WO2013139550A1 - Ultraschallsensor und verfahren zur messung eines objektabstands - Google Patents

Ultraschallsensor und verfahren zur messung eines objektabstands Download PDF

Info

Publication number
WO2013139550A1
WO2013139550A1 PCT/EP2013/053326 EP2013053326W WO2013139550A1 WO 2013139550 A1 WO2013139550 A1 WO 2013139550A1 EP 2013053326 W EP2013053326 W EP 2013053326W WO 2013139550 A1 WO2013139550 A1 WO 2013139550A1
Authority
WO
WIPO (PCT)
Prior art keywords
segment
membrane
piezoceramic
ultrasonic sensor
measuring
Prior art date
Application number
PCT/EP2013/053326
Other languages
English (en)
French (fr)
Inventor
David Bartylla
Thomas Treptow
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP13707138.7A priority Critical patent/EP2828681A1/de
Priority to CN201380015759.0A priority patent/CN104204844B/zh
Publication of WO2013139550A1 publication Critical patent/WO2013139550A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/521Constructional features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface

Definitions

  • the invention relates to an ultrasonic sensor for detecting a distance of an object and to a method for measuring an object distance by means of an ultrasonic sensor.
  • the ultrasonic sensor in this case has a sensor membrane, which is divided into a primary membrane and two or more secondary membranes.
  • the primary and secondary membranes are adapted to the respective detection task. The segmentation of the sensor membrane determines this
  • Attenuation behavior of the sensor membrane and thus the detection characteristic of the ultrasonic sensor.
  • the sensor according to US 3,698,051 is further in a
  • Resonant frequency of 10 kHz - 500 kHz operated.
  • Ultrasonic transducer initially oscillates unattenuated during emission of ultrasonic signals. After emitting the ultrasonic signals, the attenuator is brought to a membrane and brings them controlled to a halt.
  • a disadvantage of ultrasonic sensors according to the prior art is that they are designed to detect objects within a range of several meters and not are suitable to reliably and accurately detect small object distances, in particular those of less than 20 cm, with the same accuracy.
  • the ultrasonic sensor according to the invention for detecting a distance of an object has a housing which is partially filled with a damping mass. Furthermore, the ultrasonic sensor according to the invention has a membrane which is capable of
  • the ultrasonic sensor according to the invention is equipped with a piezoceramic, which is in communication with the membrane, and is electrically contacted.
  • the electrical contacting of the piezoceramic comprises at least one electrode and a ground electrode.
  • the electrical connection with the piezoceramic can be produced by a conductive adhesive.
  • the contacting extends through the damping mass, which at least partially fills the housing of the ultrasonic sensor.
  • the piezoceramic of the ultrasonic sensor is divided into at least three segments, wherein a first segment is connected to the ground electrode. A second and a third segment are each electrically contacted via a separate electrode.
  • the second segment of the piezoceramic is designed to reduce a vibration of the membrane. Further, the third segment for detecting a vibration of the diaphragm is formed.
  • the piezoceramic may comprise at least one further segment, which is designed to detect a vibration and / or to reduce a vibration of the membrane.
  • the first, the second and the third segments may each further surround concentrically.
  • the segments can be mechanically coupled to one another in such a way that they serve as measuring and control members of a control loop.
  • the segments can be in the
  • Piezoceramic be formed such that in the surface of the piezoceramic lasered interruption is introduced.
  • the interruption can also be produced by scratching the piezoceramic or by a screen printing process.
  • the method according to the invention for measuring an object distance is carried out by means of an ultrasound sensor comprising a membrane and a piezoceramic.
  • the piezoceramic is divided into at least three segments, wherein a first segment serves as a carrier element for a second and third segment. Furthermore, an electric field is produced in the first segment for the second and third segments.
  • the first segment is electrically connected via a ground electrode and the second and third segments each have a separate electrode.
  • the method according to the invention comprises a first
  • Process step after which the second and / or third segment are electrically excited via the electrodes to a piezo-deformation and a vibration of the membrane is effected.
  • the vibration of the membrane generates an ultrasonic pulse that is emitted.
  • a vibration state of the membrane is detected by the third segment and the deflection of the membrane is measured.
  • the second segment is excited in order to generate a countervibration which reduces the deflection of the membrane.
  • Vibration state is determined by at least one physical parameter
  • Oscillation for example, amplitude or frequency of a deflection of the membrane, characterized.
  • the echo of the ultrasound pulse emitted in the first method step described above is transmitted over the
  • Piezoceramic detected In a subsequent method step, the transit time of the ultrasound pulse which elapsed between the emission of the ultrasound pulse and the detection of the ultrasound pulse is detected. Based on the determined running time, the object distance to be measured is determined. In one embodiment of the invention, the method step in which the
  • Deflection of the membrane is detected by the third segment, and the method step in which by means of the second segment a counter-vibration is generated in one
  • Matching loop to be performed. It is detected when the deflection of the membrane falls below a threshold value. If the threshold value is undershot, then the method step in which a countervibration is generated ends.
  • a further segment can be formed in the piezoceramic, which is coupled to the second and third segments.
  • the further segment is in this case connected to the second and third segments such that these measuring and / or control members in a control loop, which reduces the deflection of the membrane represent.
  • the ultrasonic sensor according to the invention can be used in particular in a driver assistance system of a motor vehicle for measuring an object distance.
  • the ultrasonic sensor according to the invention has a piezoceramic, which is divided into at least three segments.
  • the segments of the piezoceramic are functionally decoupled from each other and can fulfill a separate function regardless of the operating state of another segment.
  • the segmented piezoceramic allows, immediately after emitting an ultrasonic pulse by excitation of the second and / or third segment, to detect the deflection of the membrane via the third segment.
  • the second segment can be excited in a targeted manner in order to generate a countervibration which partially eliminates the already existing vibration of the diaphragm and thus reduces the deflection of the diaphragm.
  • a ringing of the membrane can be counteracted immediately after the emission of an ultrasonic pulse. Due to the functional separation of the second and third segments, a measurement of the deflection of the membrane and a counteracting effect
  • the detection of the deflection of the membrane and the generation of countervibrations can hereby be permanently coordinated via a balancing loop.
  • the second and third segments of the piezoceramic act as measuring and control elements of a control loop, which quickly minimizes ringing of the membrane.
  • Object distance can be used.
  • the invention thus makes it possible to reduce the minimum range of an ultrasonic sensor.
  • the ultrasonic sensor according to the invention can be used as a sensor for low object distances. This can be used in applications in which both high and low object distances must be measured, For example, in a driver assistance system of a motor vehicle, separate Nahdistanzsensoren be saved.
  • a further segment may be provided in the piezoceramic, which is suitable for detecting a vibration and / or for reducing a vibration of the membrane.
  • Segmenting the piezoceramic allows to form a plurality of measuring segments whose measuring signals can be compared with each other and thus increase the accuracy of the measurement of the deflection of the membrane. Furthermore, a further segmentation of the piezoceramic makes it possible to form uniformly distributed excitation segments which are capable of rapidly reducing reverberation of the membrane. As a result, the time until the membrane is able again, an echo of a
  • the invention allows to reduce the damping of the membrane, whereby a higher deflection of the membrane is produced with constant excitation of the membrane. This allows the generation of high sound pressure, whereby high sensor ranges are possible. Furthermore, a reduced attenuation of the membrane allows to detect with this weak excitations and to detect them by means of the piezoceramic.
  • Detection range of distance sensors in motor vehicles, especially those that belong to side-view assist applications is improved by the invention.
