WO2013136752A1 - 薄膜太陽電池 - Google Patents

薄膜太陽電池 Download PDF

Info

Publication number
WO2013136752A1
WO2013136752A1 PCT/JP2013/001534 JP2013001534W WO2013136752A1 WO 2013136752 A1 WO2013136752 A1 WO 2013136752A1 JP 2013001534 W JP2013001534 W JP 2013001534W WO 2013136752 A1 WO2013136752 A1 WO 2013136752A1
Authority
WO
WIPO (PCT)
Prior art keywords
holes
electrode layer
thin film
film solar
solar cell
Prior art date
Application number
PCT/JP2013/001534
Other languages
English (en)
French (fr)
Inventor
隆正 石川
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Publication of WO2013136752A1 publication Critical patent/WO2013136752A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0465PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising particular structures for the electrical interconnection of adjacent PV cells in the module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a thin film solar cell formed by laminating a metal electrode layer, a photoelectric conversion layer, and a transparent electrode layer on a film substrate.
  • FIG. 14 is a plan view of a conventional thin film solar cell.
  • 15 is a cross-sectional view taken along the line AA of FIG. 14, and
  • FIG. 15 (b) shows an enlarged view of a portion C of FIG. 15 (a).
  • 16 is a cross-sectional view taken along the line BB in FIG. 14, and
  • FIG. 16 (b) shows an enlarged view of a portion D in FIG. 16 (a).
  • the conventional thin film solar cell 21 includes an insulating substrate 22. Then, assuming that the light receiving surface side of the thin film solar cell 21 is F and the non light receiving surface side is R, the metal electrode layer 23 is formed on both the light receiving surface side F and the non light receiving surface R of the insulating substrate 22. It is done.
  • the metal electrode layer 23 on one surface of the light receiving surface side F of the insulating substrate 22 functions as the back surface electrode layer 23 a, and the metal on the other surface on the non-light receiving surface side R of the insulating substrate 22.
  • the electrode layer 23 functions as a first back electrode layer 23 b.
  • the insulating substrate 22 is provided with a first through hole (current collecting hole) 27 penetrating the insulating substrate 22, and the transparent electrode layer 25 and the second back electrode layer 26 are provided. And are electrically connected via the first through holes 27.
  • the insulating substrate 22 is provided with a second through hole (connection hole) 28 penetrating the insulating substrate 22, and the back electrode layer 23 a and the first back electrode layer 23 b are provided. Are electrically connected via the second through holes 28.
  • all layers (the back electrode layer 23 a, the photoelectric conversion layer 24, and the transparent electrode layer 25) stacked on one surface of the light receiving surface side F of the insulating substrate 22 have a first patterning line.
  • All layers (the first back electrode layer 23 b and the second back electrode layer 26) which are divided by 29 and stacked on the other surface on the non-light receiving surface side R of the insulating substrate 22 have a second patterning. It is divided at line 30.
  • the stacked layers on the insulating substrate 22 are a unit portion of the photoelectric conversion unit (hereinafter referred to as “unit photoelectric conversion unit”) and a unit portion of the back electrode layer (hereinafter referred to as “unit back electrode unit”). Are formed separately as a plurality of unit cells (UCs, unit solar cells).
  • the first patterning line 29 and the second patterning line 30 are alternately arranged in the insulating substrate 22.
  • the adjacent unit cells are connected in series.
  • Patent Document 1 discloses another example of the conventional thin film solar cell.
  • the connection hole is closed by a printing electrode made of a conductive material (in particular, refer to paragraph 0035 and FIG. 27 of Patent Document 1).
  • the conventional thin film solar cell 21 shown in FIG. 14 has transparent electrode layers 25 on both sides in the width direction of the thin film solar cell 21 where the second through holes 28 are arranged (direction of the cross section of FIG. 16A). There is a region which is not deposited and does not contribute to power generation. Therefore, in Patent Document 2, a transparent electrode layer (second electrode layer) is formed on the entire surface, and a plurality of connection holes (second through holes in FIG. 14) are formed in the width direction of the thin film solar cell.
  • the transparent electrode layer is linearly removed in the entire periphery of the connection hole group, and in the region surrounded by the removal of the linear transparent electrode layer, the first surface of the opposite surface (non-light receiving surface side) with the insulating substrate interposed therebetween.
  • a configuration is described in which the bent portion of the second linear removal portion formed in the third electrode layer and the fourth electrode layer (the back electrode layer in FIG. 14) is positioned (in particular, FIG. 6, FIG. 8 and paragraphs 0060 to 0063).
  • Patent Document 3 an insulating resin is disposed inside the second through hole (the hole is filled), and an insulating property in which the transparent electrode layer and the back electrode layer fill the second through hole. It is described that a configuration in which the resin is electrically insulated and that a plurality of second through holes are formed at intervals in the width direction of the insulating substrate (in particular, paragraph 0041 of Patent Document 3, See FIGS. 4 and 6).
  • the second electrode layer which is a transparent electrode layer, and the back electrode layer are electrically connected through the current collection holes, and the transparent electrode layer is highly resistive.
  • the power loss current collection loss
  • the unit photoelectric conversion units constituting each unit cell (UC) and the unit back electrode layer are arranged in the unit cell arrangement direction (vertical direction in the figure And the formation positions of the current collection holes and the connection holes in each unit cell (UC) are limited.
  • connection holes the second through holes 28
  • regions where the transparent electrode layer 25 is not formed and which do not contribute to power generation exist on both sides in the width direction of the insulating substrate.
  • the structure can not efficiently contribute to power generation over the entire area of the solar cell (FIGS. 14 to 16, Patent Document 1 and FIG. 1 of Patent Document 2).
  • a transparent electrode layer (second electrode layer) is formed on the whole, and the area of the power generation contribution portion is the entire insulating substrate of the thin film solar cell.
  • the transparent electrode layer (second electrode layer) around the entire connection hole group is separated, and in the connection hole, the first electrode layer (the back electrode layer 23a in FIG. 14), the third electrode layer and the fourth electrode layer (figure Only the back electrode layers 23b and 26) of 14 were configured to be electrically connected.
  • connection holes are formed to prevent current concentration in the connection holes, and the transparent electrode layer around the connection holes is separated, there is a problem that the separated region becomes a region that does not contribute to power generation.
  • each unit solar in order to improve the uniformity of the flow of current in the plurality of current collection holes (the first through holes 27 in FIG. 14) and to significantly reduce the power loss, each unit solar as in Patent Document 2, If current collection holes are dispersedly disposed over the entire transparent electrode layer (second electrode layer) of the battery, the path of current flow through the high resistance transparent electrode layer (second electrode layer) can be shortened.
  • the second linear removal portion (second patterning line 30 in FIG. 14) formed on the third electrode layer and the fourth electrode layer (back electrode layer in FIG. 14) formed on the non-light receiving surface side of the insulating substrate Needs to be bent.
  • the second linear removal portion is formed by laser patterning, but the laser irradiation becomes excessive at the bent portion, causing the photoelectric conversion layer to be affected by crystallization or damage through the insulating substrate to generate a leak. Do. Therefore, if this bent portion is formed in a region where the transparent electrode layer around the connection hole group is separated, even if the photoelectric conversion layer is crystallized or damaged, the transparent electrode layer thereon is separated. It does not contribute to power generation and does not leak because it is not an electrically connected part.
  • a bending portion is not provided, and a transparent electrode layer is formed on the entire surface of the insulating substrate 22 with the second patterning line 30 as a straight line as shown in FIG. Therefore, as in Patent Document 3, the insulating resin is disposed inside the second through hole, and the transparent electrode layer and the back electrode layer are electrically filled with the insulating resin in which the second through hole is filled.
  • the second through holes are dispersedly arranged in the width direction of the insulating substrate so as to be insulated.
  • the second through hole In order to bury the second through hole with the insulating resin and to reliably insulate the transparent electrode layer 25 and the second back electrode layer 26 to be formed subsequently, the second through hole, the second through hole thereof It is necessary to make the insulating resin disposed in the second through hole have no gap, and if the insulating resin is applied or filled in a wider range than the second through hole in order to prevent the leak, the second through hole There is a problem that the interval can not be reduced. Moreover, the manufacturing process of applying or filling the insulating resin in the second through hole is a complicated and inefficient operation, and the operation requires more time and labor as the number of the second through holes increases. There is a problem of
