WO2013136877A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2013136877A1
WO2013136877A1 PCT/JP2013/052650 JP2013052650W WO2013136877A1 WO 2013136877 A1 WO2013136877 A1 WO 2013136877A1 JP 2013052650 W JP2013052650 W JP 2013052650W WO 2013136877 A1 WO2013136877 A1 WO 2013136877A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
water channel
channel case
power converter
conversion device
Prior art date
Application number
PCT/JP2013/052650
Other languages
English (en)
French (fr)
Inventor
徹也 川島
宮崎 英樹
和人 大山
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2013136877A1 publication Critical patent/WO2013136877A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1422Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
    • H05K7/1427Housings
    • H05K7/1432Housings specially adapted for power drive units or power converters
    • H05K7/14329Housings specially adapted for power drive units or power converters specially adapted for the configuration of power bus bars
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a power converter including an inverter circuit, and more particularly to a novel power converter capable of efficiently cooling a semiconductor power module and a bus bar.
  • a motor is mounted as a power source of the vehicle, and generally, in order to control electric power supplied to the motor, a power conversion device including an inverter device as a main component is provided. .
  • the inverter device is a semiconductor power module incorporating power semiconductor elements such as insulated gate bipolar transistors, a drive circuit for driving the semiconductor power module, a control circuit for controlling them, and a direct current which is a wiring of power supplied from a battery.
  • a bus bar, an AC bus bar which is a wiring of electric power supplied to a motor, and a capacitor for current smoothing are provided.
  • Patent Document 1 discloses a structure in which heat dissipation plates are provided on both sides of a semiconductor power module.
  • Patent Document 2 discloses a structure in which the bus bar is directly cooled through the bus bar in the cooling water channel of the semiconductor power module.
  • the power converter there is a lead (bus bar) electrically connected to a motor or a direct current battery, and the Joule heat generated by the lead also raises the internal temperature of the power converter, resulting in the power converter The phenomenon of raising the temperature of
  • this type of power conversion device is used for an electric car, a hybrid car or the like, it is required to combine the power conversion device into a small size due to the limitation of its storage space.
  • An object of the present invention is to provide a power converter which efficiently carries out the heat generated outside the power semiconductor element, a lead wire (bus bar) electrically connected to a motor or a direct current battery to the outside, is there.
  • the features of the present invention include a semiconductor power module incorporating a semiconductor element constituting an inverter circuit, a DC bus bar supplying DC current to the inverter circuit, an AC bus bar outputting AC current converted by the inverter circuit, and a refrigerant
  • a power conversion device comprising a channel body having a cooling channel through which the semiconductor flows, the semiconductor power module being disposed in the cooling channel of the channel body, the DC busbar being cooled by the first surface of the channel frame, and / or the channel
  • the second side of the enclosure is where it cools the ac busbar.
  • an inverter apparatus while being able to cool the semiconductor power module and bus-bar of an inverter apparatus efficiently, an inverter apparatus can be put together in a small size.
  • FIG. 1 is a system configuration diagram showing a schematic system of an electric vehicle. It is a circuit diagram showing composition of an inverter circuit which is a main component of a power converter. It is an appearance perspective view of a power converter which becomes one example of the present invention.
  • FIG. 4 is an exploded perspective view of the power conversion device shown in FIG. 3 disassembled and viewed obliquely; FIG. 4 is a cross-sectional view taken along the line AA of the power conversion device shown in FIG. 3; It is the external appearance perspective view which looked at the semiconductor power module from diagonally. It is a block diagram which shows the structure which combined the motor generator and the power converter device.
  • FIG. 1 is a system configuration diagram showing a system of an electric vehicle (hereinafter referred to as "EV vehicle”).
  • the motor generator 20 not only generates a traveling torque of the vehicle, but also has a function of converting mechanical energy externally applied to the motor generator 20 into electric power.
  • the motor generator 20 is, for example, a permanent magnet synchronous motor (three phase), and switches as a motor and a generator. For example, in an operating state going down a slope or in a decelerating operating state, regeneration control is performed and the battery 30 can be charged as a generator.
  • the rotational torque generated by motor generator 20 is transmitted to wheels 12 via transmission 18 and differential gear 16.
  • rotational torque is transmitted from the wheel 12 to the motor generator 20, and AC power is generated based on the supplied rotational torque.
  • the generated alternating current power is converted into direct current power by the power conversion device 40 to charge the battery 30 for high voltage, and the charged power is reused again as traveling energy.
  • the power conversion device 40 is electrically connected to the battery 30 via the DC cable 32, and power exchange between the battery 30 and the power conversion device 40 is performed.
  • power conversion device 40 converts direct current power supplied from battery 30 through direct current cable 32 into alternating current power, and supplies it to motor generator 20 through alternating current cable 34. .
  • an insulated gate bipolar transistor is used as a power semiconductor element and is abbreviated as an IGBT.
  • a series circuit 50 of upper and lower arms is configured by the IGBT 52 and the diode 56 operating as the upper arm, and the IGBT 62 and the diode 66 operating as the lower arm.
  • the inverter circuit 42 is provided corresponding to three phases of U-phase, V-phase, and W-phase of AC power to be output from the series circuit 50.
  • the series circuit 50 of the upper and lower arms of each of the three phases outputs an alternating current from the intermediate electrode 69 of the series circuit.
  • the intermediate electrode 69 is connected to an AC bus bar 86 via an AC terminal 59, and is further electrically connected to each phase winding of the motor generator 20 via an AC connector 88.
  • the collector electrode of the upper arm IGBT 52 is electrically connected to the positive electrode conductor plate 92 via the positive electrode terminal 57
  • the emitter electrode of the lower arm IGBT 62 is electrically connected to the negative electrode conductor plate 94 via the negative electrode terminal 58.
  • the positive electrode conductor plate 92 and the negative electrode conductor plate 94 are electrically connected to the capacitor 90, and are further electrically connected to the battery 30 via the DC connector 38. (See Figure 3, Figure 4 etc.)
  • the control circuit 72 receives a control command from the upper control device, and based on this, it is a control signal for controlling the IGBT 52 in the upper arm and the IGBT 62 in the lower arm that constitute the series circuit 50 of each phase constituting the inverter circuit 42. A certain control pulse is generated and supplied to the driver circuit 74.
  • the driver circuit 74 drives driving pulses for controlling the IGBTs of each phase based on the control pulse through the signal emitter electrode 55 of the IGBT 52, the gate electrode 54, the signal emitter electrode 65 of the IGBT 62, and the gate electrode 64. Supply.
