WO2013139104A1 - 燃料电池热管理系统、燃料电池系统及具有该系统的车辆 - Google Patents

燃料电池热管理系统、燃料电池系统及具有该系统的车辆 Download PDF

Info

Publication number
WO2013139104A1
WO2013139104A1 PCT/CN2012/079217 CN2012079217W WO2013139104A1 WO 2013139104 A1 WO2013139104 A1 WO 2013139104A1 CN 2012079217 W CN2012079217 W CN 2012079217W WO 2013139104 A1 WO2013139104 A1 WO 2013139104A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
cooling
heating
management system
temperature
Prior art date
Application number
PCT/CN2012/079217
Other languages
English (en)
French (fr)
Inventor
汤浩
雷姣
张占奎
杨海玉
李云
Original Assignee
中国东方电气集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国东方电气集团有限公司 filed Critical 中国东方电气集团有限公司
Priority to US14/386,887 priority Critical patent/US20150053491A1/en
Publication of WO2013139104A1 publication Critical patent/WO2013139104A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04037Electrical heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • B60L1/04Supplying electric power to auxiliary equipment of vehicles to electric heating circuits fed by the power supply line
    • B60L1/06Supplying electric power to auxiliary equipment of vehicles to electric heating circuits fed by the power supply line using only one supply
    • B60L1/08Methods and devices for control or regulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • B60L50/71Arrangement of fuel cells within vehicles specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • B60L50/72Constructional details of fuel cells specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/33Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/34Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04358Temperature; Ambient temperature of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04417Pressure; Ambient pressure; Flow of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04723Temperature of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04768Pressure; Flow of the coolant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/405Cogeneration of heat or hot water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the invention relates to the field of heat dissipation for a fuel cell for a vehicle, and more particularly to a fuel cell thermal management system, a fuel cell system, and a vehicle having the same.
  • a fuel cell vehicle drives an automobile by electric energy generated by an electrochemical reaction of a fuel cell. Because of its high efficiency, zero emission, stable operation, and noise-free performance, it is called “an authentic environmentally-friendly automobile”. The future development of the automotive industry.
  • the core component of a fuel cell vehicle is a fuel cell stack.
  • a fuel cell is a highly efficient, clean, and sustainable power generation device.
  • Proton exchange membrane fuel cells (PEMFC) are used as an example.
  • Fuel gas (hydrogen or reforming hydrogen) from the anode Side entry, hydrogen atoms lose electrons at the anode to become protons, protons pass through the proton exchange membrane to the cathode, electrons simultaneously reach the cathode via the external loop, and the protons, electrons and oxygen combine to form water.
  • the fuel cell uses electrochemical reaction to convert chemical energy into electrical energy, which is not limited by the Carnot cycle.
  • the direct power generation efficiency is up to 45%. It is widely used in power stations, mobile power supplies, electric vehicles, spacecraft, military equipment, and civilian products. .
  • the fuel cell stack generates a large amount of heat energy during operation, accounting for about 50% of the fuel chemical energy.
  • a fuel cell stack with an output of 100 kW it generates about 100 kW of heat, which raises the temperature of the fuel cell stack.
  • High temperatures can dry the membrane, reduce membrane performance, shorten membrane life, and reduce fuel cell stack performance and service life.
  • electrical equipment such as fuel cell power management systems can generate a lot of heat.
  • the heat generated by the fuel cell system and its related components (such as power management systems, reactive gases and cooling liquid supply pumps, etc.) needs to be removed in time.
  • GM Global Technology Operations' patented "Integrated Vehicle Cooling System" Application No.
  • 200810131536.1 provides an integrated vehicle cooling system that integrates the internal combustion engine and auxiliary component cooling systems through the sharing of equipment.
  • Tsinghua University patent "a fuel cell city bus car cooling cycle system” (application number 200810246572.2) provides a fuel cell city bus car cooling cycle system, providing cooling for on-board electrical equipment, so that fuel cell city bus appliances are controllable Safe work within temperature.
  • Hyundai Motor Co., Ltd. patent "Cooling System for Fuel Cell Vehicles” (Application No. 201010266526.6) provides a cooling system for a fuel cell vehicle, including an integral radiator frame, The integral heat sink frame arranges the stacked heat sink and the electric drive system heat sink in series on a single plane, which can be achieved by a relatively simple configuration and assembly process.
  • the present invention is directed to a fuel cell thermal management system, a fuel cell system, and a vehicle having the same that utilizes heat generated by a fuel cell to solve the problem that waste heat of the fuel cell system cannot be effectively utilized.
  • the present invention provides a fuel cell thermal management system comprising: a cooling system for recovering waste heat generated by a fuel cell system; and a heating system in communication with the cooling system for heating waste heat recovered by the cooling system. Further, the heating system comprises: a waste heat heating system for heating waste heat recovered by the cooling system; an electric heating heating system for electric heating.
  • the waste heat heating system comprises: a coolant heating system disposed downstream of the cooling system along a flow direction of the cooling medium; and an exhaust gas heating system connected to the exhaust gas discharge port of the fuel cell stack.
  • the coolant heating system includes: a coolant heater, a coolant heater disposed downstream of the cooling system along a flow direction of the cooling medium; and a fan disposed corresponding to the coolant heater.
  • there are a plurality of coolant heaters and a plurality of coolant heaters are arranged in series or in parallel or in series and parallel combination in the flow direction of the cooling medium downstream of the cooling system; each coolant heater is correspondingly provided with one or more fan.
  • the electric heating heating system is arranged in parallel with the waste heat heating system.
  • the cooling system includes a fuel cell stack cooling system and an electrical equipment cooling system that communicate with each other through a pipeline; the electrical equipment cooling system includes a pump cooling system and a power management system cooling system; and the power management system cooling system is disposed along a flow direction of the cooling medium. Upstream or downstream of the fuel cell stack cooling system.
  • the power management system cooling system external cooling system or an internal cooling system; the external cooling system is a cooling pipe outside the power management system and is matched with the power management system; the internal cooling system is a cooling pipe located inside the power management system.
  • the fuel cell thermal management system further includes a heat dissipation system, the heat dissipation system includes: a plurality of radiators, a plurality of radiators connected in series or in parallel or a series-parallel combination disposed downstream of the heating system along a flow direction of the cooling medium; and a cooling fan, One or more cooling fans are provided for each radiator.
  • a heat dissipation system includes: a plurality of radiators, a plurality of radiators connected in series or in parallel or a series-parallel combination disposed downstream of the heating system along a flow direction of the cooling medium; and a cooling fan, One or more cooling fans are provided for each radiator.
  • the fuel cell thermal management system further includes a control system, the control system includes: a cooling system control system, and the cooling system control system includes: a cooling medium container temperature control system, configured to: when the temperature of the cooling medium is lower than a first preset value Controlling heater activation to heat the cooling medium; pump temperature control system for controlling the pump cooling system to be enabled to lower the temperature of the liquid pump and the gas pump when the temperature of the liquid pump and the gas pump is higher than a second preset value; A system temperature control system for controlling a power management system cooling system to be enabled to lower the temperature of the power management system when the power management system temperature is higher than a third preset value; the pump flow control system for high temperature in the fuel cell stack At the fourth preset value, the liquid pump is controlled to increase the flow rate to lower the fuel cell stack temperature.
  • a control system includes: a cooling system control system
  • the cooling system control system includes: a cooling medium container temperature control system, configured to: when the temperature of the cooling medium is lower than a first preset value Controlling heater activation
  • control system further includes a heating system control system for controlling the heating system to start heating when the indoor temperature is lower than the preset heating temperature.
  • the heating system control system comprises: a cooling liquid heating system control system, configured to control the coolant heating system of the cooling liquid heating system to start heating one by one and start the cooling liquid heater when the indoor temperature is lower than the preset heating temperature Corresponding fan; exhaust gas heating system control system, used to start the exhaust gas heating system and heating together with the cooling liquid heating system when the maximum heating temperature of the cooling liquid heating system is lower than the preset heating temperature; the electric heating heating system control system, When the maximum heating temperature of the co-heating system between the exhaust gas heating system and the cooling liquid heating system is lower than the preset heating temperature, the electric heating heating system is started and heated together with the exhaust gas heating system and the cooling liquid heating system.
  • control system further includes a heat dissipation system control system for starting the radiator system to reduce the temperature of the cooling medium when the temperature of the cooling medium in the pipeline between the radiator system and the heating system is higher than a fifth predetermined value.
  • the present invention also provides a fuel cell system comprising a fuel cell stack, a fuel cell system and the aforementioned fuel cell thermal management system.
  • the present invention also provides a vehicle including a wheel, a vehicle body, and a transmission system, the vehicle being a small car, the car including the aforementioned fuel cell system; the fuel cell thermal management system of the fuel cell system including a power management system cooling system and fuel Battery stack cooling system, power management system cooling system flow direction along the cooling medium It is placed upstream of the fuel cell stack cooling system; the power management system cooling system is an external cooling system, and the heating system of the fuel cell thermal management system is used to heat the interior of the car body.
  • the present invention also provides a vehicle including a wheel, a vehicle body, and a transmission system, the vehicle being a bus, the bus including the aforementioned fuel cell system; the fuel cell thermal management system of the fuel cell system including a power management system cooling system and fuel The stack cooling system, the power management system cooling system is disposed upstream of the fuel cell stack cooling system along the flow direction of the cooling medium; the power management system cooling system is an internal cooling system or an external cooling system; the heating system of the fuel cell thermal management system is used for Heating the interior of the bus body.
  • the present invention also provides a vehicle including a wheel, a vehicle body, and a transmission system, the vehicle being a large locomotive, the large locomotive including the foregoing fuel cell system; the fuel cell thermal management system of the fuel cell system including a power management system cooling system and fuel The stack cooling system, the power management system cooling system is disposed downstream of the fuel cell stack cooling system along the flow direction of the cooling medium; the power management system cooling system is an internal cooling system or an external cooling system; the heating system of the fuel cell thermal management system is used for Heating the interior of the body of a large locomotive.
  • the fuel cell thermal management system cools and cools various components of the fuel cell system through the cooling system and recovers waste heat generated by the fuel cell system, and the heating system is recovered by the cooling system. Waste heat is used as a heat source to effectively utilize the heat generated by fuel cell stacks, exhaust gas, and electrical accessories during operation of the fuel cell stack to reduce the operating cost of the fuel cell.
  • FIG. 1 is a structural block diagram of a fuel cell thermal management system according to the present invention
  • FIG. 2 is a block diagram showing a first embodiment of a fuel cell thermal management system according to the present invention
  • 4 is a structural block diagram of a second embodiment of a fuel cell thermal management system
  • FIG. 4 is a schematic structural view of a third embodiment of a fuel cell thermal management system according to the present invention
  • FIG. 5 is a fourth embodiment of a fuel cell thermal management system according to the present invention.
  • FIG. 6 is a schematic structural view of a fifth embodiment of a fuel cell thermal management system according to the present invention
  • FIG. 7 is a schematic structural view of a sixth embodiment of a fuel cell thermal management system according to the present invention.
  • a fuel cell thermal management system includes: a cooling system 100 for recovering waste heat generated by a fuel cell system; a heating system 15 connected to the cooling system for utilizing the cooling system 100 Waste heat from recycling.
  • the cooling system 100 cools and cools various components of the fuel cell system and recovers waste heat generated by the fuel cell system, and the heating system 15 uses the waste heat recovered by the cooling system as a heat source to heat the fuel cell stack, the exhaust gas, and the fuel cell stack during operation.
  • the heat generated by the accessories is effectively utilized to reduce the operating cost of the fuel cell.
  • the heating system 15 comprises: a waste heat heating system 13 and an electric heating system 14 .
  • the waste heat heating system 13 is used for heating waste heat recovered by the cooling system;
  • the electric heating heating system 14 is used for electric heating heating, and when the heating capacity of the waste heat heating system 13 cannot meet the heating demand of the user, it can be heated by the electric heating heating system 14. Heating, making up for the lack of heating capacity of the waste heat heating system 13.
  • the electric heating heating system 14 is arranged in parallel with the waste heat heating system 13. When the heating capacity of the waste heat heating system 13 cannot meet the user's demand, the electric heating heating system 14 works simultaneously with the waste heat heating system 13 to jointly heat the user.
  • the waste heat heating system 13 includes: a coolant heating system and an exhaust gas heating system.
  • the coolant heating system is disposed downstream of the cooling system along the flow direction of the cooling medium, and the waste heat of the fuel cell system recovered by the cooling medium of the cooling system is used as a heat source for heating.
  • the coolant heating system includes a plurality of coolant heaters, the coolant heaters are disposed downstream of the cooling system along the flow direction of the cooling medium; the coolant heater is the main heat exchange component, and the high temperature coolant is in the coolant heater Heat exchange heating.
  • the coolant heating system further comprises a fan, corresponding to the coolant heater, each coolant heater is correspondingly provided with one or more fans, and when the fan is started, it is beneficial to improve the efficiency of heat exchange of the heater. Improve heating effect.
  • coolant heaters There are a plurality of coolant heaters, and a plurality of coolant heaters are arranged in series or in parallel or in a series-parallel combination downstream of the cooling system in the flow direction of the cooling medium.
  • the coolant heater When set in series, the coolant heater is heat exchanged with the external environment step by step.
  • the temperature difference between the first stage and the external environment is large, and the heat exchange efficiency is high.
  • the temperature difference between the coolant heater and the external environment gradually increases.
  • the heat exchange efficiency is gradually reduced.
  • the coolant heaters are installed in parallel, all the coolant heaters are high-temperature cooling media. The temperature difference with the external environment is large, and the heat exchange effect of the whole system is better.
  • the most preferred solution is to set multiple coolant heaters in parallel.
  • the exhaust gas heating system is connected to the exhaust gas discharge port of the fuel cell stack, and a controllable switch is arranged on the pipeline between the exhaust gas heating system and the exhaust gas discharge port.
  • the switch is closed, and the fuel cell stack is generated.
  • the exhaust gas is finally discharged into the atmosphere.
  • the fuel cell system mainly comprises a fuel cell stack and corresponding electrical equipment.
  • the electrical equipment mainly comprises a power management system and a liquid pump for conveying a cooling medium and a gas pump for conveying fuel cell stack fuel, an oxidant, etc., preferably, the gas pump is a compressor or Fan.