  • the present invention has been made focusing on such problems, and in a thin film solar cell, it is possible to prevent the formation positions of the current collection holes and the connection holes from being restricted, and to form the thin film solar cell.
  • the entire substrate By making the entire substrate to be the power generation area, the power generation area loss is eliminated, and further, the uniformity of the current flow in the plurality of connection holes and the current collection holes is improved to significantly reduce the power loss. It aims at providing a highly efficient thin film solar cell.
  • a back electrode layer (3a), a photoelectric conversion layer (4) and a transparent electrode layer (5) are provided on one surface of the insulating substrate (2).
  • a first patterning line (9, 9a, 9b) separating the laminated body in one direction of the laminated layer, and the other of the insulating substrate (2) In the second embodiment, the back electrode layer (3b, 6) and the back electrode layer (3b, 6) are entirely separated in one direction and in a direction parallel to the first patterning line (9, 9a, 9b).
  • UC unit cells
  • the first patterning line (9, 9a, 9b) and the second patterning line (10, 10a, 10b) And a first region in which a plurality of second through holes (connection holes 8) are arranged in the direction in which the first patterning lines (9, 9a, 9b) are formed, and adjacent first patterning lines (9 , 9a, 9b) and the second patterning line (10, 10a, 0b), there is provided a second region in which a plurality of first through holes (current collecting holes 7) are dispersed, and the first region and the second region are alternately provided, all A separation region is provided by removing the transparent electrode layer (5) surrounding at least the periphery of each of the second through holes (connection holes 8).
  • connection holes 8 a plurality of second through holes (connection holes 8) are arranged at equal intervals in a row, and the first area is not wide enough to be in contact with the second through holes (connection holes 8).
  • a first patterning line (9, 9b) and a second patterning line (10, 10b) are formed to form a plurality of first through holes (current collecting holes 7) in the entire second region. Can be distributed (for example, FIG. 1, FIG. 4).
  • first through holes are provided between the second through holes (connection holes 8), arranged in a row at equal intervals, and the second through holes in the first region It can also be configured to bend either the first patterning line (9b) or the second patterning line (10b) so that only (the connection hole 8) exists (eg, FIGS. 7 and 8) .
  • connection holes 8a are arranged at equal intervals in a plurality of rows, and the widths do not contact the second through holes (connection holes 8a) on both sides of the plurality of rows.
  • a first patterning line (9a) and a second patterning line (10a) are formed to form a first region, and a plurality of first through holes (current collecting holes) are formed over the entire second region. 7) is distributed (for example, FIG. 5, FIG. 6).
  • the plurality of second through holes (connection holes 8) arranged in a plurality of rows in the first region may be arranged in a staggered manner.
  • the plurality of first through holes (current collecting holes 7) dispersedly disposed in the entire second region may be arranged in a plurality of rows at equal intervals in a staggered manner, or in a plurality of rows of equal intervals. It can also be configured to be arranged in a grid.
  • the transparent electrode layer 5 is formed on the entire insulating substrate 2, and a plurality of second through holes (connection holes) 8 are formed side by side in the width direction of the thin film solar cell 1.
  • the series resistance component can be reduced, and in the first through hole (current collection hole) 7 arrangement configuration according to the present embodiment, the resistance The path through which current flows can be significantly shortened in the high transparent electrode layer 5 and power loss (current collection loss) in the transparent electrode layer 5 can be reduced, so that the output of the solar cell can be improved.
  • FIG. 1 is a plan view of a thin film solar cell according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of FIG. 1 according to the present invention, where (a) is a cross-sectional view taken along the line EE and (b) is an enlarged view of H in (a).
  • FIG. 2 is a cross-sectional view of FIG. 1 according to the present invention, (a) is a cross-sectional view taken along the line GG, and (b) is an enlarged view of J in (a) (first embodiment).
  • It is a top view of the thin film solar cell by 2nd Embodiment of this invention. It is a top view of the thin film solar cell by 3rd Embodiment of this invention.
  • FIG. 14 It is a top view of the thin film solar cell by the 4th modification of 4th Embodiment of this invention. It is a top view of the conventional thin film solar cell.
  • (A) is a sectional view taken along the line AA of FIG. 14,
  • (b) is an enlarged view of C in (a).
  • (A) is a cross-sectional view taken along the line BB in FIG. 14, and
  • (b) is an enlarged view of D in (a).
  • FIG. 1 is a plan view of the thin film solar cell according to the first embodiment, where (a) of FIG. 1 is a plan view seen from the light receiving surface side and (b) is seen from the non light receiving surface (rear surface) side It is a top view.
  • 2A is a cross-sectional view taken along the line EE of FIG. 1
  • FIG. 2B is an enlarged view of a portion H in FIG. 3A is a cross-sectional view taken along the line GG in FIG. 1
  • FIG. 3B is an enlarged view of J in FIG.
  • the thin film solar cell 1 As shown in FIG. 1, the thin film solar cell 1 according to the embodiment of the present invention is provided with a plurality of first through holes (current collecting holes) 7 and second through holes (connection holes) 8.
  • the surface side (light receiving surface side) of the thin film solar cell 1 is a first patterning line 9 to form a plurality of divided unit solar cells.
  • the first patterning line 9 is configured to be divided into a group of the first through holes 7 and the second through holes 8.
  • the second patterning is performed on the back surface side (non-light receiving surface side) of the thin film solar cell 1 at a position opposite to the position divided by the first patterning line 9 across the row of second through holes 8.
  • a line 10 is provided and configured to be divided.
  • the difference in plan view between the thin film solar cell 1 according to the embodiment of the present invention shown in FIG. 1 and the thin film solar cell 21 shown in FIG. Although the area
  • the second through holes (connection holes) 28 are transparent electrode layers on both sides in the width direction (the direction of the cross section of FIG. 16A) of the thin film solar cell 21. In the region where 25 is not deposited, it is arranged only at the position surrounded by the first patterning line 29 and the second patterning line 30. In FIG. 1, the second through hole (connection hole) is arranged. A plurality of the electrodes 8 are arranged in a row in the width direction of the thin film solar cell 1 (the direction of the cross section in FIG. 3A), and the transparent electrode layer 5 is formed in this region. .
  • the first through holes (current collecting holes) 7 are in the width direction of the thin film solar cell 21 in the power generation region where the transparent electrode layer 25 is formed. 15 (a) in the direction of the cross section), but in FIG. 1, in the region divided by the first patterning line 9 and the second patterning line 10, the second through holes are formed.
  • the first through holes (current collecting holes) 7 are dispersedly disposed in the entire area where the (connection holes) 8 are not formed.
  • the transparent electrode layer 5 is formed on the entire insulating substrate 2, and a plurality of second through holes (connection holes) 8 are formed side by side in the width direction of the thin film solar cell 1.
  • the series resistance component can be reduced, and in the first through hole (current collecting hole) 7 arrangement configuration according to the present embodiment, the transparent electrode layer 5 with high resistance
  • the path through which the current flows can be greatly shortened, and the power loss (current collection loss) in the transparent electrode layer 5 can be reduced, so that the output of the solar cell can be improved.
  • the transparent electrode layer removing portion 16 is formed so as to surround the periphery of each of the second through holes (connection holes) 8. That is, as shown in the cross-sectional view of FIG. 3B, the transparent electrode layer 5 is removed around the second through holes (connection holes) 8, but the details will be described with reference to FIG. I will talk about it.
  • the thin film solar cell 1 of the present embodiment includes the insulating substrate 2.
  • the insulating substrate 2 is formed of a film material, for example, a material such as polyimide, polyamide imide, polyethylene naphthalate, or aramid.
  • metal electrode layers 3 made of a metal such as Ag are formed on both sides (the light receiving surface side and the non-light receiving surface side) of the insulating substrate 2.
  • the metal electrode layer 3 on the light receiving side which is the F side of the insulating substrate 2 functions as the back electrode layer 3 a
  • the metal electrode layer 3 on the non-light receiving side which is the R side of the insulating substrate 2 is It functions as the first back electrode layer 3b.
  • the photoelectric conversion layer 4 and the transparent electrode layer 5 are laminated in this order on the back electrode layer 3 a, and the second on the first back electrode layer 3 b on the other surface of the insulating substrate 2.
  • the back electrode layer 6 is laminated.
  • the transparent electrode layer 5 and the second back electrode layer 6 are electrically connected on the inner surface (sidewall portion) of the hole. .
