method for screening therapeutic and/or prophylactic agents for alzheimer's disease

Publications (1)

Publication Number Publication Date
WO2013140927A1 true WO2013140927A1 (ja) 2013-09-26

Family

ID=49222392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054199 WO2013140927A1 (ja) 2012-03-21 2013-02-20 アルツハイマー病の治療薬および/または予防薬のスクリーニング方法

Country Status (4)

Country Link
US (2) US20150064734A1 (ja)
EP (1) EP2829605B1 (ja)
JP (1) JP6335117B2 (ja)
WO (1) WO2013140927A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104409A1 (en) * 2012-12-28 2014-07-03 Kyoto University Method for inducing astrocytes
WO2015133147A1 (ja) * 2014-03-05 2015-09-11 公益財団法人先端医療振興財団 疾患ヒト化モデル動物及び奇形腫組織
JP2020182423A (ja) * 2019-05-08 2020-11-12 国立大学法人東京工業大学 アルツハイマー疾患モデル神経細胞及びその製造方法、並びにその神経細胞を用いたアルツハイマー病作用薬物のスクリーニング方法
WO2024190850A1 (ja) * 2023-03-14 2024-09-19 富士フイルム株式会社 酸化ストレスによる傷害を受けた神経細胞の製造方法およびその応用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD784124S1 (en) 2015-07-30 2017-04-18 Altria Client Services, Llc Combined clamshell and outer box

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5223409A (en) 1988-09-02 1993-06-29 Protein Engineering Corp. Directed evolution of novel binding proteins
WO2001088100A1 (fr) 2000-05-16 2001-11-22 Kyowa Hakko Kogyo Co., Ltd. Nouvelle methode permettant de declencher une differentiation de cellules embryonnaires dans des cellules de l'ectoderme et leurs applications
US20020103360A1 (en) 1998-09-01 2002-08-01 Yang Pan Novel protein related to melanoma-inhibiting protein and uses thereof
WO2003042384A1 (fr) 2001-11-15 2003-05-22 Kyowa Hakko Kogyo Co., Ltd. Inducteur de differentiation pour cellules souches d'embryon, procede d'obtention dudit inducteur et utilisation
WO2005123902A1 (ja) 2004-06-18 2005-12-29 Riken 無血清浮遊培養による胚性幹細胞の神経分化誘導法
JP2006314242A (ja) * 2005-05-12 2006-11-24 Tokai Univ 哺乳動物由来の変異sdhc遺伝子を有する遺伝子組み換え動物
WO2007069666A1 (ja) 2005-12-13 2007-06-21 Kyoto University 核初期化因子
WO2007127273A2 (en) * 2006-04-24 2007-11-08 Alltech, Inc. Methods and compositions for altering cell function
JP2008201792A (ja) 2001-10-04 2008-09-04 National Univ Of Singapore 胚性幹細胞と胚性幹細胞由来の神経前駆細胞
WO2009092042A1 (en) 2008-01-18 2009-07-23 Nevada Cancer Institute Reprogramming of differentiated progenitor or somatic cells using homologous recombination
WO2009115295A1 (en) 2008-03-17 2009-09-24 Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) Vectors and methods for generating vector-free induced pluripotent stem (ips) cells using site-specific recombination
WO2009149233A1 (en) 2008-06-04 2009-12-10 Stem Cell Products, Inc. Methods for the production of ips cells using non-viral approach
WO2009152529A2 (en) 2008-06-13 2009-12-17 Whitehead Institute For Biomedical Research Nine Cambridge Center Programming and reprogramming of cells
WO2009157201A1 (en) 2008-06-26 2009-12-30 Osaka University Method and kit for preparing ips cells
WO2010012077A1 (en) 2008-07-28 2010-02-04 Mount Sinai Hospital Compositions, methods and kits for reprogramming somatic cells
WO2010068955A2 (en) 2008-12-13 2010-06-17 Dna Microarray MICROENVIRONMENT NICHE ASSAY FOR CiPS SCREENING