  • the cooling system of the fuel cell thermal management system mainly comprises a cooling medium container 1 and a fuel cell stack cooling system 12 and an electrical equipment cooling system that communicate with each other through the pipeline and the cooling medium container 1; the electrical equipment cooling system includes a pump cooling system 4 and a power supply Management system cooling system 11.
  • the power management system cooling system 11 is disposed upstream or downstream of the fuel cell stack cooling system 12 along the flow direction of the cooling medium. As shown in Fig.
  • the power management system cooling system 11 is disposed upstream of the fuel cell stack cooling system 12 in the flow direction of the cooling medium. As shown in FIG. 3, when the common operating power of the fuel cell system is large, the power management system generates a large amount of heat. At this time, the power management system cooling system 11 is disposed in the fuel cell stack cooling system 12 along the flow direction of the cooling medium. Downstream.
  • the power management system cooling system 11 When the power management system generates less heat, the power management system cooling system 11 is located outside the power management system to meet the cooling requirement. At this time, the power management system cooling system 11 is set as an external cooling system, and the cooling pipeline is located outside the power management system. It is easy to structure and reduce cost while meeting the power management system. It can effectively meet the cooling requirements. When the power management system generates a large amount of heat, the cooling pipeline outside the power management system can no longer meet the requirements. At this time, the power management system cooling system 11 can be set as an internal cooling system, and the cooling pipeline is located inside the power management system.
  • the fuel cell thermal management system further includes a heat dissipation system 16, and the heat dissipation system 16 includes: a plurality of radiators, the plurality of radiators being connected in series or in parallel or in a series-parallel combination disposed downstream of the heating system in a flow direction of the cooling medium.
  • the coolant heater is heat exchanged with the external environment step by step.
  • the most preferred arrangement of the plurality of heat sinks is a series connection. More preferably, the heat dissipation system further includes a cooling fan.
  • the cooling fan can be used to assist heat dissipation and improve heat dissipation. The heat exchange efficiency of the device meets the heat dissipation requirements of the system.
  • the fuel cell thermal management system further includes a control system 200 including a cooling system control system including a cooling medium container temperature control system, and a cooling medium container temperature control system for cooling the temperature of the cooling medium in the cooling medium container Below the first preset value, the control heater is activated to heat the cooling medium.
  • the first predetermined value is the lowest value of the optimum temperature of the cooling medium when the fuel cell is started. When the cooling medium is lower than the minimum temperature, it is necessary to start the heater to preheat the cooling medium to bring the cooling medium to a suitable starting temperature.
  • a pump temperature control system configured to control the pump cooling system to be activated to lower the temperature of the liquid pump and the gas pump when the temperature of the liquid pump and the gas pump is higher than a second preset value, and when the fuel cell operates at a lower power, the liquid pump
  • the heat generated by the gas pump is less, and the heat dissipation requirement can be achieved without heat dissipation or natural heat dissipation.
  • the second preset value is the highest value of the optimal temperature for the operation of the liquid pump and the gas pump.
  • a power management system temperature control system is configured to control the power management system cooling system to be enabled to lower the temperature of the power management system when the power management system temperature is higher than a third preset value.
  • the control power system cooling system is enabled to Reduce the temperature of the power management system.
  • Pump flow control system the temperature of the fuel cell stack is controlled by the flow rate of the cooling medium.
  • the fourth preset value is the highest value of the optimal temperature range for the operation of the fuel cell stack.
  • the control system also includes a heating system control system for controlling the heating system to initiate heating when the indoor temperature is lower than the preset heating temperature.
  • the heating system control system comprises: a cooling liquid heating system control system, wherein when the indoor temperature is lower than the preset heating temperature, the cooling liquid heater controlling the cooling liquid heating system starts heating one by one and starts a fan corresponding to the cooling liquid heater
  • the exhaust gas heating system control system is configured to start the exhaust gas heating system and start heating together with the cooling liquid heating system when the maximum heating temperature of the cooling liquid heating system is lower than the preset heating temperature; the electric heating heating system 14 control system is used for When the maximum heating temperature of the co-heating system of the exhaust gas heating system and the cooling liquid heating system is lower than the preset heating temperature, the electric heating heating system 14 is controlled to be started and heated together with the exhaust gas heating system and the cooling liquid heating system.
  • the coolant When heating is required, the coolant is first heated, that is, the coolant heaters are activated one by one.
  • the exhaust gas is used for heating. Only when the coolant heating and the exhaust gas heating start at the same time can not meet the heating requirements, the electric heating system 14 is activated to save energy, reduce the use cost and energy consumption.
  • the electric heating heating system 14 may be an air conditioner. When the cooling liquid and the exhaust gas are simultaneously heated, the heating system control system controls the air conditioner heating.
  • the electric heating heating system 14 may also be an electric heating device for heating the cooling liquid. The electric heating device may be disposed inside the cooling liquid heating system. When the cooling liquid and the exhaust gas are simultaneously heated, the heating requirement cannot be met, and the heating device is directly in the cooling liquid heater.
  • the coolant is heated to increase the temperature difference between the coolant and the ambient temperature, thereby improving the heating capacity.
  • the electric heating device can also be arranged in a parallel or series of branches of the coolant heater. When the electric heating system 14 needs to be activated, the valve of the branch is opened, the coolant is supplied and heated.
  • the control system also includes a heat dissipation system control system for starting the heat sink system to reduce the temperature of the cooling medium when the temperature of the cooling medium in the line between the radiator system and the heating system is above a fifth predetermined value.
  • the fifth predetermined value is the highest value of the optimum temperature range in which the cooling medium flows back to the cooling medium container.
  • the present invention also provides a fuel cell system including a fuel cell stack, and also includes the aforementioned fuel cell thermal management system.
  • the fuel cell thermal management system is used to cool the fuel cell system and to utilize the waste heat generated by the system.
  • the power management system cooling system 11 is disposed upstream of the fuel cell stack cooling system 12 along the flow direction of the cooling medium, and the cooling medium flows out from the cooling medium container 1, and the control system 200 According to the monitoring of the output power or temperature of the fuel cell stack, it is necessary to determine whether the pump and the power management system need to be cooled.
  • the pump and the power management system are electrically The heat generated by the equipment is also small, and the cooling medium directly enters the fuel cell stack cooling system 12; on the contrary, when the output power of the fuel cell stack is large, the heat generated by the electrical equipment such as the pump and the power management system is also large, and it is necessary to remove this part in time.
  • the heat is used to ensure normal and efficient operation of the electrical equipment, and the cooling medium is cooled by the pump cooling system 4 and the power management system cooling system 11 to the fuel cell stack cooling system 12.
  • the user enters the heat dissipation system 16 according to the temperature of the cooling medium or directly returns to the cooling medium container 1.
  • the cooling medium enters the waste heat heating system 13 from the fuel cell stack cooling system 12.
  • the system exhaust gas enters the waste heat heating system 13; when the waste heat heating system 13 is still unable to meet the heating demand of the user, the electric heating heating system 14 is activated to make up for the heating capacity of the waste heat heating system 13 Insufficient.
  • the cooling medium flowing out of the heating system 15 enters the heat dissipation system 16 depending on the temperature or directly returns to the cooling medium container 1. As shown in FIG.
  • the power management system cooling system 11 is disposed downstream of the fuel cell stack cooling system 12 along the flow direction of the cooling medium, and the cooling medium flows out of the cooling medium container 1, and the control system 200
  • the output power of the fuel cell stack it is judged whether the liquid pump needs to be cooled.
  • the output power of the material stack is small, the heat generated by the liquid pump is small, and the cooling medium directly enters the fuel cell stack cooling system 12; conversely, when the output power of the fuel cell stack is large, the heat generated by the liquid pump is also large, and the cooling medium is pumped. After cooling system 4, it enters fuel cell stack cooling system 12.
  • the power management system When the output power of the fuel cell stack is large, the power management system generates a large amount of heat, and the power management system needs to be cooled, and vice versa.
  • the user can decide whether to turn on the heating system according to his own needs.
  • the cooling medium enters the waste heat heating system 13.
  • the exhaust gas containing a large amount of waste heat enters the waste heat heating system 13 If the waste heat heating system 13 is fully operational, the heating demand of the user cannot be satisfied, and the electric heating heating system 14 is turned on to make up for the shortage of the heating capacity of the waste heat heating system.
  • a fuel cell thermal management system for a car is specifically composed of a coolant tank 1, a plurality of liquid pumps, a pump cooling system, a gas pump cooling system, a power management system 10, and a power supply.
  • Management system cooling system 11 fuel cell stack and fuel cell stack cooling system 12, control system, multiple heaters, radiators, cooling fans, solenoid valves, check valves, temperature measuring devices, level control devices, heaters, and Pipeline composition.
  • the power of the car is about 60kW
  • the heat generated in the fuel cell is about 60kW
  • the heat generated by the power management system, pump and cooling fan is about 10%, which is 6kW.
  • the coolant flows out of the coolant tank 1, passes through the liquid pumps 2, 3, the liquid pump cooling system 4, 5, the reagent gas pump cooling system 8, 9, the power management system cooling system 11.
  • the fuel cell stack cooling system 12, the heating system 15, and the heat dissipation system 16 are returned to the coolant tank 1, and the power management system cooling system 11 is disposed upstream of the fuel cell stack cooling system 12 along the flow direction of the coolant.
  • a heater 29, a level control 30, and a temperature sensor 31 are provided in the coolant tank 1. When the temperature is low, the car needs to be preheated when starting, the heater 29 is started, the coolant is warmed up, the temperature of the coolant in the coolant tank 1 is detected by the temperature sensor 31, and the pump is started when the coolant is warmed to a suitable starting temperature. 2, 3 and power management system 10 and other electrical equipment. The operation of the pump is determined by the thermal load of the system.
  • the thermal load of the system is small, and the smaller power pump 2 is started.
  • the thermal load of the system is large, and the pump 3 of the larger power is started or the pumps 2 and 3 are started in parallel.
  • the single-way valves 38, 39 are provided at the outlets of the liquid pumps 2 and 3, respectively. Then, the coolant enters the power management system cooling system 11. Since the power management system 10 generates less heat, in order to reduce the system complexity, the external cooling is selected to remove the heat generated by the power management system 10, and the temperature of the coolant is cooled. The temperature of the coolant in the tank 1 is slightly higher.
  • the coolant then enters the fuel cell stack cooling system 12 to remove a large amount of waste heat generated during operation of the fuel cell stack, and the temperature of the coolant rises rapidly.
  • the coolant flowing out of the fuel cell stack cooling system 12 passes or bypasses the waste heat heating system 13 according to user requirements.
  • the solenoid valve 54 is closed, the coolant enters the coolant heating system, and the control system 200 selectively activates one or more coolant heaters 17, 18 according to the heating demand of the user, and the corresponding fans 23, 24 .
  • the solenoid valve 51 When the coolant heating system is fully operational (starting all coolant heaters and corresponding fans) and the user's heating requirements are not met, the solenoid valve 51 is closed, the solenoid valve 55 is opened, and the exhaust gas enters the exhaust gas heater via the pipeline. If the waste heat heating system 13 (the exhaust gas heating system and the coolant heating system) is still unable to meet the heating demand of the user at the same time, the electric heating heating system 14 is started, and the heating system is co-heated with the waste heat heating system 13, supplementing the shortage of the heating capacity of the waste heat heating system 13 .
  • the coolant flows out of the heating system 15 and enters the heat dissipation system 16, first detecting the temperature at the temperature measuring point 34 between the heating system 15 and the heat dissipation system 16, and when the coolant temperature meets the cycle requirement, the solenoid valves 56, 57, 58 are opened.
  • the solenoid valves 59, 60, 61 are closed, and the coolant is directly returned to the coolant tank 1 by the heating system 15 without passing through the radiator; when the temperature at the temperature measuring point 34 is higher than the highest value of the optimum temperature range, the solenoid valve 59 is opened.
  • the solenoid valve 56 is closed, and the coolant is cooled by the radiator 20.
  • the cooling fan 26 is not activated first, and if the temperature fed back from the temperature monitoring point 35 at the outlet end of the radiator 20 is in the optimum temperature range, the solenoid valve 57 , 58 is opened, the solenoid valves 60, 61 are closed, and the coolant passes through the radiator 20 and returns to the coolant tank 1. If the temperature returned by the temperature detecting point 35 is higher than the highest value of the optimal temperature range, the cooling fan 26 is started; the temperature of the monitoring point 35 is detected again, and if the temperature is in the optimal temperature range, the cooling liquid returns to the cooling liquid after passing through the radiator 20.
  • the solenoid valve 60 is opened, the solenoid valve 57 is closed, and the coolant enters the radiator 21, and the cooling fan 27 is turned on according to the temperature fed back from the monitoring point 36. If the temperature of the monitoring point 36 is still higher than the optimal temperature range when the cooling fan 27 is turned on, the solenoid valve 61 is opened, the solenoid valve 58 is closed, and the coolant enters the radiator 22; similarly, the opening and closing of the cooling fan 28 is controlled by the monitoring point 37. The temperature is determined. The coolant that has been cooled to a suitable temperature range is transported back to the coolant tank 1 through the pipeline.
  • the heat dissipation system 16 can be controlled in the following manner.
  • the coolant flows out of the heating system 15 and enters the heat dissipation system 16, first detecting the temperature at the temperature measuring point 34 between the heating system 15 and the heat dissipation system 16, and when the coolant temperature meets the cycle requirement, the solenoid valves 56, 57, 58 are opened.
  • the solenoid valves 59, 60, 61 are closed, and the coolant is directly returned to the coolant tank 1 by the heating system 15 without passing through the radiator; when the temperature at the temperature measuring point 34 is higher than the highest value of the optimum temperature range, the solenoid valve 59 is opened.
  • the solenoid valve 56 is closed, and the coolant is cooled by the radiator 20, and the cooling fan 26 is not activated first. If the temperature fed back from the temperature monitoring point 35 at the outlet end of the radiator 20 is in the optimal temperature range, the solenoid valves 57, 58 are opened, and the electromagnetic The valves 60, 61 are closed, and the coolant passes through the radiator 20 and returns to the coolant tank 1. If the temperature fed back by the temperature detecting point 35 is higher than the highest value of the optimum temperature range, the solenoid valve 60 is opened, the solenoid valve 57 is closed, the coolant enters the radiator 21, and the temperature is fed back from the temperature monitoring point 36 at the outlet end of the radiator 21.
  • the solenoid valve 61 is opened, the solenoid valve 58 is closed, and the coolant enters the radiator 22, if the temperature fed back from the temperature monitoring point 37 at the outlet end of the radiator 21 is higher than the optimum temperature range.
  • the cooling fan is activated, when a cooling wind
  • the cooling fan is activated to assist heat dissipation.
  • the present invention also provides a car, including a wheel, a body, and a transmission system, and a fuel cell system using the aforementioned fuel cell thermal management system for a car.
  • the fuel cell thermal management system for the fuel cell thermal management system of the car includes a power management system cooling system and a fuel cell stack cooling system, and the power management system cooling system is disposed upstream of the fuel cell stack cooling system along the flow direction of the cooling medium;
  • the system cooling system is an external cooling system, and the heating system of the fuel cell thermal management system is used to heat the interior of the car body. As shown in FIG.
  • the thermal management system specifically includes a coolant tank 1, a plurality of coolant delivery pumps, a pump cooling system, a gas pump cooling system, and a power supply.
  • Management system 10 power management system cooling system 11, fuel cell stack and fuel cell stack cooling system 12, control system, multiple heaters, radiators, cooling fans, solenoid valves, check valves, temperature measuring devices, level control The device, the heater and the pipe are constructed.
  • the power of the bus is about 200kW
  • the heat generated in the fuel cell is about 200kW.
  • the power management system, pump, gas pump and cooling fan and other related electrical equipment produce about 20kW.
  • the coolant flows out of the cooling liquid tank 1, passes through the pumps 2, 3 in turn, the pump cooling system 4, 5, the reaction gas gas pump cooling system 8, 9, the power management system cooling system 11
  • the fuel cell stack cooling system 12, the heating system 15, and the heat dissipation system 16 are returned to the coolant tank 1, and the power management system cooling system 11 is disposed upstream of the fuel cell stack cooling system 12 along the flow direction of the coolant.
  • a heater 29, a level control 30, and a temperature sensor 31 are provided in the coolant tank 1.
  • the bus When the temperature is low, the bus is preheated when starting, the heater 29 is started, the coolant is warmed up, the temperature of the coolant in the coolant tank 1 is detected by the temperature sensor 31, and the pump is started when the coolant is warmed to a suitable starting temperature. , 3 and electrical equipment such as power management system 10.
  • the operation of the liquid pump and the gas pump is determined by the system heat load. At the beginning of the startup, the system heat load is small, the smaller power pump 2 and the smaller gas pump 6 are started, and the heat generated by each motor is small, and the pump cooling system is not activated.
  • the gas pump cooling system 8 the system heat load increases during normal operation, the larger power pump 3 starts or the pumps 2, 3 run in parallel, the pump cooling system 4, 5 starts to cool the pumps 2, 3, the gas pump cooling system 8 9, the gas pumps 6, 7 are cooled.
  • the check valves 33, 34 are provided at the outlets of the pumps 2 and 3, respectively. Then, the coolant enters the power management system cooling system 11. Since the power management system 10 generates a large amount of heat, in order to improve the cooling effect, the internal cooling method is adopted, that is, the cooling pipeline is located inside the power management system, or the power management system is internally provided.
  • the passage of the cooling medium allows the cooling medium to be in direct contact with the power management system and is fully heat exchanged, thereby removing a large amount of heat generated by the power management system 10 in a timely and effective manner.
  • the coolant flows out of the power management system cooling system 11 and enters the fuel cell stack cooling system. 12Removal of fuel A large amount of heat generated during the operation of the stack, the temperature of the coolant rises rapidly.
  • the coolant flowing out of the fuel cell stack cooling system 12 passes or bypasses the waste heat heating system 13 according to user requirements.
  • the solenoid valve 54 When the user has heating demand, the solenoid valve 54 is closed, the coolant enters the coolant heating system, and the control system 200 selectively activates one or more coolant heaters 17, 18 according to the heating demand of the user, and the corresponding fans 23, 24 .
  • the solenoid valve 51 When the coolant heating system is fully operational (starting all coolant heaters and corresponding fans) and the user's heating requirements are not met, the solenoid valve 51 is closed, the solenoid valve 55 is opened, and the exhaust gas enters the exhaust gas heater via the pipeline.
  • the waste heat heating system 13 (the exhaust gas heating system and the coolant heating system) is still unable to meet the heating demand of the user at the same time, the electric heating heating system 14 is started, and the heating system is co-heated with the waste heat heating system 13, supplementing the shortage of the heating capacity of the waste heat heating system 13 .
  • the coolant flows out of the heating system 15 and enters the heat dissipation system 16, first detecting the temperature at the temperature measuring point 34 between the heating system 15 and the heat dissipation system 16, and when the coolant temperature meets the cycle requirement, the solenoid valves 56, 57, 58 are opened.
  • the solenoid valves 59, 60, 61 are closed, and the coolant is directly returned to the coolant tank 1 by the heating system 15 without passing through the radiator; when the temperature at the temperature measuring point 34 is higher than the highest value of the optimum temperature range, the solenoid valve 59 is opened.
  • the solenoid valve 56 is closed, and the coolant is cooled by the radiator 20. From the low carbon point of view, the cooling fan 26 is not activated first, and if the temperature fed back from the temperature monitoring point 35 at the outlet end of the radiator 20 is in the optimum temperature range, the solenoid valve 57 , 58 is opened, the solenoid valves 60, 61 are closed, and the coolant passes through the radiator 20 and returns to the coolant tank 1.
  • the cooling fan 26 is started; the temperature of the monitoring point 35 is detected again, and if the temperature is in the optimal temperature range, the cooling liquid returns to the cooling liquid after passing through the radiator 20. Slot 1; If the temperature is still above the optimal temperature range, the solenoid valve 60 is opened, the solenoid valve 57 is closed, and the coolant enters the radiator 21, and the cooling fan 27 is turned on according to the temperature fed back from the monitoring point 36.
  • the solenoid valve 61 is opened, the solenoid valve 58 is closed, and the coolant enters the radiator 22; similarly, the opening and closing of the cooling fan 28 is controlled by the monitoring point 37.
  • the temperature is determined.
  • the coolant that has been cooled to a suitable temperature range is transported back to the coolant tank 1 through the pipeline.
  • the heat dissipation system 16 can be controlled in the following manner.
  • the coolant flows out of the heating system 15 and enters the heat dissipation system 16, first detecting the temperature at the temperature measuring point 34 between the heating system 15 and the heat dissipation system 16, and when the coolant temperature meets the cycle requirement, the solenoid valves 56, 57, 58 are opened.
  • the solenoid valves 59, 60, 61 are closed, and the coolant is directly returned to the coolant tank 1 by the heating system 15 without passing through the radiator; when the temperature at the temperature measuring point 34 is higher than the highest value of the optimum temperature range, the solenoid valve 59 is opened.
  • the solenoid valve 56 is closed, and the coolant is cooled by the radiator 20, and the cooling fan 26 is not activated first.
  • the solenoid valves 57, 58 are opened, and the electromagnetic The valves 60, 61 are closed, and the coolant passes through the radiator 20 and returns to the coolant tank 1. If the temperature detected by the temperature detection point 35 is higher than the best When the temperature range is the highest, the solenoid valve 60 is opened, the solenoid valve 57 is closed, and the coolant enters the radiator 21. If the temperature fed back from the temperature monitoring point 36 at the outlet end of the radiator 21 is higher than the highest temperature range of the optimum temperature range, the electromagnetic The valve 61 is opened, the solenoid valve 58 is closed, and the coolant enters the radiator 22.
  • the cooling fan is activated, when a cooling fan
  • the cooling fan is activated to assist heat dissipation.
  • the present invention also provides a bus, including a wheel, a body, and a transmission system, and a fuel cell system using the aforementioned fuel cell thermal management system for a bus.
  • the fuel cell thermal management system of the fuel cell thermal management system of the bus includes a power management system cooling system and a fuel cell stack cooling system, and the power management system cooling system is disposed upstream of the fuel cell stack cooling system along the flow direction of the cooling medium;
  • the system cooling system is an internal cooling system or an external cooling system;
  • the heating system of the fuel cell thermal management system is used to heat the interior of the body of the bus.
  • the thermal management system specifically includes a coolant tank 1, a plurality of liquid pumps, a pump cooling system, a gas pump cooling system, and a power supply.
  • Management system 10 power management system cooling system 11, fuel cell stack and fuel cell stack cooling system 12, control system 200, multiple heaters, radiators, cooling fans, solenoid valves, check valves, temperature measuring devices, liquid levels Control unit, heater and piping.
  • the power of the large locomotive is about 1000 kW
  • the heat generated in the fuel cell operation is about 1000 kW.
  • the heat generation of the related electrical equipment such as the power management system 10, the liquid pump 2, 3, the gas pump 6, 7 and the cooling fan 23-28 accounts for about 10%, for 100kW.
  • the coolant flows out of the cooling liquid tank 1, passes through the pumps 2, 3 in sequence, the liquid pump cooling system 4, 5, the gas pump cooling system 8, 9, the fuel cell stack cooling system 12, the power supply
  • the system cooling system 11, the waste heat heating system 13, and the heat dissipation system 16 are returned to the coolant tank 1, and the power management system cooling system 11 is disposed downstream of the fuel cell stack cooling system 12 along the flow direction of the coolant.
  • a heater 29, a level control 30, and a temperature sensor 31 are provided in the coolant tank 1.
  • the large locomotive starts to warm up first, the heater 29 starts, the coolant warms up, the temperature sensor 31 detects the temperature of the coolant in the coolant tank 1, and starts the pump 2, 3 when the coolant reaches the proper starting temperature.
  • the electrical equipment such as the power management system 10
  • the operation of the liquid pump and the gas pump is determined by the system heat load.
  • the system heat load is small, the smaller power pump 2 starts, and the pump cooling system 4 and the gas pump cooling system 8 are activated at the same time; the system has a large thermal load after normal operation, and the larger power pump 3
  • the start or pump 2, 3 are operated in parallel, while the pump cooling systems 4, 5 cool the pump, and the gas pump cooling systems 8, 9 respectively cool the gas pumps 6, 7.
  • the check valves 38, 39 are provided at the outlets of the pumps 2 and 3, respectively.
  • the coolant flowing out of the gas pump cooling system 8, 9 then enters the fuel cell stack cooling system 12 to remove a large amount of heat generated during operation of the fuel cell stack, and the coolant then rapidly rises in temperature.
  • the power management system 10 After the coolant enters the power management system cooling system 11, The power management system 10 generates a very large amount of heat, and the power management system cooling system 11 is disposed downstream of the fuel cell stack 12 in the flow direction of the coolant in consideration of the heat resistance of each component. More preferably, as shown in Figure 7, the heat generated by the power management system 10 is removed by internal cooling.
  • the coolant flowing out of the power management system cooling system 11 passes or bypasses the heating system 15 according to user requirements.
  • the solenoid valve 54 When the user has heating demand, the solenoid valve 54 is closed, the coolant enters the coolant heating system, and the control system 200 selects to activate one or more coolant heaters 17, 18 according to the heating demand of the user, and the corresponding fans 23, 24 .
  • the solenoid valve 51 When the coolant heating system is fully operational (starting all coolant heaters and corresponding fans) and the user's heating requirements are not met, the solenoid valve 51 is closed, the solenoid valve 55 is opened, and the exhaust gas enters the exhaust gas heater 19 via the pipeline. If the waste heat heating system 13 (the exhaust gas heating system and the coolant heating system) is still unable to meet the heating demand of the user at the same time, the electric heating heating system 14 is started, and the heating system is co-heated with the waste heat heating system 13, supplementing the shortage of the heating capacity of the waste heat heating system 13 .
  • the coolant flows out of the heating system 15 and enters the heat dissipation system 16, first detecting the temperature at the temperature measuring point 34 between the heating system 15 and the heat dissipation system 16, and when the coolant temperature meets the cycle requirement, the solenoid valves 56, 57, 58 are opened.
  • the solenoid valves 59, 60, 61 are closed, and the coolant is directly returned to the coolant tank 1 by the heating system 15 without passing through the radiator; when the temperature at the temperature measuring point 34 is higher than the highest value of the optimum temperature range, the solenoid valve 59 is opened.
  • the solenoid valve 56 is closed, and the coolant is cooled by the radiator 20.
  • the cooling fan 26 is not activated first, and if the temperature fed back from the temperature monitoring point 35 at the outlet end of the radiator 20 is in the optimum temperature range, the solenoid valve 57 , 58 is opened, the solenoid valves 60, 61 are closed, and the coolant passes through the radiator 20 and returns to the coolant tank 1. If the temperature returned by the temperature detecting point 35 is higher than the highest value of the optimal temperature range, the cooling fan 26 is started; the temperature of the monitoring point 35 is detected again, and if the temperature is in the optimal temperature range, the cooling liquid returns to the cooling liquid after passing through the radiator 20.
  • the solenoid valve 60 is opened, the solenoid valve 57 is closed, and the coolant enters the radiator 21, and the cooling fan 27 is turned on according to the temperature fed back from the monitoring point 36. If the temperature of the monitoring point 36 is still higher than the optimal temperature range when the cooling fan 27 is turned on, the solenoid valve 61 is opened, the solenoid valve 58 is closed, and the coolant enters the radiator 22; similarly, the opening and closing of the cooling fan 28 is controlled by the monitoring point 37. The temperature is determined. The coolant that has been cooled to a suitable temperature range is transported back to the coolant tank 1 through the pipeline.
  • the heat dissipation system 16 can be controlled in the following manner.
  • the coolant flows out of the heating system 15 and enters the heat dissipation system 16, first detecting the temperature at the temperature measuring point 34 between the heating system 15 and the heat dissipation system 16, and when the coolant temperature meets the cycle requirement, the solenoid valves 56, 57, 58 are opened.
  • the solenoid valves 59, 60, 61 are closed, and the coolant is directly returned to the coolant tank 1 by the heating system 15 without passing through the radiator; when the temperature at the temperature measuring point 34 is higher than the highest value of the optimum temperature range, the solenoid valve 59 is opened.
  • the solenoid valve 56 is closed, and the coolant is cooled by the radiator 20, and the cooling fan 26 is not activated first. If the temperature fed back from the temperature monitoring point 35 at the outlet end of the radiator 20 is in the optimal temperature range, the solenoid valves 57, 58 are opened, and the electromagnetic Valves 60, 61 After the coolant is turned off, the coolant returns to the coolant tank 1 . If the temperature fed back by the temperature detecting point 35 is higher than the highest value of the optimum temperature range, the solenoid valve 60 is opened, the solenoid valve 57 is closed, the coolant enters the radiator 21, and the temperature is fed back from the temperature monitoring point 36 at the outlet end of the radiator 21.
  • the solenoid valve 61 is opened, the solenoid valve 58 is closed, and the coolant enters the radiator 22, if the temperature fed back from the temperature monitoring point 37 at the outlet end of the radiator 21 is higher than the optimum temperature range.
  • the cooling fan is started.
  • the number of starting cooling fans is increased one by one. That is, the heat is naturally dissipated through a plurality of heat sinks, and the temperature of the coolant is lowered to an optimum temperature range.
  • the cooling fan is activated to assist heat dissipation.
  • the present invention also provides a large locomotive including a wheel, a body, and a transmission system, and also includes a fuel cell system; a fuel cell thermal management system of the fuel cell system adopts the aforementioned fuel cell thermal management system for a large locomotive, and a large locomotive fuel
  • the power management system cooling system of the battery thermal management system is disposed downstream of the fuel cell stack cooling system along the flow direction of the cooling medium; the power management system cooling system is an internal cooling system or an external cooling system; the heating system of the fuel cell thermal management system is used for Heating the interior of the body of a large locomotive.
  • the fuel cell thermal management system passes through the cooling system Cooling and cooling the various components of the fuel cell system and recovering the waste heat generated by the fuel cell system.
  • the heating system uses the waste heat recovered by the cooling system as a heat source to heat the fuel cell stack, the exhaust gas, and the electrical components during operation of the fuel cell stack. Effective use, reducing the operating cost of fuel cells.

Abstract

本发明提供一种燃料电池热管理系统、燃料电池系统及具有该系统的车辆。根据本发明的燃料电池热管理系统包括:冷却系统(100),用于回收燃料电池系统产生的废热;供暖系统(15),与冷却系统(100)相连,用于利用冷却系统(100)回收的废热供暖。根据本发明的燃料电池系统包括燃料电池堆和前述的燃料电池热管理系统。根据本发明的车辆包括该燃料电池系统,其中燃料电池热管理系统通过冷却系统(100)对燃料电池系统的各个部件冷却降温并回收燃料电池系统产生的废热,供暖系统(15)利用冷却系统回收的废热作为热源供暖,从而对燃料电池堆、尾气以及燃料电池堆运行过程中电气等附件产生的热量有效利用,降低燃料电池的运行成本。

Description

燃料电池热管理系统、 燃料电池系统及具有该系统的车辆 技术领域 本发明涉及车用燃料电池散热领域, 具体而言, 涉及一种燃料电池热管理系统、 燃料电池系统及具有该系统的车辆。 背景技术 燃料电池汽车通过燃料电池发生电化学反应产生的电能来驱动汽车, 由于其具有 效率高、 零排放、 运行平稳、 无噪声等一系列优良性能, 被称为"地道的环保汽车", 是未来汽车产业发展的趋势。 燃料电池汽车其核心部件为燃料电池堆, 燃料电池是一 种高效、 清洁、 可持续工作的发电设备, 以质子交换膜燃料电池 (PEMFC) 为例, 燃 料气体 (氢气或重整氢) 从阳极侧进入, 氢原子在阳极失去电子变成质子, 质子穿过 质子交换膜到达阴极, 电子同时经由外部回路到达阴极, 在阴极质子、 电子与氧气结 合生成水。 燃料电池采用电化学反应将化学能转化为电能, 不受卡诺循环的限制, 直 接发电效率高达 45%, 广泛应用于电站、 移动式电源、 电动汽车、 航天飞船、 军用装 备以及民用产品等领域。 燃料电池堆在运行过程中会产生大量热能, 约占燃料化学能的 50%, 以一个输出 为 100kW的燃料电池堆为例, 其会产生约 100kW的热量, 使燃料电池堆温度升高, 过高的温度会使膜干燥, 降低膜的性能, 缩短膜的使用寿命, 进而降低燃料电池堆的 性能和使用寿命; 与此同时, 燃料电池的电源管理系统等电气设备也会产生大量的热 量。 为了提高燃料电池及相关电气设备的运行效率和使用寿命, 燃料电池系统及其相 关部件(如电源管理系统、 反应气体和冷却液体供给泵等)产生的热量需要及时移除。 通用汽车环球科技运作公司专利"整合的车辆冷却系统" (申请号 200810131536.1 ) 提供了一种整合的车辆冷却系统, 该冷却系统通过设备的共享实现了内燃机和辅助部 件冷却系统的整合。 清华大学专利 "一种燃料电池城市客车车载冷却循环系统" (申请号 200810246572.2) 提供了一种燃料电池城市客车车载冷却循环系统, 为车载电气设备 提供冷却, 使燃料电池城市客车电器在可控的温度内安全的工作。 现代自动车株式会社专利"用于燃料电池汽车的冷却系统" (申请号 201010266526.6) 提供了一种用于燃料电池汽车的冷却系统, 包括整体散热器框架, 该整体散热器框架在一个平面上串联排列堆叠式散热器和电动传动系统散热器, 该发 明能通过相对简单的构型和组装过程来实现。 清华大学专利"燃料电池车用余热热泵空调系统" (申请号 200810113785.8 ) 提供 了一种利用燃料电池发动机余热的热泵空调系统, 能同时满足制冷和采暖需要, 降低 了空调系统消耗, 提高了车辆动力性及经济性。 现有的技术调研发现, 目前有关车用燃料电池的研究主要集中在如何实现燃料电 池堆的有效冷却, 没有形成高效的综合热管理优化系统, 同时燃料电池堆、 尾气以及 燃料电池堆运行过程中电气等附件产生的热量未被有效利用, 这会增加车用燃料电池 的运行成本, 也会阻碍燃料电池汽车的产业化进程。 发明内容 本发明旨在提供一种综合利用燃料电池产生的热量的燃料电池热管理系统、 燃料 电池系统及具有该系统的车辆,以解决燃料电池系统的废热无法得到有效利用的问题。 本发明提供了一种燃料电池热管理系统, 包括: 冷却系统, 用于回收燃料电池系 统产生的废热; 供暖系统, 与冷却系统相连通, 用于利用冷却系统回收的废热供暖。 进一步地, 供暖系统包括: 废热供暖系统, 用于利用冷却系统回收的废热供暖; 电加热供暖系统, 用于电加热供暖。 进一步地, 废热供暖系统包括: 冷却液供暖系统, 沿冷却介质的流动方向设置在 冷却系统的下游; 尾气供暖系统, 与燃料电池堆的尾气排放口相连通。 进一步地, 冷却液供暖系统包括: 冷却液供暖器, 冷却液供暖器沿冷却介质的流 动方向设置在冷却系统的下游; 以及风扇, 与冷却液供暖器对应设置。 进一步地, 冷却液供暖器为多个, 多个冷却液供暖器串联或者并联或者串并联组 合沿冷却介质的流动方向设置在冷却系统的下游; 每个冷却液供暖器对应设置有一个 或多个风扇。 进一步地, 电加热供暖系统与废热供暖系统并联设置。 进一步地, 冷却系统包括通过管道相互连通的燃料电池堆冷却系统和电气设备冷 却系统; 电气设备冷却系统包括泵冷却系统和电源管理系统冷却系统; 电源管理系统 冷却系统沿冷却介质的流动方向设置在燃料电池堆冷却系统的上游或者下游。 进一步地, 电源管理系统冷却系统外冷却系统或者为内冷却系统; 外冷却系统为 冷却管路位于电源管理系统外部并与电源管理系统贴合; 内冷却系统为冷却管路位于 电源管理系统内部。 进一步地, 燃料电池热管理系统还包括散热系统, 散热系统包括: 多个散热器, 多个散热器串联或者并联或者串并联组合沿冷却介质的流动方向设置在供暖系统的下 游; 以及冷却风扇, 每个散热器对应设置一个或多个冷却风扇。 进一步地, 燃料电池热管理系统还包括控制系统, 控制系统包括: 冷却系统控制 系统, 冷却系统控制系统包括: 冷却介质容器温度控制系统, 用于在冷却介质的温度 低于第一预设值时, 控制加热器启用以加热冷却介质; 泵温度控制系统, 用于在液体 泵和气体泵的温度高于第二预设值时, 控制泵冷却系统启用以降低液体泵和气体泵的 温度; 电源管理系统温度控制系统, 用于在电源管理系统温度高于第三预设值时, 控 制电源管理系统冷却系统启用以降低电源管理系统的温度; 泵流量控制系统, 用于在 燃料电池堆温度高于第四预设值时, 控制液体泵提高流量以降低燃料电池堆温度。 进一步地, 控制系统还包括供暖系统控制系统, 供暖系统控制系统用于在室内温 度低于预设供暖温度时, 控制供暖系统启动供暖。 进一步地, 供暖系统控制系统包括: 冷却液供暖系统控制系统, 用于在室内温度 低于预设供暖温度时, 控制冷却液供暖系统的冷却液供暖器逐个启动供暖并启动与冷 却液供暖器相对应的风扇; 尾气供暖系统控制系统, 用于在冷却液供暖系统最大供暖 温度低于预设供暖温度时, 启动尾气供暖系统启动并与冷却液供暖系统共同供暖; 电 加热供暖系统控制系统, 用于在尾气供暖系统与冷却液供暖系统共同供暖的最大供暖 温度低于预设供暖温度时, 控制电加热供暖系统启动并与尾气供暖系统和冷却液供暖 系统共同供暖。 进一步地, 控制系统还包括散热系统控制系统, 用于当散热器系统和供暖系统之 间的管路内冷却介质的温度高于第五预定值时,启动散热器系统以降低冷却介质温度。 本发明还提供了一种燃料电池系统, 包括燃料电池堆, 燃料电池系统和前述的燃 料电池热管理系统。 本发明还提供了一种车辆, 包括车轮、 车身、 以及传动系统, 该车辆为小轿车, 小轿车包括前述的燃料电池系统; 燃料电池系统的燃料电池热管理系统包括电源管理 系统冷却系统和燃料电池堆冷却系统, 电源管理系统冷却系统沿冷却介质的流动方向 设置在燃料电池堆冷却系统的上游; 电源管理系统冷却系统为外冷却系统, 燃料电池 热管理系统的供暖系统用于向小轿车的车身内部供暖。 本发明还提供了一种车辆, 包括车轮、 车身、 以及传动系统, 该车辆为大巴车, 大巴车包括前述的燃料电池系统; 燃料电池系统的燃料电池热管理系统包括电源管理 系统冷却系统和燃料电池堆冷却系统, 电源管理系统冷却系统沿冷却介质的流动方向 设置在燃料电池堆冷却系统的上游; 电源管理系统冷却系统为内冷却系统或者外冷却 系统; 燃料电池热管理系统的供暖系统用于向大巴车的车身内部供暖。 本发明还提供了一种车辆, 包括车轮、 车身、 以及传动系统, 该车辆为大型机车, 大型机车包括前述的燃料电池系统; 燃料电池系统的燃料电池热管理系统包括电源管 理系统冷却系统和燃料电池堆冷却系统, 电源管理系统冷却系统沿冷却介质的流动方 向设置在燃料电池堆冷却系统的下游; 电源管理系统冷却系统为内冷却系统或者外冷 却系统; 燃料电池热管理系统的供暖系统用于向大型机车的车身内部供暖。 根据本发明的燃料电池热管理系统及具有其的燃料电池系统, 燃料电池热管理系 统通过冷却系统对燃料电池系统的各个部件冷却降温并回收燃料电池系统产生的废 热, 供暖系统利用冷却系统回收的废热作为热源供暖, 从而对燃料电池堆、 尾气以及 燃料电池堆运行过程中电气等附件产生的热量有效利用, 降低燃料电池的运行成本。 附图说明 构成本申请的一部分的附图用来提供对本发明的进一步理解, 本发明的示意性实 施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中: 图 1是根据本发明的燃料电池热管理系统的结构框架示意图; 图 2是根据本发明的燃料电池热管理系统的第一实施例的结构框图; 图 3是根据本发明的燃料电池热管理系统的第二实施例的结构框图; 图 4是根据本发明的燃料电池热管理系统的第三实施例的结构示意图; 图 5是根据本发明的燃料电池热管理系统的第四实施例的结构示意图; 图 6是根据本发明的燃料电池热管理系统的第五实施例的结构示意图; 以及 图 7是根据本发明的燃料电池热管理系统的第六实施例的结构示意图。 具体实施方式 下面将参考附图并结合实施例来详细说明本发明。 如图 1所示, 根据本发明的一种燃料电池热管理系统, 包括: 冷却系统 100, 用 于回收燃料电池系统产生的废热; 供暖系统 15, 与冷却系统相连通, 用于利用冷却系 统 100回收的废热供暖。 冷却系统 100对燃料电池系统的各个部件冷却降温并回收燃 料电池系统产生的废热,供暖系统 15利用冷却系统回收的废热作为热源供暖, 从而对 燃料电池堆、 尾气以及燃料电池堆运行过程中电气等附件产生的热量有效利用, 降低 燃料电池的运行成本。 供暖系统 15包括: 废热供暖系统 13和电加热供暖系统 14。 废热供暖系统 13用 于利用冷却系统回收的废热供暖; 电加热供暖系统 14, 用于电加热供暖, 当废热供暖 系统 13的供暖能力不能达到用户的供暖需求时, 可以通过电加热供暖系统 14加热供 暖, 弥补废热供暖系统 13的供暖能力不足。 优选地, 电加热供暖系统 14与废热供暖 系统 13并联设置, 当废热供暖系统 13供暖能力不能满足用户需求时, 电加热供暖系 统 14与废热供暖系统 13同时工作, 共同为用户供暖。 废热供暖系统 13包括: 冷却液供暖系统和尾气供暖系统。冷却液供暖系统沿冷却 介质的流动方向设置在冷却系统的下游, 利用冷却系统的冷却介质回收的燃料电池系 统的废热作为热源供暖。 冷却液供暖系统包括多个冷却液供暖器, 冷却液供暖器沿冷 却介质的流动方向设置在冷却系统的下游; 冷却液供暖器为主要的热交换部件, 高温 的冷却介质在冷却液供暖器中热交换供暖。 优选地, 冷却液供暖系统还包括风扇, 与 冷却液供暖器对应设置, 每个冷却液供暖器对应设置有一个或多个风扇, 当风扇启动 时, 有利于提高供暖器的热交换的效率, 提高供暖效果。 冷却液供暖器为多个, 多个冷却液供暖器串联或者并联或者串并联组合沿冷却介 质的流动方向设置在冷却系统的下游。 当串联设置时, 冷却液供暖器逐级与外界环境 热交换, 第一级与外界环境的温差较大, 热交换效率较高, 但是随着级别增多, 冷却 液供暖器与外界环境的温差逐渐减小, 热交换效率逐渐减小。 冷却液供暖器并联设置 时, 所有的冷却液供暖器中都为高温冷却介质, 与外界环境温差较大, 整个系统热交 换效果更好, 故最优选的方案为多个冷却液供暖器并联设置在冷却系统的出口端。 尾气供暖系统与燃料电池堆的尾气排放口相连通, 尾气供暖系统与尾气排放口之 间的管道上设置有可控的开关, 当不需要尾气供暖系统供暖时, 开关关闭, 燃料电池 堆产生的尾气最终排入大气。 燃料电池系统主要包括燃料电池堆及相应的电气设备, 电气设备主要包括电源管 理系统和输送冷却介质的液体泵和输送燃料电池堆燃料、氧化剂等的气体泵,优选地, 气体泵为压缩机或者风机。 在燃料电池系统工作时, 燃料电池堆为主要发热部件, 但 是电源管理系统及气体泵和液体泵工作时也会产生热量, 如果不及时冷却, 也会导致 电源管理系统和气体泵及液体泵温度过高。 故燃料电池热管理系统的冷却系统主要包 括冷却介质容器 1, 以及通过管道与冷却介质容器 1相互连通的燃料电池堆冷却系统 12和电气设备冷却系统; 电气设备冷却系统包括泵冷却系统 4和电源管理系统冷却系 统 11。 电源管理系统冷却系统 11沿冷却介质的流动方向设置在燃料电池堆冷却系统 12的上游或者下游。 如图 2所示, 当冷却介质从低温部件逐渐流向高温部件时, 能够有效的减小冷却 介质用量, 提高热交换效率, 按照上述原则, 当燃料电池系统的常用工作功率较小时, 电源管理系统发热量也较小, 此时, 电源管理系统冷却系统 11沿冷却介质的流动方向 设置在燃料电池堆冷却系统 12的上游。如图 3所示, 当燃料电池系统的常用工作功率 较大时, 电源管理系统发热量也较大, 此时, 电源管理系统冷却系统 11沿冷却介质的 流动方向设置在燃料电池堆冷却系统 12的下游。 当电源管理系统发热量较小时,电源管理系统冷却系统 11位于电源管理系统外部 即可满足冷却要求, 此时, 电源管理系统冷却系统 11设置为外冷却系统, 冷却管路位 于电源管理系统外部并与电源管理系统贴合, 结构简单, 降低成本, 同时能够有效地 满足冷却要求。 当电源管理系统发热量较大时, 位于电源管理系统外部的冷却管路已 经无法满足要求, 此时, 可将电源管理系统冷却系统 11设置为内冷却系统, 冷却管路 位于电源管理系统内部, 或者电源管理系统的内部即设置有冷却介质流动的通道, 使 冷却介质与电源管理系统直接接触, 充分热交换, 从而及时有效地带走电源管理系统 产生的大量热量。 燃料电池热管理系统还包括散热系统 16, 散热系统 16包括: 多个散热器, 多个 散热器串联或者并联或者串并联组合沿冷却介质的流动方向设置在供暖系统的下游。 当串联设置时, 冷却液供暖器逐级与外界环境热交换, 随着级数增多, 能够获得更低 温度的冷却介质, 从而更好地达到散热效果, 满足燃料电池热管理系统散热的要求。 故多个散热器最优选的排列方式为串联。 更优选地, 散热系统还包括冷却风扇, 当多 个散热器在自然状态下不能满足系统散热要求 (即散热系统出口端的温度不能达到合 适的温度范围) 时, 可以通过冷却风扇辅助散热, 提高散热器的热交换效率, 满足系 统的散热的要求, 一个散热器可以对应一个或者多个冷却风扇。 散热系统的出口端与 冷却系统的冷却介质容器 1相连通构成冷却介质循环通道。 燃料电池热管理系统还包括控制系统 200, 控制系统 200包括冷却系统控制系统, 冷却系统控制系统包括冷却介质容器温度控制系统, 冷却介质容器温度控制系统用于 在冷却介质容器中的冷却介质的温度低于第一预设值时, 控制加热器启用以加热冷却 介质。 第一预设值为燃料电池启动时的冷却介质的最佳温度的最低值, 当冷却介质低 于该最低温度时, 需要启动加热器预热冷却介质使冷却介质达到合适的启动温度。 泵 温度控制系统, 用于在液体泵和气体泵的温度高于第二预设值时, 控制泵冷却系统启 用以降低液体泵和气体泵的温度, 在燃料电池工作功率较低时, 液体泵和气体泵产生 的热量较少, 不用散热或者自然散热即可达到散热要求, 当燃料电池工作功率超过一 定值时, 液体泵和气体泵产生的热量会导致温度过高。 第二预设值为液体泵和气体泵 工作的最佳温度的最高值, 当液体泵和气体泵的温度高于第二预设值时, 启动相应的 泵冷却系统以使液体泵和气体泵工作在最佳温度范围中。 电源管理系统温度控制系统, 用于在电源管理系统温度高于第三预设值时, 控制 电源管理系统冷却系统启用以降低电源管理系统的温度。 如同液体泵和气体泵, 在电 源管理系统产生的热量较多使温度高于电源管理系统工作的最佳温度范围的最高值 (即第三预设值) 时, 控制电源管理系统冷却系统启用以降低电源管理系统的温度。 泵流量控制系统, 燃料电池堆温度通过冷却介质的流量来控制, 当燃料电池堆工 作功率较大, 产生热量较多时, 增大冷却介质的流量以使燃料电池堆工作在最佳温度 范围中, 同样, 当燃料电池堆工作功率较低, 产生热量较少时, 相应的减小冷却介质 的流量使燃料电池堆工作在最佳温度范围中。 第四预设值为燃料电池堆工作的最佳温 度范围的最高值, 当燃料电池堆温度高于第四预设值时, 提高冷却介质流量以降低燃 料电池堆温度, 使燃料电池堆工作在最佳温度范围中。 控制系统还包括供暖系统控制系统, 供暖系统控制系统用于在室内温度低于预设 供暖温度时, 控制供暖系统启动供暖。 供暖系统控制系统包括: 冷却液供暖系统控制 系统, 用于在室内温度低于预设供暖温度时, 控制冷却液供暖系统的冷却液供暖器逐 个启动供暖并启动与冷却液供暖器相对应的风扇; 尾气供暖系统控制系统, 用于在冷 却液供暖系统最大供暖温度低于预设供暖温度时, 启动尾气供暖系统启动并与冷却液 供暖系统共同供暖; 电加热供暖系统 14控制系统,用于在尾气供暖系统与冷却液供暖 系统共同供暖的最大供暖温度低于预设供暖温度时,控制电加热供暖系统 14启动并与 尾气供暖系统和冷却液供暖系统共同供暖。 当需要供暖时, 首先采用冷却液供暖, 即 逐个启动冷却液供暖器。 当冷却液供暖不能达到供暖要求时, 再采用尾气供暖。 只有 当冷却液供暖和尾气供暖同时启动还不能满足供暖要求时, 才启动电加热供暖系统 14, 以节约能量, 降低使用成本和能耗。 电加热供暖系统 14可以是空调器,当冷却液和尾气同时供暖时还不能满足供暖要 求时,供暖系统控制系统控制空调器供暖。 电加热供暖系统 14也可以是对冷却液加热 的电加热装置, 电加热装置可以设置在冷却液供暖系统内部, 当冷却液和尾气同时供 暖时不能满足供暖要求时, 直接对冷却液供暖器中的冷却液加热, 提高冷却液与环境 温度的温差, 从而提高供暖能力。 电加热装置也可以设置在冷却液供暖器并联或者串 联的支路中, 当需要启动电加热供暖系统 14时, 打开该支路的阀门, 通入冷却液并加 热。 控制系统还包括散热系统控制系统, 用于当散热器系统和供暖系统之间的管路内 冷却介质的温度高于第五预定值时, 启动散热器系统以降低冷却介质温度。 第五预定 值为冷却介质流回冷却介质容器的最佳温度范围的最高值。 本发明还提供了一种燃料电池系统, 包括燃料电池堆, 还包括前述的燃料电池热 管理系统。 燃料电池热管理系统用于对燃料电池系统冷却散热并对该系统产生的废热 综合利用。 如图 2所示, 根据本发明的第一实施例, 电源管理系统冷却系统 11沿冷却介质的 流动方向设置在燃料电池堆冷却系统 12的上游,冷却介质自冷却介质容器 1流出,控 制系统 200根据燃料电池堆输出功率大小或温度的监控判断是否需要对泵和电源管理 系统进行冷却处理, 如果燃料电池堆输出功率较小时(如汽车在低速行驶或停车时),泵和电源管理系 统等电气设备产热量也较小, 冷却介质直接进入燃料电池堆冷却系统 12; 相反, 当燃 料电池堆输出功率较大, 泵和电源管理系统等电气设备的产热量也较大, 需要及时移 除这部分热量以保证电气设备的正常高效运转, 冷却介质经泵冷却系统 4和电源管理 系统冷却系统 11对泵和电源管理系统进行冷却后再进入燃料电池堆冷却系统 12。 用户没有供暖需求时,根据冷却介质温度高低进入散热系统 16或直接返回冷却介 质容器 1, 当用户需要供暖时, 冷却介质自燃料电池堆冷却系统 12进入废热供暖系统 13。 当冷却介质提供的热量不能满足用户供暖需求时系统尾气进入废热供暖系统 13 ; 废热供暖系统 13满负运转仍不能满足用户的供暖需求时会启动电加热供暖系统 14以 弥补废热供暖系统 13供暖能力的不足。 流出供暖系统 15的冷却介质根据温度高低进 入散热系统 16或者直接返回冷却介质容器 1。 如图 3所示, 根据本发明的第二实施例, 电源管理系统冷却系统 11沿冷却介质的 流动方向设置于燃料电池堆冷却系统 12的下游,冷却介质自冷却介质容器 1流出,控 制系统 200根据燃料电池堆输出功率大小判断是否需要对液体泵采取冷却处理, 若燃 料电池堆输出功率较小, 液体泵的产热量小, 冷却介质直接进入燃料电池堆冷却系统 12; 反之, 当燃料电池堆输出功率较大, 液体泵的产热量也较大, 冷却介质经泵冷却 系统 4后进入燃料电池堆冷却系统 12。 燃料电池堆输出功率较大时, 电源管理系统的产热量也较大, 需要对电源管理系 统进行冷却处理, 反之则不需要。 用户可以根据自身需要决定是否开启供暖系统, 当 用户有供暖需求时, 冷却介质进入废热供暖系统 13, 当冷却介质所提供热量不能满足 用户供暖需求时, 含有大量废热的尾气进入废热供暖系统 13 供暖, 若废热供暖系统 13满负运转仍不能满足用户的供暖需求, 电加热供暖系统 14开启弥补废热供暖系统 供暖能力的不足。流出供暖系统的冷却介质根据温度高低流入散热系统 16或直接返回 冷却介质容器 1 ; 当用户没有供暖需求时冷却介质由电源管理系统冷却系统 11进入散 热系统 16或者直接返回冷却介质容器 1。 如图 4所示, 根据本发明的实施例的小轿车用燃料电池热管理系统, 其具体由冷 却液槽 1、 多个液体泵、 泵冷却系统、 气体泵冷却系统、 电源管理系统 10、 电源管理 系统冷却系统 11、 燃料电池堆及燃料电池堆冷却系统 12、 控制系统、 多个供暖器、 散 热器、 冷却风扇、 电磁阀、 单向阀、 温度测量装置、 液位控制装置、 加热器及管道构 成。 小轿车的功率约 60kW, 燃料电池工作中的产热量约为 60kW, 电源管理系统、 泵 和冷却风扇等相关电气设备的产热量约占 10%, 为 6kW。 在小轿车的综合热管理系统 中, 冷却液自冷却液槽 1流出, 依次经过液体泵 2、 3, 液体泵冷却系统 4、 5, 反应气 气体泵冷却系统 8、 9, 电源管理系统冷却系统 11, 燃料电池堆冷却系统 12, 供暖系 统 15, 散热系统 16后返回冷却液槽 1, 电源管理系统冷却系统 11沿冷却液的流向设 置于燃料电池堆冷却系统 12的上游。 冷却液槽 1中设有加热器 29、 液位控制 30和温 度传感器 31。 当温度较低时, 小轿车启动时需要先预热, 加热器 29启动, 冷却液升 温, 由温度传感器 31检测冷却液槽 1中冷却液的温度, 当冷却液升温到合适启动温度 时启动泵 2、 3和电源管理系统 10等电气设备。 泵的运转情况由系统热负荷决定, 启 动之初, 系统热负荷较小, 较小功率泵 2启动; 正常运行时系统热负荷较大, 较大功 率泵 3启动或泵 2、 3并联启动。 为了防止冷却液回流, 液体泵 2、 3出口分别设置单 向阀 38、 39。 随后冷却液进入电源管理系统冷却系统 11, 由于电源管理系统 10产热 量不大, 为了降低系统复杂度, 选择外冷却的方式移除电源管理系统 10产生的热量, 此时冷却液的温度较冷却液槽 1中冷却液温度略高。 冷却液随后进入燃料电池堆冷却 系统 12移除燃料电池堆运行过程中产生的大量废热,冷却液温度迅速升高。流出燃料 电池堆冷却系统 12的冷却液根据用户需求经过或绕过废热供暖系统 13。 当用户有供暖需求时, 电磁阀 54 关闭, 冷却液进入冷却液供暖系统, 控制系统 200根据用户的供暖需求选择启动一个或多个冷却液供暖器 17、 18, 以及相对应的风 扇 23、 24。 当冷却液供暖系统满负运转 (启动所有的冷却液供暖器及相对应的风扇) 也无法满足用户供暖需求时, 电磁阀 51关闭, 电磁阀 55打开, 尾气经管道进入尾气 供暖器 19。若废热供暖系统 13 (尾气供暖系统和冷却液供暖系统)同时满负运行仍无 法满足用户供暖需求, 电加热供暖系统 14启动, 与废热供暖系统 13共同供暖, 补充 废热供暖系统 13供暖能力的不足。 冷却液从供暖系统 15流出后进入散热系统 16, 首先检测供暖系统 15与散热系统 16之间的温度测量点 34处的温度, 当冷却液温度满足循环要求时, 电磁阀 56、 57、 58打开, 电磁阀 59、 60、 61关闭, 冷却液由供暖系统 15不经过散热器直接返回冷却 液槽 1 ; 当温度测量点 34处的温度高于最佳温度范围的最高值时电磁阀 59打开, 电 磁阀 56关闭, 冷却液经散热器 20进行冷却处理, 从低碳角度考虑, 首先不启动冷却 风扇 26,若散热器 20出口端的温度监测点 35反馈的温度在最佳温度范围,电磁阀 57、 58打开, 电磁阀 60、 61关闭, 冷却液经散热器 20后返回冷却液槽 1。 若温度检测点 35返回的温度高于最佳温度范围的最高值时, 冷却风扇 26启动; 再次检测监测点 35 的温度, 若温度在最佳温度范围, 冷却液经散热器 20后返回冷却液槽 1 ; 若温度仍高 于最佳温度范围, 电磁阀 60打开, 电磁阀 57关闭, 冷却液进入散热器 21, 根据监测 点 36反馈的温度决定是否开启冷却风扇 27。 若开启冷却风扇 27时监测点 36的温度 仍高于最佳温度范围, 电磁阀 61打开, 电磁阀 58关闭, 冷却液进入散热器 22; 同理, 冷却风扇 28的开闭由监测点 37的温度确定。 散热冷却至合适温度范围的冷却液经管 道输送返回冷却液槽 1。 优选地, 为了降低能耗及使用成本, 散热系统 16可以采用如下方式控制。冷却液 从供暖系统 15流出后进入散热系统 16, 首先检测供暖系统 15与散热系统 16之间的 温度测量点 34处的温度, 当冷却液温度满足循环要求时, 电磁阀 56、 57、 58打开, 电磁阀 59、 60、 61关闭, 冷却液由供暖系统 15不经过散热器直接返回冷却液槽 1 ; 当温度测量点 34处的温度高于最佳温度范围的最高值时, 电磁阀 59打开, 电磁阀 56 关闭, 冷却液经散热器 20进行冷却处理, 首先不启动冷却风扇 26, 若散热器 20出口 端的温度监测点 35反馈的温度在最佳温度范围, 电磁阀 57、 58打开, 电磁阀 60、 61 关闭, 冷却液经散热器 20后返回冷却液槽 1。 若温度检测点 35反馈的温度高于最佳 温度范围的最高值时, 电磁阀 60打开, 电磁阀 57关闭, 冷却液进入散热器 21, 若位 于散热器 21出口端的温度监测点 36反馈的温度高于最佳温度范围的最高值时, 电磁 阀 61打开, 电磁阀 58关闭, 冷却液进入散热器 22, 若位于散热器 21出口端的温度 监测点 37反馈的温度高于最佳温度范围的最高值时, 则启动冷却风扇, 当一个冷却风 扇不能满足散热要求时, 逐次增加启动冷却风扇的个数。 即首先通过多个散热器自然 散热, 使冷却液的温度降低到最佳的温度范围中, 当多个散热器自然散热不能满足要 求时, 启动冷却风扇辅助散热。 本发明还提供了一种小轿车, 包括车轮、 车身、 以及传动系统, 还包括燃料电池 系统, 燃料电池系统采用前述的小轿车用燃料电池热管理系统。 小轿车用燃料电池热 管理系统的燃料电池热管理系统包括电源管理系统冷却系统和燃料电池堆冷却系统, 电源管理系统冷却系统沿冷却介质的流动方向设置在燃料电池堆冷却系统的上游; 电 源管理系统冷却系统为外冷却系统, 燃料电池热管理系统的供暖系统用于向小轿车的 车身内部供暖。 如图 5所示, 根据本发明的实施例的大巴车用燃料电池热管理系统, 该热管理系 统具体由冷却液槽 1、 多个冷却液输送泵、 泵冷却系统、 气体泵冷却系统、 电源管理 系统 10、 电源管理系统冷却系统 11、 燃料电池堆及燃料电池堆冷却系统 12、 控制系 统、 多个供暖器、 散热器、 冷却风扇、 电磁阀、 单向阀、 温度测量装置、 液位控制装 置、 加热器及管道构成。 大巴车的功率约 200kW, 燃料电池工作中的产热量约为 200kW, 电源管理系统、 泵、 气体泵和冷却风扇等相关电气设备产热 20kW左右。 在 大巴车用燃料电池热管理系统中, 冷却液自冷却液槽 1流出, 依次经过泵 2、 3, 泵冷 却系统 4、 5, 反应气气体泵冷却系统 8、 9, 电源管理系统冷却系统 11, 燃料电池堆 冷却系统 12, 供暖系统 15, 散热系统 16后返回冷却液槽 1, 电源管理系统冷却系统 11沿冷却液的流向设置于燃料电池堆冷却系统 12的上游。 冷却液槽 1中设有加热器 29、 液位控制 30和温度传感器 31。 当温度较低时, 大巴车启动时先预热, 加热器 29 启动, 冷却液升温, 由温度传感器 31检测冷却液槽 1中冷却液的温度, 当冷却液升温 到合适启动温度时启动泵 2、 3和电源管理系统 10等电气设备。 液体泵、 气体泵的运 转情况由系统热负荷决定, 启动之初, 系统热负荷较小, 较小功率泵 2和较小气体泵 6启动, 各电机产热量较小, 不启动泵冷却系统 4和气体泵冷却系统 8 ; 正常运行时系 统热负荷增大, 较大功率泵 3启动或者泵 2、 3并联运行, 泵冷却系统 4、 5启动对泵 2、 3进行冷却, 气体泵冷却系统 8、 9对气体泵 6、 7进行冷却。 为了防止冷却液回流, 泵 2、 3出口分别设置单向阀 33、 34。 随后冷却液进入电源管理系统冷却系统 11, 由 于电源管理系统 10产热量较大, 为了提高冷却效果, 采用内冷却方式, 即冷却管路位 于电源管理系统内部, 或者电源管理系统的内部即设置有冷却介质流动的通道, 使冷 却介质与电源管理系统直接接触, 充分热交换, 从而及时有效地移除电源管理系统 10 产生的大量热能。 冷却液从电源管理系统冷却系统 11流出后进入燃料电池堆冷却系统 12移除燃料 电池堆运行过程中产生的大量热能, 冷却液温度迅速升高。 流出燃料电池堆冷却系统 12的冷却液根据用户需求经过或绕过废热供暖系统 13。 当用户有供暖需求时, 电磁阀 54 关闭, 冷却液进入冷却液供暖系统, 控制系统 200根据用户的供暖需求选择启动一个或多个冷却液供暖器 17、 18, 以及相对应的风 扇 23、 24。 当冷却液供暖系统满负运转 (启动所有的冷却液供暖器及相对应的风扇) 也无法满足用户供暖需求时, 电磁阀 51关闭, 电磁阀 55打开, 尾气经管道进入尾气 供暖器 19。若废热供暖系统 13 (尾气供暖系统和冷却液供暖系统)同时满负运行仍无 法满足用户供暖需求, 电加热供暖系统 14启动, 与废热供暖系统 13共同供暖, 补充 废热供暖系统 13供暖能力的不足。 冷却液从供暖系统 15流出后进入散热系统 16, 首先检测供暖系统 15与散热系统 16之间的温度测量点 34处的温度, 当冷却液温度满足循环要求时, 电磁阀 56、 57、 58打开, 电磁阀 59、 60、 61关闭, 冷却液由供暖系统 15不经过散热器直接返回冷却 液槽 1 ; 当温度测量点 34处的温度高于最佳温度范围的最高值时电磁阀 59打开, 电 磁阀 56关闭, 冷却液经散热器 20进行冷却处理, 从低碳角度考虑, 首先不启动冷却 风扇 26,若散热器 20出口端的温度监测点 35反馈的温度在最佳温度范围,电磁阀 57、 58打开, 电磁阀 60、 61关闭, 冷却液经散热器 20后返回冷却液槽 1。 若温度检测点 35返回的温度高于最佳温度范围的最高值时, 冷却风扇 26启动; 再次检测监测点 35 的温度, 若温度在最佳温度范围, 冷却液经散热器 20后返回冷却液槽 1 ; 若温度仍高 于最佳温度范围, 电磁阀 60打开, 电磁阀 57关闭, 冷却液进入散热器 21, 根据监测 点 36反馈的温度决定是否开启冷却风扇 27。 若开启冷却风扇 27时监测点 36的温度 仍高于最佳温度范围, 电磁阀 61打开, 电磁阀 58关闭, 冷却液进入散热器 22; 同理, 冷却风扇 28的开闭由监测点 37的温度确定。 散热冷却至合适温度范围的冷却液经管 道输送返回冷却液槽 1。 优选地, 为了降低能耗及使用成本, 散热系统 16可以采用如下方式控制。冷却液 从供暖系统 15流出后进入散热系统 16, 首先检测供暖系统 15与散热系统 16之间的 温度测量点 34处的温度, 当冷却液温度满足循环要求时, 电磁阀 56、 57、 58打开, 电磁阀 59、 60、 61关闭, 冷却液由供暖系统 15不经过散热器直接返回冷却液槽 1 ; 当温度测量点 34处的温度高于最佳温度范围的最高值时, 电磁阀 59打开, 电磁阀 56 关闭, 冷却液经散热器 20进行冷却处理, 首先不启动冷却风扇 26, 若散热器 20出口 端的温度监测点 35反馈的温度在最佳温度范围, 电磁阀 57、 58打开, 电磁阀 60、 61 关闭, 冷却液经散热器 20后返回冷却液槽 1。 若温度检测点 35反馈的温度高于最佳 温度范围的最高值时, 电磁阀 60打开, 电磁阀 57关闭, 冷却液进入散热器 21, 若位 于散热器 21出口端的温度监测点 36反馈的温度高于最佳温度范围的最高值时, 电磁 阀 61打开, 电磁阀 58关闭, 冷却液进入散热器 22, 若位于散热器 21出口端的温度 监测点 37反馈的温度高于最佳温度范围的最高值时, 则启动冷却风扇, 当一个冷却风 扇不能满足散热要求时, 逐次增加启动冷却风扇的个数。 即首先通过多个散热器自然 散热, 使冷却液的温度降低到最佳的温度范围中, 当多个散热器自然散热不能满足要 求时, 启动冷却风扇辅助散热。 本发明还提供了一种大巴车, 包括车轮、 车身、 以及传动系统, 还包括燃料电池 系统, 燃料电池系统采用前述的大巴车用燃料电池热管理系统。 大巴车用燃料电池热 管理系统的燃料电池热管理系统包括电源管理系统冷却系统和燃料电池堆冷却系统, 电源管理系统冷却系统沿冷却介质的流动方向设置在燃料电池堆冷却系统的上游; 电 源管理系统冷却系统为内冷却系统或者外冷却系统; 燃料电池热管理系统的供暖系统 用于向大巴车的车身内部供暖。 如图 6和图 7所示, 根据本发明实施例的大型机车用燃料电池热管理系统, 该热 管理系统具体由冷却液槽 1、 多个液体泵、 泵冷却系统、 气体泵冷却系统、 电源管理 系统 10、 电源管理系统冷却系统 11、 燃料电池堆及燃料电池堆冷却系统 12、 控制系 统 200、 多个供暖器、 散热器、 冷却风扇、 电磁阀、 单向阀、 温度测量装置、 液位控 制装置、 加热器及管道构成。 设大型机车的功率约 1000kW, 燃料电池工作中的产热 量约为 1000kW, 电源管理系统 10、 液体泵 2、 3、 气体泵 6、 7、 冷却风扇 23-28等相 关电气设备的产热量约占 10%, 为 100kW。 在大型机车的综合热管理系统中, 冷却液 自冷却液槽 1流出, 依次经过泵 2、 3, 液体泵冷却系统 4、 5, 气体泵冷却系统 8、 9, 燃料电池堆冷却系统 12, 电源管理系统冷却系统 11, 废热供暖系统 13, 散热系统 16 后返回冷却液槽 1, 电源管理系统冷却系统 11沿冷却液的流向设置于燃料电池堆冷却 系统 12的下游。冷却液槽 1中设有加热器 29、液位控制 30和温度传感器 31。 当温度 较低时, 大型机车启动时先预热, 加热器 29启动, 冷却液升温, 温度传感器 31检测 冷却液槽 1中冷却液的温度, 当冷却液达到合适启动温度时启动泵 2、 3和电源管理系 统 10等电气设备, 液体泵和气体泵的运转情况由系统热负荷决定。机车运行速度较慢 或刚启动时, 系统热负荷较小, 较小功率泵 2启动, 同时启动泵冷却系统 4和气体泵 冷却系统 8; 正常运行后系统热负荷较大, 较大功率泵 3启动或泵 2、 3并联运行, 同 时泵冷却系统 4、 5对泵进行冷却,气体泵冷却系统 8、 9分别对气体泵 6、 7进行冷却。 为了防止冷却液回流, 泵 2、 3出口分别设置单向阀 38、 39。 流出气体泵冷却系统 8、 9的冷却液随后进入燃料电池堆冷却系统 12移除燃料电池堆运行过程中产生的大量热 能, 冷却液随后冷却液温度迅速升高。 之后冷却液进入电源管理系统冷却系统 11, 由 于电源管理系统 10 产热量非常大, 考虑到各部件的耐热性, 电源管理系统冷却系统 11沿冷却液的流向设置于燃料电池堆 12的下游。 更优选地, 如图 7所示, 采用内冷 却的方式移除电源管理系统 10产生的热量。 流出电源管理系统冷却系统 11 的冷却液根据用户需求经过或绕过供暖系统 15。 当用户有供暖需求时, 电磁阀 54 关闭, 冷却液进入冷却液供暖系统, 控制系统 200 根据用户的供暖需求选择启动一个或多个冷却液供暖器 17、18,以及相对应的风扇 23、 24。 当冷却液供暖系统满负运转 (启动所有的冷却液供暖器及相对应的风扇) 也无法 满足用户供暖需求时, 电磁阀 51关闭, 电磁阀 55打开, 尾气经管道进入尾气供暖器 19。 若废热供暖系统 13 (尾气供暖系统和冷却液供暖系统) 同时满负运行仍无法满足 用户供暖需求, 电加热供暖系统 14启动, 与废热供暖系统 13共同供暖, 补充废热供 暖系统 13供暖能力的不足。 冷却液从供暖系统 15流出后进入散热系统 16, 首先检测供暖系统 15与散热系统 16之间的温度测量点 34处的温度, 当冷却液温度满足循环要求时, 电磁阀 56、 57、 58打开, 电磁阀 59、 60、 61关闭, 冷却液由供暖系统 15不经过散热器直接返回冷却 液槽 1 ; 当温度测量点 34处的温度高于最佳温度范围的最高值时电磁阀 59打开, 电 磁阀 56关闭, 冷却液经散热器 20进行冷却处理, 从低碳角度考虑, 首先不启动冷却 风扇 26,若散热器 20出口端的温度监测点 35反馈的温度在最佳温度范围,电磁阀 57、 58打开, 电磁阀 60、 61关闭, 冷却液经散热器 20后返回冷却液槽 1。 若温度检测点 35返回的温度高于最佳温度范围的最高值时, 冷却风扇 26启动; 再次检测监测点 35 的温度, 若温度在最佳温度范围, 冷却液经散热器 20后返回冷却液槽 1 ; 若温度仍高 于最佳温度范围, 电磁阀 60打开, 电磁阀 57关闭, 冷却液进入散热器 21, 根据监测 点 36反馈的温度决定是否开启冷却风扇 27。 若开启冷却风扇 27时监测点 36的温度 仍高于最佳温度范围, 电磁阀 61打开, 电磁阀 58关闭, 冷却液进入散热器 22; 同理, 冷却风扇 28的开闭由监测点 37的温度确定。 散热冷却至合适温度范围的冷却液经管 道输送返回冷却液槽 1。 优选地, 为了降低能耗及使用成本, 散热系统 16可以采用如下方式控制。冷却液 从供暖系统 15流出后进入散热系统 16, 首先检测供暖系统 15与散热系统 16之间的 温度测量点 34处的温度, 当冷却液温度满足循环要求时, 电磁阀 56、 57、 58打开, 电磁阀 59、 60、 61关闭, 冷却液由供暖系统 15不经过散热器直接返回冷却液槽 1 ; 当温度测量点 34处的温度高于最佳温度范围的最高值时, 电磁阀 59打开, 电磁阀 56 关闭, 冷却液经散热器 20进行冷却处理, 首先不启动冷却风扇 26, 若散热器 20出口 端的温度监测点 35反馈的温度在最佳温度范围, 电磁阀 57、 58打开, 电磁阀 60、 61 关闭, 冷却液经散热器 20后返回冷却液槽 1。 若温度检测点 35反馈的温度高于最佳 温度范围的最高值时, 电磁阀 60打开, 电磁阀 57关闭, 冷却液进入散热器 21, 若位 于散热器 21出口端的温度监测点 36反馈的温度高于最佳温度范围的最高值时, 电磁 阀 61打开, 电磁阀 58关闭, 冷却液进入散热器 22, 若位于散热器 21出口端的温度 监测点 37反馈的温度高于最佳温度范围的最高值时, 则启动冷却风扇, 当一个冷却风 扇不能满足散热要求时, 逐次增加启动冷却风扇的个数。 即首先通过多个散热器自然 散热, 使冷却液的温度降低到最佳的温度范围中, 当多个散热器自然散热不能满足要 求时, 启动冷却风扇辅助散热。 本发明还提供了一种大型机车, 包括车轮、 车身、 以及传动系统, 还包括燃料电 池系统; 燃料电池系统的燃料电池热管理系统采用前述的大型机车用燃料电池热管理 系统, 大型机车用燃料电池热管理系统的电源管理系统冷却系统沿冷却介质的流动方 向设置在燃料电池堆冷却系统的下游; 电源管理系统冷却系统为内冷却系统或者外冷 却系统; 燃料电池热管理系统的供暖系统用于向大型机车的车身内部供暖。 从以上的描述中, 可以看出, 本发明上述的实施例实现了如下技术效果: 根据本发明的燃料电池热管理系统、 燃料电池系统及具有该系统的车辆, 燃料电 池热管理系统通过冷却系统对燃料电池系统的各个部件冷却降温并回收燃料电池系统 产生的废热, 供暖系统利用冷却系统回收的废热作为热源供暖, 从而对燃料电池堆、 尾气以及燃料电池堆运行过程中电气等附件产生的热量有效利用, 降低燃料电池的运 行成本。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种燃料电池热管理系统, 其特征在于, 包括:
冷却系统, 用于回收燃料电池系统产生的废热;
供暖系统, 与所述冷却系统相连通, 用于利用所述冷却系统回收的废热供 暖。
2. 根据权利要求 1所述的燃料电池热管理系统,其特征在于,所述供暖系统包括:
废热供暖系统, 用于利用所述冷却系统回收的废热供暖;
电加热供暖系统, 用于电加热供暖。
3. 根据权利要求 2所述的燃料电池热管理系统, 其特征在于, 所述废热供暖系统 包括:
冷却液供暖系统, 沿冷却介质的流动方向设置在所述冷却系统的下游; 尾气供暖系统, 与燃料电池堆的尾气排放口相连通。
4. 根据权利要求 3所述的燃料电池热管理系统, 其特征在于, 所述冷却液供暖系 统包括:
冷却液供暖器, 所述冷却液供暖器沿所述冷却介质的流动方向设置在所述 冷却系统的下游; 以及
风扇, 与所述冷却液供暖器对应设置。
5. 根据权利要求 4所述的燃料电池热管理系统, 其特征在于, 所述冷却液供暖器为多个, 多个所述冷却液供暖器串联或者并联或者串并 联组合沿所述冷却介质的流动方向设置在所述冷却系统的下游;
每个所述冷却液供暖器对应设置有一个或多个风扇。
6. 根据权利要求 2至 5中任一项所述的燃料电池热管理系统, 其特征在于, 所述 电加热供暖系统与所述废热供暖系统并联设置。
7. 根据权利要求 1所述的燃料电池热管理系统, 其特征在于, 所述冷却系统包括通过管道相互连通的燃料电池堆冷却系统和电气设备冷 却系统;
所述电气设备冷却系统包括泵冷却系统和电源管理系统冷却系统; 所述电源管理系统冷却系统沿冷却介质的流动方向设置在所述燃料电池堆 冷却系统的上游或者下游。
8. 根据权利要求 7所述的燃料电池热管理系统, 其特征在于, 所述电源管理系统 冷却系统为外冷却系统或者为内冷却系统;
所述外冷却系统的冷却管路位于电源管理系统外部并与所述电源管理系统 贴合;
所述内冷却系统的冷却管路位于所述电源管理系统内部。
9. 根据权利要求 1所述的燃料电池热管理系统, 其特征在于, 所述燃料电池热管 理系统还包括散热系统, 所述散热系统包括:
多个散热器, 多个所述散热器串联或者并联或者串并联组合沿所述冷却介 质的流动方向设置在所述供暖系统的下游; 以及
冷却风扇, 每个所述散热器对应设置一个或多个所述冷却风扇。
10. 根据权利要求 1所述的燃料电池热管理系统, 其特征在于, 所述燃料电池热管 理系统还包括控制系统, 所述控制系统包括:
冷却系统控制系统, 所述冷却系统控制系统包括:
冷却介质容器温度控制系统, 用于在冷却介质的温度低于第一预设值时, 控制加热器启用以加热所述冷却介质;
泵温度控制系统, 用于在液体泵和气体泵的温度高于第二预设值时, 控制 泵冷却系统启用以降低所述液体泵和气体泵的温度;
电源管理系统温度控制系统,用于在电源管理系统温度高于第三预设值时, 控制电源管理系统冷却系统启用以降低所述电源管理系统的温度;
泵流量控制系统, 用于在燃料电池堆温度高于第四预设值时, 控制液体泵 提高流量以降低燃料电池堆温度。
11. 根据权利要求 10所述的燃料电池热管理系统,其特征在于,所述控制系统还包 括供暖系统控制系统, 所述供暖系统控制系统用于在室内温度低于预设供暖温 度时, 控制所述供暖系统启动供暖。
12. 根据权利要求 11所述的燃料电池热管理系统,其特征在于,所述供暖系统控制 系统包括:
冷却液供暖系统控制系统, 用于在室内温度低于预设供暖温度时, 控制所 述冷却液供暖系统的冷却液供暖器逐个启动供暖并启动与所述冷却液供暖器相 对应的风扇;
尾气供暖系统控制系统, 用于在冷却液供暖系统最大供暖温度低于所述预 设供暖温度时, 控制尾气供暖系统启动并与所述冷却液供暖系统共同供暖; 电加热供暖系统控制系统, 用于在所述尾气供暖系统与所述冷却液供暖系 统共同供暖的最大供暖温度低于所述预设供暖温度时, 控制电加热供暖系统启 动并与所述尾气供暖系统和所述冷却液供暖系统共同供暖。
13. 根据权利要求 10或者 11所述的燃料电池热管理系统, 其特征在于, 所述控制 系统还包括散热系统控制系统, 用于当散热器系统和供暖系统之间的管路内冷 却介质的温度高于第五预定值时, 启动所述散热器系统以降低冷却介质温度。
14. 一种燃料电池系统, 包括燃料电池堆, 其特征在于, 所述燃料电池系统还包括 权利要求 1至 13中任一项所述的燃料电池热管理系统。
15. 一种车辆, 包括车轮、 车身、 以及传动系统, 其特征在于, 所述车辆还包括权 利要求 14所述的燃料电池系统。
16. 根据权利要求 15所述的车辆, 其特征在于, 所述车辆为小轿车;
所述燃料电池系统的燃料电池热管理系统包括电源管理系统冷却系统和燃 料电池堆冷却系统, 所述电源管理系统冷却系统沿冷却介质的流动方向设置在 所述燃料电池堆冷却系统的上游;
所述电源管理系统冷却系统为外冷却系统;
所述燃料电池热管理系统的供暖系统用于向所述小轿车的车身内部供暖。
17. 根据权利要求 15所述的车辆, 其特征在于, 所述车辆为大巴车; 所述燃料电池系统的燃料电池热管理系统包括电源管理系统冷却系统和燃 料电池堆冷却系统, 所述电源管理系统冷却系统沿冷却介质的流动方向设置在 所述燃料电池堆冷却系统的上游;
所述电源管理系统冷却系统为内冷却系统或者外冷却系统;
所述燃料电池热管理系统的供暖系统用于向所述大巴车的车身内部供暖。
18. 根据权利要求 15所述的车辆, 其特征在于, 所述车辆为大型机车; 所述燃料电池系统的燃料电池热管理系统包括电源管理系统冷却系统和燃 料电池堆冷却系统, 所述电源管理系统冷却系统沿冷却介质的流动方向设置在 所述燃料电池堆冷却系统的上游或者下游;
所述电源管理系统冷却系统为内冷却系统或者外冷却系统; 所述燃料电池热管理系统的供暖系统用于向所述大型机车的车身内部供 暖。
PCT/CN2012/079217 2012-03-22 2012-07-26 燃料电池热管理系统、燃料电池系统及具有该系统的车辆 WO2013139104A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/386,887 US20150053491A1 (en) 2012-03-22 2012-07-26 Thermal management system for fuel cell, fuel cell system and vehicle equipped with fuel cell system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210078815.2 2012-03-22
CN201210078815.2A CN102610838B (zh) 2012-03-22 2012-03-22 燃料电池热管理系统、燃料电池系统及具有该系统的车辆

Publications (1)

Publication Number Publication Date
WO2013139104A1 true WO2013139104A1 (zh) 2013-09-26

Family

ID=46528075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079217 WO2013139104A1 (zh) 2012-03-22 2012-07-26 燃料电池热管理系统、燃料电池系统及具有该系统的车辆

Country Status (3)

Country Link
US (1) US20150053491A1 (zh)
CN (1) CN102610838B (zh)
WO (1) WO2013139104A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109149012A (zh) * 2018-09-29 2019-01-04 山东大学 基于磁制冷技术的温度控制系统、电动汽车电池组热管理系统及方法
CN113195294A (zh) * 2018-12-21 2021-07-30 本田技研工业株式会社 温度调整回路
CN113346112A (zh) * 2021-05-28 2021-09-03 黄冈格罗夫氢能汽车有限公司 一种大功率并联燃料电池散热系统及控制方法
CN113346103A (zh) * 2021-05-28 2021-09-03 黄冈格罗夫氢能汽车有限公司 一种大功率电站用燃料电池散热系统及控制方法
CN114447474A (zh) * 2020-10-30 2022-05-06 上海汽车集团股份有限公司 一种动力电池热管理系统及其方法
CN115143684A (zh) * 2022-06-29 2022-10-04 珠海格力电器股份有限公司 一种储能柜制冷系统的控制装置、方法和机柜空调

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102610838B (zh) * 2012-03-22 2014-10-15 中国东方电气集团有限公司 燃料电池热管理系统、燃料电池系统及具有该系统的车辆
WO2014123234A1 (ja) 2013-02-08 2014-08-14 株式会社Ihi 伝熱装置、給電装置及び非接触給電システム
US20150303536A1 (en) * 2014-04-22 2015-10-22 Ford Global Technologies, Llc Battery thermal management system
CN104078694A (zh) * 2014-06-27 2014-10-01 唐山轨道客车有限责任公司 余热利用方法及装置
JP6213900B2 (ja) * 2014-11-14 2017-10-18 トヨタ自動車株式会社 燃料電池システムの制御方法
JP6623785B2 (ja) * 2016-01-21 2019-12-25 ブラザー工業株式会社 燃料電池、燃料電池の制御方法、及びコンピュータプログラム
US10665908B2 (en) * 2016-06-23 2020-05-26 Tesla, Inc. Heating and cooling reservoir for a battery powered vehicle
CN106328971B (zh) * 2016-08-31 2020-01-10 中车青岛四方机车车辆股份有限公司 一种氢能源有轨电车燃料电池的冷却系统
CN106374122B (zh) * 2016-10-08 2019-01-08 北京新能源汽车股份有限公司 一种燃料电池余热利用系统及控制方法
CN108232238B (zh) * 2016-12-22 2023-09-12 宇通客车股份有限公司 一种燃料电池系统、控制方法以及燃料电池汽车
CN106784926A (zh) * 2017-01-24 2017-05-31 武汉地质资源环境工业技术研究院有限公司 一种高效燃料电池冷热电联供系统
CN107097659B (zh) * 2017-03-22 2019-05-10 北京长城华冠汽车科技股份有限公司 一种新能源汽车热管理系统的诊断系统和诊断方法
CN107466193B (zh) * 2017-08-28 2023-09-26 郑州轻工业学院 用于电动汽车快速充电桩的导热油散热系统
CN108437815B (zh) * 2018-02-09 2021-08-06 中国第一汽车股份有限公司 一种动力电池快速暖机控制方法
CN108544901B (zh) * 2018-04-23 2020-11-06 杭州富阳春江汽车空调厂 一种热能综合利用的新能源汽车
CN110723031A (zh) * 2018-06-29 2020-01-24 北汽福田汽车股份有限公司 车辆的热量控制系统及车辆
CN110682763B (zh) * 2018-07-06 2024-02-20 宇通客车股份有限公司 一种基于燃料电池余热利用的客车
CN109488483B (zh) * 2018-11-01 2022-07-19 青岛永晟热交换器有限公司 一种车辆热交换系统
JP7183725B2 (ja) * 2018-11-21 2022-12-06 トヨタ自動車株式会社 燃料電池システム
DE102019003571A1 (de) 2019-05-22 2020-01-02 Daimler Ag Verfahren zum Regeln einer Brennstoffzelle für eine erhöhte Reichweite eines Fahrzeugs sowie Fahrzeug mit einer Brennstoffzelle und einer Steuereinheit
CN110217076A (zh) * 2019-07-09 2019-09-10 武汉雄韬氢雄燃料电池科技有限公司 一种燃料电池循环水热管理控制系统
CN112444049A (zh) * 2019-09-03 2021-03-05 株洲中车时代电气股份有限公司 基于独立冷媒的传动系统冷却装置及方法
CN110662405A (zh) * 2019-10-27 2020-01-07 深圳市禾望电气股份有限公司 水冷散热系统及其控制方法
CN111591100B (zh) * 2020-05-06 2024-02-23 珠海格力电器股份有限公司 一种车辆、车辆的空调系统及其控制方法
CN114649544A (zh) * 2020-12-17 2022-06-21 宝能汽车集团有限公司 燃料电池热管理系统、控制方法以及车辆
CN112928303A (zh) * 2021-02-24 2021-06-08 上海捷氢科技有限公司 一种燃料电池热管理系统与一种燃料电池系统
CN113390284B (zh) * 2021-05-10 2023-04-18 西安交通大学 一种家用燃料电池余热利用系统及方法
CN113246801B (zh) * 2021-05-12 2022-05-03 中国第一汽车股份有限公司 一种燃料电池汽车整车热管理系统
CN113525176B (zh) * 2021-07-12 2022-07-12 深圳氢时代新能源科技有限公司 燃料电池车的热管理系统、方法和设备
CN113611898A (zh) * 2021-08-09 2021-11-05 潍柴动力股份有限公司 燃料电池发动机冷却液温度控制方法及燃料电池发动机
CN113635738B (zh) * 2021-08-18 2024-02-20 潍柴动力股份有限公司 一种车辆暖风系统及其控制方法
CN113782768B (zh) * 2021-09-08 2022-08-26 北京华远意通热力科技股份有限公司 一种基于氢能的热电双供系统及方法
CN113839065B (zh) * 2021-09-18 2023-05-09 电子科技大学 一种燃料电池冷却水回路热补偿温度控制系统及控制方法
CN114068984B (zh) * 2021-10-25 2023-02-17 一汽解放汽车有限公司 用于氢燃料电池系统的余热回收系统
CN116314924B (zh) * 2023-01-31 2023-11-07 上海氢洋科技有限公司 一种燃料电池用余热回收利用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1057668A2 (en) * 1999-06-02 2000-12-06 Valeo Klimasysteme GmbH Heating and air-conditioning installation
CN101279580A (zh) * 2008-05-30 2008-10-08 清华大学 燃料电池车用余热热泵空调系统
CN101318455A (zh) * 2008-05-30 2008-12-10 清华大学 燃料电池车余热供暖系统
CN102237533A (zh) * 2010-05-06 2011-11-09 中兴电工机械股份有限公司 具有热回收控制模块的燃料电池热电共生系统
CN102593496A (zh) * 2012-03-22 2012-07-18 中国东方电气集团有限公司 燃料电池系统
CN102610838A (zh) * 2012-03-22 2012-07-25 中国东方电气集团有限公司 燃料电池热管理系统、燃料电池系统及具有该系统的车辆

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05131848A (ja) * 1991-11-15 1993-05-28 Toyota Motor Corp ハイブリツド車の駆動システム制御装置
US5255733A (en) * 1992-08-10 1993-10-26 Ford Motor Company Hybird vehicle cooling system
US5291960A (en) * 1992-11-30 1994-03-08 Ford Motor Company Hybrid electric vehicle regenerative braking energy recovery system
US5678410A (en) * 1993-08-06 1997-10-21 Toyota Jidosha Kabushiki Kaisha Combined system of fuel cell and air-conditioning apparatus
FR2792259B1 (fr) * 1999-04-15 2001-06-15 Valeo Thermique Moteur Sa Dispositif de refroidissement pour vehicule electrique a pile a combustible
US6357541B1 (en) * 1999-06-07 2002-03-19 Mitsubishi Heavy Industries, Ltd. Circulation apparatus for coolant in vehicle
US6394210B2 (en) * 1999-06-07 2002-05-28 Mitsubishi Heavy Industries, Ltd. Temperature controller for vehicular battery
DE10007244A1 (de) * 2000-02-17 2001-09-06 Daimler Chrysler Ag Vorrichtung zur Wasserrückgewinnung für ein Bordstrom-Brennstoffzellensystem
WO2002035632A1 (fr) * 2000-10-20 2002-05-02 Matsushita Electric Industrial Co., Ltd. Systeme de pile a combustible et procede de fonctionnement de ce systeme
WO2002095852A2 (en) * 2001-05-24 2002-11-28 Clean Energy Systems, Inc. Combined fuel cell and fuel combustion power generation systems
CN1405911A (zh) * 2001-08-16 2003-03-26 亚太燃料电池科技股份有限公司 燃料电池发电系统及其废热循环冷却系统
DE10158805A1 (de) * 2001-11-30 2003-06-18 Siemens Ag Schiffsantrieb
JP2004259615A (ja) * 2003-02-26 2004-09-16 Denso Corp 燃料電池用の冷却装置
US7454910B2 (en) * 2003-06-23 2008-11-25 Denso Corporation Waste heat recovery system of heat source, with Rankine cycle
US20050019631A1 (en) * 2003-07-23 2005-01-27 Matsushita Electric Industrial Co., Ltd. Fuel cell cogeneration system
JP5143427B2 (ja) * 2004-10-19 2013-02-13 一般財団法人電力中央研究所 複合発電設備
US7211906B2 (en) * 2005-04-04 2007-05-01 Tma Power, Llc Rankine—microturbine for generating electricity
US20070158500A1 (en) * 2006-01-06 2007-07-12 Ion America Corporation Solid oxide fuel cell system for aircraft power, heat, water, and oxygen generation
US7659015B2 (en) * 2006-01-20 2010-02-09 Airbus Deutschland Gmbh Combined fuel cell system
JP2008153168A (ja) * 2006-12-20 2008-07-03 Denso Corp 燃料電池システム
US7862938B2 (en) * 2007-02-05 2011-01-04 Fuelcell Energy, Inc. Integrated fuel cell and heat engine hybrid system for high efficiency power generation
US7789176B2 (en) * 2007-04-11 2010-09-07 Tesla Motors, Inc. Electric vehicle thermal management system
JP4580994B2 (ja) * 2008-02-07 2010-11-17 本田技研工業株式会社 高圧タンク
US9017890B2 (en) * 2008-04-18 2015-04-28 The Boeing Company Alternative path cooling of a high temperature fuel cell
CA2667144C (en) * 2008-05-28 2016-04-12 John Kipping Combined cycle powered railway locomotive
US8117969B1 (en) * 2008-08-05 2012-02-21 Bnsf Railway Company Hydrogen fuel cell hybrid locomotives
GB2469043B (en) * 2009-03-30 2011-02-23 Lotus Car A reheated gas turbine system having a fuel cell
DE102009042774A1 (de) * 2009-09-25 2011-03-31 Behr Gmbh & Co. Kg System für ein Kraftfahrzeug zum Erwärmen und/oder Kühlen einer Batterie und eines Kraftfahrzeuginnenraumes
US7818969B1 (en) * 2009-12-18 2010-10-26 Energyield, Llc Enhanced efficiency turbine
DE102009060860A1 (de) * 2009-12-30 2011-07-07 VOSS Automotive GmbH, 51688 Klimatisierungssystem für ein Fahrzeug sowie Verfahren zum Temperieren
CN102892610B (zh) * 2010-05-28 2015-04-15 铃木株式会社 空冷式燃料电池车辆的排气装置
JP5459131B2 (ja) * 2010-07-26 2014-04-02 スズキ株式会社 空冷式燃料電池車両
DE112011103192T5 (de) * 2010-09-23 2013-07-04 Magna E-Car Systems Of America, Inc: Wärmemanagementsystem für batteriebetriebenes Elektrofahrzeug
KR20120051826A (ko) * 2010-11-15 2012-05-23 현대자동차주식회사 냉각수 폐열을 이용하는 연료전지 자동차의 난방시스템
WO2012167100A1 (en) * 2011-06-01 2012-12-06 Enerfuel, Inc. Integrated energy management system including a fuel cell coupled refrigeration system
US8865356B2 (en) * 2012-01-11 2014-10-21 Fuelcell Energy, Inc. Electrical generation system and method for a hybrid fuel cell power plant
CN202474108U (zh) * 2012-03-22 2012-10-03 中国东方电气集团有限公司 燃料电池热管理系统、燃料电池系统及具有该系统的车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1057668A2 (en) * 1999-06-02 2000-12-06 Valeo Klimasysteme GmbH Heating and air-conditioning installation
CN101279580A (zh) * 2008-05-30 2008-10-08 清华大学 燃料电池车用余热热泵空调系统
CN101318455A (zh) * 2008-05-30 2008-12-10 清华大学 燃料电池车余热供暖系统
CN102237533A (zh) * 2010-05-06 2011-11-09 中兴电工机械股份有限公司 具有热回收控制模块的燃料电池热电共生系统
CN102593496A (zh) * 2012-03-22 2012-07-18 中国东方电气集团有限公司 燃料电池系统
CN102610838A (zh) * 2012-03-22 2012-07-25 中国东方电气集团有限公司 燃料电池热管理系统、燃料电池系统及具有该系统的车辆

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109149012A (zh) * 2018-09-29 2019-01-04 山东大学 基于磁制冷技术的温度控制系统、电动汽车电池组热管理系统及方法
CN109149012B (zh) * 2018-09-29 2023-05-23 山东大学 基于磁制冷技术的温度控制系统、电动汽车电池组热管理系统及方法
CN113195294A (zh) * 2018-12-21 2021-07-30 本田技研工业株式会社 温度调整回路
CN113195294B (zh) * 2018-12-21 2023-08-29 本田技研工业株式会社 温度调整回路
CN114447474A (zh) * 2020-10-30 2022-05-06 上海汽车集团股份有限公司 一种动力电池热管理系统及其方法
CN113346112A (zh) * 2021-05-28 2021-09-03 黄冈格罗夫氢能汽车有限公司 一种大功率并联燃料电池散热系统及控制方法
CN113346103A (zh) * 2021-05-28 2021-09-03 黄冈格罗夫氢能汽车有限公司 一种大功率电站用燃料电池散热系统及控制方法
CN115143684A (zh) * 2022-06-29 2022-10-04 珠海格力电器股份有限公司 一种储能柜制冷系统的控制装置、方法和机柜空调

Also Published As

Publication number Publication date
US20150053491A1 (en) 2015-02-26
CN102610838A (zh) 2012-07-25
CN102610838B (zh) 2014-10-15

Similar Documents

Publication Publication Date Title
WO2013139104A1 (zh) 燃料电池热管理系统、燃料电池系统及具有该系统的车辆
US11545677B2 (en) Fuel cell vehicle thermal management system with cold start function and control method thereof
WO2018113750A1 (zh) 一种燃料电池系统以及燃料电池汽车
US9174513B2 (en) Heating control method for fuel cell vehicle
CN111370804B (zh) 一种电电混合的燃料电池汽车水热管理系统及其控制方法
JP4940877B2 (ja) 空調制御システム
CN109980246A (zh) 燃料电池汽车热管理系统
US20120118988A1 (en) Heating system for fuel cell vehicle
CN108232238B (zh) 一种燃料电池系统、控制方法以及燃料电池汽车
CN110957503A (zh) 一种燃料电池低温启动的空气加热回流系统及控制方法
US8263279B2 (en) Apparatus for optimized cooling of a drive unit and a fuel cell in a fuel cell vehicle
CN111600049B (zh) 一种氢发动机的新型能量输出管理方法
CN113054220B (zh) 一种乘用车燃料电池热管理系统及方法
CN109962268A (zh) 燃料电池汽车热管理方法
CN210668548U (zh) 燃料电池综合热管理系统及燃料电池电动车
CN109638314B (zh) 燃料电池空气供应系统及空气供应方法
CN110649283A (zh) 燃料电池系统及其低温启动方法
CN202474108U (zh) 燃料电池热管理系统、燃料电池系统及具有该系统的车辆
KR102506850B1 (ko) 연료전지 시스템
JP4984808B2 (ja) 空調制御システム
JP2007328933A (ja) 燃料電池システム
KR101198085B1 (ko) 연료전지 차량의 잉여 전기 처리장치
CN210926166U (zh) 一种燃料电池系统低温启动加热装置
KR100853177B1 (ko) 연료전지자동차용 난방장치와 이를 이용한 난방방법
JP2002117876A (ja) 燃料電池の冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12872241

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14386887

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12872241

Country of ref document: EP

Kind code of ref document: A1