  • the back electrode layer 3 on the light receiving side which is the F side of the insulating substrate 2 is transparent to the photoelectric conversion layer 4.
  • the electrode layers 5 are stacked in this order.
  • the transparent electrode layer removal part 16 from which the transparent electrode layer 5 was removed is provided in the outer periphery of the 2nd through-hole (connection hole) 8.
  • FIG. The transparent electrode layer removing portion 16 removes the conductive photoelectric conversion layer 4 in contact with the transparent electrode layer 5 or via the interface layer (not shown) to form a transparent electrode layer 5 having conductivity. Is configured to completely remove the
  • the transparent electrode layer removing portion 16 surrounds the periphery of the second through hole (connection hole) 8,
  • the shape formed by removing the range concentric with the second through hole 8 (connection hole) is formed, the present invention is not limited to this, and the center of the second through hole (connection hole) 8 is It may be configured to remove a range of shapes such as different circles, ovals, squares, rectangles or polygons, and the formed shape is not particularly limited.
  • the inner surface of the second through hole (connection hole) 8 or the transparent electrode layer 5 around the second through hole (connection hole) 8 may be removed by laser or blast, or the mask Then, a region which is not partially deposited may be formed, or the resistance of the transparent electrode layer 5 may be increased by oxygen plasma.
  • the plurality of first through holes (current collecting holes) 7 distributed and disposed are the first through holes (current collecting holes) 7 in each unit cell (UC). In the arrangement area, they are arranged in a staggered pattern. In this case, a plurality of rows of first through holes (current collecting holes) 7 arranged at constant intervals in the width direction of the thin-film solar cell 1 are provided at regular intervals in the direction orthogonal to the width direction. It is preferable to arrange the plurality of first through holes (current collecting holes) 7 in the form of a staggered grid by shifting only half of the constant interval in the width direction.
  • FIG. 4 is a plan view of the thin film solar cell 11 as viewed from the light receiving surface, except that the first through holes (current collecting holes) 7 are arranged in a grid shape, the first embodiment of FIG. It is the same.
  • FIG. 5 a plan view of a thin film solar cell according to a third embodiment of the present invention is shown in FIG.
  • (a) of FIG. 5 is a plan view as viewed from the light receiving surface side
  • (b) is a plan view as viewed from the non-light receiving surface (rear surface) side.
  • the difference between the third embodiment and the first embodiment of FIG. 1 is that the second through holes (connection holes) 8a arranged in the width direction of the thin film solar cell 12 shown in FIG.
  • a plurality of second through holes (connection holes) 8a are arranged in a staggered pattern by shifting a plurality of second through holes (connection holes) 8a arranged at regular intervals in a row by a half of the distance between the rows.
  • Each second through hole (connection hole) 8a has a transparent electrode layer removing portion 16a formed so as to surround the periphery as in the first embodiment and the second embodiment.
  • the plurality of second through holes (connection holes) 8 a are a first patterning line 9 a formed on the light receiving surface side of the insulating substrate 2 and a second patterning formed on the non light receiving surface side of the insulating substrate 2.
  • the first through holes (current collecting holes) 7 are dispersedly arranged in a zigzag manner.
  • a fourth example of the present invention is an example in which the plurality of first through holes (current collecting holes) 7 dispersed and arranged in a staggered pattern in the thin film solar cell 12 according to the third embodiment of FIG. It shows in FIG. 6 as a top view of the thin film solar cell by embodiment.
  • FIG. 6 is a plan view of the thin film solar cell 13 as viewed from the light receiving surface, except that the first through holes (current collecting holes) 7 are arranged in a grid shape, the third embodiment of FIG. It is the same.
  • FIG. 7 a plan view of a thin film solar cell according to a fifth embodiment of the present invention is shown in FIG. 7 as another embodiment.
  • (a) of FIG. 7 is a plan view as viewed from the light receiving surface side
  • (b) is a plan view as viewed from the non-light receiving surface (rear surface) side.
  • the difference between the fifth embodiment and the first embodiment of FIG. 1 is the same difference between the plurality of second through holes (connection holes) 8 arranged at a plurality of regular intervals in the width direction of the thin film solar cell 14 shown in FIG.
  • the first through hole (current collecting hole) 7 is disposed in the middle on the row, and the next row is arranged with only the first through hole (current collecting hole) 7 to form a second through hole (connection)
  • the holes are dispersedly arranged in a zigzag manner. .
  • the plurality of second through holes (connection holes) 8 are formed on the first patterning line 9 b formed on the light receiving surface side of the insulating substrate 2 and on the non-light receiving surface side of the insulating substrate 2.
  • the second through holes (connection holes) 8 arranged in a line at equal intervals Since the first through holes (current collecting holes) 7 are disposed between the second patterning line 10 b, the first through holes (current collecting holes) 7 and the second through holes (connection holes) are formed. 2.) It is necessary to bend between 8 to form a zigzag pattern.
  • FIG. 8A is a plan view of the thin film solar cell 15 as viewed from the light receiving surface
  • FIG. 8B is a plan view as viewed from the non-light receiving surface (rear surface) side.
  • the first through holes (current collecting holes) 7 are arranged in a lattice
  • the separating portion 17 is provided on the light receiving surface side corresponding to the bent portion of the second patterning line 10 b.
  • the fifth embodiment is the same as the fifth embodiment shown in FIG.
  • the second patterning line 10b having a plurality of bent portions is formed by laser patterning.
  • the scanning of the laser irradiation portion is instantaneously delayed or stopped at the bent portions. Therefore, the laser irradiation is excessive, and the photoelectric conversion layer 4 is likely to be affected by crystallization or damage through the insulating substrate 2. And if crystallization or damage generate
  • the back electrode layer 3a and the photoelectric conversion layer are formed on the light receiving surface side via the insulating substrate 2 corresponding to the bending portion of the second patterning line 10b formed on the non light receiving surface side of the insulating substrate 2.
  • the conversion layer 4 and the transparent electrode layer 5 by removing at least the transparent electrode layer 5 as the separation portion 17, even if the photoelectric conversion layer at that portion is crystallized or damaged, the transparent electrode layer thereon is Since they do not contribute to separated power generation and are not electrically connected parts, they do not leak.
  • this separation part 17 may be removed by digging the whole or may be removed linearly, it is described as a circle in FIG. 8, but the shape is not limited, and a triangle, a square, etc. It can be of various shapes.
  • the transparent electrode layer removed area needs to remove the entire periphery of the second through holes (connection holes) 8 and 8a, but the smaller the removal area, the higher the power generation efficiency.
  • the number of the second through holes (connection holes) 8 and 8a is large, and removing only the periphery may pose a problem of manufacturing cost due to its accuracy and processing time. Therefore, the plurality of second through holes (connection holes) 8 and 8a may be positioned in one transparent electrode layer removal area to suppress the manufacturing cost.
  • FIG. 9 a thin film solar cell 11a according to a modification of the second embodiment (FIG. 4) of the present invention is shown in FIG.
  • two second through holes (connection holes) 8b and 8c are grouped to be located in the transparent electrode layer removing portion 16b.
  • FIGS. 10 four modified examples of the fourth embodiment (FIG. 6) of the present invention in which the second through holes (connection holes) 8a are arranged in two lines are shown in FIGS.
  • first modification FIG. 10
  • two second through holes (connection holes) 8d and 8e are grouped so as to be located in one transparent electrode layer removing portion 16c.
  • the second through holes (connection holes) 8d and 8g and the second through holes (connection holes) 8e and 8f are arranged adjacent to each other in the same row.
  • the through holes (connection holes) 8d and 8e and the second through holes (connection holes) 8f and 8g are arranged in such a manner that their inclination directions are symmetrical to each other.
  • the second through holes (connection holes) 8d and 8e are grouped into the transparent electrode layer removed portion 16c, and the second through holes (connection holes) 8f and 8g are grouped by the transparent electrode layer removed portion 16e.
  • the second through holes (connection holes) 8h and 8i and the second through holes (connection holes) 8j and 8k are arranged adjacent to each other in the same row, and Second through holes (connection holes) 8h and 8i are located in the area of transparent electrode layer removal portion 16e, and second through holes (connection holes) 8j and 8k are located in the area of transparent electrode layer removal portion 16f Are grouped to do.
  • connection holes 8m, 8n, 8p, 8q are arranged to form a square, and are arranged in the transparent electrode layer removed portion 16g. It is an example grouped to be arranged.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