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009076529A1 (en) * 2007-12-11 2009-06-18 Research Development Foundation Small molecules for neuronal differentiation of embryonic stem cells
JP5604766B2 (ja) * 2008-12-05 2014-10-15 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル 多能性細胞の神経分化のための方法および培地
EP2512514B1 (en) * 2009-12-14 2014-11-05 Kyoto University Screening method for identifying compounds for treating amyotrophic lateral sclerosis
JP5846608B2 (ja) * 2010-03-03 2016-01-20 国立大学法人京都大学 iPS細胞由来の神経細胞を用いた蛋白質ミスフォールディング病の診断方法
CN103052707A (zh) * 2010-07-30 2013-04-17 剑桥实业有限公司 人类多能细胞的皮层生成
US20140193341A1 (en) * 2011-01-19 2014-07-10 Asa Abeliovich Human induced neuronal cells
WO2012112737A2 (en) * 2011-02-16 2012-08-23 The Regents Of The University Of California Alzheimer's disease cellular model for diagnostic and therapeutic development

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5403484A (en) 1988-09-02 1995-04-04 Protein Engineering Corporation Viruses expressing chimeric binding proteins
US5571698A (en) 1988-09-02 1996-11-05 Protein Engineering Corporation Directed evolution of novel binding proteins
US5223409A (en) 1988-09-02 1993-06-29 Protein Engineering Corp. Directed evolution of novel binding proteins
US20020103360A1 (en) 1998-09-01 2002-08-01 Yang Pan Novel protein related to melanoma-inhibiting protein and uses thereof
WO2001088100A1 (fr) 2000-05-16 2001-11-22 Kyowa Hakko Kogyo Co., Ltd. Nouvelle methode permettant de declencher une differentiation de cellules embryonnaires dans des cellules de l'ectoderme et leurs applications
JP2008201792A (ja) 2001-10-04 2008-09-04 National Univ Of Singapore 胚性幹細胞と胚性幹細胞由来の神経前駆細胞
WO2003042384A1 (fr) 2001-11-15 2003-05-22 Kyowa Hakko Kogyo Co., Ltd. Inducteur de differentiation pour cellules souches d'embryon, procede d'obtention dudit inducteur et utilisation
WO2005123902A1 (ja) 2004-06-18 2005-12-29 Riken 無血清浮遊培養による胚性幹細胞の神経分化誘導法
JP2006314242A (ja) * 2005-05-12 2006-11-24 Tokai Univ 哺乳動物由来の変異sdhc遺伝子を有する遺伝子組み換え動物
WO2007069666A1 (ja) 2005-12-13 2007-06-21 Kyoto University 核初期化因子
WO2007127273A2 (en) * 2006-04-24 2007-11-08 Alltech, Inc. Methods and compositions for altering cell function
WO2009092042A1 (en) 2008-01-18 2009-07-23 Nevada Cancer Institute Reprogramming of differentiated progenitor or somatic cells using homologous recombination
WO2009115295A1 (en) 2008-03-17 2009-09-24 Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) Vectors and methods for generating vector-free induced pluripotent stem (ips) cells using site-specific recombination
WO2009149233A1 (en) 2008-06-04 2009-12-10 Stem Cell Products, Inc. Methods for the production of ips cells using non-viral approach
WO2009152529A2 (en) 2008-06-13 2009-12-17 Whitehead Institute For Biomedical Research Nine Cambridge Center Programming and reprogramming of cells
WO2009157201A1 (en) 2008-06-26 2009-12-30 Osaka University Method and kit for preparing ips cells
WO2010012077A1 (en) 2008-07-28 2010-02-04 Mount Sinai Hospital Compositions, methods and kits for reprogramming somatic cells
WO2010068955A2 (en) 2008-12-13 2010-06-17 Dna Microarray MICROENVIRONMENT NICHE ASSAY FOR CiPS SCREENING

Non-Patent Citations (59)

