WO2013139228A1 - 一种制备金属镁粉的方法 - Google Patents

一种制备金属镁粉的方法 Download PDF

Info

Publication number
WO2013139228A1
WO2013139228A1 PCT/CN2013/072636 CN2013072636W WO2013139228A1 WO 2013139228 A1 WO2013139228 A1 WO 2013139228A1 CN 2013072636 W CN2013072636 W CN 2013072636W WO 2013139228 A1 WO2013139228 A1 WO 2013139228A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
metal powder
membrane electrolysis
preparing
mgc
Prior art date
Application number
PCT/CN2013/072636
Other languages
English (en)
French (fr)
Inventor
张无量
Original Assignee
Zhang Wuliang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhang Wuliang filed Critical Zhang Wuliang
Publication of WO2013139228A1 publication Critical patent/WO2013139228A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C5/00Electrolytic production, recovery or refining of metal powders or porous metal masses
    • C25C5/02Electrolytic production, recovery or refining of metal powders or porous metal masses from solutions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/04Electrolytic production, recovery or refining of metals by electrolysis of melts of magnesium

Definitions

  • the invention relates to hydrometallurgy, in particular to a method for preparing magnesium metal powder.
  • Metal magnesium powder is a desulfurizer for steel in steel smelting, and steel after desulfurization has good sheet processing properties.
  • Magnesium metal is also an important material book for the manufacture of aluminum-magnesium alloys. The largest amount is magnesium. For example, the amount of magnesium used in each car is 5-10Kg.
  • the global sea salt industry has a large amount of bitter brine available every year.
  • the resource is rich in salt field brine water resources.
  • the concentration of Mg 2+ in brine is as high as 110 ⁇ 130g/L.
  • the extraction of magnesium from bitter brine is mainly in the use of bitter brine.
  • Magnesium chloride is dehydrated and produced by electrolysis.
  • the industrial scale seawater magnesium method is as follows: Mg(OH) 2 is precipitated by adding calcined limestone from seawater, and then converted into MgC/ 2 * 6H 2 O by magnesium hydroxide and hydrochloric acid, and dehydrated.
  • the object of the present invention is to provide a method for preparing magnesium metal powder according to the above-mentioned deficiencies of the prior art, which directly uses magnesium chloride hexahydrate MgC / 2 * 6H 2 O as a raw material, thereby avoiding the production of magnesium chloride.
  • the dehydration process also achieves cycle production.
  • a method for preparing magnesium metal powder characterized in that the method comprises at least the following steps: subjecting a magnesium chloride hexahydrate MgC/ 2 * 6H 2 O saturated solution to membrane electrolysis to obtain magnesium ions, the magnesium ions being at the cathode of a membrane electrolysis system After being reduced to magnesium in the organic electrolyte, the solid magnesium separation is carried out to obtain magnesium metal powder.
  • the saturated solution of magnesium chloride hexahydrate MgC/ 2 ⁇ 6H 2 0 is derived from the reaction of magnesium hydroxide with hydrochloric acid Product.
  • the saturated solution of magnesium chloride hexahydrate MgC/ 2 ⁇ 6H 2 0 is derived from a potassium-making waste liquid used for the production of potassium fertilizer after seawater desalination treatment, that is, bitter brine.
  • the saturated solution of magnesium chloride hexahydrate MgC / 2 * 6H 2 O is derived from the brine waste water used for the production of potassium fertilizer, that is, bitter brine.
  • the membrane electrolysis uses at least one cation exchange membrane.
  • the excess chloride ion in the MgCl 2 lean solution reacts with magnesium hydroxide, and the formed magnesium chloride solution is formulated into a saturated liquid, and then subjected to membrane electrolysis to obtain magnesium ions, which are reduced into the organic electrolyte in the cathode chamber of the membrane electrolysis system. After magnesium, the metal magnesium powder is obtained by solid-liquid separation.