【課題】複数の単位太陽電池を直列接続した構造を有する薄膜太陽電池において、集電孔と直列孔の形成位置が制限されることを防止するとともに、従来に比べて電力損失の低減を図ることのできる薄膜太陽電池を提供する。 【解決手段】絶縁性基板2全体に透明電極層5を形成し、薄膜太陽電池1の幅方向に、第2の貫通孔(接続孔)8を複数並べて形成し、領域全体に第1の貫通孔(集電孔)7を分散配置するように構成する。

Description

薄膜太陽電池
 本発明は、フィルム基板上に金属電極層と光電変換層と透明電極層とを積層してなる薄膜太陽電池に関するものである。
 図14は、従来の薄膜太陽電池の平面図である。また、図15は、図14のA-A線断面図であり、図15(a)のC部拡大図を図15(b)に示す。図16は、図14のB-B線断面図であり、図16(a)のD部拡大図を図16(b)に示す。
 図15及び図16に示すように、従来の薄膜太陽電池21は、絶縁性基板22を備えている。そして、薄膜太陽電池21の受光面側をFとし、非受光面側をRとすると、絶縁性基板22の受光面側Fと非受光面側Rとの両面には、金属電極層23が形成されている。
 ここで、絶縁性基板22の受光面側Fの一方の面上の金属電極層23は、裏面電極層23aとして機能し、絶縁性基板22の非受光面側Rである他方の面上の金属電極層23は、第1の背面電極層23bとして機能する。
 また、図15及び図16に示すように、裏面電極層23aには、光電変換層24と透明電極層25とが当該順で積層されている。一方、第1の背面電極層23bには、第2の背面電極層26が積層されている。
 また、図15に示すように、絶縁性基板22には、絶縁性基板22を貫通する第1の貫通孔(集電孔)27が設けられ、透明電極層25と第2の背面電極層26とが、第1の貫通孔27を介して電気的に接続されている。また、図16に示すように、絶縁性基板22には、絶縁性基板22を貫通する第2の貫通孔(接続孔)28が設けられ、裏面電極層23aと第1の背面電極層23bとが、第2の貫通孔28を介して電気的に接続されている。
 図14に示すように、絶縁性基板22の受光面側Fの一方の面に積層されたすべての層(裏面電極層23a、光電変換層24、透明電極層25)は、第1のパターニングライン29で分割され、絶縁性基板22の非受光面側Rである他方の面に積層されたすべての層(第1の背面電極層23b、第2の背面電極層26)は、第2のパターニングライン30で分割されている。これにより、絶縁性基板22上の積層された層が、光電変換部の単位部分(以下「単位光電変換部」という)と、背面電極層の単位部分(以下「単位背面電極部」という)とからなる複数のユニットセル(UC、単位太陽電池)として分割形成される。
 ここで、第1のパターニングライン29及び第2パターニングライン30は、絶縁性基板22において互い違いに配置されている。絶縁性基板22の受光面側Fと非受光面側Rとの両面の電極層の分離位置を互いにずらし、且つ絶縁性基板22の両面の電極層を第2の貫通孔28で接続することにより、隣接するユニットセルが直列で接続される構造となっている。
 なお、このような太陽電池の構造は、SCAF(Series-Connection through
Apertures formed on Film)構造と呼ばれている。
 一方、特許文献1には、従来の薄膜太陽電池の更に別の例が開示されている。特許文献1の薄膜太陽電池においては、接続孔が、導電性の材料からなる印刷電極で塞がれている(特に、特許文献1の段落0035及び図27参照)。
 図14に示した従来の薄膜太陽電池21は、第2の貫通孔28が配置されている薄膜太陽電池21幅方向(図16(a)断面の方向)の両側には、透明電極層25が成膜されておらず、発電に寄与しない領域がある。
 そこで、特許文献2には、全体に透明電極層(第二電極層)を成膜し、接続孔(図14の第2の貫通孔)を薄膜太陽電池の幅方向に複数形成して、その接続孔群の周囲全体を線状に透明電極層を除去し、この線状の透明電極層除去で囲まれた領域内に、絶縁性基板を介して反対の面(非受光面側)の第三電極層と第四電極層(図14の背面電極層)に形成した第二線状除去部の屈曲部を位置させるようにした構成が記載されている(特に特許文献2の図6、図8及び段落0060~0063参照)。
 また、特許文献3には、第2の貫通孔の内部に、絶縁性樹脂を配置(孔を埋め)し、透明電極層と背面電極層とが、第2の貫通孔を埋めている絶縁性樹脂で電気的に絶縁する構成と、そして、第2の貫通孔が、絶縁基板の幅方向に間隔をおいて、複数形成されていることが記載されている(特に特許文献3の段落0041、0057、図4及び図6参照)。
特開平6-342924号公報 特開2011-243938号公報 特開2011-198935号公報
 上記従来の薄膜太陽電池は、各ユニットセルにおいて、透明電極層である第二電極層と、背面電極層とが、集電孔を通じて電気的に接続されており、高抵抗である透明電極層における電力損失(集電ロス)が、ある程度低減されている。
 しかし、上記従来の薄膜太陽電池においては、図14に示すように、各ユニットセル(UC)を構成する単位光電変換部と、単位背面電極層とが、ユニットセルの配列方向(図の上下方向)にずれており、各ユニットセル(UC)における集電孔及び接続孔の形成位置が、制限されていた。
 また、接続孔(第2の貫通孔28)を形成するためには、絶縁基板の幅方向の両側には、透明電極層25が成膜されずに、発電に寄与しない領域が存在しており、太陽電池面積全体を効率良く発電に寄与できる構造ではなかった(図14~図16、特許文献1、特許文献2の図1)。
 そこで、特許文献2の図6と図8のように、全体に透明電極層(第二電極層)を成膜して、発電寄与部の面積を薄膜太陽電池の絶縁基板全体とした上で、接続孔群全体の周囲の透明電極層(第二電極層)を分離して、接続孔では、第一電極層(図14の裏面電極層23a)と第三電極層と第四電極層(図14の背面電極層23b、26)のみが電気的に接続されるように構成した。
 しかし、接続孔での電流集中を防ぐために接続孔を複数形成し、その周囲の透明電極層を分離すると、その分離した領域内は発電に寄与しない領域になってしまうという問題がある。
 また、複数の集電孔(図14の第1の貫通孔27)での電流の流れの均一性が向上して電力損失を大幅に低減するために、特許文献2のように、各単位太陽電池の透明電極層(第二電極層)の全体にわたって集電孔を分散配置するようにすれば、電流が高抵抗の透明電極層(第二電極層)を流れる経路を短縮するように構成できるが、絶縁性基板の非受光面側に成膜した第三電極層と第四電極層(図14の背面電極層)に形成する第二線状除去部(図14の第2パターニングライン30)を屈曲形状とする必要がある。この第二線状除去部は、レーザパターニングで形成するが、屈曲部でレーザ照射が過剰になり、絶縁性基板を介して、光電変換層に結晶化や損傷の影響を与えて、リークが発生する。そこで、この屈曲部を接続孔群周囲の透明電極層を分離した領域内で形成する構成とすれば、光電変換層が結晶化や損傷をしても、その上の透明電極層は、分離された発電に寄与せず、電気的に接続されている部分ではないので、リークにはならない。
 しかし、第二線状除去部の屈曲部分を、透明電極層の分離領域に位置されるために、透明電極層の分離領域が広くなり、発電に寄与しない透明電極層の分離部がさらに広くなるという問題がある。