  • the IGBTs of each phase conduct or cut off based on the drive pulse from the driver circuit 74, convert the DC power supplied from the battery 30 into three-phase AC power, and supply the motor generator 20 with the DC power.
  • the control circuit 72 includes a microcomputer (hereinafter referred to as a "microcomputer") for arithmetically processing the switching timing of the IGBT 52 and the IGBT 62.
  • the input information to the microcomputer includes a target torque value required for the motor generator 20, a current value supplied from the series circuit 50 to the motor generator 20, and a magnetic pole position of a rotor of the motor generator 20.
  • the target torque value is based on the command signal output from the upper control device (not shown).
  • the current value is detected based on the detection signal from the current sensor 80.
  • the magnetic pole position is detected based on a detection signal output from a rotating magnetic pole sensor (not shown) such as a resolver provided in the motor generator 20.
  • the microcomputer in the control circuit 72 calculates the d-axis and q-axis current command values of the motor generator 20 based on the target torque value, and the calculated d-axis and q-axis current command values and the detected d
  • the voltage command value of d axis and q axis is calculated based on the difference between the current value of axis and q axis, and the calculated voltage command value of d axis and q axis is calculated based on the detected magnetic pole position. Convert to voltage command value of phase, V phase and W phase.
  • the microcomputer generates a pulse-like modulated wave based on the comparison between the fundamental wave (sine wave) and the carrier wave (triangular wave) based on the voltage command values of U phase, V phase and W phase, and the generated modulation
  • the wave is output to the driver circuit 74 as a PWM (pulse width modulation) signal.
  • the driver circuit 74 When driving the lower arm, the driver circuit 74 outputs a drive signal obtained by amplifying the PWM signal to the gate electrode of the corresponding IGBT 62 of the lower arm. Further, when driving the upper arm, the driver circuit 74 shifts the level of the reference potential of the PWM signal to the level of the reference potential of the upper arm, amplifies the PWM signal, and uses it as a drive signal to drive the corresponding upper arm. Output to the gate electrodes of the IGBTs 52 of FIG.
  • the power converter there is a lead (bus bar) electrically connected to a motor or a direct current battery, and the Joule heat generated by the lead also raises the internal temperature of the power converter, resulting in the power converter The phenomenon of raising the temperature of
  • this type of power conversion device is used for an electric car, a hybrid car or the like, it is necessary to combine the power conversion device into a small size due to the limitation of its storage space.
  • the present invention proposes a technique for carrying away the heat generated by a lead (bus bar) electrically connected to a power semiconductor element, a motor or a direct current battery efficiently while being small in size.
  • FIG. 3 is an external perspective view of the power conversion device 40
  • FIG. 4 is an exploded perspective view of the power conversion device shown in FIG. 3 disassembled and viewed obliquely
  • FIG. 5 is a line AA of the power conversion device shown in FIG. 6 and FIG. 6 are external perspective views of the semiconductor power module as viewed obliquely.
  • reference numeral 110 denotes a water channel case, and a cooling water inlet 112 is provided on a short side surface 110A located at right angles to the longitudinal direction, and the cooling water flowing from the cooling water inlet 112 runs inside the water channel case 110. It flows out from the cooling water outlet which is not shown in figure through.
  • the channel case 110 is made of a heat conductive material, preferably an aluminum alloy, so that the cooling water flowing inside the channel case 110 allows heat to be removed to the outside.
  • the U-phase semiconductor power module 500a, the V-phase semiconductor power module 500b, and the W-phase semiconductor power module 500c incorporate a series circuit 50 of U-phase, V-phase, and W-phase upper and lower arms mainly composed of power semiconductor elements. doing.
  • power semiconductor elements IGBT 52, IGBT 62, A diode 56, a diode 66
  • IGBT 62 IGBT 62, A diode 56, a diode 66
  • the lower arm gate terminal 64 and the lower arm emitter terminal 65 are electrically connected.
  • a sheet 130A having an insulating function and a heat dissipation function is mounted in close contact with the upper surface 110c of the channel case 110, and a positive conductor plate 92 made of copper which functions as a direct current bus bar and copper
  • a capacitor 90 is mounted via a negative electrode conductor plate 94.
  • a control board 120 for controlling each of the semiconductor power modules 500a, 500b, and 500c is mounted on the capacitor 90.
  • the driver circuit 74 is an upper arm gate terminal 54, which is a connection terminal for control signals of the U-phase semiconductor power module 500a, the V-phase semiconductor power module 500b, and the W-phase semiconductor power module 500c electrically connected thereto.
  • the IGBTs 52 and 62 of the upper and lower arms are controlled via the emitter terminal 55, the lower arm gate terminal 64 and the lower arm emitter terminal 65.
  • the IGBTs 52 and 62 of the respective upper and lower arms are also controlled via the arm gate terminal 54, the upper arm emitter terminal 55, the lower arm gate terminal 64 and the lower arm emitter terminal 65, respectively.
  • a battery positive electrode portion 92a connected to the positive electrode of the battery is formed on the short side orthogonal to the long side direction of the positive electrode conductor plate 92 functioning as a direct current bus bar, and a negative electrode conductor plate 94 similarly functioning as a direct current bus bar
  • a battery negative electrode portion 94a connected to the negative electrode of the battery is formed on the longitudinal direction side.
  • the positive electrode conductor plate 92 and the negative electrode conductor plate 94 are preferably arranged in a laminated form for the purpose of reducing the wiring inductance, and may be adhered to each other with insulating paper, resin, or the like.
  • the cooling water passage 111 of the water channel case 110 is formed along the longitudinal direction of the positive electrode conductor plate 92 and the negative electrode conductor plate 94, and the cooling water flows in the longitudinal direction. This increases the heat removal efficiency.
  • the cooling water passage 111 may be formed in a straight line, and the semiconductor power modules 500a, 500b, and 500c may be sequentially arranged along the U-shape such that the cooling water passage 111 flows backward. It is possible to adopt a configuration in which the semiconductor power modules 500a, 500b, and 500c are formed and sequentially arranged along the semiconductor power modules 500a, 500b, and 500c. If the cooling water passage 111 is formed in a straight line, the cooling water inlet / outlet may be provided on the opposite surface of the channel case 110, and if the cooling water passage 111 is formed in a U shape, It is only necessary to provide a cooling water inlet / outlet on one side.
  • the positive electrode side electrode portion 92b connected to the positive electrode terminal 57 of the semiconductor power module is formed on the long side of the positive electrode conductor plate 92, and similarly the negative electrode terminal of the semiconductor power module is formed on the long side of the negative electrode conductor plate 94.
  • a negative electrode portion 94 b connected to the electrode 58 is formed.
  • connection terminals 86aa of the U-phase alternating current bus bars 86a are U-phase semiconductors.
  • the connection terminal 86bb of the V-phase AC bus bar 86b is connected to the AC terminal 59 of the power module 500a
  • the connection terminal 86cc of the W-phase AC bus bar 86c is a W-phase semiconductor power module. It is connected to an AC terminal 59 of 500 c.