* Cited by examiner, † Cited by third party
Title
BUCCIANTINI M ET AL., NATURE, vol. 416, 2002, pages 507 - 511
CARELL ET AL., ANGEW. CHEM. INT. ED. ENGL., vol. 33, 1994, pages 2059
CARELL ET AL., ANGEW. CHEM. INT. ED. ENGL., vol. 33, 1994, pages 2061
CELL STEM CELL, vol. 2, 2008, pages 525 - 528
CELL STEM CELL, vol. 3, 2008, pages 132 - 135
CELL STEM CELL, vol. 3, 2008, pages 475 - 479
CELL STEM CELL, vol. 3, 2008, pages 568 - 574
CELL, vol. 126, 2006, pages 663 - 676
CELL, vol. 131, 2007, pages 861 - 872
CHAMBERS SM ET AL., NAT BIOTECHNOL., vol. 27, 2009, pages 275 - 80
CHO ET AL., SCIENCE, vol. 261, 1993, pages 1303 - 5
CHOI S.H. ET AL.: "iPSCs to the rescue in Alzheimer's research.", CELL STEM CELL., vol. 10, no. 3, 2 March 2012 (2012-03-02), pages 235 - 236, XP028402787 *
CULL ET AL., PROC. NATL. ACAD. SCI. USA, vol. 89, 1992, pages 1865 - 9
CWIRLA ET AL., PROC. NATL. ACAD. SCI. USA, vol. 87, 1990, pages 6378 - 82
DEVLIN, SCIENCE, vol. 249, 1990, pages 404 - 6
DEWITT ET AL., PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 6909 - 13
ERB ET AL., PROC. NATL. ACAD. SCI. USA, vol. 91, 1994, pages 11422 - 6
FELICI, J. MOL. BIOL., vol. 222, 1991, pages 301 - 10
FODOR, NATURE, vol. 364, 1993, pages 555 - 6
GALLOP ET AL., J. MED. CHEM., vol. 37, 1994, pages 1233 - 51
GONG Y ET AL., PROC NATL ACAD SCI USA., vol. 100, 2003, pages 10417 - 22
HOLMES, C ET AL., LANCET, vol. 372, 2008, pages 16 - 223
HOUGHTEN, BIO/TECHNIQUES, vol. 13, 1992, pages 412 - 21
ISRAEL M.A. ET AL.: "Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells.", NATURE, vol. 482, no. 7384, 25 January 2012 (2012-01-25), pages 216 - 220, XP055168259 *
J. HAO ET AL., PLOS ONE, vol. 3, no. 8, 2008, pages E2904, Retrieved from the Internet <URL:www.plozone.org>
J. YU ET AL., SCIENCE, vol. 318, 2007, pages 1917 - 1920
K. TAKAHASHI ET AL., CELL, vol. 131, 2007, pages 861 - 872
K. TAKAHASHI; S. YAMANAKA, CELL, vol. 126, 2006, pages 663 - 676
KAJI, K. ET AL., NATURE, vol. 458, 2009, pages 771 - 775
KAWASAKI H ET AL., NEURON., vol. 28, 2000, pages 31 - 40
LAM, ANTICANCER DRUG DES., vol. 12, 1997, pages 145 - 67
LAM, NATURE, vol. 354, 1991, pages 82 - 4
M. NAKAGAWA ET AL., NAT. BIOTECHNOL., vol. 26, 2008, pages 101 - 106
NAT BIOTECHNOL., vol. 27, 2009, pages 275 - 280
NAT. BIOTECHNOL., vol. 26, no. 7, 2008, pages 795 - 797
NAT. METHODS, vol. 6, 2009, pages 805 - 8
NISHITSUJI K. ET AL.: "The E693Delta mutation in amyloid precursor protein increases intracellular accumulation of amyloid beta oligomers and causes endoplasmic reticulum stress-induced apoptosis in cultured cells.", AM J PATHOL., vol. 174, no. 3, 2009, pages 957 - 969, XP055168257 *
OKITA ET AL., NAT METHODS, vol. 8, no. 5, May 2011 (2011-05-01), pages 409 - 12
P. B. YU ET AL., CIRCULATION, vol. 116, 2007, pages 11 60
P.B. YU ET AL., NAT. CHEM. BIOL., vol. 4, 2008, pages 33 - 41
PLOS BIOLOGY, vol. 6, no. 10, 2008, pages 2237 - 2247
PLOS ONE, vol. 4, 2009, pages E6722
PROC JPN ACAD SER B PHYS BIOL SCI., vol. 85, 2009, pages 348 - 62
R. K. LINDEMANN ET AL., MOL. CANCER, vol. 2, 2003, pages 20
R.L. JUDSON ET AL., NAT. BIOTECH., vol. 27, 2009, pages 459 - 461
SCIENCE, vol. 318, 2007, pages 1917 - 1920
SCIENCE, vol. 322, 2008, pages 945 - 949
SCIENCE, vol. 322, 2008, pages 949 - 953
SCOTT; SMITH, SCIENCE, vol. 249, 1990, pages 386 - 90
TAKAHASHI, K ET AL., CELL, vol. 131, 2007, pages 861 - 872
TAKAMI TOMIYAMA: "APP E693DELTA Hen'i to Abeta Oligomer Kasetsu", JOURNAL OF JAPANESE BIOCHEMICAL SOCIETY, 2009, pages 3S7A - 2, XP008174848 *
TOMIYAMA T. ET AL.: "A mouse model of amyloid beta oligomers: their contribution to synaptic alteration, abnormal tau phosphorylation, glial activation, and neuronal loss in vivo.", J NEUROSCI., vol. 30, no. 14, 2010, pages 4845 - 4856, XP055168255 *
TOMIYAMA, T ET AL., ANN. NEUROL., vol. 63, 2008, pages 377 - 387
WATANABE K ET AL., NAT NEUROSCI., vol. 8, 2005, pages 288 - 96
WOLTJEN ET AL., NATURE, vol. 458, 2009, pages 766 - 770
YAGI, T ET AL., HUM MOL GENET., vol. 20, 2011, pages 4530 - 4539
YAHATA ET AL., PLOS ONE, vol. 6, no. 9, 2011, pages E25788
YU PB ET AL., NAT MED, vol. 14, 2008, pages 1363 - 9
ZUCKERMANN ET AL., J. MED. CHEM., vol. 37, 1994, pages 2678 - 85