 特許文献2に記載の、第二線状除去部に屈曲部を設けず、図14のように第2パターニングライン30を直線として、かつ絶縁性基板22の全面に透明電極層を形成するようにするため、特許文献3のように、第2の貫通孔の内部に絶縁性樹脂を配置して、透明電極層と背面電極層とを第2の貫通孔を埋めた絶縁性樹脂により電気的に絶縁するようにし、第2の貫通孔を絶縁性基板の幅方向に分散配置する構成とした。
 しかし、第2の貫通孔を絶縁性樹脂で埋めて、その後に成膜する透明電極層25と第2の背面電極層26とを確実に絶縁するためには、第2の貫通孔、その第2の貫通孔内に配置する絶縁性樹脂に隙間が無いようにする必要があり、リークを防ぐために第2の貫通孔より広い範囲に絶縁性樹脂を塗布あるいは充填すると、第2の貫通孔の間隔を小さくできないという問題がある。また、絶縁性樹脂を、第2の貫通孔に塗布あるいは充填する製造工程が複雑かつ非効率な作業であり、第2の貫通孔の数が増えるほど、その作業には、時間と労力を要するという問題がある。
 本発明は、このような課題に着目してなされたものであり、薄膜太陽電池において、集電孔や接続孔の形成位置が制限されることを防止するとともに、薄膜太陽電池を形成する絶縁性基板全体が発電面積となるようにして、発電面積ロスをなくし、さらに、複数の接続孔と集電孔での電流の流れの均一性を向上して電力損失を大幅に低減するようにした、高効率な薄膜太陽電池を提供することを目的とする。
 上記従来技術の有する課題を解決するために、本発明は、絶縁性基板(2)の一方の面には、裏面電極層(3a)と光電変換層(4)と透明電極層(5)とが当該順で積層された積層体と、該積層体を、積層の一方向全体を分離する第一のパターニングライン(9,9a,9b)とを形成し、絶縁性基板(2)の他方の面には、背面電極層(3b,6)と、背面電極層(3b,6)の一方向全体でかつ前記第一のパターニングライン(9,9a,9b)に平行な方向に分離する第二のパターニングライン(10,10a,10b)を形成し、第一のパターニングライン(9,9a,9b)と第二のパターニングライン(10,10a,10b)とが、絶縁性基板(2)を介して、互い違いに形成することにより絶縁性基板(2)の両面に形成(積層)した層が複数のユニットセル(UC)に分割され、透明電極層(5)と背面電極層(3b,6)とが、絶縁性基板(2)を貫通する第1の貫通孔(集電孔7)を介して電気的に接続され、裏面電極層(3a)と背面電極層(3b,6)とが、絶縁性基板(2)を貫通する第2の貫通孔(接続孔8)を介して電気的に接続され、隣接するユニットセルが直列接続されている薄膜太陽電池において、第一のパターニングライン(9,9a,9b)と第二のパターニングライン(10,10a,10b)との間に、第2の貫通孔(接続孔8)を第一のパターニングライン(9,9a,9b)形成方向に複数配置する第一の領域を設け、隣接する第一のパターニングライン(9,9a,9b)と第二のパターニングライン(10,10a,10b)との間に、複数の第1の貫通孔(集電孔7)を分散配置する第二の領域を設け、 この第一の領域と第二の領域が交互に設けられており、すべてのそれぞれの第2の貫通孔(接続孔8)の周囲を、少なくとも囲む透明電極層(5)が除去されてなる分離領域を設けている構成とする。
 そして、第一の領域には、第2の貫通孔(接続孔8)が一列に複数個等間隔に配置され、第2の貫通孔(接続孔8)に接しない幅で第一の領域を形成するように第一のパターニングライン(9,9b)と第二のパターニングライン(10,10b)を形成してなり、第二の領域全体に、複数の第1の貫通孔(集電孔7)が分散配置する構成とすることができる(例えば図1,図4)。
 さらに、一列に複数個等間隔に配置され第2の貫通孔(接続孔8)の間に、第1の貫通孔(集電孔7)を有し、第一の領域に第2の貫通孔(接続孔8)のみが存在するように、第一のパターニングライン(9b)または第二のパターニングライン(10b)のいずれかを屈曲させるように構成することもできる(例えば図7,図8)。
 また、第一の領域には、第2の貫通孔(接続孔8a)が複数個等間隔に複数列配置され、複数列の両側の第2の貫通孔(接続孔8a)に接しない幅で第一の領域を形成するように第一のパターニングライン(9a)と第二のパターニングライン(10a)を形成してなり、第二の領域全体に、複数の第1の貫通孔(集電孔7)が分散配置する構成とする(例えば図5,図6)。
 そして、第一の領域の複数列配置された第2の貫通孔(接続孔8)は、互いに千鳥状に配置するように構成することもできる。
 また、第二の領域全体分散配置する複数の第1の貫通孔(集電孔7)が、複数列をなした等間隔の千鳥状に配置するか、あるいは、複数列をなした等間隔の格子状に配置しているように構成することもできる。
 本発明による薄膜太陽電池によれば、絶縁性基板2全体に透明電極層5を形成し、薄膜太陽電池1の幅方向に、第2の貫通孔(接続孔)8を複数並べて形成し、領域全体に第1の貫通孔(集電孔)7を分散配置するようにすることで、発電面積ロスを最小化したうえで、本実施形態による第2の貫通孔(接続孔)8の配置により、発生電流を効率よく分散させ、かつ電流経路を短くすることができるため、直列抵抗成分を低減することができ、本実施形態による第1の貫通孔(集電孔)7配置構成で、抵抗の高い透明電極層5で電流が流れる経路を大幅に短縮することでき、透明電極層5における電力損失(集電ロス)を低減できるので、太陽電池としての出力向上を図ることができる。
本発明の第1実施形態による薄膜太陽電池の平面図である。 本発明に係る図1の断面図であり、(a)はE-E線断面図、(b)は(a)におけるHの拡大図である。 本発明に係る図1の断面図であり、(a)はG-G線断面図であり、(b)は(a)におけるJの拡大図(第1実施形態)である。 本発明の第2実施形態による薄膜太陽電池の平面図である。 本発明の第3実施形態による薄膜太陽電池の平面図である。 本発明の第4実施形態による薄膜太陽電池の平面図である。 本発明の第5実施形態による薄膜太陽電池の平面図である。 本発明の第6実施形態による薄膜太陽電池の平面図である。 本発明の第2実施形態の変形例による薄膜太陽電池の平面図である。 本発明の第4実施形態の第1変形例による薄膜太陽電池の平面図である。 本発明の第4実施形態の第2変形例による薄膜太陽電池の平面図である。 本発明の第4実施形態の第3変形例による薄膜太陽電池の平面図である。 本発明の第4実施形態の第4変形例による薄膜太陽電池の平面図である。 従来の薄膜太陽電池の平面図である。 (a)は図14のA-A線断面図であり、(b)は(a)におけるCの拡大図である。 (a)は図14のB-B線断面図であり、(b)は、(a)におけるDの拡大図である。
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
(第1実施形態)
 図1は、第1実施形態に係る薄膜太陽電池の平面図であり、図1の(a)は受光面側から見た平面図で、(b)は非受光面(裏面)側から見た平面図である。また、図2の(a)は、図1のE-E線断面図であり、(b)は、(a)におけるH部の拡大図である。そして、図3の(a)は、図1のG-G線断面図であり、(b)は、(a)におけるJの拡大図である。