  • the invention has the advantages that the clean production, the solid-liquid gas is close to zero discharge; the energy consumption is greatly reduced, only the ions in the water are migrated, and the water does not undergo a phase change; the use of the salinized industrial waste liquid makes the upstream factory close to zero discharge; the production process is shortened, The equipment is simple/automatic; the raw material is single, the source is rich, the magnesium chloride does not need to be dehydrated, and the magnesium salt dehydration problem is avoided; the standardized production can be realized, and the production scale can be easily expanded.
  • the raw material of the present embodiment is obtained from 3 ⁇ 4% (1 2 bitter brine obtained after the potassium production in the salt lake potash plant, and after removing the impurity impurities and removing the heavy metal ions, a refined magnesium chloride MgC/ 2 * 6H 2 O saturated solution is obtained.
  • the saturated solution flows through a separation device composed of a plurality of parallel-arranged cation exchange membranes, and the magnesium ions Mg 2+ are separated, and the separated magnesium ions are reduced to magnesium in the cathode electrolyte of the membrane electrolysis system, and then subjected to solid-liquid separation.
  • the magnesium metal powder is obtained.
  • the MgCl 2 lean liquid after the magnesium ion Mg 2+ is separated contains excess chlorine ion ci-, neutralized with magnesium hydroxide, and reacts to form a magnesium chloride solution, which can be used to dispose a saturated solution of magnesium chloride as The use of raw materials, the chlorine gas of the product produced in the same period can be recycled and sold as valuable chemical raw materials.
  • the raw material of the process of this example is 3 ⁇ 4% obtained after the potassium production of the salt lake potash plant (1 2 bitter brine, intermediate additive) It is magnesium hydroxide, the ultimate product of which is magnesium powder, water and chlorine. It is obvious to those skilled in the art that the process is characterized by extracting magnesium powder from potassium-making waste liquid and achieving near-zero emission without pollution. .
  • the difference between this embodiment and the first embodiment is that the raw material is derived from seawater, and the waste water (concentrated brine) discharged from the seawater desalination plant is obtained by the potassium fertilizer plant to obtain the MgCl 2 bitter brine, and then the insoluble matter impurities and the heavy metal ions are removed.
  • a purified magnesium chloride MgC/ 2 * 6H 2 O saturated solution was obtained, which was used as a raw material and separated by the method of the above examples to obtain a metallic magnesium powder.
  • the raw material of the present embodiment is derived from seawater. After filtering a certain amount of seawater, calcined limestone is added, and after precipitation, magnesium hydroxide is formed, and then hydrochloric acid is added to prepare a purified saturated solution of magnesium chloride hexahydrate MgC/ 2 * 6H 2 O. Using this as a raw material, separation was carried out by the method in the above examples to obtain a metallic magnesium powder.
  • magnesium powder Under the working condition of 12-50 °C, about 1 ton of magnesium powder can be produced, and the energy consumption of magnesium powder is about 4500-1000 KWh/ton depending on the applied voltage. At the same time, due to cyclic production, near zero emissions can be achieved.
  • magnesium is produced by using 8-10 tons of magnesium chloride hexahydrate MgC/ 2 * 6H 2 O by the prior art dissolved salt electrolysis method, that is, after drying and dehydration, DC electrolysis is used to obtain magnesium.
  • the energy consumption is about 18,000 KWh/ton.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本发明涉及湿法冶金类,具体涉及一种制备金属镁粉的方法,所述方法至少包括下列步骤:将六水氯化镁MgCl 2 •6H 2 O饱和溶液进行膜电解获得镁离子,所述镁离子在膜电解系统的阴极室有机电解液中被还原成镁以后,经过固液分离得到金属镁粉。本发明的优点是,清洁生产,固液气接近零排放;能耗大幅降低,只迁移水中离子,水不发生相变;使用盐化工业废液,使上游工厂接近零排放;生产流程缩短,设备简单/可全自动;原料单一,来源丰富,氯化镁无须脱水,回避了镁盐脱水难题;可实现标准化生产,易扩大生产规模。

