WO2013137572A1 - 광효율 개선층을 포함하는 유기전기소자, 이를 포함하는 전자 장치 및 이에 이용되는 유기전기소자용 화합물 - Google Patents

광효율 개선층을 포함하는 유기전기소자, 이를 포함하는 전자 장치 및 이에 이용되는 유기전기소자용 화합물 Download PDF

Info

Publication number
WO2013137572A1
WO2013137572A1 PCT/KR2013/001585 KR2013001585W WO2013137572A1 WO 2013137572 A1 WO2013137572 A1 WO 2013137572A1 KR 2013001585 W KR2013001585 W KR 2013001585W WO 2013137572 A1 WO2013137572 A1 WO 2013137572A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
layer
organic
electrode
light efficiency
Prior art date
Application number
PCT/KR2013/001585
Other languages
English (en)
French (fr)
Inventor
김동하
이선희
박성제
황선필
여승원
이학영
문성윤
이범성
박정환
Original Assignee
덕산하이메탈(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 덕산하이메탈(주) filed Critical 덕산하이메탈(주)
Priority to US14/385,152 priority Critical patent/US9496520B2/en
Publication of WO2013137572A1 publication Critical patent/WO2013137572A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to an organic electric device including the light efficiency improving layer, an electronic device including the same, and a compound for an organic electric device used therein.
  • organic light emitting phenomenon refers to a phenomenon of converting electrical energy into light energy using an organic material.
  • An organic electric element using an organic light emitting phenomenon usually has a structure including an anode, a cathode, and an organic material layer therebetween.
  • the organic layer is often made of a multi-layer structure composed of different materials in order to increase the efficiency and stability of the organic electrical device, for example, it may be made of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer and an electron injection layer.
  • Materials used as the organic material layer in the organic electric element may be classified into light emitting materials and charge transport materials such as hole injection materials, hole transport materials, electron transport materials, electron injection materials and the like depending on their functions.
  • the light emitting material may be classified into a polymer type and a low molecular type according to molecular weight, and may be classified into a fluorescent material derived from a singlet excited state of electrons and a phosphorescent material derived from a triplet excited state of electrons according to a light emitting mechanism. Can be.
  • the light emitting material may be classified into blue, green, and red light emitting materials and yellow and orange light emitting materials required to achieve a better natural color according to the light emitting color.
  • the deposition method is the mainstream in the formation of the OLED device, a situation that requires a material that can withstand a long time, that is, a material having a strong heat resistance characteristics.
  • a host / dopant system may be used. The principle is that when a small amount of dopant having an energy band gap smaller than that of the host forming the light emitting layer is mixed in the light emitting layer, excitons generated in the light emitting layer are transported to the dopant, thereby producing high efficiency light. At this time, since the wavelength of the host is shifted to the wavelength of the dopant, light having a desired wavelength can be obtained according to the type of dopant to be used.
  • a material constituting the organic material layer in the device such as a hole injection material, a hole transport material, a light emitting material, an electron transport material, an electron injection material, etc., is supported by a stable and efficient material.
  • a stable and efficient organic material layer for an organic electric device has not been made sufficiently, and therefore, the development of new materials is still required.
  • the top device structure has a large optical energy loss due to the surface plasmon polaritons (SPPs) because the formed light is reflected by the anode, which is a reflecting film, and the light is emitted toward the cathode.
  • SPPs surface plasmon polaritons
  • the electron emission of SPP is mainly used four metals, Al, Pt, Ag, Au, surface plasmon is generated on the surface of the metal electrode.
  • the cathode is used as Ag, the light emitted by the Ag of the cathode is quenched by the SPP (light energy loss due to Ag), thereby reducing efficiency.
  • TM Transverse magnetic
  • the present invention provides an organic electric device comprising a light efficiency improving layer capable of improving high luminous efficiency, low driving voltage, color purity, and lifetime of the device, an electronic device including the same, and a compound for an organic electric device used therein.
  • a light efficiency improving layer capable of improving high luminous efficiency, low driving voltage, color purity, and lifetime of the device, an electronic device including the same, and a compound for an organic electric device used therein.
  • the present invention solves the problems of the prior art described above, in order to achieve the object of the present invention to improve the luminous efficiency, low driving voltage, color purity, stability and life of the device is represented by the formula (1) Provided is an organic electric device including the applied light efficiency improving layer.
  • R One, R 2, R 3 Is Each independently of one another,
  • C 1 ⁇ C 20 alkyl group C 2 ⁇ C 20 alkenyl group, C 1 ⁇ C 20 alkoxy group, C 6 ⁇ C 60 aryl group, C 7 ⁇ C 20 arylalkyl group, C 8 ⁇ C 20 It is selected from the group consisting of: C 1 ⁇ C 50 Alkyl group unsubstituted or substituted with a substituent selected from the group consisting of an aryl alkenyl group, a C 2 ⁇ C 20 hetero ring group, a nitrile group and an acetylene group,
  • the compound represented by Chemical Formula 1 may be one of the following Chemical Formulas 2 to 4.
  • the present invention provides an electronic device including an organic electric device to which the compound represented by the formula is applied, and a compound for an organic electric device for improving light efficiency represented by the formula.
  • the organic electric device of the present invention may include a first electrode; Second electrode; One or more organic material layers formed between the first electrode and the second electrode; And an optical efficiency improving layer formed on at least one side of the first electrode and the second electrode opposite to the organic material layer, wherein the optical efficiency improving layer includes the compound of Formula 1.
  • the compound of Formula 1 may be used in an organic material layer.
  • the organic material layer may be at least one of a light emitting layer, a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer.
  • the light efficiency improving layer may be formed on at least one of the lower part of the first electrode or the upper part of the second electrode.
  • the first electrode is an anode formed of ITO including Ag
  • the second electrode is Mg.
  • the cathode may include -Ag, and the light efficiency improving layer may be formed on the second electrode, or the second electrode may be a light transmitting cathode electrode, and the light efficiency improving layer may be formed on the second electrode.
  • the first electrode may be a light transmissive anode electrode, and the light efficiency improving layer may be formed under the first electrode.
  • the light efficiency improving layer may be formed as a common layer for the R, G, and B pixels, and for the R, G, and B pixels of the organic material layer. At least one of an optical efficiency improving layer-R formed in a region corresponding to the R pixel, an optical efficiency improving layer-G formed in a region corresponding to the G pixel, and an optical efficiency improving layer-B formed in a region corresponding to the B pixel. can do.
  • the organic electroluminescent device may include a display device including the compound of Chemical Formula 1 and a control unit for driving the display device, wherein the organic electroluminescent device includes an organic electroluminescent device (OLED), an organic solar cell, and an organic photosensitive member ( OPC) and an organic transistor (organic TFT).
  • OLED organic electroluminescent device
  • OPC organic photosensitive member
  • organic TFT organic transistor
  • the light efficiency improving layer including the compound according to the present invention When the light efficiency improving layer including the compound according to the present invention is provided, the light efficiency of the organic electronic device can be remarkably improved, and thus the light emitting efficiency, low driving voltage, color purity, and lifetime of the device can be greatly improved.
  • FIG. 1 and 2 are schematic diagrams of an organic electroluminescent device according to an embodiment of the present invention.
  • Sub 4 is as follows, but is not limited thereto.
  • Compounds represented by Formula 1 according to the present invention may be one of the specific compounds shown below, but is not limited thereto. Since it is practically difficult to exemplify all compounds in a broad relationship with each substituent of the compounds represented by the formula (1), exemplary compounds have been described by way of example, but the compounds represented by the formula (1) not shown herein may form part of the present specification. Can be.
  • the substituents of the compounds represented by the general formula (1) have a broad relationship, and exemplarily described the synthesis examples of the representative compounds, but the compounds represented by the general formula (1), which are not described as the synthesis examples, Can be configured.
  • the compound which has the intrinsic property of the introduced substituent can be synthesize
  • substituents used in the hole injection layer material, the hole transport layer material, the light emitting layer material, and the electron transport layer material used in the manufacture of the organic electric device, including the organic light emitting device to satisfy the conditions required for each organic material layer Materials can be prepared.
  • the compound of the present invention may be used alone as a capping layer (CPL).
  • the compound according to the present invention can be used for various purposes in the organic electroluminescent device according to the type and nature of the substituent.
  • the compound of the present invention is freely controlled by the core and the substituent, the compound may act as a host and various layers of the phosphorescent or fluorescent light emitting layer in addition to the light efficiency improving layer.
  • the organic electronic device of the present invention may be manufactured by a conventional method and material for manufacturing an organic electronic device, except for forming the light efficiency improving layer and one or more organic material layers using the above-described compounds.
  • the compounds of the present invention are used in other organic material layers of the organic electroluminescent device in addition to the light efficiency improving layer, for example, a light emitting layer, a light emitting auxiliary layer, an electron injection layer, an electron transport layer, and a hole injection layer, the same effect can be obtained.
  • the compound of the present invention can be used in a soluble process.
  • the compound may be formed in an organic material layer of an organic electric device, which will be described later, by a soluble process, or a light efficiency improving layer.
  • the organic material layer uses various polymer materials, and is not a deposition process or a solvent process such as spin coating, dip coating, doctor blading, screen printing, inkjet, etc. It can be produced in fewer layers by methods such as printing or thermal transfer.
  • Organic electroluminescent devices in which the compounds of the present invention may be used include, for example, organic electroluminescent devices (OLEDs), organic solar cells, organic photoconductor (OPC) drums, organic transistors (organic TFTs), and the like.
  • organic electroluminescent device As an example of the organic electroluminescent device to which the compounds of the present invention can be applied, an organic electroluminescent device (OLED) will be described.
  • OLED organic electroluminescent device
  • the present invention is not limited thereto and may be applied to various organic electroluminescent devices.
  • the light efficiency improving layer is represented by Chemical Formula 1.
  • An organic electroluminescent device comprising the compound of the present invention is provided.
  • Another embodiment of the present invention provides an organic electroluminescent device in which the light efficiency improving layer and the organic material layer include the compound of the present invention.
  • the structure of the organic electroluminescent device according to another embodiment of the present invention is shown in Figures 1 and 2 but is not limited to these structures.
  • an organic electroluminescent device includes a substrate 101 and 201, a first electrode (anode) 102 and 202, an organic material layer, and a second electrode (cathode) ( 108, 208, and light efficiency improving layers 109, 209, wherein the light efficiency improving layers 109, 209 are formed on the bottom of the first electrode (BOTTOM EMISSION method) or on the top of the second electrode (TOP EMISSION method). Can be formed on.