 図1に示すように、本発明の実施形態に係る薄膜太陽電池1は、複数の第1の貫通孔(集電孔)7と、第2の貫通孔(接続孔)8が設けられており、薄膜太陽電池1の表面側(受光面側)が第1のパターニングライン9で、複数に分割した単位太陽電池を形成している。この第1のパターニングライン9は、第1の貫通孔7と第2の貫通孔8とのまとまりで区切るように、構成している。また、第1のパターニングライン9で区切られた位置に対して、第2の貫通孔8の列を挟んで対向する位置の薄膜太陽電池1の裏面側(非受光面側)に、第2パターニングライン10が設けられて分割する構成となっている。
 本実施形態の特徴として、図1で示す本発明の実施形態に係る薄膜太陽電池1と、従来の図14に示す薄膜太陽電池21との平面図での相違点は、図14では、薄膜太陽電池21の両側に透明電極層25を成膜しない領域が存在したが、図1においては、そのような箇所は無く、全面に透明電極層(5)が存在する点にある。
 そして、従来の図14に示す薄膜太陽電池21では、第2の貫通孔(接続孔)28が、薄膜太陽電池21の幅方向(図16(a)断面の方向)の両側の、透明電極層25が成膜されていない領域で、第1のパターニングライン29と第2のパターニングライン30で囲まれた位置のみに配置しているが、図1においては、第2の貫通孔(接続孔)8は、薄膜太陽電池1の幅方向(図3(a)断面の方向)に、一列に並んで複数配置されており、この領域には、透明電極層5が成膜されている点である。
 さらに、従来の図14に示す薄膜太陽電池21では、第1の貫通孔(集電孔)7が、透明電極層25が成膜されている発電領域で、薄膜太陽電池21の幅方向(図15(a)断面の方向)に一列に並んで複数配置されているが、図1においては、第1のパターニングライン9と第2のパターニングライン10で区切られた領域で、第2の貫通孔(接続孔)8が形成されていない領域全体に、第1の貫通孔(集電孔)7を分散配置されている点である。
 このように、絶縁性基板2全体に透明電極層5を形成し、薄膜太陽電池1の幅方向に、第2の貫通孔(接続孔)8を複数並べて形成し、領域全体に第1の貫通孔(集電孔)7を分散配置するようにすることで、発電面積ロスを最小化したうえで、本実施形態による第2の貫通孔(接続孔)8の配置により、発生電流を効率よく分散させ、かつ電流経路を短くすることができるため、直列抵抗成分を低減することができ、本実施形態による第1の貫通孔(集電孔)7配置構成で、抵抗の高い透明電極層5で電流が流れる経路を大幅に短縮することでき、透明電極層5における電力損失(集電ロス)を低減できるので、太陽電池としての出力向上を図ることができる。
 図1の第1実施形態では、それぞれの第2の貫通孔(接続孔)8の周囲を取り巻くように、透明電極層除去部16が形成されている。すなわち、図3(b)の断面図に示すように、第2の貫通孔(接続孔)8の周囲は、透明電極層5が除去された構成となっているが、詳細は図3の説明で述べる。
 次に、本発明の第1実施形態による薄膜太陽電池1の断面構造について、図2と図3により、説明する。
 本実施形態の薄膜太陽電池1は、絶縁性基板2を備えている。この絶縁性基板2は、フィルム材料から形成されており、例えば、ポリイミドやポリアミドイミド又はポリエチレンナフタレート、あるいはアラミド等の材料から形成されている。
 図2に示すように、絶縁性基板2の両面(受光面側と非受光面側)には、Ag等の金属からなる金属電極層3が形成されている。ここで、絶縁性基板2のF側である受光側面上の金属電極層3は、裏面電極層3aとして機能し、絶縁性基板2のR側である非受光側面上の金属電極層3は、第1の背面電極層3bとして機能する。
 そして、裏面電極層3a上には、光電変換層4と透明電極層5を当該順で積層し、絶縁性基板2の他方の面上の第1の背面電極層3b上には、第2の背面電極層6を積層する。
 図2(b)の第1の貫通孔(集電孔)7においては、その孔の内面(側壁部)において、透明電極層5と第2の背面電極層6が電気的に接続している。
 次に、第2の貫通孔(接続孔)8においては、図3に示すように、絶縁性基板2のF側である受光側面上にある裏面電極層3には、光電変換層4と透明電極層5とが当該順で積層されている。そして、第2の貫通孔(接続孔)8の外周において、透明電極層5が除去された透明電極層除去部16を設ける。この透明電極層除去部16は、透明電極層5に接してあるいは図示しない界面層を介して積層されている光電変換層4の一部までを除去することで、導電性を有する透明電極層5を完全に取り除くように構成している。
 本発明の第1実施形態による薄膜太陽電池1おいては、図1(a)のように、透明電極層除去部16が、第2の貫通孔(接続孔)8の周囲を取り巻くように、第2の貫通孔8(接続孔)と同心円状の範囲を除去してなる形状をしているが、これに限定されるものでなく、第2の貫通孔(接続孔)8とは中心が異なる円や楕円、正方形、矩形あるいは多角形のような形状からなる範囲を除去するように構成してもよく、特に形成形状は限定されない。また、第2の貫通孔(接続孔)8の孔内面や、第2の貫通孔(接続孔)8の周囲の透明電極層5を、レーザあるいは、ブラストによって除去しても良いし、マスクをして部分的に成膜されない領域を形成しても良いし、酸素プラズマによって、透明電極層5を高抵抗化しても良い。
 すなわち、図3(b)の構成によって、絶縁性基板2のF側で、第2の貫通孔8周囲の透明電極層5と、第2の貫通孔(接続孔)8の孔の内面(側壁部)から絶縁性基板2のR側である非受光側面上につながって形成されている、第2の背面電極層6と、電気的に絶縁分離する。
 また、図1の第1実施形態では、分散配置している複数の第1の貫通孔(集電孔)7は、各ユニットセル(UC)内の第1の貫通孔(集電孔)7配置領域内に、千鳥格子状に配置されている。この場合、薄膜太陽電池1の幅方向に一定間隔で並ぶ第1の貫通孔(集電孔)7の列を、該幅方向に直交する方向に一定間隔で複数設けるとともに、奇数列と偶数列とを前記幅方向に前記一定間隔の半分だけずらずことによって複数の第1の貫通孔(集電孔)7を千鳥格子状に配置するのが好ましい。
(第2実施形態)
 複数の第1の貫通孔(集電孔)7の分散配置は、各ユニットセル(UC)内の第1の貫通孔(集電孔)7配置領域内に、ほぼ一定間隔で格子状に配置することもできる。この第2実施形態による薄膜太陽電池の平面図を、図4に示す。図4は、薄膜太陽電池11を、受光面から見た平面図であり、第1の貫通孔(集電孔)7が格子状に配置されている以外は、図1の第1実施形態と同じである。
(第3実施形態)
 次に、別の実施形態として、本発明の第3実施形態による薄膜太陽電池の平面図を図5に示す。ここで、図5の(a)は受光面側から見た平面図で、(b)は非受光面(裏面)側から見た平面図である。
 第3実施形態と、図1の第1実施形態の相違点は、図5に示す薄膜太陽電池12の幅方向に配置する第2の貫通孔(接続孔)8aを、2列とし、それぞれの列で、複数一定間隔で並んだ第2の貫通孔(接続孔)8aを、列間で半分だけずらずことによって、複数の第2の貫通孔(接続孔)8aを千鳥格子状に配置した例である。
 それぞれの第2の貫通孔(接続孔)8aは、第1実施形態や第2実施形態と同様に、その周囲を取り巻くように、透明電極層除去部16aが形成されている。