Description

一种制备金属镁粉的方法
技术领域
本发明涉及湿法冶金类, 具体涉及一种制备金属镁粉的方法。
背景技术
金属镁粉在钢铁冶炼中是钢铁的脱硫剂,脱硫后的钢铁具有良好的板材加工 性能。金属镁也是制造铝镁合金的重要材料书, 用量最大的是汽车工业, 例如每辆 汽车用镁量为 5-10Kg。
全球海盐工业每年有大量苦卤可供利用, 资源十分丰富的盐场卤水资源,有 些地区卤水中的 Mg2+浓度高达 110~130g/L, 从苦卤中提取金属镁主要是利用苦 卤中的氯化镁脱水后用电解法生产。工业规模海水制镁的方法是: 由海水中加煅 烧石灰石沉淀 Mg(OH)2, 再由氢氧化镁加盐酸转换成 MgC/2 * 6H2O, 脱水得到
MgCl2 , 再电解得到 和 C/2。 电解法金属镁生产虽是成熟技术, 但利用苦卤 中的氯化镁生产金属镁, 因成本高等原因, 全球未能大规模生产, 其主要难点是 氯化镁脱水问题未能很好解决。
发明内容
本发明的目的是根据上述现有技术的不足之处, 提供一种制备金属镁粉 的方法, 该方法直接采用六水氯化镁 MgC/2 * 6H2O, 作为原料, 从而避免了 生产中氯化镁的脱水过程, 同时还实现了循环生产。
本发明的实现由以下技术方案完成:
一种制备金属镁粉的方法,其特征在于所述方法至少包括下列步骤: 将六水 氯化镁 MgC/2 * 6H2O饱和溶液进行膜电解获得镁离子, 所述镁离子在膜电解系 统的阴极室有机电解液中被还原成镁以后, 经过固液分离得到金属镁粉。
所述的六水氯化镁 MgC/2 · 6H20饱和溶液来源于氢氧化镁与盐酸反应后的 产物。
所述的六水氯化镁 MgC/2 · 6H20饱和溶液来源于海水淡化处理后用于制造 钾肥后的制钾废液, 即苦卤。
所述六水氯化镁 MgC/2 * 6H2O饱和溶液来源于盐湖卤水用于制造钾肥后的 制钾废液, 即苦卤。
所述的膜电解采用的是至少一幅阳离子交换膜。
所述方法中将所述六水氯化镁 MgC/2 * 6H2O饱和溶液经过膜电解后的
MgCl2贫液中过量的氯离子与氢氧化镁反应, 将生成的氯化镁溶液配制成饱和液 后进行膜电解获得镁离子,所述镁离子在膜电解系统的阴极室有机电解液中被还 原成镁以后, 经过固液分离得到金属镁粉。
本发明的优点是, 清洁生产, 固液气接近零排放; 能耗大幅降低, 只迁移 水中离子, 水不发生相变; 使用盐化工业废液, 使上游工厂接近零排放; 生产 流程缩短, 设备简单 /可全自动; 原料单一, 来源丰富, 氯化镁无须脱水, 回 避了镁盐脱水难题; 可实现标准化生产, 易扩大生产规模。
具体实施方式
以下通过实施例对本发明特征及其它相关特征作进一步详细说明, 以便 于同行业技术人员的理解:
实施例 1
本实施例原料来源于盐湖钾肥厂制钾后得到的 ¾%( 12苦卤水, 再经过除不溶 物杂质、 除重金属离子后, 得到精制的氯化镁 MgC/2 * 6H2O饱和溶液, 将该饱 和溶液流经由数幅平行排列的阳离子交换膜构成的分离装置, 将镁离子 Mg2+分 离, 分离的镁离子在膜电解系统的阴极室有机电解液中被还原成镁以后, 经过固 液分离得到金属镁粉。 被分离出镁离子 Mg2+后的 Mgcl2贫液含有过量氯离子 ci-、 将其与氢氧化镁中和, 反应生成氯化镁溶液, 此溶液可用于配置氯化镁饱 和溶液, 作为原料使用, 同期产生的附产品氯气可回收利用, 作为有价值的化工 原料出售。
本实施例流程的原料为盐湖钾肥厂制钾后得到的 ¾%( 12苦卤水, 中间添加物 为氢氧化镁, 其终极产物为镁粉、 水和氯气, 本领域技术人员显然可以认识到, 本流程的特点是从制钾废液中提取镁粉的同时, 实现了无污染的接近零排放。
实施例 2:
本实施例与实施例 1的区别在于原料来源于海水,将海水淡化厂排放的废水 (浓盐水) 经钾肥厂制钾后得到 MgCl2苦卤水, 再经过除不溶物杂质、 除重金属 离子后, 得到精制的氯化镁 MgC/2 * 6H2O饱和溶液, 以此为原料, 用上述实施 例中的方法进行分离, 得到金属镁粉。
实施例 3:
本实施例原料来源于海水, 将一定量的海水过滤后, 加入煅烧石灰石, 经过 沉淀后,生成氢氧化镁,之后加入盐酸,配制成精制的六水氯化镁 MgC/2 * 6H2O 饱和溶液。 以此为原料, 用上述实施例中的方法进行分离, 得到金属镁粉。
将上述实施例投入生产中, 得出的结论是, 采用上述实施例中的 8-10吨六 水氯化镁 MgC/2 * 6H2O配制的饱和溶液, 利用上述实施例的膜电解法在工作压 力 0. lMPa-4MPa; 每幅膜的工作电压 2V-5V; 工作电流 10-500mA/cm2 ; 工作温度
12-50°C的工作状态下,可产出约 1吨左右的镁粉,其镁粉能耗按施加电压不同, 约在 4500-lOOOOKWh/吨。 同时由于循环生产, 可实现接近零排放。
而本领域技术人员熟知的是, 使用 8-10吨六水氯化镁 MgC/2 * 6H2O, 采用 现有技术中的溶盐电解法生产镁, 即经过干燥脱水后, 直流电解获得镁, 其能耗 约在 18000 KWh/吨左右。 有废液排放, 其排放的废电解液需要回收, 再处理。
很显然通过本实施例与现有技术的比较可得知,本发明的方法与对现有技术 相比, 最大优势在于, 能耗大为节省, 且为接近零排放。