  • the cooling water passage 111 of the water channel case 110 is formed along the extending direction of the three U-phase AC bus bars 86a, the V-phase AC bus bars 86b and the W-phase AC bus bars 86c. Cooling water is flowing. This increases the heat removal efficiency.
  • a sheet 130B having an insulation function and a heat dissipation function is disposed in close contact with the bottom surface 110D of the water channel case 110. Then, the three U-phase AC bus bars 86a, the V-phase AC bus bars 86b, and the W-phase AC bus bars 86c described above are disposed in close contact with the heat dissipation sheet 130B.
  • the capacitor 90 is electrically connected to the positive electrode conductor plate 92 through the positive electrode terminal 91a, and similarly, is electrically connected to the negative electrode conductor plate 94 through the negative electrode terminal 91b of the capacitor 90.
  • the U-phase semiconductor power module 500a, the V-phase semiconductor power module 500b, and the W-phase semiconductor power module 500c are accommodated in a hollow can-like container 503, and a mounting housing 501 is formed at one end thereof. . And if this attachment housing is attached to the through-hole provided in the side 110B which connects the upper surface 110C of the channel case 110 and the bottom surface 110D, the can-like container 503 is exposed to the cooling water passage 111 of the channel case 110 as shown in FIG. You will come to
  • the heat generated by the IGBT or the like mainly depends on the first heat dissipation surface 503a and the second heat dissipation surface formed by the container 503 of the U-phase semiconductor power module 500a, the V-phase semiconductor power module 500b, and the W-phase semiconductor power module 500c.
  • Heat is dissipated from the coolant 503 b to the coolant flowing through the coolant passage 111 in the channel case 110.
  • the heat dissipating surfaces 503a and 503b are provided with columnar or plate-like heat dissipating fins (not shown).
  • one of the features of this embodiment is that the positive conductor plate 92 and the negative conductor plate 94, which are DC bus bars, are in close contact with the upper surface 110C of the channel case 110 via the heat dissipation sheet 130A. It is.
  • AC bus bars 86a, 86b and 86c are disposed in close contact with the bottom surface 110D of the channel case 110 via the heat dissipation sheet 130B as described above.
  • the heat dissipating sheets 130A and 130B have both the heat dissipating function and the insulating function.
  • the heat dissipating sheets 130A and 130B are formed of a composite material. Specifically, it is a double-structured sheet in which a heat-radiating sheet and an insulating sheet are laminated.
  • PET polyethylene terephthalate
  • the thickness is made as thin as possible in order to enhance the heat radiation property, and the thickness 0.1 mm is used ing.
  • a silicon-based resin material is used for the heat dissipating sheet portion, and its thickness is 1.0 mm.
  • Such a heat dissipating sheet portion and an insulating sheet portion are not limited to the described materials and thickness, and other materials and specifications may be selected and adopted as appropriate, but as an actual material, these materials may be used. Is desirable from the viewpoint of actual use and the like.
  • direct current is converted to alternating current by power conversion device 40 including an inverter circuit to drive the motor, and since the motor is used as a generator, alternating current is converted to direct current.
  • the heat generated by the IGBT etc. of the inverter circuit used for that purpose is mainly formed by the U-phase semiconductor power module 500a, the V-phase semiconductor power module 500b, and the container 503 of the W-phase semiconductor power module 500c. Heat is dissipated from the heat radiation surface 503 a and the second heat radiation surface 503 b to the cooling water flowing through the cooling water passage 111 in the water channel case 110. For this reason, the heat by the semiconductor power modules 500 a, 500 b and 500 c themselves is efficiently transferred to the cooling water and carried away to the outside of the channel case 110.
  • Joule heat generated by the DC conductor bar 92 and the U phase AC bus bar 86a, the V phase AC bus bar 86b and the W phase AC bus bar 86c, which are generated in the conversion process of DC and AC, is the heat dissipation sheet 130A and Since the heat is transmitted to the main body of the water channel case 110 via 130B and further removed to the outside by the cooling water flowing through the water channel case 110, the Joule heat generated in both bus bars can be efficiently dissipated.
  • the heat dissipation sheet 130A, the positive electrode conductor plate 92 constituting the DC bus bar, the negative electrode conductor plate 94 and the capacitor 90 are stacked on the upper surface of the water channel case 110. Since the AC bus bars are stacked, these can be efficiently reduced in size, and can be accommodated in a narrow storage space of an electric car, a hybrid car or the like.
  • the power conversion device is connected to a conductive wire having good heat transfer electrically connected to the motor, and the heat of the motor flows into the AC bus bar of the power conversion device through the conductive wire, and this heat is an inverter circuit
  • the temperature of the power conversion device is increased as a result of intruding into a part or even a capacitor in some cases.
  • the capacitor of the power conversion device is thermally weak, and it is required to reduce the amount of heat from the outside as much as possible.
  • external heat for example, heat from the motor
  • the channel case 110 is cooled by the cooling water flowing in from the refrigerant inlet 112
  • the temperature is lower than the U-phase AC bus bar 86a, the V-phase AC bus bar 86b and the W-phase AC bus bar 86c.
  • the heat of the U-phase AC bus bar 86a, the V-phase AC bus bar 86b, and the W-phase AC bus bar 86c efficiently flows to the water channel case 110. Therefore, even if the heat of the motor flows into the AC bus bar of the power conversion device, it can be expected to be carried away by the cooling water flowing through the water channel case 110 efficiently.
  • FIG. 7 is a configuration diagram showing a configuration in which the power conversion device 40 according to the present embodiment, which is compactly assembled, is incorporated into the motor generator 20. As shown in FIG.
  • a housing portion 202 for housing a simplified motor shown therein is formed with a housing portion 202 for housing the power conversion device 40 integrally formed.
  • the storage portion 202 is formed in a rectangular box shape as a whole, and the power conversion device 40 is stored in the box so as to be fitted exactly. As a result, it is possible to realize a so-called integrated motor-generator 20 in which the motor and the power conversion device are integrated.
  • the cooling water inlet 112 and the refrigerant outlet of the water channel case 110 constituting the power conversion device, the DC connector 38 and the like shown in FIG. 2 can be pulled out from the windows 202A and 202B and the like provided in the housing 202 Is configured as.
  • the AC connector 88 may be exposed to the outside of the housing portion 202 and connected to the three-phase armature winding of the motor generator 20 or may be connected through the bottom wall surface of the bottom surface of the housing portion 202. It is good.
  • the cooling water inlet 112 is connected to the connection portion side of the AC bus bars 86a, 86b, 86c and the armature winding. The cooling effect is improved by providing.
  • the drive motor of the electric vehicle and the power conversion device are integrated, the embodiment shown in FIGS. 3 to 6 is applied to a hybrid vehicle, an electric motor It is also possible to apply to a system in which the power converter and the power converter are separately configured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Inverter Devices (AREA)

Abstract

 電力変換装置には電動機や直流バッテリに電気的に接続されたバスバーが存在しており、このバスバーで生じるジュール熱が電力変換装置の内部温度を上げる問題があった。また、電気自動車に使用されるので収納空間の制約から電力変換装置を小型にまとめることが要請されている。 半導体素子を内蔵するパワーモジュールと、直流電流を供給する直流バスバーと、交流電流が出力される交流バスバーと、冷媒が流れる冷却水路を有する水路筺体からなる電力変換装置であって、水路筺体の冷却水路にパワーモジュールが配置され、水路筺体の第1の面で直流バスバーを冷却し、水路筺体の第2の面で交流バスバーを冷却するようにした。

Description

電力変換装置
 本発明はインバータ回路を備えた電力変換装置に係り、特に半導体パワーモジュールとバスバーを効率良く冷却することができる新規な電力変換装置に関するものである。
 電気自動車、或いはハイブリッド自動車等においては車両の動力源として電動機を搭載しており、一般的には電動機に供給する電力を制御するためにインバータ装置を主要構成要素とする電力変換装置を備えている。
 インバータ装置は絶縁ゲート型バイポーラトランジスタ等の電力用半導体素子を内蔵した半導体パワーモジュール、その半導体パワーモジュールを駆動する駆動回路、それらを制御する制御回路、及びバッテリから供給される電力の配線である直流バスバー、電動機へ供給する電力の配線である交流バスバー、および電流平滑化用のコンデンサ等を備えている。
 このようなインバータ装置を備えた電力変換装置においては、その性能を十分に発揮させるためには電力変換装置の冷却が不可欠であり、従来から提案されているインバータ装置の特に電力用半導体素子で発生する熱を冷却する技術として、例えば、特開2008-259267号公報(特許文献1)には半導体パワーモジュールの両面に放熱板を設ける構造が開示されている。
 また、この他に電力用半導体素子だけでなくバスバーで発生するジュール熱の冷却が必要になる場合がある。そして、このバスバーの冷却に関しては例えば、特開2011-18847号公報(特許文献2)には半導体パワーモジュールの冷却水路内にバスバーを通してバスバーを直接的に冷却する構造が開示されている。
特開2008-259267号公報 特開2011-18847号公報
 ところで、この種の電力変換装置では多くの電子部品、例えば発熱量の大きい絶縁ゲート型バイポーラトランジスタよりなる電力用半導体素子等が多く使用され、これらの電子部品からの発熱によって電力変換装置が高温の環境になる現象がある。
 更に、電力変換装置には電動機や直流バッテリに電気的に接続された導線(バスバー)が存在しており、この導線で生じるジュール熱も電力変換装置の内部温度を上げ、結果的に電力変換装置の温度を高くする現象がある。
 これに加えて、この種電力変換装置は電気自動車、或いはハイブリッド自動車等に使用されるので、その収納空間の制約から電力変換装置を小型にまとめることが要請されている。
 本発明の目的は、電力用半導体素子や電動機や直流バッテリに電気的に接続された導線(バスバー)で発生する熱を効率よく外部に持ち去ると共に、小型にまとめた電力変換装置を提供することにある。
 本発明の特徴は、インバータ回路を構成する半導体素子を内蔵する半導体パワーモジュールと、インバータ回路に直流電流を供給する直流バスバーと、インバータ回路によって変換された交流電流が出力される交流バスバーと、冷媒が流れる冷却水路を内部に有する水路筺体からなる電力変換装置であって、水路筺体の冷却水路に半導体パワーモジュールが配置され、水路筺体の第1の面で直流バスバーを冷却し、及び/または水路筺体の第2の面で交流バスバーを冷却する、ところにある。
 本発明によれば、インバータ装置の半導体パワーモジュールとバスバーを効率良く冷却することができるとともに、インバータ装置を小型にまとめることができる。
電気自動車の概略のシステムを示すシステム構成図である。 電力変換装置の主構成要素であるインバータ回路の構成を示す回路図である。 本発明の一実施例になるに電力変換装置の外観斜視図である。 図3に示す電力変換装置を分解して斜めから見た分解斜視図である。 図3に示す電力変換装置をA-Aの線で断面したA-A断面図である。 半導体パワーモジュールを斜めから見た外観斜視図である。 モータジェネレータと電力変換装置を組み合わせた構成を示す構成図である。
 以下、本発明の一実施例を図面に基づき詳細に説明するが、その前に本発明が対象とする電力変換装置の構成について説明する。
 図1は電気自動車(以下「EV車」と記述する)のシステムを示すシステム構成図である。モータジェネレータ20は車両の走行用トルクを発生するだけでなく、モータジェネレータ20に外部から加えられる機械エネルギーを電力に変換する機能を有する。
 モータジェネレータ20は例えば永久磁石同期電動機(三相)であり、電動機及び発電機として切り換え動作する。例えば坂道を下る運転状態や減速運転状態では回生制御されて発電機としてバッテリ30を充電することができる。
 モータジェネレータ20が発生する回転トルクは、変速機18およびデファレンシャルギア16を介して車輪12に伝達される。一方、回生制動の運転時には、車輪12から回転トルクがモータジェネレータ20に伝達され、供給されてきた回転トルクに基づいて交流電力を発生する。発生した交流電力は電力変換装置40により直流電力に変換されて高電圧用のバッテリ30を充電し、充電された電力は再び走行エネルギーとして再利用される。
 電力変換装置40はバッテリ30と直流ケーブル32を介して電気的に接続されており、バッテリ30と電力変換装置40との相互において電力の授受が行われる。
 モータジェネレータ20を電動機として動作させる場合には、電力変換装置40は直流ケーブル32を介してバッテリ30から供給された直流電力を交流電力に変換して交流ケーブル34を介してモータジェネレータ20に供給する。
 次に、図2を用いて電力変換装置のインバータ回路42の具体的な構成を説明する。尚、以下では電力用半導体素子として絶縁ゲート型バイポーラトランジスタを使用しており略してIGBTと記すことにする。
 図2において、上アームとして動作するIGBT52及びダイオード56と、下アームとして動作するIGBT62及びダイオード66とで、上下アームの直列回路50が構成される。インバータ回路42は、この直列回路50を出力しようとする交流電力のU相,V相,W相の三相に対応して備えている。
 これらの三相は、この実施の形態ではモータジェネレータ20の電機子巻線の三相の各相巻線に対応している。三相のそれぞれの上下アームの直列回路50は直列回路の中間電極69から交流電流を出力する。この中間電極69は交流端子59を介して交流バスバー86と接続され、さらに交流コネクタ88を介してモータジェネレータ20の各相巻線に電気的に接続されている。
 上アームのIGBT52のコレクタ電極は正極端子57を介して正極導体板92に、また、下アームのIGBT62のエミッタ電極は、負極端子58を介して負極導体板94に電気的に接続されている。正極導体板92および負極導体板94はコンデンサ90に電気的に接続されており、さらに直流コネクタ38を介してバッテリ30に電気的に接続されている。(図3、図4等を参照のこと)
 制御回路72は上位の制御装置から制御指令を受け、これに基づいてインバータ回路42を構成する各相の直列回路50を構成する上アームのIGBT52や下アームのIGBT62を制御するための制御信号である制御パルスを発生し、ドライバ回路74に供給する。
 ドライバ回路74は上記制御パルスに基づき、各相のIGBTを制御するための駆動パルスをIGBT52の信号用エミッタ電極55と、ゲート電極54及び、IGBT62の信号用エミッタ電極65と、ゲート電極64を介して供給する。各相のIGBTは、ドライバ回路74からの駆動パルスに基づき、導通あるいは遮断動作を行い、バッテリ30から供給された直流電力を三相交流電力に変換し、モータジェネレータ20に供給する。
 制御回路72は、IGBT52及びIGBT62のスイッチングタイミングを演算処理するためのマイクロコンピュータ(以下、「マイコン」と記述する)を備えている。マイコンへの入力情報としては、モータジェネレータ20に対して要求される目標トルク値、直列回路50からモータジェネレータ20に供給される電流値、及びモータジェネレータ20の回転子の磁極位置がある。
 目標トルク値は、図示しないの上位の制御装置から出力された指令信号に基づくものである。電流値は、電流センサ80による検出信号に基づいて検出されたものである。磁極位置は、モータジェネレータ20に設けられたレゾルバなどの回転磁極センサ(不図示)から出力された検出信号に基づいて検出されたものである。
 制御回路72内のマイコンは、目標トルク値に基づいてモータジェネレータ20のd軸、q軸の電流指令値を演算し、この演算されたd軸、q軸の電流指令値と、検出されたd軸、q軸の電流値との差分に基づいてd軸、q軸の電圧指令値を演算し、この演算されたd軸、q軸の電圧指令値を、検出された磁極位置に基づいてU相、V相、W相の電圧指令値に変換する。そして、マイコンは、U相、V相、W相の電圧指令値に基づく基本波(正弦波)と搬送波(三角波)との比較に基づいてパルス状の変調波を生成し、この生成された変調波をPWM(パルス幅変調)信号としてドライバ回路74に出力する。
 ドライバ回路74は、下アームを駆動する場合、PWM信号を増幅したドライブ信号を、対応する下アームのIGBT62のゲート電極に出力する。また、ドライバ回路74は、上アームを駆動する場合、PWM信号の基準電位のレベルを上アームの基準電位のレベルにシフトしてからPWM信号を増幅し、これをドライブ信号として、対応する上アームのIGBT52のゲート電極にそれぞれ出力する。
 以上がインバータ回路の具体的な構成であるが、この構成は良く知られているものであるのでこれ以上の説明は省略する。
 そして、上述したように電力変換装置では多くの電子部品、例えば発熱量の大きい絶縁ゲート型バイポーラトランジスタよりなる電力用半導体素子等が多く使用され、これらの電子部品からの発熱によって電力変換装置が高温の環境になる現象がある。
 更に、電力変換装置には電動機や直流バッテリに電気的に接続された導線(バスバー)が存在しており、この導線で生じるジュール熱も電力変換装置の内部温度を上げ、結果的に電力変換装置の温度を高くする現象がある。
 これに加えてこの種電力変換装置は電気自動車、或いはハイブリッド自動車等に使用されるので、その収納空間の制約から電力変換装置を小型にまとめることが必要である。
 本発明は、小型に構成できながら効率よく電力用半導体素子や電動機や直流バッテリに電気的に接続された導線(バスバー)で発生する熱を外部に持ち去る技術を提案するものである。
 図3は電力変換装置40の外観斜視図、図4は図3に示す電力変換装置を分解して斜めから見た分解斜視図、図5は図3に示す電力変換装置をA-Aの線で断面したA-A断面図、及び図6は半導体パワーモジュールを斜めから見た外観斜視図である。
 以上のような図面をもとに本発明の一実施例を説明する。図3において、参照番号110は水路筺体で長手方向に直角に位置する短辺側側面110Aには冷却水入口112が設けられ、この冷却水入口112より流入した冷却水は水路筺体110の内部を通って図示しない冷却水出口から流出される。この水路筺体110は伝熱性の良い材料、好ましくはアルミ合金で作られており、水路筺体110の内部を流れる冷却水によって熱が外部に持ち去られるようになっている。
 そして、この水路筺体110の長辺側側面110Bには3個の貫通孔(図示せず)が開けられ、この貫通孔に夫々U相半導体パワーモジュール500a、V相半導体パワーモジュール500b、及びW相半導体パワーモジュール500cが挿入されている。このU相半導体パワーモジュール500a、V相半導体パワーモジュール500b、及びW相半導体パワーモジュール500cは電力用半導体素子を主要構成要素としたU相、V相、W相の上下アームの直列回路50を内蔵している。
 良く知られているように、U相半導体パワーモジュール500a、V相半導体パワーモジュール500b、及びW相半導体パワーモジュール500cには、上下アームの直列回路50を構成する電力用半導体素子(IGBT52、IGBT62、ダイオード56、ダイオード66)が内部に封止され、外部接続端子である正極端子57、負極端子58、交流端子59および、制御信号用の接続端子である上アームゲート端子54、上アームエミッタ端子55、下アームゲート端子64、下アームエミッタ端子65と電気的に接続されている。
 水路筺体110の上面110cには絶縁機能と放熱機能を備えるシート(以下放熱シートという)130Aが密着して載置され、更にその上に直流バスバーとして機能する銅よりなる正極導体板92、及び銅よりなる負極導体板94を介してコンデンサ90が載置されている。コンデンサ90の上には各半導体パワーモジュール500a、500b、及び500cを制御する制御基板120が載置されるようになっている。
 制御基板120は制御回路72及びドライバ回路74が実装されるが、図面上では省略している。ドライバ回路74はこれと電気的に接続されたU相半導体パワーモジュール500a、V相半導体パワーモジュール500b、及びW相半導体パワーモジュール500cの制御信号用の接続端子である上アームゲート端子54、上アームエミッタ端子55、下アームゲート端子64、下アームエミッタ端子65を介して上下アームのIGBT52、62を制御する。
 当然であるが個々の上下アームのIGBT52、62はこれも夫々アームゲート端子54、上アームエミッタ端子55、下アームゲート端子64、下アームエミッタ端子65を介して制御されるものである。
 直流バスバーとして機能する正極導体板92の長辺方向に直交する短辺側にはバッテリの正極と接続されるバッテリ正極側電極部92aが形成され、同様に直流バスバーとして機能する負極導体板94の長手方向側にはバッテリの負極と接続されるバッテリ負極側電極部94aが形成されている。
 正極導体板92および負極導体板94は配線インダクタンスの低減を目的として積層状に配置されることが望ましく、絶縁紙や樹脂などを挟んで互いに密着させてもよいものである。
 ここで、正極導体板92と負極導体板94の長手方向に沿って水路筺体110の冷却水通路111が形成されており、長手方向に冷却水が流れるようになっている。これによって熱の持ち去り効率を高めている。
 尚、この冷却水通路111を直線状に形成して各半導体パワーモジュール500a、500b、及び500cをこれに沿って順次並べて配置する構成や、冷却水通路111を折り返して流れるようなU字状に形成して各半導体パワーモジュール500a、500b、及び500cをこれに沿って順次並べて配置する構成を採用することができる。直線状に冷却水通路111を形成する場合は水路筺体110の対向する面に夫々冷却水の出入口を設ければ良く、また、U字状に冷却水通路111を形成する場合は水路筺体110の一方の面に夫々冷却水の出入口を設ければ良いものである。
 また、正極導体板92の長辺側には半導体パワーモジュールの正極端子57と接続される正極側電極部92bが形成され、同様に負極導体板94の長辺側には半導体パワーモジュールの負極端子58と接続される負極側電極部94bが形成されている。
 水路筺体110の下側には銅よりなる3本のU相交流バスバー86a、V相交流バスバー86b及びW相交流バスバー86cが配置されており、U相交流バスバー86aの接続端子86aaはU相半導体パワーモジュール500aの交流端子59に接続され、V相交流バスバー86bの接続端子86bbはV相半導体パワーモジュール500bの交流端子59に接続され、W相交流バスバー86cの接続端子86ccはW相半導体パワーモジュール500cの交流端子59に接続されている。
 ここで、3本のU相交流バスバー86a、V相交流バスバー86b及びW相交流バスバー86cの延びる方向に沿って水路筺体110の冷却水通路111が形成されており、各交流バスバーの延びる方向に冷却水が流れるようになっている。これによって熱の持ち去り効率を高めている。
 図4及び図5に示されているように、水路筺体110の底面110Dには絶縁機能と放熱機能を備えるシート(以下放熱シートという)130Bが密着して配置されている。そして、上述した3本のU相交流バスバー86a、V相交流バスバー86b及びW相交流バスバー86cが放熱シート130Bに密着して配置されている。
 尚、図5においてコンデンサ90は正極端子91aを介して正極導体板92と電気的に接続され、同様にコンデンサ90の負極端子91bを介して負極導体板94と電気的に接続されている。
 図6にあるように、U相半導体パワーモジュール500a、V相半導体パワーモジュール500b、及びW相半導体パワーモジュール500cは中空の缶状の容器503に収納されその一端に取り付けハウジング501が形成されている。そして、この取り付けハウジングを水路筺体110の上面110Cと底面110Dを繋ぐ側面110Bに設けた貫通孔に取り付ければ、図5にあるように缶状の容器503が水路筺体110の冷却水通路111に露出するようになる。
 したがって、IGBT等で発生する熱は主としてU相半導体パワーモジュール500a、V相半導体パワーモジュール500b、及びW相半導体パワーモジュール500cの容器503によって形成される第一放熱面503a、及び第二の放熱面503bから水路筐体110内の冷却水通路111を流れる冷却水に放熱される。このとき、放熱面503a、503bには冷却水との接触面積を大きくするため、図示してはいないが柱状、あるいは板状の放熱フィンが設けられている。
 そして、本実施例の特徴の一つは上述したように水路筐体110の上面110Cに放熱シート130Aを介して直流バスバーである正極導体板92及び負極導体板94が密着して配置されていることである。
 また、本実施例のもう一つの特徴は上述したように水路筐体110の底面110Dに放熱シート130Bを介して交流バスバー86a、86b及び86cが密着して配置されていることである。
 放熱シート130A及び130Bは上述しているように放熱機能と絶縁機能を兼ね備えていることが重要であり、本実施例においては複合材によって放熱シート130A及び130Bが形成されている。具体的には放熱シートと絶縁シートを貼り合わせた二重構造のシートである。
 放熱シート130A及び130Bの材料としては、絶縁シート部はPET(ポリエチレンテレフタラート)が使用され、放熱性を高めるためその厚さをなるべく薄くしており、厚さは0.1mmのものを使用している。また、放熱シート部はシリコン系の樹脂材料が使用され、その厚さは1.0mmのものを使用している。このような放熱シート部、及び絶縁シート部は説明した材料や厚さに限定されなく、これ以外の材料や仕様が適宜選択、採用されても差し支えないものであるが、実際の材料としてはこれらが使用実績等の観点から望ましいものである。
 以上のような構成の電力変換装置において、電動機を駆動するためインバータ回路を含む電力変換装置40によって直流電流が交流電流に変換され、また電動機を発電機と使用するため交流電流が直流電流に変換されるが、そのために使用されるインバータ回路のIGBT等で発生する熱は主としてU相半導体パワーモジュール500a、V相半導体パワーモジュール500b、及びW相半導体パワーモジュール500cの容器503によって形成される第一放熱面503a、及び第二の放熱面503bから水路筐体110内の冷却水通路111を流れる冷却水に放熱される。このため半導体パワーモジュール500a、500b、及び500c自身による熱は効率よく冷却水に移されて水路筺体110の外部に持ち去られる。
 また、直流と交流の変換過程で生じる正極導体板92及び負極導体板94よりなる直流バスバー及びU相交流バスバー86a、V相交流バスバー86b及びW相交流バスバー86cでのジュール熱は放熱シート130A及び130Bを介して水路筺体110の本体に伝えられ、更に水路筺体110を流れる冷却水によって外部に持ち去られるので、効率よく両バスバーで生じるジュール熱を逃がすことができるようになる。
 また、本実施例によると水路筺体110の上面に放熱シート130A、直流バスバーを構成する正極導体板92、負極導体板94及びコンデンサ90を積み上げる構成とし、更に水路筺体110の低面に放熱シート130B、交流バスバーを積み上げる構成としたのでこれらを効率よく小型にまとめることができ、電気自動車、或いはハイブリッド自動車等の狭い収納空間に収めることができる。
 更に、電力変換装置には電動機と電気的に接続された熱伝達が良い導線が接続されており、この導線を介して電動機の熱が電力変換装置の交流バスバーに流入し、この熱がインバータ回路部や、場合によってはコンデンサまで侵入して結果的に電力変換装置の温度を高くする現象がある。電力変換装置のコンデンサは熱的に弱く、外部から侵入する熱を出来るだけ少なくすることが要請されている。
 本実施例においては、交流バスバーに流入してくる外部からの熱(例えば電動機からの熱)は放熱シート130Bを通って水路筺体110に伝えられようになる。水路筐体110は冷媒入口112から流入する冷却水によって冷却されるためにU相交流バスバー86a、V相交流バスバー86b及びW相交流バスバー86cより温度が低くなっており、この温度勾配の差によってU相交流バスバー86a、V相交流バスバー86b及びW相交流バスバー86cの熱は水路筐体110に効率よく流れることになる。よって、電動機の熱が電力変換装置の交流バスバーに流入しても効率よく水路筺体110を流れる冷却水で持ち去ることが期待できる。
 図7は小型にまとめられた本実施例になる電力変換装置40をモータジェネレータ20に組み込んだ構成を示す構成図である。
 図7において、簡略化して示した電動機を収納したハウジング200には一体に形成された電力変換装置40を収納する収納部202が形成されている。この収納部202は全体的には矩形の箱状に形成され、この箱内に電力変換装置40がぴったりと収まるように収納されている。これによって、電動機と電力変換装置が一体化された、いわゆる機電一体型のモータジェネレータ20が実現できる。
 そして、電力変換装置を構成する水路筺体110の冷却水入口112や冷媒出口、図2に示す直流コネクタ38等は収納部202に設けた窓部202A,202B等から外部に向かって引き出すことができるように構成されている。
 尚、交流コネクタ88は収納部202の外部に露出させてモータジェネレータ20の三相の電機子巻線と接続しても良いし、収納部202の底面の底壁面を貫通して接続しても良いものである。ここで、電動機と電力変換装置が一体化された機電一体型のモータジェネレータ20においては、図7にあるように交流バスバー86a、86b、86cと電機子巻線の接続部側に冷却水入口112を設けた方が冷却効果が向上するようになる。
 以上に説明した実施例おいては電気自動車の駆動用電動機と電力変換装置を一体化したものについて説明しているが、図3乃至図6に示した実施例はハイブリッド自動車への適用や、電動機と電力変換装置を別々に構成したシステムへの適用も可能である。
 12…車輪、16…デファレンシャルギア、18…変速機、20…モータジェネレータ、30…バッテリ、32…直流ケーブル、34…交流ケーブル、38…直流コネクタ、40…インバータ装置、42…インバータ回路、50…上下アームの直列回路、52…上アームのIGBT、54…上アームゲート電極、55…上アームエミッタ電極、56…上アームのダイオード、58…負極端子、59…交流端子、62…下アームのIGBT、64…下アームゲート電極、65…下アームエミッタ電極、66…下アームのダイオード、69…中間電極、72…制御回路、74…ドライバ回路、80…電流センサ、86…交流バスバー、86a…U相交流バスバー、86b…V相交流バスバー、86c…W相交流バスバー、88…交流コネクタ、90…コンデンサ、91a…コンデンサ正極端子、91b…コンデンサ負極端子、92…正極導体板、92a…正極導体板のバッテリ側正電極、94…負極導体板、94a…負極導体板のバッテリ側負電極、110…水路筐体、110A…水路筐体の短辺側の側面、111B…水路筐体の長辺側の側面、110C…水路筐体の上面、111D…水路筐体の底面、
112…冷媒入口、111…冷却水流路、120…制御基板、130A、130B…放熱シート、200…ハウジング、202…収納部、500a…U相半導体パワーモジュール、500b…V相半導体パワーモジュール、500c…W相半導体パワーモジュール。

Claims (12)

  1.  インバータ回路を構成する半導体素子を内蔵する半導体パワーモジュールと、前記インバータ回路に直流電流を供給する直流バスバーと、前記インバータ回路によって変換された交流電流が出力される交流バスバーと、前記半導体パワーモジュールを冷却する冷却水が流れる冷却水路を有する水路筺体からなる電力変換装置において、
     前記水路筺体の前記冷却水路内に前記半導体パワーモジュールを配置し、前記水路筺体の第1の面と前記直流バスバーの少なくとも一部を熱的に接続して前記直流バスバーを冷却し、または/及び前記水路筺体の第2の面と前記交流バスバーの少なくとも一部を熱的に接続して冷却するようにしたことを特徴とする電力変換装置。
  2.  請求項1に記載の電力変換装置において、
     前記水路筺体と前記直流バスバーとの間、及び前記水路筺体と前記交流バスバーの間には絶縁機能と放熱機能を有する放熱シートを介して互いに接触していることを特徴とする電力変換装置。
  3.  請求項2に記載の電力変換装置において、
     前記水路筺体の側面には貫通孔が設けられて前記半導体パワーモジュールが挿通固定され、前記水路筺体の側面と直交する上面と前記直流バスバーを前記放熱シートで熱的に接続して前記直流バスバーを冷却し、前記水路筺体の側面と直交する底面と前記交流バスバーを前記放熱シートで熱的に接続して冷却するようにしたことを特徴とする電力変換装置。
  4.  請求項3に記載の電力変換装置において、
     前記直流バスバーの長手方向と前記水路筺体に設けた冷却水通路の方向が一致するように前記直流バスバーを前記水路筺体に前記放熱シートを介して密着させたことを特徴とする電力変換装置。
  5.  請求項3に記載の電力変換装置において、
     前記交流バスバーの延びる方向と前記水路筺体に設けた冷却水通路の方向が一致するように前記交流バスバーを前記水路筺体に前記放熱シートを介して密着させたことを特徴とする電力変換装置。
  6.  請求項1に記載の電力変換装置において、
     前記前記水路筺体に設けた冷却水通路は直線状延びる通路、或いは途中で折り返して戻る通路であることを特徴とする電力変換装置。
  7.  インバータ回路を構成する半導体素子を内蔵する半導体パワーモジュールと、前記インバータ回路に直流電流を供給する直流バスバーと、前記インバータ回路によって変換された交流電流が出力される交流バスバーと、前記半導体パワーモジュールを冷却する冷却水が流れる冷却水路を有する水路筺体からなる電力変換装置において
     前記水路筺体の前記冷却水路内に前記半導体パワーモジュールを配置し、前記水路筺体の第1の面に絶縁機能と放熱機能を備える放熱シートを介して前記直流バスバーを熱接触するように配置すると共に前記直流バスバーの前記放熱シートへの接触面とは反対側の面に前記直流バスバーと電気的に接続されたコンデンサを載置し、前記水路筺体の第1の面とは反対側に絶縁機能と放熱機能を備える放熱シートを介して前記交流バスバーを接触するように配置したことを特徴とする電力変換装置。
  8.  請求項7に記載の電力変換装置であって、
     前記半導体パワーモジュールは前記水路筺体の前記第1の面と前記第2の面を繋ぐ側面に設けた貫通孔を挿通して前記冷却水通路内に露出するように前記水路筺体に固定されていることを特徴とする電力変換装置。
  9.  請求項8に記載の電力変換装置において、
     前記直流バスバーの長手方向と前記水路筺体に設けた冷却水通路の方向が一致するように前記直流バスバーを前記水路筺体に前記放熱シートを介して密着させたことを特徴とする電力変換装置。
  10.  請求項8に記載の電力変換装置において、
     前記交流バスバーの延びる方向と前記水路筺体に設けた冷却水通路の方向が一致するように前記交流バスバーを前記水路筺体に前記放熱シートを介して密着させたことを特徴とする電力変換装置。
  11.  請求項1乃至請求項10に記載のいずれかの電力変換装置において、
     前記電力変換装置は電動機のハウジングに形成した箱状の収納部内に載置されて前記電動機と一体化されていることを特徴とする電力変換装置。
  12.  請求項11に記載の電力変換装置において、
     前記交流バスバーと前記電動機の電機子巻線の接続部側に前記冷却水通路の入口が配置されていることを特徴とする電力変換装置。
PCT/JP2013/052650 2012-03-14 2013-02-06 電力変換装置 WO2013136877A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012056771A JP2013192367A (ja) 2012-03-14 2012-03-14 電力変換装置
JP2012-056771 2012-03-14

Publications (1)

Publication Number Publication Date
WO2013136877A1 true WO2013136877A1 (ja) 2013-09-19

Family

ID=49160796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052650 WO2013136877A1 (ja) 2012-03-14 2013-02-06 電力変換装置

Country Status (2)

Country Link
JP (1) JP2013192367A (ja)
WO (1) WO2013136877A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105119502A (zh) * 2015-08-21 2015-12-02 北京天诚同创电气有限公司 变流器整流装置
CN107733248A (zh) * 2017-11-21 2018-02-23 臻驱科技(上海)有限公司 车用电力变换装置
EP3605762A1 (de) * 2018-07-31 2020-02-05 Valeo Siemens eAutomotive Germany GmbH Anordnung mit einer stromschienenvorrichtung und einem stromrichtergehäuse sowie verfahren zu deren herstellung, stromrichter für ein fahrzeug und fahrzeug
EP3672384A1 (fr) * 2018-12-21 2020-06-24 Valeo Siemens eAutomotive France SAS Ensemble electrique d'une barre de connexion electrique et d'un module de refroidissement
CN111919374A (zh) * 2018-03-30 2020-11-10 日本电产株式会社 电力转换装置
WO2020224917A1 (de) * 2019-05-08 2020-11-12 Bayerische Motoren Werke Aktiengesellschaft Kraftfahrzeug-wechselrichterbaugruppe
EP3840557A1 (fr) * 2019-12-18 2021-06-23 Valeo Siemens eAutomotive France SAS Equipement electrique comprenant une barre de connexion electrique refroidie par deux faces d'un dissipateur thermique
FR3113441A1 (fr) * 2020-08-14 2022-02-18 Valeo Siemens eAutomotive France Dispositif électrique à refroidissement par boîte à eau et système électrique comportant un tel dispositif
FR3116412A1 (fr) * 2020-11-18 2022-05-20 Valeo Siemens Eautomotive France Sas Module de refroidissement en U pour un équipement électrique de puissance

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6406815B2 (ja) 2013-11-29 2018-10-17 株式会社東芝 半導体装置
JP5792867B1 (ja) * 2014-05-16 2015-10-14 三菱電機株式会社 車載用電力変換装置
KR101968852B1 (ko) * 2015-05-26 2019-04-12 닛산 지도우샤 가부시키가이샤 기전 일체형의 회전 전기 기기 장치
JP6945671B2 (ja) * 2020-02-28 2021-10-06 三菱電機株式会社 電力変換装置
JP7343026B1 (ja) 2022-10-17 2023-09-12 富士電機株式会社 電力変換装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62205697A (ja) * 1986-03-05 1987-09-10 富士通株式会社 冷却モジユ−ルとバスバ−の一体化ユニツト
JPH07322640A (ja) * 1994-05-27 1995-12-08 Nippondenso Co Ltd インバータ
JP2001110985A (ja) * 1999-10-08 2001-04-20 Nissan Motor Co Ltd 半導体装置
JP2008206243A (ja) * 2007-02-19 2008-09-04 Hitachi Ltd 電力変換装置
JP2010124607A (ja) * 2008-11-19 2010-06-03 Toyota Motor Corp 電力変換装置
JP2010252461A (ja) * 2009-04-14 2010-11-04 Denso Corp 電力変換装置
WO2010147199A1 (ja) * 2009-06-19 2010-12-23 株式会社安川電機 配線基板および電力変換装置
JP2011018847A (ja) * 2009-07-10 2011-01-27 Toyota Motor Corp 冷却装置付きパワーモジュール
JP2012005323A (ja) * 2010-06-21 2012-01-05 Hitachi Automotive Systems Ltd 電力変換装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62205697A (ja) * 1986-03-05 1987-09-10 富士通株式会社 冷却モジユ−ルとバスバ−の一体化ユニツト
JPH07322640A (ja) * 1994-05-27 1995-12-08 Nippondenso Co Ltd インバータ
JP2001110985A (ja) * 1999-10-08 2001-04-20 Nissan Motor Co Ltd 半導体装置
JP2008206243A (ja) * 2007-02-19 2008-09-04 Hitachi Ltd 電力変換装置
JP2010124607A (ja) * 2008-11-19 2010-06-03 Toyota Motor Corp 電力変換装置
JP2010252461A (ja) * 2009-04-14 2010-11-04 Denso Corp 電力変換装置
WO2010147199A1 (ja) * 2009-06-19 2010-12-23 株式会社安川電機 配線基板および電力変換装置
JP2011018847A (ja) * 2009-07-10 2011-01-27 Toyota Motor Corp 冷却装置付きパワーモジュール
JP2012005323A (ja) * 2010-06-21 2012-01-05 Hitachi Automotive Systems Ltd 電力変換装置

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105119502A (zh) * 2015-08-21 2015-12-02 北京天诚同创电气有限公司 变流器整流装置
CN105119502B (zh) * 2015-08-21 2017-10-10 北京天诚同创电气有限公司 变流器整流装置
CN107733248A (zh) * 2017-11-21 2018-02-23 臻驱科技(上海)有限公司 车用电力变换装置
CN111919374A (zh) * 2018-03-30 2020-11-10 日本电产株式会社 电力转换装置
KR20200014240A (ko) * 2018-07-31 2020-02-10 발레오 지멘스 이오토모티브 독일 게엠베하 버스 바 장치 및 전력 변환기 하우징을 포함하는 시스템, 그 제조 방법, 차량용 전력 변환기, 및 차량
EP3605762A1 (de) * 2018-07-31 2020-02-05 Valeo Siemens eAutomotive Germany GmbH Anordnung mit einer stromschienenvorrichtung und einem stromrichtergehäuse sowie verfahren zu deren herstellung, stromrichter für ein fahrzeug und fahrzeug
KR102242159B1 (ko) 2018-07-31 2021-04-20 발레오 지멘스 이오토모티브 독일 게엠베하 버스 바 장치 및 전력 변환기 하우징을 포함하는 시스템, 그 제조 방법, 차량용 전력 변환기, 및 차량
CN110855124A (zh) * 2018-07-31 2020-02-28 法雷奥西门子新能源汽车德国股份有限公司 包括汇流条装置和功率转换器壳体的系统及其制造方法,用于车辆的功率转换器和车辆
CN110855124B (zh) * 2018-07-31 2024-05-28 法雷奥西门子新能源汽车德国股份有限公司 包括汇流条装置和功率转换器壳体的系统及其制造方法
US11445643B2 (en) 2018-12-21 2022-09-13 Valeo Siemens Eautomotive France Sas Electrical assembly of an electrical busbar and a cooling module
EP3672384A1 (fr) * 2018-12-21 2020-06-24 Valeo Siemens eAutomotive France SAS Ensemble electrique d'une barre de connexion electrique et d'un module de refroidissement
FR3091141A1 (fr) * 2018-12-21 2020-06-26 Valeo Siemens Eautomotive France Sas Ensemble électrique d’une barre de connexion électrique et d’un module de refroidissement
WO2020224917A1 (de) * 2019-05-08 2020-11-12 Bayerische Motoren Werke Aktiengesellschaft Kraftfahrzeug-wechselrichterbaugruppe
EP3840557A1 (fr) * 2019-12-18 2021-06-23 Valeo Siemens eAutomotive France SAS Equipement electrique comprenant une barre de connexion electrique refroidie par deux faces d'un dissipateur thermique
US11770915B2 (en) 2019-12-18 2023-09-26 Valeo Siemens Eautomotive France Sas Electrical equipment comprising a busbar cooled by two faces of a heatsink
FR3105716A1 (fr) * 2019-12-18 2021-06-25 Valeo Siemens Eautomotive France Sas Équipement électrique comprenant une barre de connexion électrique refroidie par deux faces d’un dissipateur thermique
FR3113441A1 (fr) * 2020-08-14 2022-02-18 Valeo Siemens eAutomotive France Dispositif électrique à refroidissement par boîte à eau et système électrique comportant un tel dispositif
FR3116412A1 (fr) * 2020-11-18 2022-05-20 Valeo Siemens Eautomotive France Sas Module de refroidissement en U pour un équipement électrique de puissance

Also Published As

Publication number Publication date
JP2013192367A (ja) 2013-09-26

Similar Documents

Publication Publication Date Title
WO2013136877A1 (ja) 電力変換装置
JP5647633B2 (ja) 電力変換装置
JP5851372B2 (ja) 電力変換装置
JP5508357B2 (ja) 電力変換装置
JP5957396B2 (ja) 両面冷却型電力変換装置
JP5836879B2 (ja) インバータ装置
WO2012165341A1 (ja) 電力変換装置
JP5815063B2 (ja) 電力変換装置
WO2015025594A1 (ja) 電力変換装置
JP2010041838A (ja) 半導体装置および半導体装置を用いた電力変換装置
JP2009005462A (ja) 電力変換装置
JP5474128B2 (ja) 電力変換装置
JP2008193867A (ja) 電力変換装置
JP6039356B2 (ja) 電力変換装置
JP6117361B2 (ja) 電力変換装置
JP5802629B2 (ja) 電力変換装置
JP6219442B2 (ja) 電力変換装置
JP2010011671A (ja) 電力変換装置
JP5932605B2 (ja) 電力変換装置
JP6272064B2 (ja) 電力変換装置
JP5925863B2 (ja) 電力変換装置
JP2013183540A (ja) インバータ装置
CN115398621A (zh) 电力转换装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13761581

Country of ref document: EP

Kind code of ref document: A1