 この複数の第2の貫通孔(接続孔)8aは、絶縁性基板2の受光面側に形成する第1のパターニングライン9aと、絶縁性基板2の非受光面側に形成する第2のパターニングライン10aとの間の領域に形成し、複数の第2の貫通孔(接続孔)8aが形成されていない、第1のパターニングライン9aと第2のパターニングライン10aの間の領域に、複数の第1の貫通孔(集電孔)7を千鳥格子状に分散配置するものである。
 この複数の第1の貫通孔(集電孔)7を千鳥格子状に分散配置することで、発生電流を、効率よく分散させて、電流経路も短くすることができるため、直列抵抗成分を低減できる。
(第4実施形態)
 図5の第3実施形態の薄膜太陽電池12における、千鳥格子状に分散配置した複数の第1の貫通孔(集電孔)7が、格子状に配置した例を、本発明の第4実施形態による薄膜太陽電池の平面図として、図6に示す。
 図6は、薄膜太陽電池13を、受光面から見た平面図であり、第1の貫通孔(集電孔)7が格子状に配置されている以外は、図5の第3実施形態と同じである。
(第5実施形態)
 次に、別の実施形態として、本発明の第5実施形態による薄膜太陽電池の平面図を図7に示す。ここで、図7の(a)は受光面側から見た平面図で、(b)は非受光面(裏面)側から見た平面図である。
 第5実施形態と、図1の第1実施形態の相違点は、図7に示す薄膜太陽電池14の幅方向に複数一定間隔で並んだ第2の貫通孔(接続孔)8の間の同一列上の中間に、第1の貫通孔(集電孔)7を配置し、次の列は、第1の貫通孔(集電孔)7のみを配置して、第2の貫通孔(接続孔)8を配置した列の第2の貫通孔(接続孔)8間の第1の貫通孔(集電孔)7に対して、千鳥格子状に分散配置するように構成したことである。
 図7の配置でも、複数の第2の貫通孔(接続孔)8は、絶縁性基板2の受光面側に形成する第1のパターニングライン9bと絶縁性基板2の非受光面側に形成する第2のパターニングライン10bとの間の領域に形成する必要があるが、本発明の第5実施形態(図5)では、等間隔に一列に並んだ第2の貫通孔(接続孔)8同士の間に、第1の貫通孔(集電孔)7が配置されているので、第2のパターニングライン10bは、第1の貫通孔(集電孔)7と第2の貫通孔(接続孔)8の間を屈曲させてジグザグなパターンとして形成する必要がある。しかしながら、このような構成とすることで、第1実施形態~第4実施形態よりも、抵抗の高い透明電極層5で電流が流れる経路を、さらに大幅に短縮することでき、透明電極層5における電力損失(集電ロス)の一層の低減が図れる。
(第6実施形態)
 図7の第5実施形態の薄膜太陽電池14における、千鳥格子状に分散配置した複数の第1の貫通孔(集電孔)7が、格子状に配置した例を、第6実施形態による薄膜太陽電池の平面図として、図8に示す。
 図8の(a)は、薄膜太陽電池15を、受光面から見た平面図であり、(b)は非受光面(裏面)側から見た平面図である。ここで、第1の貫通孔(集電孔)7が格子状に配置されている構成であることと、第2のパターニングライン10bの屈曲部に対応する受光面側に、分離部17を設けている点以外は、図7の第5実施形態と同じである。
 屈曲部を複数有する第2のパターニングライン10bは、レーザパターニングで形成するが、この第2のパターニングライン10b形成時に、屈曲部では、レーザ照射部のスキャンが、瞬間的に遅くなるか止まることになるので、レーザ照射が過剰になり、絶縁性基板2を介して、光電変換層4に結晶化や損傷の影響を与える可能性が高い。そして、光電変換層4に結晶化や損傷が発生すると、透明電極層5と裏面電極層3aの間が導通してリークが起こる。
 このため、絶縁性基板2の非受光面側に形成する第2のパターニングライン10bの屈曲部に対応する、絶縁性基板2を介して受光面側に形成している、裏面電極層3aと光電変換層4と透明電極層5のうち、少なくとも透明電極層5を分離部17として除去することで、その箇所の光電変換層が結晶化や損傷をしても、その上の透明電極層は、分離された発電に寄与せず、電気的に接続されている部分ではないので、リークにはならない。
 この分離部17は、全体を掘り込む除去をしても良いし、線状の除去であっても良く、図8では、円として記載したが、その形状は限定されず、三角形や四角形など、様々な形状とすることができる。
 次に、それぞれの第2の貫通孔(接続孔)8,8aの周囲を取り巻くように、透明電極層除去部16,16aを形成する時の透明電極層除去領域の変形例について説明する。
 透明電極層除去領域は、第2の貫通孔(接続孔)8,8aの周囲全体を除去対象とすることが必要であるが、その除去面積は、小さい方が発電効率が高くなる。しかし、第2の貫通孔(接続孔)8,8aの数は多く、その周囲のみを除去することは、その正確性と処理時間による製造コストが課題となる可能性がある。そこで、複数の第2の貫通孔(接続孔)8,8aを、1つの透明電極層除去領域内に位置させ、製造コストを抑えるようにすることもできる。
 まず、本発明の第2実施形態(図4)の変形例による薄膜太陽電池11aを、図9に示す。この図9に示す変形例では、2つの第2の貫通孔(接続孔)8b,8cを、透明電極層除去部16b内に位置するようにグループ化した例である。
 次に、第2の貫通孔(接続孔)8aを2列とした本発明の第4実施形態(図6)に対する4つの変形例を、図10~図13に示す。
 第1変形例(図10)では、2つの第2の貫通孔(接続孔)8d,8eを、1つの透明電極層除去部16c内に位置するようにグループ化している。
 そして、第2変形例(図11)では、第2の貫通孔(接続孔)8dと8g、第2の貫通孔(接続孔)8eと8fとが、それぞれ同列で隣接して並び、第2の貫通孔(接続孔)8d,8eと第2の貫通孔(接続孔)8f,8gとは、並びの傾斜方向が互いに対称となって配置している。そして、第2の貫通孔(接続孔)8d,8eが透明電極層除去部16cに、第2の貫通孔(接続孔)8f,8gが透明電極層除去部16eによって、グループ化している。
 また、第3変形例(図12)では、第2の貫通孔(接続孔)8hと8i、第2の貫通孔(接続孔)8jと8kとが、それぞれ同列で隣接して並び、そして、第2の貫通孔(接続孔)8hと8iが透明電極層除去部16eの領域内に位置し、第2の貫通孔(接続孔)8jと8kが透明電極層除去部16fの領域内に位置するようにグループ化している。
 さらに、第4変形例(図13)では、4つの第2の貫通孔(接続孔)8m,8n,8p,8qが、正方形をなすように配置しており、透明電極層除去部16g内に配置するようにグループ化した例である。
1,11,11a,12,13,13a,13b,13c,13d,14,15,21 薄膜太陽電池
2,22 絶縁性基板
3,23 金属電極層
3a,23a 裏面電極層
3b,23b 第1の背面電極層
4,24 光電変換層
5,25 透明電極層
6,26 第2の背面電極層
7,27 第1の貫通孔(集電孔)
8,8a,8b,8c,8d,8e,8f,8g,8h,8i,8j,8k,8m,8n,8p,8q,28, 第2の貫通孔(接続孔)
9,9a,9b,29 第1のパターニングライン
10,10a,10b,30 第2のパターニングライン
16,16a,16b,16c,16d,16e,16f,16g透明電極層除去部
17 分離部
 