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104409A1 (en) * 2012-12-28 2014-07-03 Kyoto University Method for inducing astrocytes
EP2938721A1 (en) * 2012-12-28 2015-11-04 Kyoto University Method for inducing astrocytes
EP2938721A4 (en) * 2012-12-28 2016-07-27 Univ Kyoto PROCESS FOR INDUCING ASTROCYTES
US9796959B2 (en) 2012-12-28 2017-10-24 Kyoto University Method for inducing astrocytes
WO2015133147A1 (ja) * 2014-03-05 2015-09-11 公益財団法人先端医療振興財団 疾患ヒト化モデル動物及び奇形腫組織
JP2020182423A (ja) * 2019-05-08 2020-11-12 国立大学法人東京工業大学 アルツハイマー疾患モデル神経細胞及びその製造方法、並びにその神経細胞を用いたアルツハイマー病作用薬物のスクリーニング方法
JP7333579B2 (ja) 2019-05-08 2023-08-25 国立大学法人東京工業大学 アルツハイマー疾患モデル神経細胞及びその製造方法、並びにその神経細胞を用いたアルツハイマー病作用薬物のスクリーニング方法
WO2024190850A1 (ja) * 2023-03-14 2024-09-19 富士フイルム株式会社 酸化ストレスによる傷害を受けた神経細胞の製造方法およびその応用

Also Published As

Publication number Publication date
JP6335117B2 (ja) 2018-05-30
US20170010256A1 (en) 2017-01-12
EP2829605B1 (en) 2019-05-08
EP2829605A4 (en) 2016-06-08
US20150064734A1 (en) 2015-03-05
EP2829605A1 (en) 2015-01-28
JPWO2013140927A1 (ja) 2015-08-03

Similar Documents

Publication Publication Date Title
JP6745498B2 (ja) 神経分化誘導用の多能性幹細胞
JP5846608B2 (ja) iPS細胞由来の神経細胞を用いた蛋白質ミスフォールディング病の診断方法
DK3042951T3 (en) UNKNOWN PROCEDURE FOR INducing DOPAMINE-PRODUCING NEURAL PRECURSOR CELLS
JP5936134B2 (ja) ヒト人工多能性幹細胞の選択方法
US20170010256A1 (en) Method for screening therapeutic and/or prophylactic agents for alzheimer&#39;s disease
US10626368B2 (en) Method for inducing cerebral cortex neurons
JP6143233B2 (ja) 運動ニューロン疾患の検査方法及び治療剤のスクリーニング方法
JP2015129110A (ja) Fgfr3病の予防および治療剤ならびにそのスクリーニング方法
EP3219808B1 (en) Screening method using induced neurons
JPWO2019031595A1 (ja) 神経前駆細胞の選別方法
JPWO2016076435A6 (ja) 誘導神経細胞を用いたスクリーニング方法
JP2019136042A (ja) Fgfr3病の予防および治療剤ならびにそのスクリーニング方法
Lovejoy et al. Engineered Cerebral Organoids Recapitulate Adult Tau Expression and Disease-relevant Changes in Tau Splicing
Dooves et al. Cortical interneuron development is affected in leukodystrophy 4H
JP2023071631A (ja) Alport症候群の予防又は治療薬のスクリーニング又は評価方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13763448

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014506090

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14385990

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013763448

Country of ref document: EP