  • the light efficiency improving layer formed of organic material having a relatively high refractive index, thereby amplifying the wavelength of light and thus increasing the light efficiency. do.
  • the light efficiency of the organic electronic device is improved by interposing the light efficiency improving layer according to the present invention.
  • the light efficiency improving layer may not be formed only at this position.
  • 1 and 2 illustrate an example in which an optical efficiency improvement layer is formed on an upper portion of the second electrode and a lower portion of the first electrode, respectively, but in FIG. 1, an optical efficiency improvement layer may be formed on the lower portion of the first electrode as well as the upper portion of the second electrode.
  • examples of the organic material layer include a hole injection layer 103, a hole transport layer 104, a light emitting layer 105, an electron transport layer 106, and an electron injection layer 107. At least one layer may be omitted.
  • the organic electroluminescent device may include a hole blocking layer (HBL) that prevents the movement of holes, an electron blocking layer (EBL) that prevents the movement of electrons, a light emitting auxiliary layer that helps or assists light emission, and a protective layer.
  • HBL hole blocking layer
  • EBL electron blocking layer
  • the protective layer may be formed to protect the organic material layer or the cathode at the uppermost layer.
  • the compound of the present invention may be included in one or more of an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer and an electron transport layer as well as the light efficiency improving layer.
  • the organic electroluminescent device is a metal oxide having a metal or conductivity on a substrate by using a physical vapor deposition (PVD) method such as sputtering or e-beam evaporation
  • PVD physical vapor deposition
  • These alloys are deposited to form an anode, and an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer is formed thereon, and then a material usable as a cathode is deposited thereon.
  • PVD physical vapor deposition
  • the light efficiency improving layer according to the present invention can be formed on the lower or upper anode.
  • an organic electronic device may be fabricated by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • the organic material layer may have a multilayer structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer and an electron injection layer, but is not limited thereto and may have a single layer structure.
  • the organic material layer and the light efficiency improving layer may be formed using various polymer materials, but not by a deposition process or a solvent process such as spin coating, dip coating, doctor blading, screen printing, inkjet printing, or thermal transfer. It can be produced in fewer layers by the method.
  • the organic electroluminescent device according to another embodiment of the present invention may be used in a solution process such as spin coating or ink jet process.
  • the substrate is a support of the organic electroluminescent device, and a silicon wafer, a quartz or glass plate, a metal plate, a plastic film or sheet, or the like can be used.
  • the positive electrode material may be a material having a large work function to facilitate hole injection into the organic material layer.
  • Specific examples of the positive electrode material that can be used in the present invention include metals such as vanadium, chromium, copper, zinc and gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); Combinations of oxides with metals such as ZnO: Al or SnO 2: Sb; Conductive polymers such as poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDT), polypyrrole and polyaniline, and the like, but are not limited thereto.
  • the anode (anode) of the present invention may be ITO containing Ag (Ag is formed of a thin film).
  • the hole injection layer is located on the anode.
  • the conditions required for the material of the hole injection layer are high hole injection efficiency from the anode, it should be able to transport the injected holes efficiently. This requires a small ionization potential, high transparency to visible light, and excellent hole stability.
  • the hole injection material is a material that can be injected well from the anode at a low voltage, the highest occupied molecular orbital (HOMO) of the hole injection material may be between the work function of the positive electrode material and the HOMO of the surrounding organic material layer.
  • HOMO occupied molecular orbital
  • Specific examples of hole injection materials include metal porphyrine, oligothiophene, arylamine-based organics, hexanitrile hexaazatriphenylene, quinacridone-based organics, perylene-based organics, Anthraquinone, polyaniline and polythiophene-based conductive polymers, but are not limited thereto.
  • the hole transport layer is positioned on the hole injection layer.
  • the hole transport layer receives holes from the hole injection layer and transports the holes to the organic light emitting layer located thereon, and serves to prevent high hole mobility, hole stability, and electrons.
  • applications for vehicle body display require heat resistance to the device, and may be a material having a glass transition temperature (Tg) of 70 ° C. or higher.
  • NPD NPB
  • spiro-arylamine compounds perylene-arylamine compounds
  • azacycloheptatriene compounds bis (diphenylvinylphenyl) anthracene and silicon germanium oxide.
  • the organic light emitting layer is positioned on the hole transport layer.
  • the organic light emitting layer is a layer for emitting light by recombination of holes and electrons injected from the anode and the cathode, respectively, and is made of a material having high quantum efficiency.
  • the light emitting material is a material capable of emitting light in the visible region by transporting and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and may be a material having good quantum efficiency for fluorescence or phosphorescence.
  • Substances or compounds that satisfy these conditions include Alq3 for green, Balq (8-hydroxyquinoline beryllium salt) for blue, DPVBi (4,4'-bis (2,2-diphenylethenyl) -1,1'- biphenyl) series, Spiro material, Spiro-DPVBi (Spiro-4,4'-bis (2,2-diphenylethenyl) -1,1'-biphenyl), LiPBO (2- (2-benzoxazoyl) -phenollithium salt ), Bis (diphenylvinylphenylvinyl) benzene, aluminum-quinoline metal complex, metal complexes of imidazole, thiazole and oxazole, and the like, perylene, and BczVBi (3,3 '[ (1,1'-biphenyl) -4,4'-diyldi-2,1-ethenediyl] bis (9-ethyl) -9H-carbazole; D
  • DCJTB [2- (1,1-dimethylethyl) -6- [2- (2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H, 5H
  • doping such as -benzo (ij) quinolizin-9-yl) ethenyl] -4H-pyran-4-ylidene] -propanedinitrile
  • a polymer of polyphenylene vinylene (PPV) -based polymer or poly fluorene may be used for the organic light emitting layer.
  • the electron transport layer is positioned on the organic light emitting layer.
  • the electron transport layer needs a material having high electron injection efficiency from the cathode positioned thereon and capable of efficiently transporting the injected electrons. To this end, it must be made of a material having high electron affinity and electron transfer speed and excellent stability to electrons.
  • Examples of the electron transport material that satisfies such conditions include Al complexes of 8-hydroxyquinoline; Complexes including Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complexes and the like, but are not limited thereto.
  • the electron injection layer is stacked on the electron transport layer.
  • the electron injection layer is Balq, Alq 3 , Be (bq) 2 , Zn (BTZ) 2 , Zn (phq) 2 , PBD, spiro-PBD, TPBI, Tf-6P, etc., metal complex compound, aromatic compound having an imidazole ring It can be produced using a low molecular material containing a boron compound and the like. At this time, the electron injection layer may be formed in a thickness range of 100 ⁇ 300 ⁇ .
  • the cathode is positioned on the electron injection layer. This cathode serves to inject electrons.
  • the material used as the cathode may use the material used for the anode, and may be a metal having a low work function for efficient electron injection.
  • a suitable metal such as tin, magnesium, indium, calcium, sodium, lithium, aluminum, silver, or a suitable alloy thereof can be used.
  • an electrode having a two-layer structure such as lithium fluoride and aluminum, lithium oxide and aluminum, strontium oxide and aluminum having a thickness of 100 ⁇ m or less may also be used.
  • the cathode (cathode) according to the present invention may be formed of Mg-Ag, wherein Ag may be used in an amount of about 5 to 15% by weight of the cathode.
  • the light efficiency improving layer may be formed as a common layer for the R, G, and B pixels.
  • the light efficiency improving layer includes a light efficiency improvement layer R formed in a region corresponding to the R pixel with respect to the R, G, and B pixels of the organic material layer, and the G pixel. At least one of the light efficiency improving layer G formed in the region corresponding to the, and the light efficiency improving layer B formed in the region corresponding to the B pixel.
  • the organic electroluminescent device according to the present invention may be a top emission type, a bottom emission type or a double-sided emission type depending on the material used.
  • the present invention includes a display device including the organic electric element described above, and a terminal including a control unit for driving the display device.
  • This terminal means a current or future wired or wireless communication terminal.
  • the terminal according to the present invention described above may be a mobile communication terminal such as a mobile phone, and includes all terminals such as a PDA, an electronic dictionary, a PMP, a remote control, a navigation device, a game machine, various TVs, various computers, and the like.
  • a manufacturing example of an organic electroluminescent device comprising the compound of formula (1) will be described as a capping layer formed on a Mg: Ag cathode in a device comprising a pair of electrodes of an anode and a cathode.
  • a capping layer used after the Mg: Ag cathode in a device including a pair of electrodes of an anode and a cathode and only a part of the organic electroluminescent devices including the compound of formula (1) will be described. .
  • those skilled in the art that is, those skilled in the art can manufacture an organic electroluminescent device comprising a compound of formula (1) belonging to the present invention not illustrated through the preparation examples described below.
  • a reflective film ITO substrate containing Ag was prepared on a 10 mm x 10 mm x 1 mm glass substrate, and a 60 nm hole injection layer was formed thereon (2-TNATA: 4,4 ', 4 ”-tris (N-2 (2-nap).
  • a reflective film ITO substrate containing Ag was prepared on a 10 mm x 10 mm x 1 mm glass substrate, and a 60 nm hole injection layer was formed thereon (2-TNATA: 4,4 ', 4 ”-tris (N-2 (2-nap).
  • a reflective film ITO substrate containing Ag was prepared on a 10 mm x 10 mm x 1 mm glass substrate, and a 60 nm hole injection layer was formed thereon (2-TNATA: 4,4 ', 4 ”-tris (N-2 (2-nap).
  • DCJTB (E) -2- (2-Tybutyl-6- (2- (1,1,7,7-tetramethyl-1,2,3,5,6,7-) Hexahydropyrido [3,2,1-ij] quinoline-9-yl) vinyl) -4H-pyran-4-yldiene) malononitrile
  • Alq3 tris (8-quinoli) Aluminum
  • a reflective film ITO substrate containing Ag was prepared on a 10 mm x 10 mm x 1 mm glass substrate, and a 60 nm hole injection layer was formed thereon (2-TNATA: 4,4 ', 4 ”-tris (N-2 (2-nap).
  • a reflective film ITO substrate containing Ag was prepared on a 10 mm x 10 mm x 1 mm glass substrate, and a 60 nm hole injection layer was formed thereon (2-TNATA: 4,4 ', 4 ”-tris (N-2 (2-nap).
  • the driving voltage, current density, luminance, lifetime, and color coordinates of the experimental and comparative examples according to the present invention are shown in Table 3 below.
  • the organic light emitting device using the organic light emitting device material of the present invention as a light efficiency improving layer (capping layer) can significantly improve the high color purity, luminous efficiency, and lifespan.
  • the results of the device with and without the light efficiency improving layer (capping layer) shows that the color purity and efficiency can be increased by the light efficiency improving layer (capping layer), and the light efficiency improving layer (capping layer) is Alq 3 days When using the material of the present invention than it can be seen that the color purity, efficiency, life is significantly improved.
  • the compounds of the present invention are used in other organic material layers of the organic light emitting device, for example, a light emitting auxiliary layer, an electron injection layer, an electron transport layer, and a hole injection layer, it is obvious that the same effect can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 광효율 개선층을 포함하는 유기전기소자, 이를 포함하는 전자 장치 및 이에 적용되는 유기전기소자용 화합물에 관한 것이다.

Description

광효율 개선층을 포함하는 유기전기소자, 이를 포함하는 전자 장치 및 이에 이용되는 유기전기소자용 화합물
본 발명은 광효율 개선층을 포함하는 유기전기소자, 이를 포함하는 전자 장치 및 이에 사용되는 유기전기소자용 화합물에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛 에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기전기소자는 통상 양극과 음극 및 이 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물 층은 유기전기소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층 및 전자주입층 등으로 이루어질 수 있다.
유기전기소자에서 유기물층으로 사용되는 재료는 기능에 따라, 발광 재료와 전하 수송 재료, 예컨대 정공주입 재료, 정공수송 재료, 전자수송 재료, 전자주입 재료 등으로 분류될 수 있다. 그리고, 상기 발광 재료는 분자량에 따라 고분자형과 저분자형으로 분류될 수 있고, 발광 메커니즘에 따라 전자의 일중항 여기상태로부터 유래되는 형광 재료와 전자의 삼중항 여기상태로부터 유래되는 인광 재료로 분류될 수 있다. 또한, 발광 재료는 발광색에 따라 청색, 녹색, 적색 발광 재료와 보다 나은 천연색을 구현하기 위해 필요한 노란색 및 주황색 발광 재료로 구분될 수 있다.
특히, 유기전기소자의 우수한 수명 특성을 위해 정공 수송층 또는 완충층(buffer layer)으로 삽입되는 유기물질에 관해 여러 연구가 진행되고 있으며, 이를 위해 양극으로부터 유기층으로의 높은 정공 이동 특성을 부여하면서 증착 후 박막 형성시 균일도가 높고 결정화도가 낮은 정공 주입층 재료가 요구되고 있다.
유기전기소자의 수명단축의 원인 중 하나인 양극전극(ITO)으로부터 금속 산화물이 유기층으로 침투 확산되는 것을 지연시키며, 소자 구동시 발생되는 주울열(Joule heating)에 대해서도 안정된 특성, 즉 높은 유리 전이 온도를 갖는 정공 주입층 재료에 대한 개발이 필요하다. 또한 정공 수송층 재료의 낮은 유리전이 온도는 소자 구동시에 박막 표면의 균일도가 무너지는 특성에 따라 소자수명에 큰 영향을 미치는 것으로 보고되고 있다. 또한, OLED 소자의 형성에 있어서 증착방법이 주류를 이루고 있으며, 이러한 증착방법에 오랫동안 견딜 수 있는 재료 즉 내열성 특성이 강한 재료가 필요한 실정이다.
한편, 발광 재료로서 하나의 물질만 사용하는 경우 분자간 상호 작용에 의하여 최대 발광 파장이 장파장으로 이동하고 색순도가 떨어지거나 발광 감쇄 효과로 소자의 효율이 감소되는 문제가 발생하므로, 색순도의 증가와 에너지 전이를 통한 발광 효율을 증가시키기 위하여 발광 재료로서 호스트/도판트계를 사용할 수 있다. 그 원리는 발광층을 형성하는 호스트보다 에너지 대역 간극이 작은 도판트를 발광층에 소량 혼합하면, 발광층에서 발생한 엑시톤이 도판트로 수송되어 효율이 높은 빛을 내는 것이다. 이때 호스트의 파장이 도판트의 파장대로 이동하므로, 이용하는 도판트의 종류에 따라 원하는 파장의 빛을 얻을 수 있다.
전술한 유기전기소자가 갖는 우수한 특징들을 충분히 발휘하기 위해서는 소자 내 유기물층을 이루는 물질, 예컨대 정공주입 물질, 정공수송 물질, 발광 물질, 전자수송 물질, 전자주입 물질 등이 안정하고 효율적인 재료에 의하여 뒷받침되는 것이 선행되어야 하나, 아직까지 안정하고 효율적인 유기전기소자용 유기물층 재료의 개발이 충분히 이루어지지 않은 상태이며, 따라서 새로운 재료의 개발이 계속 요구되고 있다.
최근에는 각 재료의 성능 변화를 주어 소자 특성을 향상시키는 연구뿐만 아니라, 공진 구조의 Top 소자에서는 애노드(anode)와 캐소드(cathode) 사이에 최적화된 광학 두께에 의한 색순도 향상 및 효율 증대기술이 소자 성능을 향상시키는데 중요한 요소 중의 하나이다. 비공진 구조의 bottom 소자구조와 비교해보면 Top 소자구조는 형성된 빛이 반사막인 anode에 반사되어 cathode쪽으로 빛이 나오므로 SPPs (surface plasmon polaritons)에 의한 광학 에너지 손실이 크다.
따라서, EL spectral의 모양과 효율향상을 위한 중요한 방법 중의 하나는 top cathode에 capping층을 사용하는 방법이 있다. 일반적으로 SPP는 전자방출은 Al, Pt, Ag, Au 이 4개의 금속이 주로 사용되며 금속전극 표면에서 표면 플라즈몬이 발생한다. 예를 들어 음극을 Ag로 사용할 경우 음극의 Ag로 인해 방출되는 빛이 SPP에 의해 Quenching(Ag로 인한 빛에너지 손실)되어 효율이 감소된다.
반면 capping층을 사용할 경우에는 MgAg 전극과 고굴절의 유기재료 경계면에서 SPPs가 발생하며 그 중 TE 편광(transverse electric)된 빛은 소산파(evanescent wave)에 의해 수직 방향으로 CPL면에서 소멸되며, 음극과 capping 층을 따라 이동하는 TM(transverse magnetic) 편광된 빛은 표면 플라즈마 공진(surface plasma resonance)에 의해 파장의 증폭현상이 일어나며 이로 인해 피크(peak)의 intensity가 증가하여 결국 높은 효율과 효과적인 색순도 조절이 가능하게 된다.
본 발명은 소자의 높은 발광효율, 낮은 구동전압, 색순도, 및 수명을 향상시킬 수 있는 광효율 개선층을 포함하는 유기전기소자, 이를 포함하는 전자 장치 및 이에 이용되는 유기전기소자용 화합물을 제공하는 것을 목적으로 한다.
구체적으로, 본 발명은 전술한 종래 기술의 문제점을 해결하고, 소자의 높은 발광효율, 낮은 구동전압, 색순도, 안정성 및 수명의 향상이라는 본 발명의 목적을 달성하기 위하여 하기 화학식 1로 표시되는 화합물이 적용된 광효율 개선층을 포함하는 유기전기소자를 제공한다.
Figure PCTKR2013001585-appb-I000001
상기 화학식에서,
(1) R1, R2, R3 각각 서로 독립적으로,
수소, 중수소, 할로겐, C1~C20의 알킬기, C1~C20의 알콕시기, C1~C20의 알킬아민기, C1~C20 의 알킬티오펜기, C6~C20의 아릴티오펜기, C2~C20의 알케닐기, C2~C20의 알키닐기, C3~C20의 시클로알킬기, C6~C60의 아릴기, 중수소로 치환된 C6~C20의 아릴기, C8~C20의 아릴알케닐기, 실란기, 붕소기, 게르마늄기, C2~C20의 헤테로고리기로 이루어진 군으로부터 선택되는 1개 이상의 치환기로 치환 또는 비치환된 C6~C60의 아릴기;
수소, 중수소, 할로겐기, C1~C20의 알킬기, C2~C20의 알케닐기, C1~C20의 알콕시기, C6~C20의 아릴아민기, C6~C60의 아릴기, 중수소로 치환된 C6~C20의 아릴기, C7~C20의 아릴알킬기, C8~C20의 아릴알케닐기, C2~C20의 헤테로 고리기, 니트릴기 및 아세틸렌기로 이루어진 군에서 1개 이상의 치환기로 치환 또는 비치환되고 O, N, S, Si, P 중 적어도 하나를 헤테로 원자로 포함하는 C2~C60의 헤테로고리기;
C1~C20의 알킬기, C2~C20의 알케닐기, C1~C20의 알콕시기, C6~C60의 아릴기, C7~C20의 아릴알킬기, C8~C20의 아릴알케닐기, C2~C20의 헤테로 고리기, 니트릴기 및 아세틸렌기로 이루어진 군에서 선택된 치환기로 치환 또는 비치환된 C1~C50의 알킬기;로 이루어진 군에서 선택되고,
(2) L1, L2는 독립적으로, 직접결합; 니트로, 니트릴, 할로겐, C1~C20의 알킬기, C1~C20의 알콕시기 및 아미노기로 이루어진 군에서 선택된 하나 이상의 치환기로 치환 또는 비치환된 C6~C60의 아릴렌기; 및 중수소, 할로겐, 실란기, 시아노기, 니트로기, C1~C20의 알콕실기, C1~C20의 알킬기, C2~C20의 알켄일기(alkenyl), C6~C20의 아릴기, 중수소로 치환된 C6~C20의 아릴기, C3~C20의 시클로알킬기, C7~C20 아릴알킬기 및 C8~C20의 아릴알켄일기로 이루어진 군에서 선택된 하나 이상의 치환기로 치환 또는 비치환되고, O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는C2~C60의 헤테로고리기;로 이루어진 군에서 선택된다.
더욱 구체적으로, 상기 화학식 1로 표시되는 화합물은 하기 화학식 2 내지 화학식 4 중 하나일 수 있다.
Figure PCTKR2013001585-appb-I000002
다른 측면에서, 본 발명은 상기 화학식으로 표시되는 화합물이 적용된 유기전기소자를 포함하는 전자장치 및 상기 화학식으로 표시되는 광효율 개선을 위한 유기전기소자용 화합물을 제공한다.
예시적으로, 본 발명의 유기전기소자는 제 1전극; 제 2전극; 상기 제 1전극과 상기 제 2전극 사이에 형성된 1층 이상의 유기물층; 및 상기 제 1전극과 제 2전극의 상부 또는 하부 중 상기 유기물층과 반대되는 적어도 일측에 형성되는 광효율 개선층;을 포함하며, 광효율 개선층은 상기 화학식 1의 화합물을 포함한다. 또한, 예시적으로 상기 화학식 1의 화합물은 유기물층에 사용될 수도 있다. 여기서, 유기물층은 발광층, 정공 주입층, 정공 수송층, 전자 주입층, 전자 수송층 중 적어도 하나일 수 있다.
광효율 개선층은 상기 제 1전극의 하부 또는 상기 제 2전극의 상부 중 적어도 하나에 형성될 수 있으며, 예시적으로 상기 제 1전극은 Ag를 포함하는 ITO로 형성된 애노드이고, 상기 제 2전극은 Mg-Ag를 포함하는 캐소드이며, 상기 광효율 개선층은 상기 제 2전극 상부에 형성되거나 상기 제 2전극은 광투과형 캐소드 전극이고, 상기 광효율 개선층은 상기 제 2전극의 상부에 형성될 수 있다.
또한, 예시적으로 상기 제 1전극은 광투과형 애노드 전극이고, 상기 광효율 개선층은 상기 제 1전극의 하부에 형성될 수 있다.
예시적으로, 상기 유기물층이 R, G, B 화소별로 패터닝되어 있으면 상기 광효율 개선층이 상기 R, G, B 화소에 대하여 공통층으로 형성될 수도 있고, 상기 유기물층의 R, G, B 화소에 대하여 R 화소에 대응되는 영역에 형성된 광효율 개선층-R과,상기 G 화소에 대응되는 영역에 형성된 광효율 개선층-G와, 상기 B 화소에 대응되는 영역에 형성된 광효율 개선층-B 중 적어도 하나를 포함할 수 있다.
상기 유기전기소자는 상기 화학식 1의 화합물을 포함하는 디스플레이장치와, 상기 디스플레이장치를 구동하는 제어부를 포함할 수 있으며, 이때 유기전기소자는 유기전기발광소자(OLED), 유기태양전지, 유기감광체(OPC), 유기트랜지스터(유기 TFT) 중 하나일 수 있다.
본 발명에 따른 화합물을 포함하는 광효율 개선층을 구비하면, 유기전기소자의 광효율을 현저히 개선시킬 수 있어 소자의 높은 발광효율, 낮은 구동전압, 색순도, 및 수명을 크게 향상시킬 수 있는 효과를 나타낸다.
도 1 및 도 2는 본 발명의 일 실시예에 따른 유기전기발광소자의 개략적 구성도이다.
이하에서 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다.
각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일 또는 대응하는 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a),(b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
이하, 본 발명의 광효율 개선층에 적용되는 화합물의 합성예 및 실험예를 통해 본 발명을 더욱 상세하게 설명한다. 그러나, 이하의 제조예 및 실험예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다. 또한, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자, 즉 당업자라면 하기에서 설명한 제조예들을 통해, 예시하지 않은 본 발명에 속하는 화합물을 제조할 수 있다.
일반적인 합성 방법
Figure PCTKR2013001585-appb-I000003
Sub 1 내지 Sub 4 합성법
[ 실시예 1] Sub 1 합성법 예시:
Figure PCTKR2013001585-appb-I000004
카바졸과 브롬화합물에 톨루엔을 혼합 후에 Pd2(dba)3, PPh3, NaOt-Bu을 각각 첨가한 뒤, 100℃ 에서 24시간 교반 환류시킨다. ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 Sub1-1을 얻었다. Sub 1-1에 메틸렌 크로라이드 에 녹인후, NBS(N-bromosuccimide)을 서서히 첨가한 뒤, 상온에서 24시간 교반시킨다. 반응이 종료되면 5% 농도의 HCl 을 첨가한뒤, 물 을 첨가하여, 잔존 NBS를 제거한 뒤, ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 Sub 1을 얻었다.
[실시예 2] Sub 2 합성법 예시:
Figure PCTKR2013001585-appb-I000005
둥근바닥플라스크에 아민화합물 (1당량), 브롬화합물 (1.1당량), Pd2(dba)3 (0.05 mol%), P(t-Bu)3 (0.1당량), NaOt-Bu (3당량), toluene (10.5 mL / 1 mmol)을 넣은 후에 100 ℃에서 반응을 진행한다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물 Sub 2를 얻었다.
[실시예 3] Sub 3 합성법 예시:
Figure PCTKR2013001585-appb-I000006
둥근바닥플라스크에 아민화합물 (1당량), 브롬화합물 (1.1당량), Pd2(dba)3 (0.05 mol%), P(t-Bu)3 (0.1당량), NaOt-Bu (3당량), toluene (10.5 mL / 1 mmol)을 넣은 후에 100 ℃에서 반응을 진행한다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물 Sub 3을 얻었다.
[실시예 4] Sub 4 합성법 예시:
Figure PCTKR2013001585-appb-I000007
둥근바닥플라스크에 4-bromophenylboronic acid (1당량), Sub 3의 아민화합물 (1.1당량), Pd2(dba)3 (0.03~0.0 mol%), P(t-Bu)3 (0.1당량), NaOt-Bu (3당량), toluene (10.5 mL / 1 mmol)을 넣은 후에 100 ℃에서 반응을 진행한다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물 Sub 4를 얻었다.
Sub 4의 예시는 아래와 같으나, 이에 한정되는 것은 아니다.
Figure PCTKR2013001585-appb-I000008
상기 Sub 4에 대한 질량분석 결과는 하기 표 1과 같다.
표 1
화합물 FD-MS 화합물 FD-MS
Sub 4-1 m/z=454.19(C30H23BN2O2=454.33) Sub 4-2 m/z=530.22(C36H27BN2O2=530.42)
Sub 4-3 m/z=580.23(C40H29BN2O2=580.48) Sub 4-4 m/z=580.23(C40H29BN2O2=580.48)
Sub 4-5 m/z=606.25(C42H31BN2O2=606.52) Sub 4-6 m/z=646.28(C45H35BN2O2=646.58)
Sub 4-7 m/z=531.21(C35H26BN3O2=531.41) Sub 4-8 m/z=510.25(C34H31BN2O2=510.43)
Product 합성법 예시
[ 실시예 5]
Product 1 합성법 예시 :
둥근바닥플라스크에 Sub 1 화합물 (1당량), Sub 2 화합물 (1.1당량), Pd2(dba)3 (0.05 mol%), P(t-Bu)3 (0.1당량), NaOt-Bu (3당량), toluene (10.5 mL / 1 mmol)을 넣은 후에 100 ℃에서 반응을 진행한다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 최종 생성물을 얻었다.
Product 1-5 합성 예시
Figure PCTKR2013001585-appb-I000009
둥근바닥플라스크에 3-bromo-9-phenyl-9H-carbazole (6.4g, 20mmol), N-(biphenyl-4-yl)-9-phenyl-9H-carbazol-3-amine (9.9g, 24mmol), Pd2(dba)3 (0.03~0.05mmol), P(t-Bu)3 (0.1당량), NaOt-Bu (3당량), toluene (10.5 mL / 1 mmol)을 넣은 후에 100 ℃에서 반응을 진행한다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 최종 생성물 8.5g (수율: 65%)을 얻었다.
[실시예 6]
Product 2 합성법 예시 :
둥근바닥플라스크에 Sub 1 화합물 (1당량), Sub 3 화합물 (1.1당량), Pd2(dba)3 (0.05 mol%), P(t-Bu)3 (0.1당량), NaOt-Bu (3당량), toluene (10.5 mL / 1 mmol)을 넣은 후에 100 ℃에서 반응을 진행한다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 최종 생성물을 얻었다.
Product 2-11 합성 예시
Figure PCTKR2013001585-appb-I000010
둥근바닥플라스크에 3-bromo-9-(naphthalen-2-yl)-9H-carbazole (7.4g, 20mmol), N-phenyl-4-(9-phenyl-9H-carbazol-3-yl)aniline (9.9g, 24mmol), Pd2(dba)3 (0.03~0.05 mmol), P(t-Bu)3 (0.1당량), NaOt-Bu (3당량), toluene (10.5 mL / 1 mmol)을 넣은 후에 100 ℃에서 반응을 진행한다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 최종 생성물 8.8g (수율: 63%)을 얻었다.
[실시예 7]
Product 3 합성법 예시 :
Figure PCTKR2013001585-appb-I000011
둥근바닥플라스크에 Sub 1 화합물 (1당량)을 넣고, Sub 4 화합물 (1.1당량), Pd(PPh3)4 (0.05 mol%), NaOH (3당량), THF (3 mL / 1 mmol), 물 (1.5 mL / 1 mmol)을 넣는다. 그런 후에 80℃~90℃ 상태에서 가열 환류 시킨다. 반응이 완료되면 상온에서 증류수를 넣어 희석시킨다. 그런 후에 메틸렌클로라이드와 물로 추출하고 유기층을 MgSO4로 건조하여 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 최종 생성물을 얻었다.
Product 3-2 합성 예시
Figure PCTKR2013001585-appb-I000012
둥근바닥플라스크에 3-bromo-9-phenyl-9H-carbazole (6.4g, 20mmol)), 4-(phenyl(4-(9-phenyl-9H-carbazol-3-yl)phenyl)amino)phenylboronic acid (12.7g, 24mmol), Pd(PPh3)4 (0.03~0.05당량), NaOH (3당량), THF (3 mL / 1 mmol), 물 (1.5 mL / 1 mmol)을 넣는다. 그런 후에 80℃~90℃ 상태에서 가열 환류시킨다. 반응이 완료되면 상온에서 증류수를 넣어 희석시키고 메틸렌클로라이드와 물로 추출한다. 유기층을 MgSO4로 건조하여 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 9.3g (수율: 66%)을 얻었다.
상기와 같은 방법에 의하여 하기의 구체적 화합물 1-1 내지 3-16을 제조할 수 있으며, 이러한 화합물들에 대한 질량분석표는 하기 표 2와 같다.
본 발명에 따른 화학식 1로 표시되는 화합물들은 하기에서 제시된 구체적 화합물들 중 하나일 수 있으나 이에 제한되지 않는다. 화학식 1로 표시되는 화합물들의 각 치환기들이 광범위한 관계로 모든 화합물들을 예시하는 것은 현실적으로 어려우므로 대표적인 화합물들을 예시적으로 설명한 것이나, 이에 제시되지 않은 화학식 1로 표시되는 화합물들도 본 명세서의 일부를 구성할 수 있다.
Figure PCTKR2013001585-appb-I000013
Figure PCTKR2013001585-appb-I000014
표 2
화합물 FD-MS 화합물 FD-MS
1-1 m/z=513.22(C37H27N3=513.63) 1-2 m/z=575.24(C42H29N3=575.70)
1-3 m/z=625.25(C46H31N3=625.76) 1-4 m/z=625.25(C46H31N3=625.76)
1-5 m/z=651.27(C48H33N3=651.80) 1-6 m/z=691.30(C51H37N3=691.86)
1-7 m/z=576.23(C41H28N4=576.69) 1-8 m/z=555.27(C40H33N3=555.71)
1-9 m/z=513.22(C37H27N3=513.63) 1-10 m/z=625.25(C46H31N3=625.76)
1-11 m/z=625.25(C46H31N3=625.76) 1-12 m/z=651.27(C48H33N3=651.80)
1-13 m/z=576.23(C41H28N4=576.69) 1-14 m/z=555.27(C40H33N3=555.71)
1-15 m/z=675.27(C50H33N3=675..82) 1-16 m/z=727.30(C54H37N3=727.89)
2-1 m/z=589.25(C43H31N3=589.73) 2-2 m/z=651.27(C48H33N3=651.80)
2-3 m/z=701.28(C52H35N3=701.85) 2-4 m/z=701.28(C52H35N3=701.85)
2-5 m/z=727.30(C54H37N3=727.89) 2-6 m/z=767.33(C57H41N3=767.96)
2-7 m/z=652.26(C47H32N4=652.78) 2-8 m/z=631.30(C46H37N3=631.81)
2-9 m/z=589.25(C43H31N3=589.73) 2-10 m/z=701.28(C52H35N3=701.85)
2-11 m/z=701.28(C52H35N3=701.85) 2-12 m/z=727.30(C54H37N3=727.89)
2-13 m/z=652.26(C47H32N4=652.78) 2-14 m/z=631.30(C46H37N3=631.81)
2-15 m/z=652.26(C47H32N4=652.78) 2-16 m/z=631.30(C46H37N3=631.81)
3-1 m/z=665.28(C49H35N3=651.80) 3-2 m/z=727.30(C54H37N3=727.89)
3-3 m/z=777.31(C58H39N3=777.95) 3-4 m/z=777.31(C58H39N3=777.95)
3-5 m/z=803.33(C60H41N3=803.99) 3-6 m/z=843.36(C63H45N3=844.05)
3-7 m/z=728.29(C52H36N4=728.88) 3-8 m/z=707.33(C52H41N3=707.90)
3-9 m/z=665.28(C49H35N3=651.80) 3-10 m/z=777.31(C58H39N3=777.95)
3-11 m/z=777.31(C58H39N3=777.95) 3-12 m/z=803.33(C50H41N3=803.99)
3-13 m/z=728.29(C53H36N4=728.88) 3-14 m/z=707.33(C52H41N3=707.90)
3-15 m/z=827.33(C62H41N3=828.01) 3-16 m/z=687.36(C50H45N3=687.91)
이미 설명한 바와 같이, 화학식 1로 표시되는 화합물들의 각 치환기들은 광범위한 관계로, 대표적인 화합물들의 합성예를 예시적으로 설명하였으나, 합성예로 설명하지 않은 화학식 1로 표시되는 화합물들도 본 명세서의 일부를 구성할 수 있다.
또한, 상기와 같은 구조의 코어 구조에 다양한 치환기를 도입함으로써 도입된 치환기의 고유 특성을 갖는 화합물을 합성할 수 있다. 예컨대, 유기발광소자를 비롯한 유기전기소자의 제조시 사용되는 정공주입층 물질, 정공수송층 물질, 발광층 물질, 및 전자 수송층 물질에 사용되는 치환기를 상기 구조에 도입함으로써 각 유기물층에서 요구하는 조건들을 충족시키는 물질을 제조할 수 있다. 특히, 본 발명의 화합물은 단독으로 광효율 개선층(CPL: capping layer)으로 사용될 수 있다.
본 발명에 따른 화합물은 치환기의 종류 및 성질에 따라 유기전기발광소자에서 다양한 용도로 사용될 수 있다.
본 발명의 화합물은 코어와 치환체에 의해 조절이 자유롭기 때문에 광효율 개선층 이외에도 인광 또는 형광 발광층의 호스트 및 다양한 층으로 작용할 수 있다.
본 발명의 유기전기소자는 전술한 화합물들을 이용하여 광효율 개선층 및 한층 이상의 유기물층을 형성하는 것을 제외하고는, 통상의 유기전기소자의 제조방법 및 재료에 의하여 제조될 수 있다.
본 발명의 화합물들을 광효율 개선층 이외에 유기전기발광소자의 다른 유기물층들, 예를 들어 발광층, 발광 보조층, 전자주입층, 전자수송층, 및 정공주입층에 사용되더라도 동일한 효과를 얻을 수 있을 것이다.
한편 본 발명의 화합물은 용액 공정(soluble process)에 사용될 수 있다. 다시 말해 상기 화합물을 용액 공정(soluble process)에 의해 후술할 유기전기소자의 유기물층을 형성하거나 광효율 개선층을 형성할 수 있다. 즉 상기 화합물을 광효율 개선층 또는/및 유기물층으로 사용할 때 유기물층은 다양한 고분자 소재를 사용하여 증착법이 아닌 용액 공정 또는 솔벤트 프로세스(solvent process), 예컨대 스핀 코팅, 딥 코팅, 닥터 블레이딩, 스크린 프린팅, 잉크젯 프린팅 또는 열 전사법 등의 방법에 의하여 더 적은 수의 층으로 제조될 수 있다.
본 발명의 화합물들이 사용될 수 있는 유기전기소자는 예를 들어, 유기전기발광소자(OLED), 유기태양전지, 유기감광체(OPC) 드럼, 유기트랜지스트(유기 TFT) 등이 있다.
본 발명의 화합물들이 적용될 수 있는 유기전기소자 중 일예로 유기전기발광소자(OLED)에 대하여 설명하나, 본 발명은 이에 제한되지 않고 다양한 유기전기소자에 적용될 수 있다.
본 발명의 일 실시예는 제1 전극, 제2 전극, 제 1전극과 제 2전극 사이에 형성된 유기물층, 및 광효율 개선층을 포함하는 유기전기소자에 있어서, 상기 광효율 개선층이 화학식 1로 표시되는 본 발명의 화합물을 포함하는 유기전기발광소자를 제공한다.
본 발명의 다른 실시예는 상기 광효율 개선층 및 상기 유기물층이 본 발명의 화합물을 포함하는 유기전기발광소자를 제공한다.
본 발명의 다른 실시예에 따른 유기전기발광소자의 구조는 도 1 및 도 2에 도시되어 있으나 이들 구조에만 한정되는 것은 아니다.
도 1 및 도 2를 참조하면, 본 발명의 일실시예에 따른 유기전기발광소자는 기판(101, 201), 제 1전극(양극)(102, 202), 유기물층, 제 2전극(음극)(108, 208), 및 광효율 개선층(109, 209)을 포함하며, 상기 광효율 개선층(109, 209)은 제 1전극 하부(BOTTOM EMISSION 방식) 또는/및 제 2전극 상부((TOP EMISSION 방식)에 형성될 수 있다.
탑 에미션 방식의 경우, 발광층에서 형성된 빛이 캐소드쪽으로 방출되는데 캐소드쪽으로 방출되는 빛은 굴절률이 상대적으로 높은 유기물로 형성된 광효율 개선층(CPL)을 통과하면서 빛의 파장이 증폭되고 따라서 광효율이 상승하게 된다.
바텀 에미션(Bottom emission) 방식의 경우에도, 마찬가지 원리에 의해 본 발명에 따른 광효율 개선층을 개재함에 따라 유기전기소자의 광효율이 향상된다.
물론, 광효율 개선층이 이러한 위치에만 형성될 수 있는 것은 아니다. 도 1 및 도 2에서는 각각 제 2전극 상부과 제 1전극 하부에 광효율 개선층이 형성된 예를 도시하였으나, 도 1에서 제 2전극 상부뿐만 아니라 제 1전극 하부에도 광효율 개선층이 형성될 수 있을 것이다.
한편, 도 1 및 도 2에서, 유기물층의 예시로 정공주입층(103), 정공수송층(104), 발광층(105), 전자수송층(106), 전자주입층(107)을 포함하지만, 이들 층 중 적어도 일 층이 생략될 수도 있다.
또한, 미도시하였지만, 이러한 유기전기발광소자는 정공의 이동을 저지하는 정공저지층(HBL), 전자의 이동을 저지하는 전자저지층(EBL), 발광을 돕거나 보조하는 발광보조층 및 보호층이 더 위치할 수도 있다. 보호층의 경우 최상위층에서 유기물층을 보호하거나 음극을 보호하도록 형성될 수 있다.
또한, 본 발명의 화합물은 광효율 개선층뿐만 아니라 정공주입층, 정공수송층, 발광층 및 전자수송층을 포함하는 유기물층 중 하나 이상에 포함될 수 있다.
본 발명의 다른 실시예에 따른 유기전기발광소자는 스퍼터링(sputtering)이나 전자빔 증발(e-beam evaporation)과 같은 PVD(physical vapor deposition) 방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공주입층, 정공수송층, 발광층, 전자수송층 및 전자주입층을 포함하는 유기물층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다. 이때, 본 발명에 따른 광효율 개선층을 양극 하부 또는 음극 상부에 형성시킬 수 있다.
이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기전기소자를 만들 수도 있다. 상기 유기물층은 정공주입층, 정공수송층, 발광층, 전자수송층 및 전자주입층 등을 포함하는 다층 구조일 수도 있으나, 이에 한정되지 않고 단층 구조일 수 있다.
또한, 상기 유기물층 및 광효율 개선층은 다양한 고분자 소재를 사용하여 증착법이 아닌 용액 공정 또는 솔벤트 프로세스(solvent process), 예컨대 스핀 코팅, 딥 코팅, 닥터 블레이딩, 스크린 프린팅, 잉크젯 프린팅 또는 열 전사법 등의 방법에 의하여 더 적은 수의 층으로 제조할 수 있다.
본 발명의 다른 실시예에 따른 유기전기발광소자는 위에서 설명한 화합물을 스핀 코팅(spin coating)이나 잉크젯(ink jet) 공정과 같은 용액 공정(soluble process)에 사용될 수도 있다.
기판은 유기전기발광소자의 지지체이며, 실리콘 웨이퍼, 석영 또는 유리판, 금속판, 플라스틱 필름이나 시트 등이 사용될 수 있다.
기판 위에는 양극이 위치된다. 이러한 양극은 그 위에 위치되는 정공주입층으로 정공을 주입한다. 양극 물질로는 통상 유기물층으로 정공주입이 원활할 수 있도록 일함수가 큰 물질일 수 있다. 본 발명에서 사용될 수 있는 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연산화물, 인듐산화물, 인듐주석 산화물(ITO), 인듐아연산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다. 예시적으로 본 발명의 양극(애노드)은 Ag를 포함하는 ITO(Ag는 박막으로 형성되어 있음)일 수 있다.
양극 위에는 정공주입층이 위치된다. 이러한 정공주입층의 물질로 요구되는 조건은 양극으로부터의 정공주입 효율이 높으며, 주입된 정공을 효율적으로 수송할 수 있어야 한다. 이를 위해서는 이온화 포텐셜이 작고 가시광선에 대한 투명성이 높으며, 정공에 대한 안정성이 우수해야 한다.
정공주입 물질로는 낮은 전압에서 양극으로부터 정공을 잘 주입받을 수 있는 물질로서, 정공주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이일 수 있다. 정공주입 물질의 구체적인 예로는 금속 포피린(porphyrine), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴 헥사아자트리페닐렌, 퀴나크리돈(quinacridone) 계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공주입층 위에는 정공수송층이 위치된다. 이러한 정공수송층은 정공주입층으로부터 정공을 전달받아 그 위에 위치되는 유기발광층으로 수송하는 역할을 하며, 높은 정공 이동도와 정공에 대한 안정성 및 전자를 막아주는 역할를 한다. 이러한 일반적 요구 이외에 차체 표시용으로 응용할 경우 소자에 대한 내열성이 요구되며, 유리 전이 온도(Tg)가 70 ℃ 이상의 값을 갖는 재료일 수 있다.
이와 같은 조건을 만족하는 물질들로는 NPD(혹은 NPB라 함), 스피로-아릴아민계화합물, 페릴렌-아릴아민계화합물, 아자시클로헵타트리엔화합물, 비스(디페닐비닐페닐)안트라센, 실리콘게르마늄옥사이드화합물, 실리콘계아릴아민화합물 등이 될 수 있다.
정공수송층 위에는 유기발광층이 위치된다. 이러한 유기발광층는 양극과 음극으로부터 각각 주입된 정공과 전자가 재결합하여 발광을 하는 층이며, 양자효율이 높은 물질로 이루어져 있다. 발광 물질로는 정공수송층과 전자수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자효율이 좋은 물질일 수 있다.
이와 같은 조건을 만족하는 물질 또는 화합물로는 녹색의 경우 Alq3가, 청색의 경우 Balq(8-hydroxyquinoline beryllium salt), DPVBi(4,4'-bis(2,2-diphenylethenyl)-1,1'-biphenyl) 계열, 스피로(Spiro) 물질, 스피로-DPVBi(Spiro-4,4'-bis(2,2-diphenylethenyl)-1,1'-biphenyl), LiPBO(2-(2-benzoxazoyl)-phenollithium salt), 비스(디페닐비닐페닐비닐)벤젠, 알루미늄-퀴놀린 금속착체, 이미다졸, 티아졸 및 옥사졸의 금속착체 등이 있으며, 청색 발광 효율을 높이기 위해 페릴렌, 및 BczVBi(3,3'[(1,1'-biphenyl)-4,4'-diyldi-2,1-ethenediyl]bis(9-ethyl)-9H-carbazole; DSA(distrylamine)류)를 소량 도핑하여 사용할 수 있다. 적색의 경우는 녹색 발광 물질에 DCJTB([2-(1,1-dimethylethyl)-6-[2-(2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H-benzo(ij)quinolizin-9-yl)ethenyl]-4H-pyran-4-ylidene]-propanedinitrile)와 같은 물질을 소량 도핑하여 사용할 수 있다.
잉크젯프린팅, 롤코팅, 스핀코팅 등의 공정을 사용하여 발광층을 형성할 경우에, 폴리페닐렌비닐렌(PPV) 계통의 고분자나 폴리 플루오렌(poly fluorene) 등의 고분자를 유기발광층에 사용할 수 있다.
유기발광층 위에는 전자수송층이 위치된다. 이러한 전자수송층은 그 위에 위치되는 음극으로부터 전자주입 효율이 높고 주입된 전자를 효율적으로 수송할 수 있는 물질이 필요하다. 이를 위해서는 전자 친화력과 전자 이동속도가 크고 전자에 대한 안정성이 우수한 물질로 이루어져야 한다.
이와 같은 조건을 충족시키는 전자수송 물질로는 구체적인 예로 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다.
전자수송층 위에는 전자주입층이 적층된다. 전자주입층은 Balq, Alq3, Be(bq)2, Zn(BTZ)2, Zn(phq)2, PBD, spiro-PBD, TPBI, Tf-6P 등과 같은 금속착제화합물, imidazole ring 을 갖는 aromatic 화합물이나 boron화합물 등을 포함하는 저분자 물질을 이용하여 제작할 수 있다. 이때, 전자주입층은 100Å ~ 300Å의 두께 범위에서 형성될 수 있다.
전자주입층 위에는 음극이 위치된다. 이러한 음극은 전자를 주입하는 역할을 한다. 음극으로 사용하는 재료는 양극에 사용된 재료를 이용하는 것이 가능하며, 효율적인 전자주입을 위해서는 일 함수가 낮은 금속일 수 있다. 특히 주석, 마그네슘, 인듐, 칼슘, 나트륨, 리튬, 알루미늄, 은 등의 적당한 금속, 또는 그들의 적절한 합금이 사용될 수 있다. 또한 100 ㎛ 이하 두께의 리튬플루오라이드와 알루미늄, 산화리튬과 알루미늄, 스트론튬산화물과 알루미늄 등의 2 층 구조의 전극도 사용될 수 있다.
예시적으로, 본 발명에 따른 음극(캐소드)은 Mg-Ag로 형성될 수 있으며, 이때 Ag는 캐소드의 약 5~15중량% 정도 사용될 수 있다.
예시적으로, 상기 유기물층이 R, G, B 화소별로 패터닝되어 있는 경우, 광효율 개선층은 상기 R, G, B 화소에 대하여 공통층으로 형성될 수 있다.
또한, 상기 유기물층은 R, G, B 화소별로 패터닝되어 있는 경우, 광효율 개선층은, 상기 유기물층의 R, G, B 화소에 대하여 R 화소에 대응되는 영역에 형성된 광효율 개선층 R과,상기 G 화소에 대응되는 영역에 형성된 광효율 개선층 G와, 상기 B 화소에 대응되는 영역에 형성된 광효율 개선층 B 중 적어도 하나를 포함할 수 있다.
본 발명에 따른 유기전기발광소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
한편 본 발명은, 위에서 설명한 유기전기소자를 포함하는 디스플레이장치와, 이 디스플레이장치를 구동하는 제어부를 포함하는 단말을 포함한다. 이 단말은 현재 또는 장래의 유무선 통신단말을 의미한다. 이상에서 전술한 본 발명에 따른 단말은 휴대폰 등의 이동 통신 단말기일 수 있으며, PDA, 전자사전, PMP, 리모콘, 네비게이션, 게임기, 각종 TV, 각종 컴퓨터 등 모든 단말을 포함한다.
본 발명에 따른 화합물이 적용된 광효율 개선층에 대한 소자특성을 평가하기 위하여 하기와 같은 실험을 수행하였다.
유기전기소자의 제조평가
양극과 음극의 한 쌍의 전극을 포함하는 소자에 Mg:Ag 음극 상에 형성되는 capping 층으로, 화학식 (1)의 화합물을 포함하는 유기 전계발광 소자에 대한 제조예를 설명한다. 다만, 양극과 음극의 한 쌍의 전극을 포함하는 소자에 Mg:Ag 음극 다음에 쓰이는 capping 층으로, 화학식 (1)의 화합물을 포함하는 유기 전계발광 소자의 수가 많기 때문에 일부만을 예시적으로 설명한다. 본 발명이 속하는 기술분야의 통상의 지식을 가진 자, 즉 당업자라면 아래에서 설명한 제조예들을 통해 예시하지 않은 본 발명에 속하는 화학식 (1)의 화합물을 포함하는 유기 전계발광소자를 제조할 수 있다.
[ 실험예 1] 블루 유기 발광 소자
10mm x 10mm x 1mm의 유리 기판상에 Ag를 포함하는 반사막 ITO기판으로 준비하고 그 위에 60nm의 정공주입층으로 (2-TNATA: 4,4’,4”-트리스(N-2(2-나프틸)-N-페닐-아미노)트리페닐아민), 30nm의 정공수송층 (NPB:4,4’-비스[N-(1-나프틸)-N-페닐아미노]바이페닐), 45nm의 BD-052X(Idemitus사)가 7% 도핑된 발광층 (이때, BD-052X는 청색 형광 도펀트이고, 발광 호스트 물질로는 9,10-다이(나프탈렌-2-안트라센(AND)), 25nm의 전자수송층(Alq3:트리스(8-퀴놀리놀라토)알루미늄), 1nm의 전자주입층(LiF) 및 150nm의 알루미늄 음극을 순차적으로 증착시킨 후 본 발명에 따른 카바졸 유도체를 60nm 두께로 증착하여 capping층을 성막시켜 유기 전계발광 소자를 제작하였다.
[ 실험예 2] 그린 유기 발광 소자
10mm x 10mm x 1mm의 유리 기판상에 Ag를 포함하는 반사막 ITO기판으로 준비하고 그 위에 60nm의 정공주입층으로 (2-TNATA: 4,4’,4”-트리스(N-2(2-나프틸)-N-페닐-아미노)트리페닐아민), 30nm의 정공수송층 (NPB:4,4’-비스[N-(1-나프틸)-N-페닐아미노]바이페닐), 45nm의 Alq3와 C-545T가 도핑된 발광층(C-545T: 2,3,6,7-테트라하이드로-1,1,7,7-테트라메틸-1H,5H,11H-10-(2-벤조티아졸릴)퀴놀리지노-[9,9a,1gh]쿠마린), 25nm의 전자수송층(Alq3:트리스(8-퀴놀리놀라토)알루미늄), 1nm의 전자주입층(LiF) 및 150nm의 알루미늄 음극을 순차적으로 증착시킨 후 본 발명에 따른 카바졸 유도체를 60nm 두께로 증착하여 capping층을 성막시켜 유기 전계발광 소자를 제작하였다.
[ 실험예 3] 레드 유기 발광 소자
10mm x 10mm x 1mm의 유리 기판상에 Ag를 포함하는 반사막 ITO기판으로 준비하고 그 위에 60nm의 정공주입층으로 (2-TNATA : 4,4’,4”-트리스(N-2(2-나프틸)-N-페닐-아미노)트리페닐아민), 30nm의 정공수송층 (NPB:4,4’-비스[N-(1-나프틸)-N-페닐아미노]바이페닐), 45nm의 Alq3와 DCJTB가 도핑된 발광층(DCJTB: (E)-2-(2-티부틸-6-(2-(1,1,7,7-테트라메틸-1,2,3,5,6,7-헥사하이드로피리도[3,2,1-ij]퀴놀린-9-yl)비닐)-4H-파이란-4-일디엔)말로노나이트릴), 25nm의 전자수송층(Alq3:트리스(8-퀴놀리놀라토)알루미늄), 1nm의 전자주입층(LiF) 및 150nm의 알루미늄 음극을 순차적으로 증착시킨 후 본 발명에 따른 카바졸 유도체를 60nm 두께로 증착하여 capping층을 성막시켜 유기 전계발광 소자를 제작하였다.
[ 비교예 1] 블루 유기 발광 소자
10mm x 10mm x 1mm의 유리 기판상에 Ag를 포함하는 반사막 ITO기판으로 준비하고 그 위에 60nm의 정공주입층으로 (2-TNATA: 4,4’,4”-트리스(N-2(2-나프틸)-N-페닐-아미노)트리페닐아민), 30nm의 정공수송층 (NPB:4,4’-비스[N-(1-나프틸)-N-페닐아미노]바이페닐), 45nm의 BD-052X(Idemitus사)가 7% 도핑된 발광층 (이때, BD-052X는 청색 형광 도펀트이고, 발광 호스트 물질로는 9,10-다이(나프탈렌-2-안트라센(AND)), 25nm의 전자수송층(Alq3:트리스(8-퀴놀리놀라토)알루미늄), 1nm의 전자주입층(LiF) 및 150nm의 알루미늄 음극을 순차적으로 증착시킨 후 60nm의 Alq3:트리스(8-퀴놀리놀라토)알루미늄을 증착하여 capping층을 성막시켜 유기 전계발광 소자를 제작하였다.
[ 비교예 2] 그린 유기 발광 소자
10mm x 10mm x 1mm의 유리 기판상에 Ag를 포함하는 반사막 ITO기판으로 준비하고 그 위에 60nm의 정공주입층으로 (2-TNATA : 4,4’,4”-트리스(N-2(2-나프틸)-N-페닐-아미노)트리페닐아민), 30nm의 정공수송층 (NPB:4,4’-비스[N-(1-나프틸)-N-페닐아미노]바이페닐), 45nm의 Alq3와 C-545T가 도핑된 발광층(C-545T: 2,3,6,7-테트라하이드로-1,1,7,7-테트라메틸-1H,5H,11H-10-(2-벤조티아졸릴)퀴놀리지노-[9,9a,1gh]쿠마린), 25nm의 전자수송층(Alq3:트리스(8-퀴놀리놀라토)알루미늄), 1nm의 전자주입층(LiF) 및 150nm의 알루미늄 음극을 순차적으로 증착시킨 후 60nm의 Alq3:트리스(8-퀴놀리놀라토)알루미늄을 증착하여 capping층을 성막시켜 유기 전계발광 소자를 제작하였다.
[ 비교예 3] 레드 유기 발광 소자
10mm x 10mm x 1mm의 유리 기판상에 Ag를 포함하는 반사막 ITO기판으로 준비하고 그 위에 60nm의 정공주입층으로 (2-TNATA : 4,4’,4”-트리스(N-2(2-나프틸)-N-페닐-아미노)트리페닐아민), 30nm의 정공수송층 (NPB:4,4’-비스[N-(1-나프틸)-N-페닐아미노]바이페닐), 45nm의 Alq3와 DCJTB가 도핑된 발광층(DCJTB: (E)-2-(2-티부틸-6-(2-(1,1,7,7-테트라메틸-1,2,3,5,6,7-헥사하이드로피리도[3,2,1-ij]퀴놀린-9-yl)비닐)-4H-파이란-4-일디엔)말로노나이트릴), 25nm의 전자수송층(Alq3:트리스(8-퀴놀리놀라토)알루미늄), 1nm의 전자주입층(LiF) 및 150nm의 알루미늄 음극을 순차적으로 증착시킨 후 60nm의 Alq3:트리스(8-퀴놀리놀라토)알루미늄을 증착하여 capping층을 성막시켜 유기 전계발광 소자를 제작하였다.
[ 비교예 4] 블루 유기 발광 소자
10mm x 10mm x 1mm의 유리 기판상에 Ag를 포함하는 반사막 ITO기판으로 준비하고 그 위에 60nm의 정공주입층으로 (2-TNATA: 4,4’,4”-트리스(N-2(2-나프틸)-N-페닐-아미노)트리페닐아민), 30nm의 정공수송층 (NPB:4,4’-비스[N-(1-나프틸)-N-페닐아미노]바이페닐), 45nm의 BD-052X(Idemitus사)가 7% 도핑된 발광층 (이때, BD-052X는 청색 형광 도펀트이고, 발광 호스트 물질로는 9,10-다이(나프탈렌-2-안트라센(AND)), 25nm의 전자수송층(Alq3:트리스(8-퀴놀리놀라토)알루미늄), 1nm의 전자주입층(LiF) 및 150nm의 알루미늄 음극을 순차적으로 증착시킨 후 capping층 없이 유기 전계발광 소자를 제작하였다.
[ 비교예 5] 그린 유기 발광 소자
10mm x 10mm x 1mm의 유리 기판상에 Ag를 포함하는 반사막 ITO기판으로 준비하고 그 위에 60nm의 정공주입층으로 (2-TNATA : 4,4’,4”-트리스(N-2(2-나프틸)-N-페닐-아미노)트리페닐아민), 30nm의 정공수송층 (NPB:4,4’-비스[N-(1-나프틸)-N-페닐아미노]바이페닐), 45nm의 Alq3와 C-545T가 도핑된 발광층(C-545T: 2,3,6,7-테트라하이드로-1,1,7,7-테트라메틸-1H,5H,11H-10-(2-벤조티아졸릴)퀴놀리지노-[9,9a,1gh]쿠마린), 25nm의 전자수송층(Alq3:트리스(8-퀴놀리놀라토)알루미늄), 1nm의 전자주입층(LiF) 및 150nm의 알루미늄 음극을 순차적으로 증착시킨 후 capping층 없이 유기 전계발광 소자를 제작하였다.
[ 비교예 6] 레드 유기 발광 소자
10mm x 10mm x 1mm의 유리 기판상에 Ag를 포함하는 반사막 ITO기판으로 준비하고 그 위에 60nm의 정공주입층으로 (2-TNATA : 4,4’,4”-트리스(N-2(2-나프틸)-N-페닐-아미노)트리페닐아민), 30nm의 정공수송층 (NPB:4,4’-비스[N-(1-나프틸)-N-페닐아미노]바이페닐), 45nm의 Alq3와 DCJTB가 도핑된 발광층(DCJTB: (E)-2-(2-티부틸-6-(2-(1,1,7,7-테트라메틸-1,2,3,5,6,7-헥사하이드로피리도[3,2,1-ij]퀴놀린-9-yl)비닐)-4H-파이란-4-일디엔)말로노나이트릴), 25nm의 전자수송층(Alq3:트리스(8-퀴놀리놀라토)알루미늄), 1nm의 전자주입층(LiF) 및 150nm의 알루미늄 음극을 순차적으로 증착시킨 후 60nm의 Alq3:트리스(8-퀴놀리놀라토)알루미늄을 증착하여 후 capping층 없이 유기 전계발광 소자를 제작하였다.
본 발명에 따른 실험예 및 비교예에 대하여 구동전압, 전류밀도, 휘도, 수명 및 색좌표를 측정한 결과는 하기 표 3과 같다.
표 3
Figure PCTKR2013001585-appb-T000001
상기 표 3의 결과로부터 알 수 있듯이, 본 발명의 유기전계발광소자용 재료를 광효율개선층(capping layer)로 사용한 유기전계발광소자는 높은 색순도 및 발광효율, 수명을 현저히 개선시킬 수 있다. 광효율개선층(capping layer)이 있는 소자와 없는 소자의 결과를 보면 광효율개선층(capping layer)으로 색순도 및 효율을 상승시킬 수 있음을 확인 할 수 있으며, 광효율개선층(capping layer)이 Alq3 일 때보다 본 발명의 재료를 사용하였을 시 색순도 및 효율, 수명이 현저히 개선됨을 알 수 있다.
본 발명의 화합물들을 유기전계발광소자의 다른 유기물층들, 예를 들어 발광 보조층, 전자주입층, 전자수송층, 및 정공주입층에 사용되더라도 동일한 효과를 얻을 수 있는 것은 자명하다.
이상의 설명은 본 발명을 예시적으로 설명한 것에 불과한 것으로, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 변형이 가능할 것이다. 따라서, 본 명세서에 개시된 실시 예들은 본 발명을 한정하기 위한 것이 아니라 설명 하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 사상과 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술은 본 발명의 권리범위에 포함하는 것으로 해석되어야 할 것이다.
CROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2012년 03월 13일 한국에 출원한 특허출원번호 제 10-2012-0025433 호에 대해 미국 특허법 119(a)조 (35 U.S.C § 119(a))에 따라 우선권을 주장하며, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.

Claims (11)

  1. 제 1전극; 제 2전극; 상기 제 1전극과 상기 제 2전극 사이에 형성된 1층 이상의 유기물층; 및 상기 제 1전극과 제 2전극의 상부 또는 하부 중 상기 유기물층과 반대되는 적어도 일측에 형성되는 광효율 개선층;을 포함하며,
    상기 광효율 개선층은 하기 화학식 1로 표시되는 화합물을 포함하는 것을 특징으로 하는 유기전기소자.
    Figure PCTKR2013001585-appb-I000015
    상기 화학식에서,
    (1) R1, R2, R3는 각각 서로 독립적으로,
    수소, 중수소, 할로겐, C1~C20의 알킬기, C1~C20의 알콕시기, C1~C20의 알킬아민기, C1~C20 의 알킬티오펜기, C6~C20의 아릴티오펜기, C2~C20의 알케닐기, C2~C20의 알키닐기, C3~C20의 시클로알킬기, C6~C60의 아릴기, 중수소로 치환된 C6~C20의 아릴기, C8~C20의 아릴알케닐기, 실란기, 붕소기, 게르마늄기, C2~C20의 헤테로고리기로 이루어진 군으로부터 선택되는 1개 이상의 치환기로 치환 또는 비치환된 C6~C60의 아릴기;
    수소, 중수소, 할로겐기, C1~C20의 알킬기, C2~C20의 알케닐기, C1~C20의 알콕시기, C6~C20의 아릴아민기, C6~C60의 아릴기, 중수소로 치환된 C6~C20의 아릴기, C7~C20의 아릴알킬기, C8~C20의 아릴알케닐기, C2~C20의 헤테로 고리기, 니트릴기 및 아세틸렌기로 이루어진 군에서 1개 이상의 치환기로 치환 또는 비치환되고 O, N, S, Si, P 중 적어도 하나를 헤테로 원자로 포함하는 C2~C60의 헤테로고리기; 및
    C1~C20의 알킬기, C2~C20의 알케닐기, C1~C20의 알콕시기, C6~C60의 아릴기, C7~C20의 아릴알킬기, C8~C20의 아릴알케닐기, C2~C20의 헤테로 고리기, 니트릴기 및 아세틸렌기로 이루어진 군에서 선택된 치환기로 치환 또는 비치환된 C1~C50의 알킬기;로 이루어진 군에서 선택되고,
    (2) L1, L2는 서로 독립적으로, 단일결합; 또는 니트로기, 니트릴기, 할로겐, C1~C20의 알킬기, C1~C20의 알콕시기 및 아미노기로 이루어진 군에서 선택된 하나 이상의 치환기로 치환 또는 비치환된 C6~C60의 아릴렌기; 및 중수소, 할로겐, 실란기, 시아노기, 니트로기, C1~C20의 알콕실기, C1~C20의 알킬기, C2~C20의 알켄일기(alkenyl), C6~C20의 아릴기, 중수소로 치환된 C6~C20의 아릴기, C3~C20의 시클로알킬기, C7~C20 아릴알킬기 및 C8~C20의 아릴알켄일기로 이루어진 군에서 선택된 하나 이상의 치환기로 치환 또는 비치환되고, O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는C2~C60의 헤테로고리기;로 이루어진 군에서 선택된다.
  2. 제 1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 2 내지 화학식 4 중 하나인 것을 특징으로 하는 유기전기소자.
    Figure PCTKR2013001585-appb-I000016
  3. 제 1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화합물 중 하나인 것을 특징으로 하는 유기전기소자.
    Figure PCTKR2013001585-appb-I000017
    Figure PCTKR2013001585-appb-I000018
  4. 제 1항에 있어서,
    상기 광효율 개선층은 상기 제 1전극의 하부 또는 상기 제 2전극의 상부 중 적어도 하나에 형성되는 것을 특징으로 하는 유기전기소자.
  5. 제 4항에 있어서,
    상기 제 1전극은 Ag를 포함하는 ITO로 형성된 애노드이고, 상기 제 2전극은 Mg-Ag를 포함하는 캐소드이며,
    상기 광효율 개선층은 상기 제 2전극 상부에 형성된 것을 특징으로 하는 유기선기소자.
  6. 제 4항에 있어서,
    상기 제 2전극은 광투과형 캐소드 전극이고, 상기 광효율 개선층은 상기 제 2전극의 상부에 형성되는 것을 특징으로 하는 유기전기소자.
  7. 제 4항에 있어서,
    상기 제 1전극은 광투과형 애노드 전극이고, 상기 광효율 개선층은 상기 제 1전극의 하부에 형성되는 것을 특징으로 하는 유기전기소자.
  8. 제 1항에 있어서,
    상기 유기물층이 R, G, B 화소별로 패터닝되어 있고, 상기 광효율 개선층이 상기 R, G, B 화소에 대하여 공통층으로 형성된 것을 특징으로 하는 유기전기소자.
  9. 제 1항에 있어서,
    상기 유기물층은 R, G, B 화소별로 패터닝되어 있고,
    상기 광효율 개선층은, 상기 유기물층의 R, G, B 화소에 대하여 R 화소에 대응되는 영역에 형성된 광효율 개선층-R과,상기 G 화소에 대응되는 영역에 형성된 광효율 개선층-G와, 상기 B 화소에 대응되는 영역에 형성된 광효율 개선층-B 중 적어도 하나를 포함하는 것을 특징으로 하는 유기전기소자.
  10. 제 1항의 유기전기소자를 포함하는 디스플레이장치; 및
    상기 디스플레이장치를 구동하는 제어부;를 포함하는 전자장치.
  11. 제 10항에 있어서,
    상기 유기전기소자는 유기전기발광소자(OLED), 유기태양전지, 유기감광체(OPC), 유기트랜지스터(유기 TFT) 중 하나인 것을 특징으로 하는 전자장치.
PCT/KR2013/001585 2012-03-13 2013-02-27 광효율 개선층을 포함하는 유기전기소자, 이를 포함하는 전자 장치 및 이에 이용되는 유기전기소자용 화합물 WO2013137572A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/385,152 US9496520B2 (en) 2012-03-13 2013-02-27 Organic electronic element including light efficiency improving layer, electronic device including the same, and compound for the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120025433A KR101181281B1 (ko) 2012-03-13 2012-03-13 광효율 개선층을 포함하는 유기전기소자, 이를 포함하는 전자 장치 및 이에 이용되는 유기전기소자용 화합물
KR10-2012-0025433 2012-03-13

Publications (1)

Publication Number Publication Date
WO2013137572A1 true WO2013137572A1 (ko) 2013-09-19

Family

ID=47074073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/001585 WO2013137572A1 (ko) 2012-03-13 2013-02-27 광효율 개선층을 포함하는 유기전기소자, 이를 포함하는 전자 장치 및 이에 이용되는 유기전기소자용 화합물

Country Status (3)

Country Link
US (1) US9496520B2 (ko)
KR (1) KR101181281B1 (ko)
WO (1) WO2013137572A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170200903A1 (en) * 2014-05-28 2017-07-13 Duk San Neolux Co., Ltd. Compound for organic electronic element, and organic electronic element and electronic device using same

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101455156B1 (ko) 2012-11-13 2014-10-27 덕산하이메탈(주) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102150840B1 (ko) * 2012-12-07 2020-09-02 이데미쓰 고산 가부시키가이샤 방향족 아민 유도체 및 유기 전계발광소자
KR101517995B1 (ko) 2013-03-29 2015-05-07 경희대학교 산학협력단 그래핀에 의하여 광증폭된 발광 소자 및 이의 제조방법
KR102109485B1 (ko) * 2013-05-15 2020-05-12 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102048036B1 (ko) * 2013-05-29 2019-11-22 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102048035B1 (ko) * 2013-06-03 2019-11-25 덕산네오룩스 주식회사 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치
KR102087648B1 (ko) * 2013-06-03 2020-03-11 덕산네오룩스 주식회사 광효율 개선층을 포함하는 유기전기소자 및 이를 포함하는 전자 장치
KR102005387B1 (ko) * 2013-06-05 2019-07-30 덕산네오룩스 주식회사 광효율 개선층을 포함하는 유기전기소자 및 이를 포함하는 전자 장치
KR102066437B1 (ko) * 2013-07-02 2020-01-15 덕산네오룩스 주식회사 광효율 개선층을 포함하는 유기전기소자 및 이를 포함하는 전자 장치
KR102108454B1 (ko) * 2013-07-08 2020-05-26 덕산네오룩스 주식회사 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치
KR102054159B1 (ko) * 2013-07-09 2019-12-10 덕산네오룩스 주식회사 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치
KR102137429B1 (ko) * 2013-07-11 2020-07-24 덕산네오룩스 주식회사 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치
KR102270525B1 (ko) * 2013-07-11 2021-06-29 덕산네오룩스 주식회사 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치
KR102052565B1 (ko) * 2013-07-24 2019-12-06 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102018091B1 (ko) * 2013-07-26 2019-09-04 덕산네오룩스 주식회사 광효율 개선층을 포함하는 유기전기소자 및 이를 포함하는 전자 장치
KR102061570B1 (ko) 2013-07-29 2020-01-02 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR101389527B1 (ko) * 2013-09-17 2014-04-25 덕산하이메탈(주) 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치
KR102072756B1 (ko) * 2013-09-17 2020-02-03 덕산네오룩스 주식회사 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치
KR102322641B1 (ko) 2014-02-27 2021-11-08 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102178087B1 (ko) * 2014-07-03 2020-11-12 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102277659B1 (ko) * 2014-07-03 2021-07-15 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR101516960B1 (ko) 2014-07-21 2015-05-04 덕산네오룩스 주식회사 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치
KR20160027940A (ko) * 2014-09-02 2016-03-10 주식회사 엘지화학 유기 발광 소자
KR102138404B1 (ko) * 2016-07-15 2020-07-27 주식회사 엘지화학 카바졸 유도체, 이를 이용한 유기 발광 소자 및 이의 제조방법
CN106336407A (zh) * 2016-08-24 2017-01-18 长春海谱润斯科技有限公司 一种咔唑基含氮杂环衍生物及使用该衍生物的有机发光器件
US10381522B2 (en) * 2016-11-14 2019-08-13 Samsung Display Co., Ltd. Light emitting diode
KR102235629B1 (ko) * 2017-06-05 2021-04-02 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
US10069096B1 (en) 2017-06-21 2018-09-04 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. WOLED device
CN107403870B (zh) * 2017-06-21 2019-10-01 武汉华星光电半导体显示技术有限公司 Woled器件
CN113149889A (zh) * 2021-02-26 2021-07-23 阜阳欣奕华材料科技有限公司 一种化合物与有机电致发光器件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006070912A1 (en) * 2004-12-28 2006-07-06 Semiconductor Energy Laboratory Co., Ltd. Carbazole derivative, and light-emitting element and light-emitting device using the carbazole derivative
WO2006109493A1 (ja) * 2005-03-24 2006-10-19 Kyocera Corporation 発光素子、その発光素子を備えた発光装置及びその製造方法
WO2008062636A1 (en) * 2006-11-24 2008-05-29 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element using the same
KR20100021907A (ko) * 2008-08-18 2010-02-26 삼성모바일디스플레이주식회사 광효율 개선층을 구비한 유기 발광 소자
KR20100021908A (ko) * 2008-08-18 2010-02-26 삼성모바일디스플레이주식회사 광효율 개선층을 구비한 유기 발광 소자
KR20100021909A (ko) * 2008-08-18 2010-02-26 삼성모바일디스플레이주식회사 유기 발광 소자
KR20110110591A (ko) * 2010-04-01 2011-10-07 삼성모바일디스플레이주식회사 유기 발광 소자

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006070912A1 (en) * 2004-12-28 2006-07-06 Semiconductor Energy Laboratory Co., Ltd. Carbazole derivative, and light-emitting element and light-emitting device using the carbazole derivative
WO2006109493A1 (ja) * 2005-03-24 2006-10-19 Kyocera Corporation 発光素子、その発光素子を備えた発光装置及びその製造方法
WO2008062636A1 (en) * 2006-11-24 2008-05-29 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element using the same
KR20100021907A (ko) * 2008-08-18 2010-02-26 삼성모바일디스플레이주식회사 광효율 개선층을 구비한 유기 발광 소자
KR20100021908A (ko) * 2008-08-18 2010-02-26 삼성모바일디스플레이주식회사 광효율 개선층을 구비한 유기 발광 소자
KR20100021909A (ko) * 2008-08-18 2010-02-26 삼성모바일디스플레이주식회사 유기 발광 소자
KR20110110591A (ko) * 2010-04-01 2011-10-07 삼성모바일디스플레이주식회사 유기 발광 소자

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170200903A1 (en) * 2014-05-28 2017-07-13 Duk San Neolux Co., Ltd. Compound for organic electronic element, and organic electronic element and electronic device using same
US10734588B2 (en) * 2014-05-28 2020-08-04 Duk San Neolux Co., Ltd Compound for organic electronic element, and organic electronic element and electronic device using same

Also Published As

Publication number Publication date
US20150069350A1 (en) 2015-03-12
KR101181281B1 (ko) 2012-09-10
US9496520B2 (en) 2016-11-15

Similar Documents

Publication Publication Date Title
WO2013137572A1 (ko) 광효율 개선층을 포함하는 유기전기소자, 이를 포함하는 전자 장치 및 이에 이용되는 유기전기소자용 화합물
WO2011019173A2 (ko) 오원자 헤테로 고리를 포함하는 화합물 및 이를 이용한 유기전기소자, 그 단말
WO2010131855A2 (ko) 오원자 헤테로고리를 포함하는 화합물 및 이를 이용한 유기전기소자, 그 단말
WO2010114267A2 (ko) 유기전기소자 및 그 화합물, 단말
WO2011155742A2 (ko) 카바졸과 방향족 아민 유도체를 포함하는 화합물 및 이를 이용한 유기전기소자, 그 단말
WO2011108902A2 (ko) 2개 이상의 오원자 헤테로고리를 포함하는 화합물이 2개 이상 포함하는 화합물 및 이를 이용한 유기전기소자, 그 단말
WO2011021803A2 (ko) 티안트렌 구조를 가지는 화합물 및 이를 이용한 유기전기소자, 그 단말
WO2011102573A1 (ko) 인돌 유도체를 포함하는 화합물 및 이를 이용한 유기전기소자, 그 단말
WO2012173370A2 (ko) 신규한 화합물 및 이를 이용한 유기 전자 소자
KR101896008B1 (ko) 벤조플루오렌을 포함하는 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2014142467A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2012067415A2 (ko) 화합물 및 이를 이용한 유기전기소자, 그 단말
KR101219475B1 (ko) 인돌로아크리딘 유도체를 포함하는 화합물 및 이를 이용한 유기전기소자, 그 단말
KR20110066763A (ko) 인돌로아크리딘을 포함하는 화합물 및 이를 이용한 유기전기소자, 그 단말
WO2011149284A2 (ko) 헤테로 원자를 포함하는 카바졸과 플루오렌이 융합된 화합물 및 이를 이용한 유기전기소자, 그 단말
WO2011111996A9 (ko) 두개의 3차 아민이 치환된 인돌 유도체를 포함하는 화합물 및 이를 이용한 유기전기소자, 그 단말
KR101181267B1 (ko) 나프틸카바졸유도체를 포함하는 화합물 및 이를 이용한 유기전기소자, 그 단말
KR101219485B1 (ko) 다이벤조카바졸을 포함하는 화합물 및 이를 이용한 유기전자소자, 그 단말
WO2021141370A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2014042322A1 (ko) 유기발광 화합물 및 이를 이용한 유기 전계 발광 소자
KR101035326B1 (ko) 플루오렌에 아민유도체가 치환된 화합물 및 이를 이용한 유기전기소자, 그 단말
KR20120033945A (ko) 플루오렌에 아민유도체가 치환된 화합물 및 이를 이용한 유기전기소자, 그 단말
WO2013183904A1 (ko) 벤조플루오렌을 포함하는 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR101684975B1 (ko) 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2018199629A1 (ko) 신규한 디벤조아자실린 화합물, 이의 제조방법 및 이를 포함하는 유기 전계 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761337

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14385152

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13761337

Country of ref document: EP

Kind code of ref document: A1