Claims

权 利 要 求 书
1. 一种制备金属镁粉的方法, 其特征在于所述方法至少包括下列步骤: 将可溶 于水的镁盐饱和溶液进行膜电解获得镁离子, 所述镁离子在膜电解系统的阴 极室有机电解液中被还原成镁以后, 经过固液分离得到金属镁粉。
2. 根据权利要求 1所述的一种制备金属镁粉的方法, 其特征在于所述的可溶于 水的镁盐为六水氯化镁 MgC/2 * 6H2O。
3. 根据权利要求 2所述的一种制备金属镁粉的方法, 其特征在于所述的六水氯 化镁 MgC/2 · 6H20饱和溶液来源于氢氧化镁与盐酸反应后的产物。
4. 根据权利要求 2所述的一种制备金属镁粉的方法, 其特征在于所述的六水氯 化镁 MgC/2 * 6H2O饱和溶液来源于海水淡化处理后用于制造钾肥后的制钾 废液, 即苦卤。
5. 根据权利要求 2所述的一种制备金属镁粉的方法, 其特征在于所述六水氯化 镁 MgC/2 * 6H2O饱和溶液来源于盐湖卤水用于制造钾肥后的制钾废液,即苦 卤。
6. 根据权利要求 2所述的一种制备金属镁粉的方法, 其特征在于所述的膜电解 系统采用的是至少一幅阳离子交换膜。
7. 根据权利要求 1所述的一种制备金属镁粉的方法, 其特征在于所述方法中将 所述六水氯化镁 MgC/2 * 6H2O饱和溶液经过膜电解后的 MgCl2贫液中过量的 氯离子与氢氧化镁反应, 将生成的氯化镁溶液配制成饱和液后进行膜电解获 得镁离子,所述镁离子在膜电解系统的阴极室有机电解液中被还原成镁以后, 经过固液分离得到金属镁粉。
PCT/CN2013/072636 2012-03-17 2013-03-14 一种制备金属镁粉的方法 WO2013139228A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210070473.X 2012-03-17
CN201210070473XA CN102586810A (zh) 2012-03-17 2012-03-17 一种制备金属镁粉的方法

Publications (1)

Publication Number Publication Date
WO2013139228A1 true WO2013139228A1 (zh) 2013-09-26

Family

ID=46476020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/072636 WO2013139228A1 (zh) 2012-03-17 2013-03-14 一种制备金属镁粉的方法

Country Status (2)

Country Link
CN (1) CN102586810A (zh)
WO (1) WO2013139228A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102586810A (zh) * 2012-03-17 2012-07-18 张无量 一种制备金属镁粉的方法
TWI594954B (zh) * 2014-12-12 2017-08-11 Taiwan Carbon Nano Tech Corp A method of producing electrical energy from a metal electrode made from seawater
CN106283113B (zh) * 2015-06-05 2018-03-27 张无量 制备金属镁的方法
TWI576467B (zh) * 2015-06-15 2017-04-01 Wu-Liang Zhang Preparation of metallic magnesium
CN107604119A (zh) * 2017-07-26 2018-01-19 象州县科学技术情报研究所 硫酸钡生产废液中铁镁元素提取工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6267854B1 (en) * 1999-10-21 2001-07-31 Orville Lee Maddan Apparatus and method for producing magnesium from seawater
CN1676670A (zh) * 2005-01-04 2005-10-05 华南理工大学 一种有机介质电解/超声波连续制备纳米金属粉末的方法
CN101550561A (zh) * 2009-05-05 2009-10-07 中山大学 一种含镁铒镍储氢纳米材料的制备方法
CN102586810A (zh) * 2012-03-17 2012-07-18 张无量 一种制备金属镁粉的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6267854B1 (en) * 1999-10-21 2001-07-31 Orville Lee Maddan Apparatus and method for producing magnesium from seawater
CN1676670A (zh) * 2005-01-04 2005-10-05 华南理工大学 一种有机介质电解/超声波连续制备纳米金属粉末的方法
CN101550561A (zh) * 2009-05-05 2009-10-07 中山大学 一种含镁铒镍储氢纳米材料的制备方法
CN102586810A (zh) * 2012-03-17 2012-07-18 张无量 一种制备金属镁粉的方法

Also Published As

Publication number Publication date
CN102586810A (zh) 2012-07-18

Similar Documents

Publication Publication Date Title
CN110040748B (zh) 利用垃圾焚烧飞灰生产钾盐和钠盐的方法
He et al. Selective removal of magnesium from a lithium-concentrated anolyte by magnesium ammonium phosphate precipitation
CN102070198B (zh) 铁屑还原浸出软锰矿制备高纯硫酸锰和高纯碳酸锰的方法
CN103738986B (zh) 一种白云石煅烧并水溶分离钙镁生产氢氧化镁和碳酸钙的方法
HRP20190789T1 (hr) Postupak i uređaj za generiranje ili ponovno dobivanje klorovodične kiseline iz otopina soli metala
CN102320629B (zh) 利用白炭黑母液水生产试剂级硫酸钠的方法
WO2013139228A1 (zh) 一种制备金属镁粉的方法
CN109824065B (zh) 一种镁锂分离并富集锂的方法
JP2015529740A5 (zh)
CN108396158A (zh) 一种电解锰过程的复盐结晶物的处理方法
CN104609683A (zh) 一种铬鞣污泥中重金属铬的再生方法
CN103818969B (zh) 氧化铁红及其制备方法
CN102642953A (zh) 一种高盐度含重金属生产污水的化处理方法
CN103193274A (zh) 硫酸锰的提纯方法及其硫酸锰
CN113322375B (zh) 一种从卤水中分离锂镁及生产金属镁的方法
CN102531016A (zh) 一种食品级氢氧化钙的生产方法
CN104030510B (zh) 一种黄金冶炼酸性废水中酸和重金属回收的方法
CN105836764A (zh) 一种有机合成工业含盐废水中废盐的回收方法
AU2019322251B2 (en) An improved method for lithium processing
US20240017216A1 (en) Direct lithium extraction (dle) process with precursor hardness treatment and subsequent conversion to lioh monohydrate and li2co3
CN110759364A (zh) 利用粗磷酸锂制备高纯碳酸锂的方法
CN114988438B (zh) 一种碳酸锂循环提锂工艺
CN104150519B (zh) 一种利用硫酸钠废液制备硫酸钡和碳酸钠的方法
CN109809582A (zh) 一种硫酸钾废水回收利用方法
CN109748310A (zh) 一种硫酸钡和碳酸钾混合溶液的分离方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13763519

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13763519

Country of ref document: EP

Kind code of ref document: A1