  • the segments are advantageously mechanically coupled together and are designed as measuring and control elements of a control loop.
  • the segments are parts of the same piezoceramic and are based on the same as sensors and actuators
  • the ringing of the detected deflection of the membrane after the ultrasound echo has arrived can be mathematically filtered out by means of the third segment. As a result, the measurement accuracy of the ultrasonic sensor is improved.
  • the ultrasonic sensor according to the invention further allows a
  • the segments on a surface of the piezoceramic can be prepared by lasered interruptions.
  • a laser processing can with high
  • the breaks may be made by scribing or screen printing. Cracks and screen printing processes are production steps that can be easily integrated into a production chain.
  • the ultrasonic sensor according to the invention thus makes it possible to achieve a reduction of the minimum range with relatively simple means.
  • the ultrasonic sensor according to the invention requires that each segment is driven by a separate electrode. Electrodes can be easily incorporated in a manufacturing process.
  • the invention allows to reduce the electrical stresses on the membrane during operation. As a result, the life of the ultrasonic sensor is increased. Furthermore, in the case of an ultrasonic sensor according to the invention, a transformer can be dispensed with as a result of the low attenuation of the diaphragm. In this case, the number of components of the ultrasonic sensor is reduced, simplifies its manufacture and saves space.
  • Figure 1 Top view of a piezoceramic according to the prior art
  • Figure 2 Schematic representation of an ultrasonic sensor in cross section
  • FIG. 3 Schematic representation of a piezoceramic of an inventive
  • Figure 4 Schematic representation of an embodiment of a piezoceramic of an ultrasonic sensor according to the invention
  • Figure 5 Schematic representation of a piezoceramic of an inventive
  • Figure 7 Schematic representation of the method according to the invention for measuring an object distance
  • FIG. 1 shows a piezoceramic 40 according to the prior art.
  • Piezoceramic 40 has a surface 60 which is bounded by the edge 70.
  • the piezoceramic 40 is divided on its surface 60 into a first segment 41 and a second segment 42.
  • the first segment 41 surrounds the second segment 42 in an annular manner.
  • the first segment 41 is electrically connected via a ground electrode 25, which is part of the electrical contact 22.
  • the second segment 42 is electrically contacted via a separate electrode 23.
  • FIG. 2 shows an ultrasonic sensor in cross section.
  • the ultrasonic sensor 10 comprises a housing 20, which is partially filled with a damping mass 21.
  • a diaphragm 30 is formed, which is capable of generating ultrasonic pulses by vibration.
  • the membrane 30 is adapted to receive and detect echoes of ultrasound pulses.
  • a piezoceramic 40 is mounted, which is able to excite by electrical excitation, the membrane 30 to vibrate.
  • the piezoceramic 40 is suitable for detecting vibrations of the diaphragm 30 and converting them into an electrical signal.
  • Piezoceramic 40 a The piezoceramic 40 is connected via an electrical contact 22, which allows the ultrasonic sensor 10 to be electrically connected and driven.
  • the electrical contact 22 extends through the
  • FIG. 3 shows a plan view of a piezoceramic of an advantageous embodiment of the ultrasonic sensor according to the invention.
  • the surface 60 of the piezoceramic 40 is limited by an edge 70.
  • the first segment 41 on the surface 60 of the piezoceramic 40 is limited by an edge 70.
  • Piezoceramic 40 encloses the second 42 and third segment 43 like a ring.
  • the second segment 42 and the third segment 43 are arranged adjacent to each other and serve for Reducing a vibration of the diaphragm 30 of the ultrasonic sensor 10 or
  • the second segment 42 and the third segment 43 are each electrically contacted via separate electrodes 23, 24.
  • the ground connection of the piezoceramic 40 takes place via a ground electrode 25, which is connected to the piezoceramic 40 in a ground connection region 45.
  • the first segment 41, the second segment 42 and the third segment 43 are each lasered
  • FIG. 4 shows an advantageous embodiment of the piezoceramic 40 of the ultrasonic sensor 10 according to the invention.
  • the surface 60 of the piezoceramic 40 has a first segment 41, a second segment 42 and a third segment 43.
  • the first segment 41 surrounds the third segment 43 in an annular manner, which in turn encloses the second segment 42 in an annular manner.
  • the segments 41, 42, 43 are in this case
  • the second segment 42 is arranged substantially in the center of the piezoceramic 40, where the vibration of the diaphragm 30 has the greatest amplitude. Counter vibrations introduced by the second segment 42 greatly reduce the deflection of the diaphragm 30.
  • the third segment 43 is attached to a region of the surface 60 of the piezoceramic in which the oscillation of the diaphragm 30 has an average amplitude. In the case of a medium amplitude, such high measurement deflections are registered by the third segment 43, which ensure high measuring accuracy, but do not exhaust the entire working range of the third segment 43.
  • the first segment 41 serves as a ground terminal of the piezoceramic 40, which is ensured by a ground electrode 25 in a
  • Ground terminal region 45 is connected to the piezoceramic 40.
  • FIG. 5 shows a further advantageous embodiment of the piezoceramic 40 of an ultrasonic sensor 20 according to the invention.
  • the surface 60 of the piezoceramic 40 is divided into a first segment 41, a second segment 42, a third segment 43 and a further segment 44, the further segment 44 is via an additional electrode
  • FIG. 6 schematically shows a plan view of a further advantageous embodiment of the piezoceramic 40 of the ultrasonic sensor according to the invention. Therein, the surface 60 of a piezoceramic 40 in a first segment 41, a second segment 42, a third
  • the segments 41, 42, 43, 44 are formed by lasered interruptions 50 on the surface 60 of the piezoceramic 40.
  • the first segment 41 surrounds in a ring shape the third segment 43, which in turn encloses the second segment 42 and the further segment 44 in a ring shape.
  • the second segment 42 and the further segment 44 are formed substantially congruent.
  • the first segment 41 is electrically contacted with a ground electrode 25, and the second segment 42, the third segment 43 and the further segment 44 are each electrically connected via separate electrodes 23, 24, 26.
  • the second segment 42 which is located substantially in the center of the piezoceramic 40, is able to initiate a counter-oscillation in the area of the greatest oscillation amplitude of the diaphragm 30, and thereby quickly erase the oscillation of the diaphragm 30.
  • the third segment 43 encloses the center of the piezoceramic 40 substantially annularly and extends into an edge region 70 of the piezoceramic 40, which is defined by the first segment 41.
  • the third segment 43 allows to sense the vibration of the diaphragm 30 in a region in which the oscillation amplitude of the diaphragm 30 a
  • the deflection of the membrane 30 can be detected more accurately than with only a single measuring element. If the further segment 44 is used as a control member, counter vibrations can be introduced into the membrane 30 efficiently in interaction with the second segment 42. This reduces the time in which the deflection of the diaphragm 30 is minimized.
  • FIG. 7 schematically shows the sequence of an advantageous embodiment of the method according to the invention for measuring an object distance by means of a
  • Ultrasonic sensor shown.
  • the membrane 30 is excited by exciting the second 42 and / or third segment 43 to a vibration and generates an ultrasonic pulse.
  • the Deflection of the membrane 30 detected by the third segment 43 of the piezoceramic 40.
  • the second segment 42 is stimulated to generate a countervibration which eliminates the oscillation of the diaphragm 30. In this case, the deflection of the diaphragm 30 is reduced.
  • the second method step 120 and the third method step 130 are coupled to one another by a balancing loop 160. In the adjustment loop 160 it is checked whether the deflection of the diaphragm 30 falls below a threshold value.
  • the vibration of the membrane 30 is so low that it is able to register an echo of an ultrasound pulse.
  • the second method step 120 and the third method step 130 are repeated by the adjustment loop until the threshold value is undershot.
  • the second 120 and the third method step 130 together with the adjustment loop 160 form a control loop 170.
  • the echo of the one emitted in the first method step is output
  • emitted ultrasonic pulse is converted by the second 42 and / or third segment 43 of the piezoceramic 40 in this case in a measured value.
  • Ultrasonic pulse detected in the fourth step 140 From the elapsed time results in a duration of the ultrasonic pulse, based on the distance of an object can be determined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

Die Erfindung betrifft einen Ultraschallsensor (10) zum Erfassen eines Abstands eines Objekts, mit einem Gehäuse (20) und eine Dämpfungsmasse (21). Diese füllt das Gehäuse (20) zumindest teilweise aus. Der Ultraschallsensor (10) umfasst ferner eine Membran (30), eine Piezokeramik (40) und eine elektrischen Kontaktierung (22). Die elektrische Kontaktierung (22) umfasst mindestens eine Elektrode (23) und eine Masseelektrode (25). Des weiteren ist die Piezokeramik (40) in mindestens drei Segmente (41, 42, 43) geteilt, wobei ein erstes Segment (41) mit der Masseelektrode (25) verbunden ist und ein zweites (42) und drittes Segment (43) jeweils über separate Elektroden (23, 24) kontaktiert sind. Die Erfindung betrifft ferner ein Verfahren zur Messung eines Objektabstands mittels eines Ultraschallsensors (10) mit einer Piezokeramik (40), deren Rückseite (31) ein erstes Segment (41), ein zweites Segment (42) und ein drittes Segment (43) aufweist. Das Verfahren umfasst einen Verfahrensschritt, in dem mittels des zweiten Segments (42) in die schwingende Membran (30) eine Gegenschwingung eingebracht wird.

Description

Beschreibung Titel
Ultraschallsensor und Verfahren zur Messung eines Objektabstands Stand der Technik Die Erfindung betrifft einen Ultraschallsensor zum Erfassen eines Abstands eines Objekts und ein Verfahren zur Messung eines Objektabstands mittels eines Ultraschallsensors.
DE 195 07 650 A1 offenbart ein Ultraschallsensor, der geeignet ist Ultraschallsignale auszusenden und zu empfangen. Der Ultraschallsensor weist hierbei eine Sensormembran auf, die in eine Primärmembran und zwei oder mehrere Sekundärmembranen eingeteilt ist. Die Primär- und Sekundärmembrane sind hierbei an die jeweilige Detektionsaufgabe angepasst. Die Segmentierung der Sensormembran bestimmt hierbei das
Dämpfungsverhalten der Sensormembran, und damit die Detektionscharakteristik des Ultraschallsensors.
Aus US 3,698,051 ist ein Ultraschallsensor zur Werkstoffprüfung bekannt, der
scheibenförmig ausgebildet ist und mit radialen Schlitzen versehen ist. Ferner sind metallische Polarisationsschichten in Umfangsrichtung konzentrisch ausgebildet, die den Bogensegmenten des polykristallinen Materials der Kristalloberfläche mit Piezo- Eigenschaften versehen. Der Sensor gemäß US 3,698,051 wird des weiteren bei einer
Resonanzfrequenz von 10 kHz - 500 kHz betrieben.
DE 196 05 502 C1 offenbart einen Ultraschallwandler zur Abstandsmessung, der er Dämpfungsglied aufweist, das als Piezoelement ausgebildet sein kann. Der
Ultraschallwandler schwingt zunächst während eines Aussendes von Ultraschallsignalen ungedämpft. Nach dem Aussenden der Ultraschallsignale wird das Dämpfungsglied an eine Membran herangeführt und bringt diese gesteuert zum Stillstand.
Nachteilig an Ultraschallsensoren gemäß dem Stand der Technik ist, dass diese auf ein Erfassen von Objekten in einer Reichweite von mehreren Metern auslegt sind und nicht geeignet sind, mit gleicher Genauigkeit geringe Objektabstände, insbesondere solche von unter 20 cm, zuverlässig und exakt zu detektieren.
Offenbarung der Erfindung
Der erfindungsgemäße Ultraschallsensor zum Erfassen eines Abstands eines Objekts weist ein Gehäuse auf, das teilweise mit einer Dämpfungsmasse gefüllt ist. Des Weiteren weist der erfindungsgemäße Ultraschallsensor eine Membran auf, die in der Lage ist, durch
Schwingung einen Ultraschallpuls zu erzeugen. Ferner ist die Membran dazu geeignet, das Echo eines Ultraschallpulses zu detektieren. Der erfindungsgemäße Ultraschallsensor ist mit einer Piezokeramik ausgestattet, die mit der Membran in Verbindung steht, und elektrisch kontaktiert ist. Die elektrische Kontaktierung der Piezokeramik umfasst mindestens eine Elektrode und eine Masseelektrode. Die elektrische Verbindung mit der Piezokeramik kann durch einen leitfähigen Klebstoff hergestellt werden. Die Kontaktierung erstreckt sich hierbei durch die Dämpfungsmasse, die das Gehäuse des Ultraschallsensors zumindest teilweise ausfüllt. Die Piezokeramik des Ultraschallsensors ist in mindestens drei Segmente eingeteilt, wobei ein erstes Segment mit der Masseelektrode verbunden ist. Ein zweites und ein drittes Segment ist jeweils über eine separate Elektrode elektrisch kontaktiert. Das zweite Segment der Piezokeramik ist zum Reduzieren einer Schwingung der Membran ausgebildet. Ferner ist das dritte Segment zum Erfassen einer Schwingung der Membran ausgebildet.
Die Piezokeramik kann mindestens ein weiteres Segment umfassen, welches zum Erfassen einer Schwingung und/oder zum Reduzieren einer Schwingung der Membran ausgebildet ist.
Das erste, das zweite und das dritte Segment können sich des Weiteren jeweils konzentrisch umschließen.
Dabei können die Segmente mechanisch derart zueinander gekoppelt sein, so dass diese als Mess- und Steuerglieder eines Regelkreises dienen. Die Segmente können in der
Piezokeramik derart ausgebildet sein, dass in der Oberfläche der Piezokeramik eine gelaserte Unterbrechnung eingebracht ist. Die Unterbrechung kann ferner durch ein Ritzen der Piezokeramik oder durch ein Siebdruckverfahren hergestellt werden. Das erfindungsgemäße Verfahren zur Messung eines Objektabstandes wird mittels eines Ultraschallsensors durchführt, der eine Membran und eine Piezokeramik umfasst. Dabei ist die Piezokeramik in mindestens drei Segmente eingeteilt, wobei ein erstes Segment als Trägerelement für ein zweites und drittes Segment dient. Ferner entsteht im ersten Segment ein elektrisches Feld zum zweiten und dritten Segment. Das erste Segment ist über eine Masseelektrode elektrisch verbunden und das zweite und dritte Segment jeweils über eine separate Elektrode. Das erfindungsgemäße Verfahren umfasst einen ersten
Verfahrensschritt, wonach das zweite und/oder dritte Segment elektrisch über die Elektroden zu einer Piezo-Deformation angeregt werden und eine Schwingung der Membran bewirkt wird. Die Schwingung der Membran erzeugt einen Ultraschallpuls, der ausgesandt wird. In einem weiteren Verfahrensschritt wird ein Schwingungszustand der Membran durch das dritte Segment erfasst und die Auslenkung der Membran vermessen. In einem weiteren Verfahrensschritt wird das zweite Segment angeregt, um eine Gegenschwingung zu erzeugen, welche die Auslenkung der Membran reduziert. Eine Intensität des
Schwingungszustands wird durch mindestens einen physikalische Parameter einer
Schwingung, beispielsweise Amplitude oder Frequenz einer Auslenkung der Membran, charakterisiert. In einem darauf folgenden Verfahrensschritt wird das Echo des im oben beschriebenen ersten Verfahrensschritt ausgesandten Ultraschallimpulses über die
Membran aufgenommen und mittels des zweiten und/oder dritten Segments der
Piezokeramik erfasst. In einem anschließenden Verfahrensschritt wird die zwischen der Aussendung des Ultraschallpulses und der Erfassung des Ultraschallpuls vergangene Laufzeit des Ultraschallpulses erfasst. Anhand der ermittelten Laufzeit wird der zu messende Objektabstand ermittelt. In einer Ausführungsform der Erfindung können der Verfahrensschritt, in dem die
Auslenkung der Membran durch das dritte Segment erfasst wird, und der Verfahrensschritt, in dem mittels des zweiten Segments eine Gegenschwingung erzeugt wird, in einer
Abgleichschleife durchgeführt werden. Dabei wird erfasst, wenn die Auslenkung der Membran einen Schwellwert unterschreitet. Wird der Schwellwert unterschritten, so wird der Verfahrensschritt, in dem eine Gegenschwingung erzeugt wird, beendet.
In einer weiteren Ausführungsform der Erfindung kann in der Piezokeramik ein weiteres Segment ausgebildet sein, das mit dem zweiten und dritten Segment gekoppelt ist. Das weitere Segment ist hierbei mit dem zweiten und dritten Segment derart verbunden, dass diese Mess- und/oder Steuerglieder in einem Regelkreis, der die Auslenkung der Membran reduziert, darstellen.
Der erfindungsgemäße Ultraschallsensor kann insbesondere in einem Fahrassistenzsystem eines Kraftfahrzeugs zur Messung eines Objektabstandes eingesetzt werden.
Vorteile der Erfindung
Der erfindungsgemäße Ultraschallsensor weist eine Piezokeramik auf, die in mindestens drei Segmente eingeteilt ist. In vorteilhafter Weise sind die Segmente der Piezokeramik funktional voneinander entkoppelt und können unabhängig vom Betriebszustand eines anderen Segments eine separate Funktion erfüllen. Die segmentierte Piezokeramik erlaubt, unmittelbar nach Aussenden eines Ultraschallpulses durch Anregung des zweiten und/oder dritten Segments, über das dritte Segment die Auslenkung der Membran zu erfassen. Ferner kann das zweite Segment gezielt angeregt werden, um eine Gegenschwingung zu erzeugen, welche die bereits vorhandende Schwingung der Membran teilweise tilgt und somit die Auslenkung der Membran herabsetzt. Im erfindungsgemäßen Ultraschallsensor kann einem Nachschwingen der Membran unmittelbar nach Aussenden eines Ultraschallpulses entgegengewirkt werden. Durch die funktionale Trennung des zweiten und dritten Segments können eine Vermessung der Auslenkung der Membran und ein Gegenwirken
ununterbrochen und gleichzeitig durchgeführt werden. Das Erfassen der Auslenkung der Membran und das Erzeugen von Gegenschwingungen kann hierbei permanent über eine Abgleichschleife koordiniert werden. Das zweite und dritte Segment der Piezokeramik wirken als Mess- und Steuerglieder eines Regelkreises, der ein Nachschwingen der Membran schnell minimiert.
Das schnelle Minimieren der Auslenkung der Membran beim Nachschwingen bewirkt, dass die Membran nach kurzer Zeit wieder in der Lage ist, ein Ankommen eines Echos eines Ultraschallpulses an der Membran zu erfassen. Hierdurch können auch Ultraschallpulse, die nur eine geringe Laufzeit aufweisen, zuverlässig und exakt für eine Messung eines
Objektabstandes eingesetzt werden. Die Erfindung erlaubt somit, die Mindestreichweite eines Ultraschallsensors zu verringern. Der erfindungsgemäße Ultraschallsensor kann als Sensor für niedrige Objektabstände eingesetzt werden. Hierdurch können bei Anwendungen, in denen sowohl hohe als auch niedrige Objektabstände gemessen werden müssen, beispielsweise bei einem Fahrassistenzsystem eines Kraftfahrzeuges, separate Nahdistanzsensoren eingespart werden.
In einer Ausführungsform des erfindungsgemäßen Ultraschallsensors kann ein weiteres Segment in der Piezokeramik vorgesehen sein, welches zum Erfassen einer Schwingung und/oder zum Reduzieren einer Schwingung der Membran geeignet ist. Ein weiteres
Segmentieren der Piezokeramik erlaubt, eine Vielzahl von messenden Segmenten auszubilden, deren Messsignale miteinander verglichen werden können und somit die Genauigkeit der Messung der Auslenkung der Membran erhöhen. Ferner erlaubt eine weitere Segmentierung der Piezokeramik, gleichmäßig verteilte Anregungssegmente auszubilden, die in der Lage sind, schnell eine Nachschwingung der Membran zu reduzieren. Hierdurch wird die Zeit, bis die Membran wieder in der Lage ist, ein Echo eines
Ultraschallpulses zu erfassen, weiter reduziert. Ferner erlaubt die Erfindung, die Bedämpfung der Membran zu reduzieren, wodurch bei gleichbleibender Anregung der Membran eine höhere Auslenkung der Membran erzeugt wird. Dies ermöglicht das Erzeugen hoher Schalldrücke, wodurch hohe Sensorreichweiten möglich sind. Ferner erlaubt eine reduzierte Bedämpfung der Membran, mit dieser schwache Anregungen zu detektieren und mittels der Piezokeramik zu erfassen. Der
Erfassungsbereich von Abstandssensoren in Kraftfahrzeugen, insbesondere solchen, die zu Side-View-Assist-Anwendungen gehören, wird durch die Erfindung verbessert.
Ferner sind die Segmente vorteilhafterweise mechanisch miteinander gekoppelt und sind als Mess- und Steuerglieder eines Regelkreises ausgebildet. Die Segmente sind Teile der gleichen Piezokeramik und beruhen als Messfühler und Aktoren auf dem gleichen
physikalischen Prinzip Wird während des Nachschwingens der Membran ein Ultraschallecho erfasst, kann durch das Sensieren mittels des dritten Segments das Nachschwingen aus der erfassten Auslenkung der Membran nach dem Eintreffen des Ultraschallechos rechnerisch herausgefiltert werden. Hierdurch wird die Messgenauigkeit des Ultraschallsensors verbessert. Der erfindungsgemäße Ultraschallsensor erlaubt des Weiteren eine
regelungstechnisch einfache Umsetzung. Des Weiteren erlaubt die Einbindung des zweiten und dritten Segments in einen Regelkreis, dass das Regelungsverhalten der Segmente in einfacher Art und Weise an unterschiedliche Einsatzerfordernisse angepasst werden kann. Die Erfindung verbessert folglich das Einsatzspektrum von Ultraschallsensoren zur
Abstandsmessung. Ferner können die Segmente auf einer Oberfläche der Piezokeramik durch gelaserte Unterbrechungen ausgearbeitet werden. Eine Laserbearbeitung kann mit hoher
Geschwindigkeit ausgeführt werden und kann einfach in eine Fertigungskette eingefügt werden. Alternativ können die Unterbrechungen durch Ritzen oder ein Siebdruckverfahren hergestellt werden. Ritzen und Siebdruckverfahren sind Fertigungsschritte, die einfach in eine Fertigungskette integriert werden können. Der erfindungsgemäße Ultraschallsensor erlaubt somit, eine Reduzierung der Mindestreichweite mit relativ einfachen Mitteln zu erreichen. Gleichermaßen erfordert der erfindungsgemäße Ultraschallsensor, dass jedes Segment über eine separate Elektrode angesteuert wird. Elektroden können in einfacher Art und Weise in einem Herstellungsverfahren eingebracht werden.
Des weiteren erlaubt die Erfindung durch das aktive Einleiten von Gegenschwingungen der Membran, die elektrischen Beanspruchungen der Membran während des Betriebs zu reduzieren. Hierdurch wird die Lebensdauer des Ultraschallsensors erhöht. Ferner kann bei einem erfindungsgemäßen Ultraschallsensor infolge der geringen Dämpfung der Membran auf einen Übertrager verzichtet werden. Dabei wird die Anzahl an Bauelementen des Ultraschallsensors reduziert, dessen Fertigung vereinfacht und Bauraum eingespart. Kurze Beschreibung der Zeichnungen
Figur 1 : Draufsicht auf eine Piezokeramik nach dem Stand der Technik Figur 2: Schematische Darstellung eines Ultraschallsensors im Querschnitt
Figur 3: Schematische Darstellung einer Piezokeramik eines erfindungsgemäßen
Ultraschallsensors
Figur 4: Schematische Darstellung einer Ausführungsform einer Piezokeramik eines erfindungsgemäßen Ultraschallsensors
Figur 5: Schematische Darstellung einer Piezokeramik eines erfindungsgemäßen
Ultraschallsensors Figur 6: Schematische Darstellung einer Piezokeramik eines erfindungsgemäßen Ultraschallsensors
Figur 7: Schematische Darstellung des erfindungsgemäßen Verfahrens zur Messung eines Objektabstands
In Figur 1 ist eine Piezokeramik 40 gemäß dem Stand der Technik abgebildet. Die
Piezokeramik 40 weist eine Oberfläche 60 auf, die durch den Rand 70 begrenzt ist. Die Piezokeramik 40 ist auf ihre Oberfläche 60 in ein erstes Segment 41 und ein zweites Segment 42 eingeteilt. Dabei umschließt das erste Segment 41 das zweite Segment 42 ringartig. Das erste Segment 41 ist elektrisch über eine Masseelektrode 25, die Teil der elektrischen Kontaktierung 22 ist, elektrisch angeschlossen. Das zweite Segment 42 ist über eine separate Elektrode 23 elektrisch kontaktiert. Ausführungsformen der Erfindung
In Figur 2 ist ein Ultraschallsensor im Querschnitt dargestellt. Der Ultraschallsensor 10 umfasst ein Gehäuse 20, welches teilweise mit einer Dämpfungsmasse 21 gefüllt ist. An einem Ende des Gehäuses 20 ist eine Membran 30 ausgebildet, die in der Lage ist, durch Schwingung Ultraschallpulse zu erzeugen. Ferner ist die Membran 30 geeignet, Echos von Ultraschallpulsen aufzunehmen und zu erfassen. Auf einer Rückseite 31 der Membran 30 ist eine Piezokeramik 40 angebracht, welche in der Lage ist, durch elektrische Anregung die Membran 30 zu Schwingungen anzuregen. Ferner ist die Piezokeramik 40 geeignet, Schwingungen der Membran 30 zu detektieren und in ein elektrisches Signal umzuwandeln. Die Dämpfungsmasse 21 , die das Gehäuse 20 teilweise ausfüllt, schließt hierbei die
Piezokeramik 40 ein. Die Piezokeramik 40 ist über eine elektrische Kontaktierung 22 verbunden, welche es erlaubt, den Ultraschallsensor 10 elektrisch anzuschließen und anzusteueren. Die elektrische Kontaktierung 22 erstreckt sich hierbei durch die
Dämpfungsmasse 21.
In Figur 3 ist eine Draufsicht einer Piezokeramik einer vorteilhaften Ausführungsform des erfindungsgemäßen Ultraschallsensors abgebildet. Die Oberfläche 60 der Piezokeramik 40 ist durch einen Rand 70 begrenzt. Das erste Segment 41 auf der Oberfläche 60 der
Piezokeramik 40 umschließt das zweite 42 und dritte Segment 43 ringartig. Das zweite Segment 42 und das dritte Segment 43 sind benachbart angeordnet und dienen jeweils zum Reduzieren einer Schwingung der Membran 30 des Ultraschallsensors 10 oder zum
Erfassen einer Schwingung der Membran 30. Hierzu sind das zweite Segment 42 und das dritte Segment 43 jeweils über separate Elektroden 23, 24 elektrisch kontaktiert. Der Masseanschluss der Piezokeramik 40 erfolgt über eine Masseelektrode 25, die in einem Masseanschlussbereich 45 mit der Piezokeramik 40 verbunden ist. Das erste Segment 41 , das zweite Segment 42 und das dritte Segment 43 sind jeweils durch gelaserte
Unterbrechungen 50 voneinander getrennt, welche auf der Oberfläche 60 der Piezokeramik 40 ausgebildet sind. In Figur 4 ist eine vorteilhafte Ausführungsform der Piezokeramik 40 des erfindungsgemäßen Ultraschallsensors 10 dargestellt. Darin weist die Oberfläche 60 der Piezokeramik 40 ein erstes Segment 41 , eine zweites Segment 42 und ein drittes Segment 43 auf. Dabei umschließt das erste Segment 41 das dritte Segment 43 ringförmig, welches wiederum das zweite Segment 42 ringförmig umschließt. Die Segmente 41 , 42, 43 sind hierbei im
Wesentlichen konzentrisch angeordnet. Das zweite Segment 42 ist im Wesentlichen im Zentrum der Piezokeramik 40 angeordnet, wo die Schwingung der Membran 30 die größte Amplitude aufweist. Gegenschwingungen, die durch das zweite Segment 42 eingeleitet werden, reduzieren die Auslenkung der Membran 30 stark. Das dritte Segment 43 ist ein einem Bereich der Oberfläche 60 der Piezokeramik angebracht, in den die Schwingung der Membran 30 eine mittlere Amplitude aufweist. Bei einer mittleren Amplitude werden vom dritten Segment 43 derart hohe Messausschläge registriert, die eine hohe Messgenauigkeit gewährleisten, dabei jedoch nicht den gesamten Arbeitsbereich des dritten Segments 43 ausschöpfen. Das erste Segment 41 dient als Massenanschluss der Piezokeramik 40, welcher über eine Masseelektrode 25 gewährleistet wird, die in einem
Masseanschlussbereich 45 mit der Piezokeramik 40 verbunden ist.
In Figur 5 ist eine weitere vorteilhafte Ausführungsform der Piezokeramik 40 eines erfindungsgemäßen Ultraschallsensors 20 dargestellt. Die Oberfläche 60 der Piezokeramik 40 ist in ein erstes Segment 41 , ein zweites Segment 42, ein drittes Segment 43 und ein weiteres Segment 44 eingeteilt, das weitere Segment 44 ist über eine zusätzliche Elektrode
26 elektrisch angeschlossen. Das zweite Segment 42 und das weitere Segment 44 sind im Wesentlichen kongruent und erstrecken sich vom Zentrum der Piezokeramik 40 in einen Randbereich 70, der durch das erste Segment 41 definiert ist. Hierdurch können das zweite Segment 42 und das weitere Segment 44 die Membran 30 in einem weiten radialen Bereich sensieren bzw. anregen. Werden sowohl das zweite Segment 42 als auch das weitere Segment 44 zum Erfassen einer Schwingung der Membran 30 eingesetzt, erlaubt die kongruente Form des zweiten Segments 42 und des weiteren Segments 44, einen unmittelbaren Vergleich derer Messsignale. Figur 6 zeigt schematisch eine Draufsicht einer weiteren vorteilhaften Ausführungsform der Piezokeramik 40 des erfindungsgemäßen Ultraschallsensors. Darin ist die Oberfläche 60 einer Piezokeramik 40 in ein erstes Segment 41 , ein zweites Segment 42, ein drittes
Segment 43 und ein weiteres Segment 44 eingeteilt. Die Segmente 41 , 42, 43, 44 sind durch gelaserte Unterbrechungen 50 auf der Oberfläche 60 der Piezokeramik 40 gebildet. Das erste Segment 41 umschließt ringförmig das dritte Segment 43, welches wiederum ringförmig das zweite Segment 42 und das weitere Segment 44 umschließt. Das zweite Segment 42 und das weitere Segment 44 sind im Wesentlichen kongruent ausgebildet. Ferner ist das erste Segment 41 mit einer Masseelektrode 25 elektrisch kontaktiert, und das zweite Segment 42, das dritte Segment 43 und das weitere Segment 44 jeweils über separate Elektroden 23, 24, 26 elektrisch angeschlossen. Das zweite Segment 42, welches sich im wesentlichen im Zentrum der Piezokeramik 40 befindet, ist in der Lage, im Bereich der größten Schwingungsamplitude der Membran 30 eine Gegenschwingung einzuleiten, und dadurch die Schwingung der Membran 30 schnell zu tilgen. Das dritte Segment 43 umschließt im Wesentlichen ringförmig das Zentrum der Piezokeramik 40 und erstreckt sich bis in einen Randbereich 70 der Piezokeramik 40, welcher durch das erste Segment 41 definiert ist. Das dritte Segment 43 erlaubt, die Schwingung der Membran 30 in einen Bereich zu sensieren, in dem die Schwingungsamplitude der Membran 30 eine
Größenordnung erreicht, in der eine hohe Messgenauigkeit gewährleistet ist, jedoch nicht der vollständige Arbeitsbereich des dritten Segments 43 ausgeschöpft wird. Wird das weitere Segment 44 als Messglied eingesetzt, so kann die Auslenkung der Membran 30 exakter erfasst werden als nur mit einem einzigen Messglied. Wird das weitere Segment 44 als Steuerglied eingesetzt, so können im Zusammenspiel mit dem zweiten Segment 42 effizient Gegenschwingungen in die Membran 30 eingebracht werden. Hierdurch wird die Zeit, in der die Auslenkung der Membran 30 minimiert wird, reduziert.
In Figur 7 ist schematisch der Ablauf des einer vorteilhaften Ausführungsform des erfindungsgemäßen Verfahrens zur Messung eines Objektabstands mittels eines
Ultraschallsensors abgebildet. In einem ersten Verfahrensschritt 1 10 wird die Membran 30 durch Anregen des zweiten 42 und/oder dritten Segments 43 zu einer Schwingung angeregt und ein Ultraschallpuls erzeugt. Darauf wird in einem zweiten Verfahrensschritt 120 die Auslenkung der Membran 30 durch das dritte Segment 43 der Piezokeramik 40 erfasst. In einem weiteren Verfahrensschritt 130 wird das zweite Segment 42 zum Erzeugen einer Gegenschwingung angeregt, welcher die Schwingung der Membran 30 tilgt. Hierbei wird die Auslenkung der Membran 30 reduziert. Der zweite Verfahrensschritt 120 und der dritte Verfahrensschritt 130 sind durch eine Abgleichschleife 160 miteinander gekoppelt. In der Abgleichschleife 160 wird überprüft, ob die Auslenkung der Membran 30 einen Schwellwert unterschreitet. Wird der Schwellwert unterschritten, so ist die Schwingung der Membran 30 derart niedrig, dass diese in der Lage ist, ein Echo eines Ultraschallpulses zu registrieren. Der zweite Verfahrensschritt 120 und der dritte Verfahrensschritt 130 werden durch die Abgleichschleife solange wiederholt, bis der Schwellwert unterschritten ist. Der zweite 120 und der dritte Verfahrensschritt 130 bilden zusammen mit der Abgleichschleife 160 einen Regelkreis 170. Nach Ausleiten des dritten Verfahrensschrittes 130 wird in einem vierten Verfahrensschritt 140 das Echo des im ersten Verfahrensschritt ausgesandten
Ultraschallpulses 1 10 über die Membran 30 erfasst.
Das von der Membran 30 aufgenommene Echo des im ersten Verfahrensschritt
ausgesandten Ultraschallpulses wird durch das zweite 42 und/oder dritte Segment 43 der Piezokeramik 40 hierbei in einen Messwert umgewandelt. In einem darauf folgenden fünften Verfahrensschritt 150 wird die verstrichene Zeit zwischen dem Aussenden des
Ultraschallpulses im ersten Verfahrensschritt 1 10 und dem Aufnehmen des Echos des
Ultraschallpulses im vierten Verfahrensschritt 140 ermittelt. Aus der verstrichenen Zeit ergibt sich eine Laufzeit des Ultraschallpulses, anhand der der Abstand eines Objektes ermittelt werden kann.

Claims

Ansprüche 1. Ultraschallsensor (10) zum Erfassen eines Abstands eines Objekts, mit einem Gehäuse (20) und eine Dämpfungsmasse (21), die das Gehäuse (20) zumindest teilweise ausfüllt, mit einer Membran (30) und einer Piezokeramik (40) und einer elektrischen Kontaktierung (22) mit mindestens einer Elektrode (23) und einer Masseelektrode (25), dadurch
gekennzeichnet, dass die Piezokeramik (40) in mindestens drei Segmente (41 , 42, 43) geteilt ist, wobei ein erstes Segment (41) mit der Masseelektrode (25) verbunden ist und ein zweites (42) und drittes Segment (43) jeweils über separate Elektroden (23, 24) kontaktiert sind.
2. Ultraschallsensor (10) nach Anspruch 1 , dadurch gekennzeichnet, dass das zweite Segment (42) zum Reduzieren einer Schwingung der Membran (30) ausgebildet ist.
3. Ultraschallsensor (10) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das dritte Segment (43) zum Erfassen einer Schwingung der Membran (30) ausgebildet ist.
4. Ultraschallsensor (10) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass mindestens ein weiteres Segment (44) zum Erfassen einer Schwingung und/oder zum Reduzieren einer Schwingung der Membran (30) in der Piezokeramik (40) ausgebildet ist.
5. Ultraschallsensor nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das erste (41) Segment, das zweite Segment (42) und das dritte Segment (43) sich konzentrisch umschließen.
6. Ultraschallsensor (10) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Segmente (41 , 42, 43, 44) mechanisch zueinander gekoppelt als Mess- und Steuerglieder eines Regelkreises (170) ausgebildet sind.
7. Ultraschallsensor (10) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Segmente (41 , 42, 43) durch eine gelaserte Unterbrechung (50) auf einer
Oberfläche (60) der Piezokeramik (40) ausgebildet sind.
8. Verfahren zur Messung eines Objektabstands mittels eines Ultraschallsensors (10), der eine Membran (30) und eine Piezokeramik (40) umfasst, wobei die Piezokeramik (40) in mindestens drei Segmente (41 , 42, 43) geteilt ist, wobei ein erstes Segment (41), das ein zweites (42) und ein drittes Segment (43) trägt, mit einer Masseelektrode (25) verbunden ist und das zweite (42) und das dritte Segment (43) jeweils über eine separate Elektrode (23, 24) kontaktiert ist, mit nachfolgenden Verfahrensschritten: a) Erzeugen einer Schwingung der Membran (30) zum Aussenden eines
Ultraschallpulses durch Anregen des zweiten (42) und/oder dritten Segments (43), b) Erfassen einer Auslenkung der Membran (30) durch das dritte Segment (43), c) Anregen des zweiten Segments (42) zum Erzeugen einer Gegenschwingung, die geeignet ist, die Auslenkung der Membran (30) zu reduzieren,
d) Erfassen des Echos des in Schritt a) ausgesandten Ultraschallpulses über die Membran (30) mittels des zweiten (42) und/oder dritten Segments (43) der Piezokeramik (40), und
e) Erfassen einer zwischen Schritt a) und Schritt d) abgelaufenen Laufzeit des
Ultraschallpulses und Ermitteln des Objektabstandes anhand der ermittelten Laufzeit.
9. Verfahren zur Messung eines Objektabstands mittels eines Ultraschallsensors (10) nach Anspruch 8, dadurch gekennzeichnet, dass die Schritte b) und c) in einer
Abgleichschleife (160) durchgeführt werden, wobei Schritt c) beendet wird, wenn in Schritt b) ein Unterschreiten eines Schwellwerts der Auslenkung der Membran (30) erfasst wird.
10. Verfahren zur Messung eines Objektabstands mittels eines Ultraschallsensors (10) nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass mindestens ein weiteres Segment (44) in der Piezokeramik (40) ausgebildet ist, wobei das weitere Segment (44) mit dem zweiten (42) und dritten Segment (43) als Mess- und/oder Steuerglieder in einem Regelkreis (170) gekoppelt ist, der die Auslenkung der Membran (30) in Schritt c) reduziert.
1 1. Verwendung eines Ultraschallsensors (10) gemäß einem der Ansprüchee 1 bis 7 Messung eines Objektabstandes in einem Fahrassistenzsystem eines Kraftfahrzeugs.
PCT/EP2013/053326 2012-03-22 2013-02-20 Ultraschallsensor und verfahren zur messung eines objektabstands WO2013139550A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13707138.7A EP2828681A1 (de) 2012-03-22 2013-02-20 Ultraschallsensor und verfahren zur messung eines objektabstands
CN201380015759.0A CN104204844B (zh) 2012-03-22 2013-02-20 用于测量对象间距的超声波传感器和方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012204638A DE102012204638A1 (de) 2012-03-22 2012-03-22 Ultraschallsensor und Verfahren zur Messung eines Objektabstands
DE102012204638.0 2012-03-22

Publications (1)

Publication Number Publication Date
WO2013139550A1 true WO2013139550A1 (de) 2013-09-26

Family

ID=47780039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/053326 WO2013139550A1 (de) 2012-03-22 2013-02-20 Ultraschallsensor und verfahren zur messung eines objektabstands

Country Status (4)

Country Link
EP (1) EP2828681A1 (de)
CN (1) CN104204844B (de)
DE (1) DE102012204638A1 (de)
WO (1) WO2013139550A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105486397A (zh) * 2014-10-02 2016-04-13 赫拉胡克公司 用于检测车辆处的至少一个接触事件的传感器装置和方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015110776A1 (de) * 2015-07-03 2017-01-05 Valeo Schalter Und Sensoren Gmbh Ultraschallsensorvorrichtung für ein Kraftfahrzeug mit zwei Piezoelementen, Fahrerassistenzsystem, Kraftfahrzeug sowie Verfahren
DE102016115260B3 (de) * 2016-08-17 2018-02-08 Infineon Technologies Ag Schallwellensensor
JP6748966B2 (ja) * 2016-09-30 2020-09-02 パナソニックIpマネジメント株式会社 検出装置、検出方法、および検出プログラム
DE102016221542A1 (de) * 2016-11-03 2018-05-03 Robert Bosch Gmbh Membrantopf für einen Ultraschallwandler und Ultraschallwandler
CN111405441B (zh) * 2020-04-16 2021-06-15 瑞声声学科技(深圳)有限公司 一种压电式mems麦克风

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3698051A (en) 1970-02-06 1972-10-17 North American Rockwell Method of making an acoustical transducer
EP0373603A2 (de) * 1988-12-14 1990-06-20 Matsushita Electric Industrial Co., Ltd. Ultraschallsonde
DE19507650A1 (de) 1995-03-06 1996-09-12 Gregor Verpoorten Ultraschallsensor mit segmentierter Membrane
DE19605502C1 (de) 1996-02-14 1997-04-24 Fraunhofer Ges Forschung Ultraschallwandler zur Abstandsmessung
DE19609443C1 (de) * 1996-03-11 1997-05-22 Siemens Ag Ultraschallwandleranordnung mit bipolaren Wandlerelementen
WO2005064589A1 (de) * 2003-12-19 2005-07-14 Valeo Schalter Und Sensoren Gmbh Ultraschallwandlervorrichtung
US20060230841A1 (en) * 2005-04-15 2006-10-19 Shrikrishna Vaidya A Sensor devices

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56141700A (en) * 1980-04-04 1981-11-05 Nec Corp Piezo-oscillator
JP2745147B2 (ja) * 1989-03-27 1998-04-28 三菱マテリアル 株式会社 圧電変換素子
DE102004022838A1 (de) * 2004-05-08 2005-12-01 Forschungszentrum Karlsruhe Gmbh Ultraschallwandler sowie Verfahren zur Herstellung desselben
JP4513596B2 (ja) * 2004-08-25 2010-07-28 株式会社デンソー 超音波センサ
JP4622574B2 (ja) * 2005-02-21 2011-02-02 株式会社デンソー 超音波素子
CN1942020A (zh) * 2005-09-27 2007-04-04 精工爱普生株式会社 静电型超声波换能器及其设计方法、超声波扬声器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3698051A (en) 1970-02-06 1972-10-17 North American Rockwell Method of making an acoustical transducer
EP0373603A2 (de) * 1988-12-14 1990-06-20 Matsushita Electric Industrial Co., Ltd. Ultraschallsonde
DE19507650A1 (de) 1995-03-06 1996-09-12 Gregor Verpoorten Ultraschallsensor mit segmentierter Membrane
DE19605502C1 (de) 1996-02-14 1997-04-24 Fraunhofer Ges Forschung Ultraschallwandler zur Abstandsmessung
DE19609443C1 (de) * 1996-03-11 1997-05-22 Siemens Ag Ultraschallwandleranordnung mit bipolaren Wandlerelementen
WO2005064589A1 (de) * 2003-12-19 2005-07-14 Valeo Schalter Und Sensoren Gmbh Ultraschallwandlervorrichtung
US20060230841A1 (en) * 2005-04-15 2006-10-19 Shrikrishna Vaidya A Sensor devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105486397A (zh) * 2014-10-02 2016-04-13 赫拉胡克公司 用于检测车辆处的至少一个接触事件的传感器装置和方法

Also Published As

Publication number Publication date
DE102012204638A1 (de) 2013-09-26
EP2828681A1 (de) 2015-01-28
CN104204844B (zh) 2017-03-22
CN104204844A (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
EP2559024B1 (de) Verfahren zum ansteuern eines ultraschallsensors und ultraschallsensor
EP2828681A1 (de) Ultraschallsensor und verfahren zur messung eines objektabstands
EP2856206B1 (de) Ultraschallsensor sowie vorrichtung und verfahren zur messung eines abstands zwischen einem fahrzeug und einem hindernis
DE3025233A1 (de) Uebertragungsvorrichtung fuer ultraschallimpulse in luft
EP2320225B1 (de) Verfahren zum Abgleich von Ultraschallsensoren
WO2010130508A1 (de) Verfahren zur funktionsprüfung eines ultraschallsensors an einem kraftfahrzeug, verfahren zum betrieb eines ultraschallsensors an einem kraftfahrzeug und abstandsmessvorrichtung mit mindestens einem ultraschallsensor zur verwendung in einem kraftfahrzeug
DE102017104145B4 (de) Verfahren zum Betreiben einer Ultraschallsensorvorrichtung für ein Kraftfahrzeug mit unterschiedlicher Anregung einer Membran, Ultraschallsensorvorrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
EP3444633A1 (de) Verfahren zum betreiben einer ultraschallsensorvorrichtung für ein kraftfahrzeug mit anpassung eines zeitlichen verlaufs einer amplitude bei frequenzmodulierten anregungssignalen
EP1206698B1 (de) Ultraschall-sensoranordnung
DE102018101324A1 (de) Verfahren zum Bestimmen einer Position eines Objekts in einem Umgebungsbereich eines Kraftfahrzeugs durch Aussenden eines Ultraschallsignals mit verschiedenen Frequenzen, Recheneinrichtung sowie Ultraschallsensorvorrichtung
DE102017209823A1 (de) Ultraschallsensor
WO2017005636A1 (de) Ultraschallsensorvorrichtung für ein kraftfahrzeug mit zwei piezoelementen, fahrerassistenzsystem, kraftfahrzeug sowie verfahren
WO2007137647A1 (de) Bestimmung der federhöhe einer luftfeder nach einem impuls-laufzeitmessverfahren
WO2022122490A1 (de) Ultraschallsensorsystem für ein kraftfahrzeug und verfahren zum betreiben des ultraschallsensorsystems
EP1358476B1 (de) Ultraschall-sensor für die prozesssteuerung beim widerstandspunktschweissen
DE102017122477A1 (de) Verfahren zum Betreiben eines Ultraschallsensors für ein Kraftfahrzeug mit Objekterkennung im Nahbereich und im Fernbereich, Ultraschallsensorvorrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
DE10009129A1 (de) Ultraschallsensor
WO2019096500A1 (de) Verfahren zum betreiben eines ultraschallsensors für ein kraftfahrzeug mit unterdrückung von störungen in einem zweiten empfangspfad, ultraschallsensor sowie fahrerassistenzsystem
DE102017122428B4 (de) Ultraschallsensor für ein Kraftfahrzeug
DE19507650A1 (de) Ultraschallsensor mit segmentierter Membrane
EP3600697B1 (de) Schallwandler, mit in schwingfähige membran integriertem wandlerelement mit elektrisch aktivem polymer
DE102007062460A1 (de) Ultraschallsensor
DE102016214571A1 (de) Verfahren zum Betrieb einer Ultraschall-Messeinrichtung
DE102022125498A1 (de) Überprüfen einer Funktion einer elektromechanischen Einheit eines Ultraschallsensors mit wenigstens einer von einer Grundmode unterschiedlichen Mode
WO2017012787A1 (de) Elektro-akustik-wandler mit wegaddition abseits der schallrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13707138

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013707138

Country of ref document: EP