Claims (7)

  1.  絶縁性基板の一方の面には、裏面電極層と光電変換層と透明電極層とが当該順で積層された積層体と、該積層体を、積層の一方向全体を分離する第一のパターニングラインとを形成し、
     前記絶縁性基板の他方の面には、背面電極層と、
     該背面電極層の一方向全体でかつ前記第一のパターニングラインに平行な方向に分離する第二のパターニングラインを形成し、
     前記第一のパターニングラインと前記第二のパターニングラインとが、前記絶縁性基板を介して、互い違いに形成することにより前記絶縁性基板の両面に形成した層が複数のユニットセルに分割され、
     前記透明電極層と前記背面電極層とが、前記絶縁性基板を貫通する第1の貫通孔を介して電気的に接続され、前記裏面電極層と前記背面電極層とが、前記絶縁性基板を貫通する第2の貫通孔を介して電気的に接続され、隣接するユニットセルが直列接続されている薄膜太陽電池において、
     前記第一のパターニングラインと前記第二のパターニングラインとの間に、前記第2の貫通孔を前記第一のパターニングライン形成方向に複数配置する第一の領域を設け、
     隣接する前記第一のパターニングラインと前記第二のパターニングラインとの間に、複数の前記第1の貫通孔を分散配置する第二の領域を設け、
     前記第一の領域と前記第二の領域が交互に設けられており、
     すべてのそれぞれの前記第2の貫通孔の周囲を、少なくとも囲む前記透明電極層が除去されてなる分離領域を設けている
    ことを特徴とする薄膜太陽電池。
  2.  前記第一の領域には、前記第2の貫通孔が一列に複数個等間隔に配置され、
     前記第2の貫通孔に接しない幅で前記第一の領域を形成するように前記第一のパターニングラインと前記第二のパターニングラインを形成してなり、
     前記第二の領域全体に、複数の前記第1の貫通孔が分散配置する構成である
    ことを特徴とする請求項1に記載の薄膜太陽電池。
  3.  一列に複数個等間隔に配置され前記第2の貫通孔の間に、前記第1の貫通孔を有し、前記第一の領域に前記第2の貫通孔のみが存在するように、前記第一のパターニングラインまたは前記第二のパターニングラインのいずれかを屈曲させてなることを特徴とする請求項2に記載の薄膜太陽電池。
  4.  前記第一の領域には、前記第2の貫通孔が複数個等間隔に複数列配置され、
     前記複数列の両側の前記第2の貫通孔に接しない幅で前記第一の領域を形成するように前記第一のパターニングラインと前記第二のパターニングラインを形成してなり、
     前記第二の領域全体に、複数の前記第1の貫通孔が分散配置する構成である
    ことを特徴とする請求項1に記載の薄膜太陽電池。
  5.  前記第一の領域の複数列配置された前記第2の貫通孔は、互いに千鳥状に配置していることを特徴とする請求項4に記載の薄膜太陽電池。
  6.  前記第二の領域全体分散配置する複数の前記第1の貫通孔が、複数列をなした等間隔の千鳥状に配置していることを特徴とする請求項1ないし5のいずれかに記載の薄膜太陽電池。
  7.  前記第二の領域全体分散配置する複数の前記第1の貫通孔が、複数列をなした等間隔の格子状に配置していることを特徴とする請求項1ないし5のいずれかに記載の薄膜太陽電池。
PCT/JP2013/001534 2012-03-13 2013-03-08 薄膜太陽電池 WO2013136752A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-055839 2012-03-13
JP2012055839 2012-03-13

Publications (1)

Publication Number Publication Date
WO2013136752A1 true WO2013136752A1 (ja) 2013-09-19

Family

ID=49160684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001534 WO2013136752A1 (ja) 2012-03-13 2013-03-08 薄膜太陽電池

Country Status (1)

Country Link
WO (1) WO2013136752A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117542914A (zh) * 2023-11-23 2024-02-09 江西沐邦高科股份有限公司 太阳能电池组件及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031514A (ja) * 1998-07-15 2000-01-28 Fuji Electric Co Ltd 薄膜太陽電池およびその製造方法
JP2012039038A (ja) * 2010-08-11 2012-02-23 Fuji Electric Co Ltd 薄膜太陽電池及びその製造方法
WO2012108231A1 (ja) * 2011-02-09 2012-08-16 富士電機株式会社 薄膜太陽電池及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031514A (ja) * 1998-07-15 2000-01-28 Fuji Electric Co Ltd 薄膜太陽電池およびその製造方法
JP2012039038A (ja) * 2010-08-11 2012-02-23 Fuji Electric Co Ltd 薄膜太陽電池及びその製造方法
WO2012108231A1 (ja) * 2011-02-09 2012-08-16 富士電機株式会社 薄膜太陽電池及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117542914A (zh) * 2023-11-23 2024-02-09 江西沐邦高科股份有限公司 太阳能电池组件及其制造方法

Similar Documents

Publication Publication Date Title
JP3223119U (ja) 太陽電池セル及び太陽電池モジュール
US5421908A (en) Thin-film solar cell and method for the manufacture thereof
US9377914B2 (en) Capacitively operating touch panel device
JP5469225B2 (ja) 太陽電池及び太陽電池モジュール
JP2019033303A (ja) 太陽電池モジュール
TW201308637A (zh) 光伏打電池
KR20120080599A (ko) 태양 전지 및 복수의 태양 전지의 조립체
CN113745365A (zh) 一种薄膜太阳能电池结构及其制备方法
JP4599099B2 (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
WO2013136752A1 (ja) 薄膜太陽電池
JP2008186928A (ja) 太陽電池および太陽電池モジュール
WO2024152580A1 (zh) 一种太阳能电池
JP5385890B2 (ja) 太陽電池モジュール及びその製造方法
US20110048529A1 (en) Solar cell
JP3186623U (ja) 太さが異なるバスバー電極を有する太陽電池
KR102581911B1 (ko) 후면 전극형 태양 전지 및 이를 포함하는 태양 전지 모듈
WO2010109567A1 (ja) 光電変換装置、太陽電池モジュール、及び光電変換装置の製造方法
CN116782668A (zh) 一种太阳能电池及其制作方法
JP2017152510A (ja) 太陽電池モジュールの製造方法及び太陽電池モジュール
JP6127173B2 (ja) 太陽電池
JP2011035270A (ja) 光電変換装置
WO2012172827A1 (ja) 薄膜太陽電池及びその製造方法
WO2013042417A1 (ja) 太陽電池モジュール及び太陽電池
CN203491272U (zh) 背接触电极太阳能电池
WO2011145206A1 (ja) 薄膜太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13761576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP