WO2010109567A1 - 光電変換装置、太陽電池モジュール、及び光電変換装置の製造方法 - Google Patents

光電変換装置、太陽電池モジュール、及び光電変換装置の製造方法 Download PDF

Info

Publication number
WO2010109567A1
WO2010109567A1 PCT/JP2009/006909 JP2009006909W WO2010109567A1 WO 2010109567 A1 WO2010109567 A1 WO 2010109567A1 JP 2009006909 W JP2009006909 W JP 2009006909W WO 2010109567 A1 WO2010109567 A1 WO 2010109567A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
layer
lower electrode
forming
conductive pattern
Prior art date
Application number
PCT/JP2009/006909
Other languages
English (en)
French (fr)
Inventor
竹中研介
Original Assignee
富士電機ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機ホールディングス株式会社 filed Critical 富士電機ホールディングス株式会社
Publication of WO2010109567A1 publication Critical patent/WO2010109567A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/077Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells the devices comprising monocrystalline or polycrystalline materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Definitions

  • the present invention relates to a photoelectric conversion device, a solar cell module, and a method for manufacturing a photoelectric conversion device.
  • a photoelectric conversion device is a device that converts light into electricity by a photoelectric conversion layer.
  • the photoelectric conversion layer is divided into a plurality of photoelectric conversion elements on the substrate.
  • a plurality of photoelectric conversion elements are connected in series on the substrate to form one photoelectric conversion device (see, for example, Patent Documents 1 and 2).
  • Patent Document 1 The technology described in Patent Document 1 is as follows. First, a first groove is formed in a first electrode provided on the substrate. Next, a non-single-crystal semiconductor layer is formed in the first groove and on the first electrode. Next, a second groove that penetrates the non-single-crystal semiconductor layer and the first electrode is formed next to the first groove, and the second groove is formed from the second groove to the top of the non-single-crystal semiconductor layer. The electrode is formed. Next, a third groove located on the opposite side of the first groove is formed on the second electrode through the second groove. Thereby, the non-single-crystal semiconductor layer is divided into a plurality of photoelectric conversion elements.
  • Patent Document 2 The technology described in Patent Document 2 is as follows. First, an insulating layer is formed on a side surface facing the adjacent photoelectric conversion element among the photoelectric conversion elements including the first electrode layer, the photoelectric conversion layer, and the second electrode layer. Next, a conductive layer is formed over the insulating layer, thereby connecting the second electrode layer of the photoelectric conversion element and the first electrode layer of the adjacent photoelectric conversion element.
  • an area for providing the connection structure in a plan view is required. This region is an invalid area that does not contribute to power generation of the photoelectric conversion device.
  • the present invention has been made in view of the above circumstances, and its object is to manufacture a photoelectric conversion device, a solar cell module, and a photoelectric conversion device having a novel structure for connecting a plurality of photoelectric conversion elements. It is to provide a method.
  • the photoelectric conversion device includes a first photoelectric conversion element and a second photoelectric conversion element.
  • the first photoelectric conversion element is formed on an insulating substrate, and is formed by stacking a first lower electrode, a first photoelectric conversion layer, and a first upper electrode in this order.
  • the second photoelectric conversion element is formed on the substrate, and is formed by laminating a second lower electrode, a second photoelectric conversion layer, and a second upper electrode in this order.
  • the first photoelectric conversion element and the second photoelectric conversion element are arranged side by side along the first direction, and are separated from each other by a separation groove extending in the second direction.
  • the second lower electrode includes a first extending portion that extends out of the second photoelectric conversion layer from a side surface parallel to the first direction.
  • a first insulating layer is provided on a side surface of the first photoelectric conversion element facing the extending direction of the first extending portion. And the 1st connection part which connects the said 1st upper electrode and the said 1st extending
  • the solar cell module according to the present invention has at least a plurality of the photoelectric conversion devices described above.
  • the photoelectric conversion devices are connected to each other in series.
  • the manufacturing method of the photoelectric conversion device includes the following steps. First, a first photoelectric conversion element in which a first lower electrode, a first photoelectric conversion layer, and a first upper electrode are stacked in this order on a substrate, a second lower electrode, a second photoelectric conversion layer, and a second upper electrode are provided. The second photoelectric conversion elements stacked in this order are formed side by side along the first direction. At this time, the 1st extending
  • a 1st insulating layer is formed in the side surface which has faced the extending
  • a first connection portion that connects the first upper electrode and the first extending portion is formed on the first insulating layer.
  • a photoelectric conversion device having a novel structure for connecting a plurality of photoelectric conversion elements and a method for manufacturing the photoelectric conversion device can be provided.
  • FIG. 3 is a cross-sectional view taken along the line AA ′ of FIG.
  • FIG. 3 is a cross-sectional view taken along the line BB ′ of FIG.
  • FIG. 3 is a cross-sectional view taken along the line CC ′ of FIG.
  • FIG. 3 which shows the manufacturing method of a photoelectric conversion apparatus.
  • FIG. 3 is a perspective view which shows the manufacturing method of a photoelectric conversion apparatus.
  • FIG. 1 is a perspective view showing the configuration of the photoelectric conversion apparatus according to the first embodiment.
  • FIG. 2 is a plan view of the photoelectric conversion device shown in FIG. 3 is a cross-sectional view taken along line AA ′ of FIG. 2
  • FIG. 4 is a cross-sectional view taken along line BB ′ of FIG. 2
  • FIG. 5 is a cross-sectional view taken along line CC ′ of FIG.
  • This photoelectric conversion device includes an insulating substrate 10, and a first photoelectric conversion element 101 and a second photoelectric conversion element 102 formed on the substrate 10.
  • the first photoelectric conversion element 101 includes a first lower electrode 111, a first photoelectric conversion layer 121, and a first upper electrode 131.
  • the second photoelectric conversion element 102 includes a second lower electrode 112, a second photoelectric conversion layer 122, and a second upper electrode 132.
  • the first photoelectric conversion element 101 and the second photoelectric conversion element 102 are arranged side by side along the first direction (left-right direction in the figure), and are divided to extend in the second direction (backward direction in the figure).
  • the grooves 400 are separated from each other.
  • the second lower electrode 112 includes a first extending portion 112 a extending from the side surface parallel to the first direction to the outside of the second photoelectric conversion layer 122.
  • a first insulating layer 201 is formed on the side surface of the first photoelectric conversion element 101 that faces the extending direction of the first extending portion 112a.
  • the first upper electrode 131 and the first extending portion 112 a are connected by the first connecting portion 301.
  • the first connection portion 301 connects the first upper electrode 131 and the first extending portion 112a via the first insulating layer 201.
  • This photoelectric conversion device is used for a solar cell module, for example.
  • the solar cell module has a structure in which a plurality of photoelectric conversion devices are connected in series, and the end of the solar cell module can be taken out as a connection terminal or the like and connected to another device or the like.
  • the entire surface of the photoelectric conversion device is sealed with an adhesive or the like by a weather-resistant base material or the like.
  • the substrate 10 is made of, for example, polyimide, polyamide, polyimideamide, polyethylene naphthalate (PEN), polyethylene terephthalate (PET), polyetherimide (PEI), polyetheretherketone (PEEK), polyethersulfone (PES), acrylic, aramid.
  • it may be an insulating substrate having no flexibility, such as a substrate having an insulating layer formed on a metal substrate or a glass substrate.
  • the thickness of the substrate 10 is, for example, 10 ⁇ m or more and 1 mm or less.
  • the first lower electrode 111 and the second lower electrode 112 are made of the same material, for example, a metal layer such as Ag or Al, or ITO (Indium Thin Oxide), In 2 O 3 , IZO (Indium Zinc Oxide), ZnO, TiO 2. , SnO 2 or other transparent electrode layer.
  • a metal layer such as Ag or Al, or ITO (Indium Thin Oxide), In 2 O 3 , IZO (Indium Zinc Oxide), ZnO, TiO 2. , SnO 2 or other transparent electrode layer.
  • the first photoelectric conversion layer 121 and the second photoelectric conversion layer 122 have the same structure.
  • the same structure includes not only the completely same structure but also a structure having the same planar shape in design but having a slight deviation due to a processing error.
  • the first photoelectric conversion layer 121 and the second photoelectric conversion layer 122 are, for example, a first conductivity type (for example, n-type) silicon layer, an i-type silicon layer, and a second conductivity type (for example, p-type) silicon layer once in this order. Or it has the structure laminated
  • the silicon layer here is, for example, a microcrystalline silicon layer, but may be an amorphous silicon layer, a polycrystalline silicon layer, or a single crystal silicon layer.
  • the thickness of the first conductivity type silicon layer is, for example, 1 nm to 1 ⁇ m
  • the thickness of the i-type silicon layer is, for example, 10 nm to 1 mm
  • the thickness of the second conductivity type silicon layer is, for example, 1 nm to 1 ⁇ m. is there.
  • a silicon substrate may be used as the i-type silicon layer.
  • a chalcopyrite thin film semiconductor, an organic film semiconductor, or an oxide semiconductor carrying a dye may be used instead of the silicon layer.
  • first photoelectric conversion layer 121 and the second photoelectric conversion layer 122 include a multi-junction structure having a plurality of nip junctions, pin junctions, or pn junctions, for example, a first conductivity type (eg, n-type) silicon layer, an i-type silicon layer. , And a second conductivity type silicon layer (for example, p-type) may be laminated a plurality of times in this order. Further, a tunnel junction layer or an intermediate reflection structure may be provided between the layers of each junction.
  • the first upper electrode 131 and the second upper electrode 132 are made of the same material as each other, for example, transparent electrode layers such as ITO, In 2 O 3 , IZO, ZnO, TiO 2 , and SnO 2 .
  • the thickness of the first upper electrode 131 and the second upper electrode 132 is, for example, not less than 1 nm and not more than 1 ⁇ m.
  • the first insulating layer 201 is made of, for example, an insulating material having high transparency with respect to 300 nm to 1500 nm, such as a polymer material, an inorganic material, or an inorganic / organic composite material.
  • the thickness of the first insulating layer 201 is, for example, not less than 10 nm and not more than 100 ⁇ m. Even when a silicon substrate having a thickness of several hundreds ⁇ m is used as the i-type silicon layer, insulation can be ensured if the thickness of the first insulating layer 201 is about 100 ⁇ m.
  • the first connection portion 301 includes a first conductive pattern 321, a collector electrode layer 311, and a second conductive pattern 331.
  • the first conductive pattern 321 is provided on the opposite side of the first lower electrode 111 with the first insulating layer 201 interposed therebetween.
  • the collector electrode layer 311 extends from the first upper electrode 131 to the first conductive pattern 321 through the first insulating layer 201.
  • the second conductive pattern 331 connects the first conductive pattern 321 and the first extending portion 112a.
  • the first conductive pattern 321 is formed of the same material as the first lower electrode 111, for example, and the second conductive pattern 331 is formed of the same material as the collector electrode layer 311, for example.
  • the collector electrode layer 311 is, for example, a conductive layer in which Ti and Ag are laminated in this order, but may be a single layer film of a metal or alloy such as Ag, Al, or Ni, or may be a multilayer film of metal or alloy. May be. Further, the number of collector electrode layers 311 may be one, or two or more. Further, in the plan view, the collector electrode layer 311 may be a straight line or may not be a straight line. Further, the collector electrode layer 311 may be directly connected to the second conductive pattern 331.
  • the first photoelectric conversion layer 121 and the second photoelectric conversion layer 122 are arranged so that the planar shape is a quadrangle (including a square or a rectangle, for example) and the first side faces each other. Moreover, the 1st extending
  • the length of the 1st extending part 112a is 0.1 mm or more and 100 mm or less, for example.
  • the first photoelectric conversion layer 121 and the second photoelectric conversion layer 122 have the same shape.
  • the same structure includes not only the completely same structure but also a structure having the same planar shape in design but having a slight deviation due to a processing error.
  • the first photoelectric conversion layer 121 and the second photoelectric conversion layer 122 are arranged so that the planar shape is a rectangle and the long sides are opposed to each other.
  • the first extending portion 112a extends from the short side of the second photoelectric conversion layer 122 to the outside of the second photoelectric conversion layer 122 in plan view.
  • the first photoelectric conversion layer 121 and the second photoelectric conversion layer 122 have short sides located on the same straight line in plan view.
  • the rectangle in this embodiment and the same straight line include those having a slight shift due to processing errors.
  • the photoelectric conversion device further includes a third photoelectric conversion element 103 (second first photoelectric conversion element) on the substrate 10.
  • the third photoelectric conversion element 103 is located on the opposite side of the first photoelectric conversion element 101 via the second photoelectric conversion element 102, and includes a third lower electrode 113, a third photoelectric conversion layer 123, and a third upper part.
  • the electrode 133 is laminated in this order. That is, in plan view, the first photoelectric conversion element 101, the second photoelectric conversion element 102, and the third photoelectric conversion element 103 are arranged in this order along the first direction.
  • the third lower electrode 113 includes a second extending portion 113a.
  • the second extending portion 113a extends out of the third photoelectric conversion layer 123 from a portion of the third photoelectric conversion layer 123 that is located on the opposite side of the first extending portion 112a in plan view.
  • the length of the 2nd extending part 113a is 0.1 mm or more and 100 mm or less, for example.
  • the configuration of the third photoelectric conversion element 103 is substantially the same as the configuration of the first photoelectric conversion element 101 including the orientation.
  • the first photoelectric conversion layer 121, the second photoelectric conversion layer 122, and the third photoelectric conversion layer 123 have the same planar shape.
  • the same structure includes not only the completely same structure but also a structure having the same planar shape in design but having a slight deviation due to a processing error.
  • the length of the 3rd photoelectric converting layer 123 is 1 cm or more and 2 m or less, for example.
  • the first photoelectric conversion layer 121, the second photoelectric conversion layer 122, and the third photoelectric conversion layer 123 are, for example, rectangular.
  • the short side of the third photoelectric conversion layer 123 is located on the same straight line as the short sides of the first photoelectric conversion layer 121 and the second photoelectric conversion layer 122 in plan view. And a long side becomes 1 cm or more and 2 m or less, for example.
  • the second insulating layer 202 is provided on the side surface of the second photoelectric conversion element 102 facing the extending direction of the second extending portion 113a.
  • the second upper electrode 132 and the second extending portion 113a are connected to each other via the second connecting portion 302.
  • the second connection portion 302 has the same configuration as the first connection portion 301 and includes a third conductive pattern 322, a collector electrode layer 312, and a fourth conductive pattern 332.
  • the third conductive pattern 322 is provided on the opposite side of the second lower electrode 112 via the second insulating layer 202.
  • the collector electrode layer 312 extends from the second upper electrode 132 to the third conductive pattern 322 through the second insulating layer 202.
  • the fourth conductive pattern 332 connects the third conductive pattern 322 and the second extending portion 113a.
  • the third conductive pattern 322 is formed of the same material as the second lower electrode 112, for example, and the fourth conductive pattern 332 is formed of the same material as the collector electrode layer 312, for example.
  • the dividing grooves 400 are provided between the first photoelectric conversion element 101 and the second photoelectric conversion element 102 and between the second photoelectric conversion element 102 and the third photoelectric conversion element 103, respectively.
  • the width of the dividing groove 400 is, for example, 10 ⁇ m or more and 1 cm or less. However, the width of the dividing groove 400 may be 10 ⁇ m or more and 1 mm or less.
  • Each of the first photoelectric conversion element 101, the second photoelectric conversion element 102, and the third photoelectric conversion element 103 is smooth (for example, flush) with no irregularities formed on the side surface facing the dividing groove 400.
  • This method for manufacturing a photoelectric conversion device includes the following steps. First, the first photoelectric conversion element 101 and the second photoelectric conversion element 102 are formed on the substrate 10, and the first extending portion 112 a is formed on the second lower electrode 112 of the second photoelectric conversion element 102. Next, the first insulating layer 201 is formed on the side surface of the first photoelectric conversion element 101 facing the extending direction of the first extending portion 112a. Next, the first connection part 301 is formed.
  • the 3rd photoelectric conversion element 103 is also formed, and when forming the 1st extending
  • the second insulating layer 202 is also formed when the first insulating layer 201 is formed, and the second connecting portion 302 is also formed when the first connecting portion 301 is formed. Details will be described below.
  • a first conductive film 110 is formed on a substrate 10.
  • the first conductive film 110 includes a first lower electrode 111, a second lower electrode 112, a third lower electrode 113, a first extending portion 112 a, a second extending portion 113 a, and a first connecting portion 301 in a first step.
  • the conductive pattern 321 and the third conductive pattern 322 of the second connection portion 302 are formed.
  • the first conductive film 110 is formed by, for example, a sputtering method, a vacuum deposition method, a spray film formation method, an ink jet method, or a plating method.
  • the photoelectric conversion layer 120 is formed on the first conductive film 110 in a state where the film is covered with the film.
  • the photoelectric conversion layer 120 becomes the first photoelectric conversion layer 121, the second photoelectric conversion layer 122, and the third photoelectric conversion layer 123 by a process described later.
  • the photoelectric conversion layer 120 is formed by, for example, plasma CVD, but depending on the material, thermal CVD, heteroepitaxial growth, metal-induced solid phase growth, sputtering, vacuum deposition, plating, spray film formation, or It can also be formed using an inkjet method.
  • a second conductive film 130 is formed over the photoelectric conversion layer 120.
  • the second conductive film 130 becomes the first upper electrode 131, the second upper electrode 132, and the third upper electrode 133 through processes to be described later.
  • the division grooves 400 are formed in the stacked body of the first conductive film 110, the photoelectric conversion layer 120, and the second conductive film 130. Thereby, this laminated body is divided
  • a separation groove 402 for separating the first conductive pattern 321 and the third conductive pattern 322 from other portions is formed in the first conductive film 110.
  • the division grooves 400 and the separation grooves 402 are formed by, for example, a laser scribe method, but may be formed by a mechanical scribe method or an ultrasonic vibration processing method. In the example shown in the figure, the dividing groove 400 and the separating groove 402 reach the substrate 10. However, the division grooves 400 and the separation grooves 402 may not reach the substrate 10.
  • the width W (see FIG. 7) of the photoelectric conversion layer 120 is set as the sum L of the width (length) of the first photoelectric conversion element 101 and the width of the separation groove 402, and photoelectric conversion is performed when the separation groove 402 is formed.
  • the edge of the layer 120 may be removed.
  • the first insulating layer 201 and the second insulating layer 202 are formed in the separation groove 402.
  • the first insulating layer 201 and the second insulating layer 202 are formed, for example, by applying an insulating paste using a screen printing method or by an inkjet method.
  • the first insulating layer 201 and the second insulating layer 202 are formed only in necessary portions (designed portions).
  • the first insulating layer 201 and the second insulating layer 202 may be formed using a sputtering method or a vacuum evaporation method.
  • the first insulating layer 201 and the second insulating layer 202 are selectively formed by covering a portion that should not be formed by the mask pattern and performing a film formation process in that state. A film is formed.
  • the collector electrode layers 311 and 312 are formed, and the second conductive pattern 331 and the fourth conductive pattern 332 are formed.
  • the collector electrode layers 311 and 312, the second conductive pattern 331, and the fourth conductive pattern 332 may be formed by the same process. In this case, the collector electrode layers 311 and 312, the second conductive pattern 331, and the fourth conductive pattern 332 are formed of the same material.
  • the collector electrode layers 311 and 312, the second conductive pattern 331, and the fourth conductive pattern 332 are formed by, for example, a sputtering method, a vacuum evaporation method, or a spray film formation method. In this case, the collector electrode layers 311, 312, the second conductive pattern 331, and the fourth conductive pattern 332 are selected by covering a portion that should not be formed with a mask pattern, for example, and performing a film formation process in that state. Film is formed.
  • the collector electrode layers 311, 312, the second conductive pattern 331, and the fourth conductive pattern 332 may be formed in the same process by a screen printing method, an inkjet method, or an electron beam evaporation method using a mask.
  • a conductive film is not formed in a region other than the collector electrode layers 311 and 312, the second conductive pattern 331, and the fourth conductive pattern 332 (a region other than the designed portion).
  • the collector electrode layers 311 and 312, the second conductive pattern 331, and the fourth conductive pattern 332 may be formed by a plating method. In this case, growth nuclei are formed in regions where the collector electrode layers 311 and 312, the second conductive pattern 331, and the fourth conductive pattern 332 are to be formed, and then a plating process is performed.
  • the collector electrode layers 311 and 312 may be formed in a separate process from the second conductive pattern 331 and the fourth conductive pattern 332.
  • the collector electrode layers 311, 312, the second conductive pattern 331, and the fourth conductive pattern 332 are formed in two steps, for example, by repeating the above process twice.
  • the first photoelectric conversion element 101 and the second photoelectric conversion element 102 are arranged side by side along the first direction.
  • the first upper electrode 131 of the first photoelectric conversion element 101 and the second lower electrode 112 of the second photoelectric conversion element 102 are connected in series via the first connection portion 301.
  • the first connection unit 301 is provided not between the first photoelectric conversion element 101 and the second photoelectric conversion element 102 but outside the first photoelectric conversion element 101 and the second photoelectric conversion element 102.
  • the photoelectric conversion device according to this embodiment has a novel structure for connecting the first photoelectric conversion element 101 and the second photoelectric conversion element 102.
  • interval of the 1st photoelectric conversion element 101 and the 2nd photoelectric conversion element 102 can be narrowed. Thereby, the area of the invalid area of the photoelectric conversion device can be reduced. This effect becomes remarkable when the planar shape of the first photoelectric conversion element 101 and the second photoelectric conversion element 102 is designed as a rectangle, and the first connection portion 301 is provided on the side designed as the short side of the rectangle.
  • first photoelectric conversion element 101 and the second photoelectric conversion element 102 are separated from each other, it is only necessary to provide one dividing groove 400, so that the first photoelectric conversion element 101 and the second photoelectric conversion element 102 are separated. The number of processes can be reduced.
  • the third photoelectric conversion element 103 is provided on the substrate 10, the second upper electrode 132 of the second photoelectric conversion element 102, the third lower electrode 113 of the third photoelectric conversion element 103, and the second connection portion 302 are connected. Connected.
  • the second connection portion 302 is located on the opposite side to the first connection portion 301 with the second photoelectric conversion element 102 interposed therebetween. Since the third photoelectric conversion element 103 is substantially the same as the first photoelectric conversion element 101, a plurality of the first photoelectric conversion elements 101 and the second photoelectric conversion elements 102 are repeatedly formed on the substrate 10, and these are connected to the first connection.
  • the unit 301 and the second connection unit 302 can be used for serial connection. In this case, the output voltage of the photoelectric conversion device can be increased by connecting four or more photoelectric conversion elements in series.
  • the shape of the first photoelectric conversion element 101 and the second photoelectric conversion element 102 in a plan view is designed as a rectangle, and the first connection portion 301 and the second connection portion 302 are formed on the side designed as the short side of the rectangle. Is preferably provided.
  • the first connection part 301 and the second connection part 302 are provided on the side surface in the first direction of the first photoelectric conversion element 101 and the second photoelectric conversion element 102, that is, the side designed as the long side.
  • the ineffective area of the photoelectric conversion device can be reduced.
  • FIG. 10 is a perspective view showing the configuration of the photoelectric conversion apparatus according to the second embodiment.
  • the second conductive pattern 331 of the first connection portion 301 and the fourth conductive pattern 332 (not shown in the drawing) of the second connection portion 302 are illustrated in the first embodiment. Except for the point formed by the first conductive film 110 shown in FIGS. 6 and 7, the second embodiment is the same as the first embodiment.
  • the first conductive pattern 321 and the second conductive pattern 331 of the first connection portion 301 are formed integrally with the second lower electrode 112 of the second photoelectric conversion element 102. Further, the third conductive pattern 322 and the fourth conductive pattern 332 of the second connection portion 302 are formed integrally with the third lower electrode 113 of the third photoelectric conversion element 103.
  • the manufacturing method of this photoelectric conversion device is the same as that of the first embodiment except that the second conductive pattern 331 and the fourth conductive pattern 332 are formed in the same process as the first conductive pattern 321 and the third conductive pattern 322. It is the same as that of the manufacturing method of the photoelectric conversion apparatus concerning. Also according to this embodiment, the same effect as that of the first embodiment can be obtained.
  • FIG. 11, FIG. 12, FIG. 13 and FIG. 14 are perspective views showing a method for manufacturing a photoelectric conversion device according to the third embodiment.
  • This manufacturing method of the semiconductor device is the first implementation except that the photoelectric conversion layer 120 and the second conductive film 130 are formed after the division grooves 400 and the separation grooves 402 are formed in the first conductive film 110.
  • the configuration is the same as that of the semiconductor device manufacturing method according to the embodiment. Details will be described below.
  • the steps until the first conductive film 110 is formed are the same as those in the first embodiment, and thus description thereof is omitted.
  • the dividing groove 400 and the separation groove 402 are formed in the first conductive film 110.
  • the first lower electrode 111, the second lower electrode 112, the third lower electrode 113, the first extending portion 112a, the second extending portion 113a, the first conductive pattern 321, and the third conductive pattern 322 are formed.
  • the division groove 400 is located between the first lower electrode 111 and the second lower electrode 112, and the separation groove 402 is located between the first lower electrode 111 and the first conductive pattern 321.
  • the formation method of the division grooves 400 and the separation grooves 402 is the same as that of the first embodiment.
  • the photoelectric conversion layer 120 is formed on the first lower electrode 111, the second lower electrode 112, and the first dividing groove 400. At this time, the photoelectric conversion layer 120 is also formed on the third lower electrode 113. Next, the second conductive film 130 is formed over the photoelectric conversion layer 120. The method for forming the photoelectric conversion layer 120 and the second conductive film 130 is the same as in the first embodiment.
  • a dividing groove 400 as a third dividing groove is formed in the photoelectric conversion layer 120 and the second conductive film 130.
  • the method of forming the dividing groove 400 as the third dividing groove is the same as the method of forming the dividing groove 400 in the first embodiment.
  • the first photoelectric conversion layer 121, the second photoelectric conversion layer 122, the third photoelectric conversion layer 123, the first upper electrode 131, the second upper electrode 132, and the third upper electrode 133 are formed.
  • the width of the dividing groove 400 as the third dividing groove is narrower than the width of the dividing groove 400 formed in the first conductive film 110. Therefore, the first photoelectric conversion layer 121 is wider than the first lower electrode 111 and covers the side surface of the first lower electrode 111. Similarly, the second photoelectric conversion layer 122 and the third photoelectric conversion layer 123 are wider than the second lower electrode 112 and the third lower electrode 113 and cover the side surfaces of the second lower electrode 112 and the third lower electrode 113. ing.
  • the first insulating layer 201, the second insulating layer 202, the collector electrode layers 311 and 312, the second conductive pattern 331, and the fourth conductive pattern 332 are formed. These forming methods are the same as those in the first embodiment.
  • FIG. 15 is a perspective view showing a configuration of a photoelectric conversion apparatus according to the fourth embodiment.
  • the photoelectric conversion device includes a plurality of first photoelectric conversion elements 101 (103) and a plurality of second photoelectric conversion elements 102 that are repeatedly arranged in the first direction.
  • the configuration is the same as that of the first embodiment except for the following points.
  • the plurality of first photoelectric conversion elements 101 (103) and the plurality of second photoelectric conversion elements 102 are connected in series via the plurality of first connection portions 301 and the plurality of second connection portions 302.
  • the first insulating layer 201 is continuously formed so as to correspond to the plurality of first photoelectric conversion elements 101 (103), and the second insulating layer 202 corresponds to the plurality of second photoelectric conversion elements 102.
  • the same effect as that of the first embodiment can be obtained.
  • the first insulating layer 201 and the second insulating layer 202 are continuously formed in the first direction, the first insulating layer 201 and the second insulating layer 202 are displaced in the first direction. Moreover, it can suppress that a photoelectric conversion apparatus becomes a inferior goods. This effect can be obtained even when the first insulating layer 201 and the second insulating layer 202 are not formed continuously in the first direction but are formed in contact with the adjacent extending portion.
  • the first insulating layer 201 can be in contact with the first extending portion 112a as in this embodiment.
  • the width W of the photoelectric conversion layer 120 may be larger than the sum L described above.
  • the step of forming the separation groove 402 shown in FIG. 8 the portion of the photoelectric conversion layer 120 whose film quality is deteriorated is separated by the separation groove 402 by the first photoelectric conversion layer 121, the second photoelectric conversion layer 122, And from the third photoelectric conversion layer 123.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 複数の光電変換素子を接続するための新規な構造を有する光電変換装置を提供する。第1光電変換素子は、第1下部電極、第1光電変換層、及び第1上部電極を備えている。第2光電変換素子は、第2下部電極、第2光電変換層、及び第2上部電極を備えている。第1光電変換素子及び第2光電変換素子は、第1の方向に沿って互いに並んで配置されている。第2下部電極は、第1の方向と平行な側面から第2光電変換層の外に延伸する第1延伸部を備えている。また第1光電変換素子の側面のうち第1延伸部の延伸方向に向いている側面には、第1絶縁層が形成されている。第1接続部は、第1絶縁層上を介して、第1上部電極と第1延伸部とを接続している。

Description

光電変換装置、太陽電池モジュール、及び光電変換装置の製造方法
 本発明は、光電変換装置、太陽電池モジュール、及び光電変換装置の製造方法に関する。
 光電変換装置は、光電変換層によって光を電気に変換する装置である。光電変換層は、基板上で複数の光電変換素子に分割されている。そして複数の光電変換素子を基板上で直列に接続することにより、一つの光電変換装置が形成される(例えば特許文献1及び2参照)。
 特許文献1に記載の技術は、以下の通りである。まず、基板上に設けられた第1の電極に第1の開溝を形成する。次いで、この第1の開溝内および第1の電極上に非単結晶半導体層を形成する。次いで、第1の開溝の隣に、非単結晶半導体層及び第1の電極を貫通する第2の開溝を形成し、第2の開溝内から非単結晶半導体層の上まで第2の電極を形成する。次いで第2の電極に、第2の開溝を介して第1の開溝とは反対側に位置する第3の開溝を形成する。これにより、非単結晶半導体層が複数の光電変換素子に分割される。
 特許文献2に記載の技術は、以下の通りである。まず、第1の電極層、光電変換層、及び第2の電極層からなる光電変換素子のうち、隣の光電変換素子と対向している側面に絶縁層を形成する。次いで、この絶縁層上に導電層を形成することにより、光電変換素子の第2の電極層と、隣に位置する光電変換素子の第1の電極層を接続する。
特公平5-72113号公報 特開2005-93903号公報
 複数の光電変換素子を基板上で直列に接続するためには、平面視においてその接続構造を設けるための領域が必要である。この領域は、光電変換装置の発電に寄与しない無効面積となる。太陽電池の出力を向上させるためには、この無効面積を減少させることが重要である。無効面積を減少させるためには、複数の光電変換素子を接続するための新規な構造を開発することが望ましい。
 本発明は上記事情に鑑みてなされたものであり、その目的とするところは、複数の光電変換素子を接続するための新規な構造を有する光電変換装置、太陽電池モジュール、及び光電変換装置の製造方法を提供することにある。
 本発明にかかる光電変換装置は、第1光電変換素子及び第2光電変換素子を備える。前記第1光電変換素子は、絶縁性の基板上に形成されており、第1下部電極、第1光電変換層、及び第1上部電極をこの順に積層したものである。前記第2光電変換素子は、前記基板上に形成されており、第2下部電極、第2光電変換層、及び第2上部電極をこの順に積層したものである。前記第1光電変換素子及び前記第2光電変換素子は第1の方向に沿って互いに並んで配置されており、かつ、第2の方向に延伸する分離溝によって互いに分離されている。前記第2下部電極は、前記第1の方向と平行な側面から前記第2光電変換層の外に延伸する第1延伸部を備えている。前記第1光電変換素子の側面のうち前記第1延伸部の延伸方向に向いている側面には第1絶縁層が設けられている。そして前記第1絶縁層上を介して、前記第1上部電極と前記第1延伸部とを接続する第1接続部が設けられている。
 本発明にかかる太陽電池モジュールは、少なくとも上記した光電変換装置を複数有している。前記光電変換装置は、互いに直列に接続されている。
 本発明にかかる光電変換装置の製造方法は、以下の工程を有する。まず基板上に、第1下部電極、第1光電変換層、及び第1上部電極をこの順に積層した第1光電変換素子と、第2下部電極、第2光電変換層、及び第2上部電極をこの順に積層した第2光電変換素子とを、第1の方向に沿って互いに並んで形成する。このとき、前記第2下部電極に、前記第1の方向と平行な側面から前記第2光電変換層の外に延伸する第1延伸部を形成する。そして、前記第1光電変換素子の側面のうち前記第1延伸部の延伸方向に向いている側面に第1絶縁層を形成する。次いで、前記第1絶縁層上を介して、前記第1上部電極と前記第1延伸部とを接続する第1接続部を形成する。
 本発明によれば、複数の光電変換素子を接続するための新規な構造を有する光電変換装置および光電変換装置の製造方法を提供することができる。
第1の実施形態に係る光電変換装置の構成を示す斜視図である。 図1に示した光電変換装置の平面図である。 図2のA-A´断面図である。 図2のB-B´断面図である。 図2のC-C´断面図である。 光電変換装置の製造方法を示す斜視図である。 光電変換装置の製造方法を示す斜視図である。 光電変換装置の製造方法を示す斜視図である。 光電変換装置の製造方法を示す斜視図である。 第2の実施形態に係る光電変換装置の構成を示す斜視図である。 第3の実施形態にかかる光電変換装置の製造方法を示す斜視図である。 第3の実施形態にかかる光電変換装置の製造方法を示す斜視図である。 第3の実施形態にかかる光電変換装置の製造方法を示す斜視図である。 第3の実施形態にかかる光電変換装置の製造方法を示す斜視図である。 第4の実施形態に係る光電変換装置の構成を示す斜視図である。
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
 図1は、第1の実施形態に係る光電変換装置の構成を示す斜視図である。図2は、図1に示した光電変換装置の平面図である。図3は図2のA-A´断面図であり、図4は図2のB-B´断面図であり、図5は図2のC-C´断面図である。この光電変換装置は、絶縁性の基板10、並びに基板10上に形成された第1光電変換素子101及び第2光電変換素子102を備えている。第1光電変換素子101は、第1下部電極111、第1光電変換層121、及び第1上部電極131を備えている。第2光電変換素子102は、第2下部電極112、第2光電変換層122、及び第2上部電極132を備えている。第1光電変換素子101及び第2光電変換素子102は、第1の方向(図中左右方向)に沿って互いに並んで配置されており、第2の方向(図中奥方向)に延伸する分割溝400によって互いに分離されている。第2下部電極112は、第1の方向と平行な側面から第2光電変換層122の外に延伸する第1延伸部112aを備えている。また第1光電変換素子101の側面のうち第1延伸部112aの延伸方向に向いている側面には、第1絶縁層201が形成されている。そして第1上部電極131と第1延伸部112aは、第1接続部301によって接続されている。第1接続部301は、第1絶縁層201上を介して、第1上部電極131と第1延伸部112aとを接続している。この光電変換装置は、例えば太陽電池モジュールに用いられる。太陽電池モジュールは、光電変換装置を複数直列に接続した構造を有しており、その末端は接続端子等として外部に取り出して他の機器等に接続できるようになっている。光電変換装置の両面全体は、耐候性のある基材等によって接着剤等を用いて封止されている。
 基板10は、例えばポリイミド、ポリアミド、ポリイミドアミド、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)、ポリエーテルイミド(PEI)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルスルホン(PES)、アクリル、アラミドなどの可撓性を有する絶縁性の基板であるが、金属基板上に絶縁層を形成した基板やガラス基板など、可撓性を有していない絶縁性の基板であってもよい。基板10の厚さは、例えば10μm以上1mm以下である。
 第1下部電極111と第2下部電極112は互いに同一の材料、例えばAgやAlなどの金属層、又はITO(Indium Thin Oxide)、In、IZO(Indium Zinc Oxide)、ZnO、TiO、SnOなどの透明電極層により形成されている。
 第1光電変換層121と第2光電変換層122は互いに同一の構造を有している。ここでの同一の構造とは、完全に同一の構造のみを指すのではなく、設計上の平面形状が同一であるが加工誤差により多少のずれを有するものも含む。第1光電変換層121と第2光電変換層122は、例えば第1導電型(例えばn型)シリコン層、i型シリコン層、及び第2導電型(例えばp型)シリコン層をこの順に1回又は複数回積層した構造を有している。ここでのシリコン層は、例えば微結晶シリコン層であるが、アモルファスシリコン層、多結晶シリコン層、又は単結晶シリコン層であってもよい。第1導電型シリコン層の厚さは例えば1nm以上1μm以下であり、i型シリコン層の厚さは例えば10nm以上1mm以下であり、第2導電型シリコン層の厚さは例えば1nm以上1μm以下である。i型シリコン層としては、シリコン基板を使うことも考えられる。なおシリコン層の代わりに、カルコパイライト系薄膜半導体、有機膜半導体、又は色素を担持した酸化物半導体を用いても良い。また第1光電変換層121と第2光電変換層122は、nip接合、pin接合、またはpn接合を複数有する多接合構造、例えば、第1導電型(例えばn型)シリコン層、i型シリコン層、及び第2導電型シリコン層(例えばp型)を、この順に複数回積層した構成であっても良い。また、各接合の層間に、トンネル接合層や中間反射構造を備えていても良い。
 第1上部電極131と第2上部電極132は、互いに同一の材料、例えばITO、In、IZO、ZnO、TiO、SnOなどの透明電極層により形成されている。第1上部電極131及び第2上部電極132の厚さは、例えば1nm以上1μm以下である。
 第1絶縁層201は、例えば300nm~1500nmに対して透過性が高い絶縁材料、例えばポリマー系材料、無機系材料、無機/有機コンポジット材料により形成されている。平面視において第1絶縁層201の厚さは、例えば10nm以上100μm以下である。なお、i型シリコン層として厚さが数百μmのシリコン基板を用いた場合であっても、第1絶縁層201の厚さが100μm程度あれば、絶縁性を確保できる。
 第1接続部301は、第1導電パターン321、集電極層311、及び第2導電パターン331を備えている。第1導電パターン321は、第1絶縁層201を介して第1下部電極111の反対側に設けられている。集電極層311は、第1上部電極131上から第1絶縁層201を介して第1導電パターン321まで延伸している。第2導電パターン331は、第1導電パターン321と第1延伸部112aとを接続する。第1導電パターン321は、例えば第1下部電極111と同一の材料により形成されており、第2導電パターン331は、例えば集電極層311と同一の材料により形成されている。
 集電極層311は、例えばTi及びAgをこの順に積層した導電層であるが、Ag、Al、Ni等の金属や合金の単層膜であっても良いし、金属や合金の多層膜であってもよい。また集電極層311は、1本であっても良いし、2本以上あってもよい。また平面視において、集電極層311は直線であっても良いし直線でなくてもよい。また集電極層311は、直接第2導電パターン331に接続していてもよい。
 第1光電変換層121及び第2光電変換層122は、平面形状が四角形(例えば正方形や長方形を含む)であり、かつ第1側面が互いに対向するように配置されている。また平面視において第1延伸部112aは、第2光電変換層122のうち第1側面と交わっている第2側面から第2光電変換層122の外に延伸している。第1延伸部112aの長さは、例えば0.1mm以上100mm以下である。また第1光電変換層121および第2光電変換層122は、同一の形状を有している。ここでの同一の構造とは、完全に同一の構造のみを指すのではなく、設計上の平面形状が同一であるが加工誤差により多少のずれを有するものも含む。本図に示す例において、第1光電変換層121及び第2光電変換層122は、平面形状が長方形であり、かつ長辺が互いに対向するように配置されている。第1延伸部112aは、平面視において、第2光電変換層122の短辺から第2光電変換層122の外に延伸している。また第1光電変換層121および第2光電変換層122は、平面視において短辺が同一直線上に位置している。なお、本実施形態における長方形、及び同一直線には、加工誤差により多少のずれを有するものも含む。
 また光電変換装置は、さらに基板10上に第3光電変換素子103(第2の第1光電変換素子)を備えている。第3光電変換素子103は、第2光電変換素子102を介して第1光電変換素子101とは反対側に位置しており、第3下部電極113、第3光電変換層123、及び第3上部電極133をこの順に積層したものである。すなわち平面視において、第1光電変換素子101、第2光電変換素子102、及び第3光電変換素子103は、第1の方向に沿ってこの順に並んでいる。第3下部電極113は、第2延伸部113aを備えている。第2延伸部113aは、平面視において第3光電変換層123のうち第1延伸部112aとは逆側に位置する部分から、第3光電変換層123の外に延伸している。第2延伸部113aの長さは、例えば0.1mm以上100mm以下である。
 本図に示す例において、第3光電変換素子103の構成は、向きも含めて第1光電変換素子101の構成と略同様である。第1光電変換層121、第2光電変換層122、及び第3光電変換層123は、平面形状が同一である。ここでの同一の構造とは、完全に同一の構造のみを指すのではなく、設計上の平面形状が同一であるが加工誤差により多少のずれを有するものも含む。第3光電変換層123の長さは、例えば1cm以上2m以下である。第1光電変換層121、第2光電変換層122、及び第3光電変換層123は、例えば長方形である。この場合、平面視において第3光電変換層123は、短辺が第1光電変換層121および第2光電変換層122の短辺と同一直線上に位置している。そして長辺が、例えば1cm以上2m以下となる。
 第2光電変換素子102の側面のうち第2延伸部113aの延伸方向に向いている側面には、第2絶縁層202が設けられている。そして第2上部電極132と第2延伸部113aは、第2接続部302を介して互いに接続している。第2接続部302は第1接続部301と同様の構成を有しており、第3導電パターン322、集電極層312、及び第4導電パターン332を備えている。第3導電パターン322は、第2絶縁層202を介して第2下部電極112の反対側に設けられている。集電極層312は、第2上部電極132上から第2絶縁層202を介して第3導電パターン322まで延伸している。第4導電パターン332は、第3導電パターン322と第2延伸部113aとを接続する。第3導電パターン322は、例えば第2下部電極112と同一の材料により形成されており、第4導電パターン332は、例えば集電極層312と同一の材料により形成されている。
 第1光電変換素子101と第2光電変換素子102の間、及び第2光電変換素子102と第3光電変換素子103の間には、それぞれ分割溝400が設けられている。分割溝400の幅は、例えば10μm以上1cm以下である。ただし、分割溝400の幅は10μm以上1mm以下であっても良い。第1光電変換素子101、第2光電変換素子102、及び第3光電変換素子103それぞれは、分割溝400に面する側面には凹凸が形成されておらず、滑らか(例えば面一)である。
 次に、図6~図9及び図1の斜視図を用いて、図1~図5に示した光電変換装置の製造方法について説明する。この光電変換装置の製造方法は、次に示す工程を有する。まず、基板10上に、第1光電変換素子101及び第2光電変換素子102を形成し、かつ第2光電変換素子102の第2下部電極112に第1延伸部112aを形成する。次いで、第1光電変換素子101の側面のうち第1延伸部112aの延伸方向に向いている側面に第1絶縁層201を形成する。次いで、第1接続部301を形成する。
 なお、第1光電変換素子101及び第2光電変換素子102を形成するときに、第3光電変換素子103も形成され、第1延伸部112aを形成するときに第2延伸部113aも形成される。また第1絶縁層201を形成するときに第2絶縁層202も形成され、第1接続部301を形成するときに第2接続部302も形成される。以下、詳細に説明する。
 まず図6に示すように、基板10上に、第1導電膜110を形成する。第1導電膜110は、後述する工程によって、第1下部電極111、第2下部電極112、第3下部電極113、第1延伸部112a、第2延伸部113a、第1接続部301の第1導電パターン321、及び第2接続部302の第3導電パターン322となる。第1導電膜110は、例えばスパッタリング法、真空蒸着法、スプレー成膜法、インクジェット法、又はメッキ法により形成される。
 次いで図7に示すように、第1導電膜110のうち第1延伸部112a、第2延伸部113a、第1導電パターン321、及び第3導電パターン322となる領域をマスク部材(図示せず)で被覆した状態で、第1導電膜110上に、光電変換層120を成膜する。光電変換層120は、後述する工程によって、第1光電変換層121、第2光電変換層122、及び第3光電変換層123になる。光電変換層120は、例えばプラズマCVD法により形成されるが、材料によっては熱CVD法、ヘテロエピタキシャル成長法、金属誘起固相成長法、スパッタリング法、真空蒸着法、メッキ法、スプレー成膜法、又はインクジェット法を用いて形成することもできる。
 次いで、第1導電膜110のうち第1延伸部112a、第2延伸部113a、第1導電パターン321、及び第3導電パターン322となる領域をマスク部材(図示せず)で被覆した状態で、光電変換層120上に、第2導電膜130を形成する。第2導電膜130は、後述する工程によって、第1上部電極131、第2上部電極132、及び第3上部電極133になる。
 次いで図8に示すように、第1導電膜110、光電変換層120、及び第2導電膜130の積層体に分割溝400を形成する。これにより、この積層体は第1光電変換素子101、第2光電変換素子102、及び第3光電変換素子103に分割される。また第1導電膜110に、第1導電パターン321及び第3導電パターン322を他の部分から分離するための分離溝402を形成する。分割溝400及び分離溝402は、例えばレーザスクライブ法により形成されるが、メカニカルスクライブ法や超音波振動加工法により形成されても良い。本図に示す例において、分割溝400及び分離溝402は基板10に到達している。ただし分割溝400及び分離溝402は基板10に到達していなくても良い。
 なお、マスクを用いて光電変換層120を形成した場合、マスク近傍に位置する光電変換層120は膜質が低下している可能性がある。そこで、光電変換層120の幅W(図7参照)を、第1光電変換素子101の幅(長さ)と分離溝402の幅の和Lとしておき、分離溝402を形成するときに光電変換層120の端部を除去しても良い。
 次いで図9に示すように、分離溝402に第1絶縁層201及び第2絶縁層202を形成する。第1絶縁層201及び第2絶縁層202は、例えばスクリーン印刷法を用いて絶縁性ペーストを塗布することにより、又はインクジェット法により形成される。この場合、第1絶縁層201及び第2絶縁層202は必要な部分(設計された部分)にのみ形成される。また第1絶縁層201及び第2絶縁層202は、スパッタリング法又は真空蒸着法を用いて形成されてもよい。スパッタリング法や真空蒸着法を用いる場合、第1絶縁層201及び第2絶縁層202は、マスクパターンによって成膜されるべきでない部分を覆い、その状態で成膜処理を行うことにより、選択的に成膜される。
 次いで図1に示すように、集電極層311,312を形成し、かつ第2導電パターン331及び第4導電パターン332を形成する。
 集電極層311,312、第2導電パターン331、及び第4導電パターン332は、同一工程により形成されてもよい。この場合、集電極層311,312、第2導電パターン331、及び第4導電パターン332は互いに同一の材料により形成される。集電極層311,312、第2導電パターン331、及び第4導電パターン332は、例えばスパッタリング法、真空蒸着法、又はスプレー成膜法により形成される。この場合、集電極層311,312、第2導電パターン331、及び第4導電パターン332は、例えばマスクパターンによって成膜されるべきでない部分を覆い、その状態で成膜処理を行うことにより、選択的に成膜される。集電極層311,312、第2導電パターン331、及び第4導電パターン332は、スクリーン印刷法、インクジェット法またはマスクを用いた電子ビーム蒸着法により同一工程で形成されてもよい。スクリーン印刷法又はインクジェット法を用いる場合、集電極層311,312、第2導電パターン331、及び第4導電パターン332以外の領域(設計された部分以外の領域)には導電膜が形成されない。また、集電極層311,312、第2導電パターン331、及び第4導電パターン332は、メッキ法により形成されてもよい。この場合、集電極層311,312、第2導電パターン331、及び第4導電パターン332が形成されるべき領域に成長核を形成し、その後メッキ処理を行う。
 また集電極層311,312は、第2導電パターン331及び第4導電パターン332と別工程により形成されてもよい。この場合、集電極層311,312、第2導電パターン331、及び第4導電パターン332は、例えば上記した工程を2回繰り返すことにより、2回に分けて形成される。
 次に、本実施形態における作用及び効果について説明する。本実施形態において、第1光電変換素子101及び第2光電変換素子102は第1の方向に沿って互いに並んで配置されている。第1光電変換素子101の第1上部電極131と第2光電変換素子102の第2下部電極112は、第1接続部301を介して直列に接続している。第1接続部301は、第1光電変換素子101と第2光電変換素子102の間ではなく、第1光電変換素子101と第2光電変換素子102の外側に設けられている。このように、本実施形態にかかる光電変換装置は、第1光電変換素子101と第2光電変換素子102を接続するための新規な構造を有している。
 そして、第1光電変換素子101及び第2光電変換素子102を互いに分離するときに、複数の溝を並列に設ける必要がなく、一本の分割溝400を設ければよい。このため、第1光電変換素子101及び第2光電変換素子102の相互間隔を狭くすることができる。これにより、光電変換装置の無効領域の面積を狭くすることが可能になる。この効果は、第1光電変換素子101及び第2光電変換素子102の平面形状を長方形として設計し、この長方形の短辺として設計した側に第1接続部301を設けた場合に顕著になる。
 また、第1光電変換素子101及び第2光電変換素子102を互いに分離するときに一本の分割溝400を設ければよいため、第1光電変換素子101及び第2光電変換素子102の分離するときの工程数が少なくてすむ。
 また、基板10上に第3光電変換素子103を設け、第2光電変換素子102の第2上部電極132と、第3光電変換素子103の第3下部電極113とを、第2接続部302を用いて接続している。第2接続部302は、第2光電変換素子102を介して第1接続部301とは逆側に位置している。第3光電変換素子103は第1光電変換素子101と実質的に同一であるため、第1光電変換素子101と第2光電変換素子102を繰り返し基板10上に複数形成し、これらを第1接続部301と第2接続部302を用いて直列に接続することができる。この場合、4つ以上の光電変換素子を直列に接続して、光電変換装置の出力電圧を高くすることができる。
 このとき、平面視において第1光電変換素子101と第2光電変換素子102の形状を長方形として設計して、この長方形の短辺として設計された側に第1接続部301及び第2接続部302を設けるのが好ましい。このようにすると、第1光電変換素子101及び第2光電変換素子102の第1の方向の側面側、すなわち長辺として設計した側に第1接続部301及び第2接続部302を設けた場合と比較して、光電変換装置の無効面積を小さくすることができる。
 図10は、第2の実施形態に係る光電変換装置の構成を示す斜視図である。本実施形態に示す光電変換装置は、第1接続部301の第2導電パターン331及び第2接続部302の第4導電パターン332(本図では図示せず)が、第1の実施形態において図6及び図7で示した第1導電膜110により形成されている点を除いて、第1の実施形態と同様である。
 すなわち本実施形態において、第1接続部301の第1導電パターン321と第2導電パターン331は、第2光電変換素子102の第2下部電極112と一体的に形成されている。また第2接続部302の第3導電パターン322と第4導電パターン332は、第3光電変換素子103の第3下部電極113と一体的に形成されている。
 この光電変換装置の製造方法は、第2導電パターン331及び第4導電パターン332が、第1導電パターン321及び第3導電パターン322と同一工程で形成される点を除いて、第1の実施形態にかかる光電変換装置の製造方法と同様である。
 本実施形態によっても、第1の実施形態と同様の効果を得ることができる。
 図11、図12、図13、及び図14は、第3の実施形態に係る光電変換装置の製造方法を示す斜視図である。この半導体装置の製造方法は、第1導電膜110に対して分割溝400及び分離溝402を形成した後に、光電変換層120及び第2導電膜130を形成する点を除いて、第1の実施形態に係る半導体装置の製造方法と同様の構成である。以下、詳細に説明する。
 本実施形態において、第1導電膜110を形成するまでの工程は、第1の実施形態と同様であるため説明を省略する。第1導電膜110を形成した後、図11に示すように、第1導電膜110に分割溝400及び分離溝402を形成する。これにより、第1下部電極111、第2下部電極112、第3下部電極113、第1延伸部112a、第2延伸部113a、第1導電パターン321、及び第3導電パターン322が形成される。分割溝400は第1下部電極111と第2下部電極112の間に位置しており、分離溝402は第1下部電極111と第1導電パターン321の間に位置している。分割溝400及び分離溝402の形成方法は、第1の実施形態と同様である。
 次いで図12に示すように、第1下部電極111上、第2下部電極112上、及び第1分割溝400上に、光電変換層120を形成する。このとき、第3下部電極113上にも光電変換層120を形成する。次いで、光電変換層120上に第2導電膜130を形成する。光電変換層120及び第2導電膜130の形成方法は、第1の実施形態と同様である。
 次いで図13に示すように、光電変換層120及び第2導電膜130に第3分割溝としての分割溝400を形成する。第3分割溝としての分割溝400を形成する方法は、第1の実施形態において分割溝400を形成する方法と同様である。これにより、第1光電変換層121、第2光電変換層122、第3光電変換層123、第1上部電極131、第2上部電極132、及び第3上部電極133が形成される。
 なお、第3分割溝としての分割溝400の幅は、第1導電膜110に形成された分割溝400の幅より狭い。このため、第1光電変換層121は第1下部電極111より幅広であり、第1下部電極111の側面を被覆している。同様に、第2光電変換層122及び第3光電変換層123は、第2下部電極112及び第3下部電極113より幅広であり、第2下部電極112及び第3下部電極113の側面を被覆している。
 その後、図14に示すように、第1絶縁層201、第2絶縁層202、集電極層311,312、第2導電パターン331、及び第4導電パターン332を形成する。これらの形成方法は、第1の実施形態と同様である。
 本実施形態によっても、第1の実施形態と同様の効果を得ることができる。
 図15は、第4の実施形態に係る光電変換装置の構成を示す斜視図である。この光電変換装置は、第1の実施形態と同様に、複数の第1光電変換素子101(103)及び複数の第2光電変換素子102が第1の方向に沿って繰り返し並べられている。そして、以下の点を除いて、第1の実施形態と同様の構成である。
 まず、複数の第1光電変換素子101(103)及び複数の第2光電変換素子102は、複数の第1接続部301及び複数の第2接続部302を介して直列に接続されている。そして第1絶縁層201は、複数の第1光電変換素子101(103)に対応するように連続して形成されており、第2絶縁層202は、複数の第2光電変換素子102に対応するように連続して形成されている。すなわち本実施形態において、第1絶縁層201は、第1延伸部112aに接している。
 本実施形態によっても、第1の実施形態と同様の効果を得ることができる。また、第1絶縁層201及び第2絶縁層202が第1の方向に連続して形成されているため、第1絶縁層201及び第2絶縁層202に第1の方向に位置ずれが生じても、光電変換装置が不良品になることを抑制できる。なおこの効果は、第1絶縁層201及び第2絶縁層202が第1の方向に連続して形成されておらず、隣の延伸部に接する形で形成されていても、得ることができる。なお、上記した各実施例においても、本実施形態のように、第1絶縁層201は、第1延伸部112aに接しているようにすることができる。
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。例えば図7に示した光電変換層120を形成する工程において、光電変換層120の幅Wを上記した和Lより大きくしてもよい。この場合、図8に示した分離溝402を形成する工程において、光電変換層120のうち膜質が低下している部分を、分離溝402によって第1光電変換層121、第2光電変換層122、及び第3光電変換層123から分離することができる。
 この出願は、2009年3月24日に出願された日本特許出願特願2009-72609を基礎とする優先権を主張し、その開示の全てをここに取り込む。
10  基板
101  第1光電変換素子
102  第2光電変換素子
103  第3光電変換素子(第2の第1光電変換素子)
110  第1導電膜
111  第1下部電極
112  第2下部電極
112a 第1延伸部
113  第3下部電極
113a 第2延伸部
120  光電変換層
121  第1光電変換層
122  第2光電変換層
123  第3光電変換層
130  第2導電膜
131  第1上部電極
132  第2上部電極
133  第3上部電極
201  第1絶縁層
202  第2絶縁層
301  第1接続部
302  第2接続部
311  集電極層
312  集電極層
321  第1導電パターン
322  第3導電パターン
331  第2導電パターン
332  第4導電パターン
400  分離溝
402  分離溝

Claims (19)

  1.  絶縁性の基板と、
     前記基板上に形成され、第1下部電極、第1光電変換層、及び第1上部電極をこの順に積層した第1光電変換素子と、
     前記基板上に形成され、第2下部電極、第2光電変換層、及び第2上部電極をこの順に積層した第2光電変換素子と、
    を備え、
     前記第1光電変換素子及び前記第2光電変換素子は、第1の方向に沿って互いに並んで配置されており、かつ第2の方向に延伸する分離溝によって互いに分離されており、
     前記第2下部電極は、前記第1の方向と平行な側面から前記第2光電変換層の外に延伸する第1延伸部を備えており、
     前記第1光電変換素子の側面のうち前記第1延伸部の延伸方向に向いている側面に設けられた第1絶縁層と、
     前記第1絶縁層上を介して、前記第1上部電極と前記第1延伸部とを接続する第1接続部と、
    を備える光電変換装置。
  2.  請求項1に記載の光電変換装置において、
     前記第1光電変換層及び前記第2光電変換層は、平面形状が四角形であり、かつ第1側面が互いに対向するように配置されており、
     平面視において前記第1延伸部は、前記第2光電変換層のうち前記第1側面と交わっている第2側面から前記第2光電変換層の外に延伸している光電変換装置。
  3.  請求項1に記載の光電変換装置において、
     前記第1接続部は、
      前記第1絶縁層を介して前記第1下部電極の反対側に設けられた第1導電パターンと、
      前記第1上部電極上から前記第1絶縁層を介して前記第1導電パターンまで延伸している集電極層と、
      前記第1導電パターンと前記第1延伸部とを接続する第2導電パターンと、
    を備える光電変換装置。
  4.  請求項3に記載の光電変換装置において、
     前記第1導電パターンは、前記第1下部電極と同一の材料により形成されている光電変換装置。
  5.  請求項3に記載の光電変換装置において、
     前記第2導電パターンは、前記集電極層と同一の材料により形成されている光電変換装置。
  6.  請求項1に記載の光電変換装置において、
     前記第2光電変換素子を介して前記第1光電変換素子とは反対側に位置しており、前記基板上に第2の前記第1下部電極、第2の前記第1光電変換層、及び第2の前記第1上部電極をこの順に積層した第2の第1光電変換素子と、
     前記第2の第1下部電極に設けられ、平面視において前記第2の第1光電変換層のうち前記第1延伸部とは逆側に位置する部分から前記第2の第1光電変換層の外に延伸する第2延伸部と、
     前記第2光電変換素子の側面のうち前記第2延伸部の延伸方向に向いている側面に設けられた第2絶縁層と、
     前記第2絶縁層上を介して、前記第2上部電極と前記第2延伸部とを接続する第2接続部と、
    を備える光電変換装置。
  7.  請求項6に記載の光電変換装置において、
     前記第1光電変換層、前記第2光電変換層、及び前記第2の第1光電変換層は、平面形状が同一である光電変換装置。
  8.  請求項6に記載の光電変換装置において、
     前記第1の方向に沿って繰り返し並べられた複数の前記第1光電変換素子及び複数の前記第2の光電変換素子を備え、
     前記複数の第1光電変換素子及び前記複数の第2光電変換素子は、複数の前記第1接続部及び複数の前記第2接続部を介して直列に接続されており、
     前記第1絶縁層は、前記複数の第1光電変換素子に対応するように連続して形成されており、
     前記第2絶縁層は、前記複数の第2光電変換素子に対応するように連続して形成されている光電変換装置。
  9.  請求項1に記載の光電変換装置において、
     前記第1光電変換層及び前記第2光電変換層は、少なくとも2つ以上の光電変換層を有する多接合構造を有している光電変換装置。
  10.  請求項1に記載の光電変換装置において、
     前記第1絶縁層は、前記第1延伸部に接している光電変換装置。
  11.  請求項1に記載の光電変換装置において、
     前記第1光電変換層は、前記第1下部電極より幅広であり、前記第1下部電極の側面を被覆しており、
     前記第2光電変換層は、前記第2下部電極より幅広であり、前記第2下部電極の側面を被覆している光電変換装置。
  12.  少なくとも互いに直列に接続された複数の光電変換装置を有しており、
     前記光電変換装置は、
     絶縁性の基板と、
     前記基板上に形成され、第1下部電極、第1光電変換層、及び第1上部電極をこの順に積層した第1光電変換素子と、
     前記基板上に形成され、第2下部電極、第2光電変換層、及び第2上部電極をこの順に積層した第2光電変換素子と、
    を備え、
     前記第1光電変換素子及び前記第2光電変換素子は、第1の方向に沿って互いに並んで配置されており、かつ第2の方向に延伸する分離溝によって互いに分離されており、
     前記第2下部電極は、前記第1の方向と平行な側面から前記第2光電変換層の外に延伸する第1延伸部を備えており、
     前記第1光電変換素子の側面のうち前記第1延伸部の延伸方向に向いている側面に設けられた第1絶縁層と、
     前記第1絶縁層上を介して、前記第1上部電極と前記第1延伸部とを接続する第1接続部と、
    を備える太陽電池モジュール。
  13.  基板上に、第1下部電極、第1光電変換層、及び第1上部電極をこの順に積層した第1光電変換素子と、第2下部電極、第2光電変換層、及び第2上部電極をこの順に積層した第2光電変換素子とを、第1の方向に沿って互いに並んで形成し、かつ前記第2下部電極に、前記第1の方向と平行な側面から前記第2光電変換層の外に延伸する第1延伸部を形成する工程と、
     前記第1光電変換素子の側面のうち前記第1延伸部の延伸方向に向いている側面に第1絶縁層を形成する工程と、
     前記第1絶縁層上を介して、前記第1上部電極と前記第1延伸部とを接続する第1接続部を形成する工程と、
    を備える光電変換装置の製造方法。
  14.  請求項13に記載の光電変換装置の製造方法において、
     前記第1光電変換素子、前記第2光電変換素子、及び前記第1延伸部を形成する工程は、
      前記基板上に、前記第1下部電極、前記第2下部電極、および前記第1延伸部となる第1導電膜を形成する工程と、
      前記第1導電膜のうち前記第1延伸部となる領域をマスク部材で被覆した状態で、前記第1導電膜上に、前記第1光電変換層及び前記第2光電変換層となる光電変換層を形成する工程と、
     前記光電変換層上に、前記第1上部電極及び前記第2上部電極となる第2導電膜を形成する工程と、
     前記第2導電膜、前記光電変換層、及び前記第1導電膜を、前記第1光電変換素子及び前記第2光電変換素子に分割する工程と、
    を有する光電変換装置の製造方法。
  15.  請求項14に記載の光電変換装置の製造方法において、
     前記第1接続部は、
      前記第1絶縁層を介して前記第1下部電極の反対側に設けられた第1導電パターンと、
      前記第1上部電極上から前記第1絶縁層を介して前記第1導電パターンまで延伸している集電極層と、
      前記第1導電パターンと前記第1延伸部とを接続する第2導電パターンと、
    を備え、
     前記第1導電膜を形成する工程において、前記第1導電膜を、前記第1導電パターンが形成される領域にも形成し、
     前記光電変換層を形成する工程において、前記第1導電膜のうち前記第1導電パターンとなる領域を前記マスク部材で被覆した状態で、前記光電変換層を形成し、
     前記光電変換層を形成する工程の後、前記第1絶縁層を形成する工程の前に、前記第1導電膜を選択的に除去することにより前記第1導電パターンを他の部分から分離する工程を備え、
     前記第1絶縁層を形成する工程の後に、
      前記集電極層を形成し、かつ前記第2導電パターンを形成することにより前記第1接続部を形成する工程を備える光電変換装置の製造方法。
  16.  請求項15に記載の光電変換装置の製造方法において、
     前記集電極層を形成し、かつ前記第2導電パターンを形成することにより前記第1接続部を形成する工程は、前記集電極層と前記第2導電パターンとを別工程で形成する工程である光電変換装置の製造方法。
  17.  請求項15に記載の光電変換装置の製造方法において、
     前記集電極層を形成し、かつ前記第2導電パターンを形成することにより前記第1接続部を形成する工程は、前記集電極層と前記第2導電パターンとを同一工程で形成する工程である光電変換装置の製造方法。
  18.  請求項13に記載の光電変換装置の製造方法において、
     前記第1光電変換素子、前記第2光電変換素子、及び前記第1延伸部を形成する工程は、
      前記基板上に、前記第1下部電極、前記第2下部電極、および前記第1延伸部となる第1導電膜を形成する工程と、
     前記第1導電膜に、前記第1下部電極と前記第2下部電極の間に位置する第1分割溝、および前記第1接続部と前記第1下部電極の間に位置する第2分割溝を形成する工程と、
     前記第1下部電極上、前記第2下部電極上、及び前記第1分割溝上に、前記第1光電変換層及び前記第2光電変換層となる光電変換層を形成する工程と、
     前記光電変換層上に、前記第1上部電極及び前記第2上部電極となる第2導電膜を形成する工程と、
     前記光電変換層及び前記第2導電膜に第3分割溝を形成することにより、前記第1光電変換層、前記第2光電変換層、前記第1上部電極、及び前記第2上部電極を形成する工程と、を備える光電変換装置の製造方法。
  19.  請求項18に記載の光電変換装置の製造方法において、
     前記第3分割溝の幅は、前記第1分割溝の幅より小さい光電変換装置の製造方法。
PCT/JP2009/006909 2009-03-24 2009-12-16 光電変換装置、太陽電池モジュール、及び光電変換装置の製造方法 WO2010109567A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009072609A JP2012134188A (ja) 2009-03-24 2009-03-24 光電変換装置、太陽電池モジュール、及び光電変換装置の製造方法
JP2009-072609 2009-03-24

Publications (1)

Publication Number Publication Date
WO2010109567A1 true WO2010109567A1 (ja) 2010-09-30

Family

ID=42780277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006909 WO2010109567A1 (ja) 2009-03-24 2009-12-16 光電変換装置、太陽電池モジュール、及び光電変換装置の製造方法

Country Status (2)

Country Link
JP (1) JP2012134188A (ja)
WO (1) WO2010109567A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024083174A1 (en) * 2022-10-21 2024-04-25 Jiangsu Clelo Technologies Co., Ltd. Anti-shading photovoltaic cell assembly and assembling method of the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6192930B2 (ja) * 2012-12-19 2017-09-06 株式会社カネカ 太陽電池モジュール、並びに、窓
EP3220421B1 (en) * 2016-03-16 2021-04-21 Armor Solar Power Films Method of manufacturing printed photovoltaic modules
CN113016091A (zh) 2019-10-18 2021-06-22 株式会社安能科多科技 元件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658279A (en) * 1979-10-17 1981-05-21 Seiko Epson Corp Panel for solar cell
JPS598380A (ja) * 1982-07-06 1984-01-17 Seiko Epson Corp 太陽電池
JPS5935487A (ja) * 1982-08-24 1984-02-27 Sanyo Electric Co Ltd 光半導体装置の製造方法
JPS6289369A (ja) * 1985-10-16 1987-04-23 Matsushita Electric Ind Co Ltd 光起電力装置
JPS62242371A (ja) * 1986-04-14 1987-10-22 Sanyo Electric Co Ltd 光起電力装置の製造方法
JPS63108781A (ja) * 1986-10-25 1988-05-13 Sharp Corp 光電変換装置
JP2010010606A (ja) * 2008-06-30 2010-01-14 Hitachi Maxell Ltd 光学変換素子セル、集積化光学変換装置、光学変換素子セルの製造方法及び集積化光学変換装置の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658279A (en) * 1979-10-17 1981-05-21 Seiko Epson Corp Panel for solar cell
JPS598380A (ja) * 1982-07-06 1984-01-17 Seiko Epson Corp 太陽電池
JPS5935487A (ja) * 1982-08-24 1984-02-27 Sanyo Electric Co Ltd 光半導体装置の製造方法
JPS6289369A (ja) * 1985-10-16 1987-04-23 Matsushita Electric Ind Co Ltd 光起電力装置
JPS62242371A (ja) * 1986-04-14 1987-10-22 Sanyo Electric Co Ltd 光起電力装置の製造方法
JPS63108781A (ja) * 1986-10-25 1988-05-13 Sharp Corp 光電変換装置
JP2010010606A (ja) * 2008-06-30 2010-01-14 Hitachi Maxell Ltd 光学変換素子セル、集積化光学変換装置、光学変換素子セルの製造方法及び集積化光学変換装置の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024083174A1 (en) * 2022-10-21 2024-04-25 Jiangsu Clelo Technologies Co., Ltd. Anti-shading photovoltaic cell assembly and assembling method of the same

Also Published As

Publication number Publication date
JP2012134188A (ja) 2012-07-12

Similar Documents

Publication Publication Date Title
JP4518973B2 (ja) 太陽電池およびその製造方法
US20100275964A1 (en) Solar cell, solar cell module, and method of manufacturing the solar cell
US8941160B2 (en) Photoelectric conversion module and method of manufacturing the same
TW201635563A (zh) 製造薄膜太陽電池配置的方法以及該薄膜太陽電池配置
JP2012522393A (ja) 太陽光発電装置及びその製造方法
JP2012119343A (ja) 太陽電池の製造方法、太陽電池の製造装置及び太陽電池
CN111213235B (zh) 具有四端叠层太阳能电池布置的太阳能电池板
CN102194900B (zh) 太阳能电池及其制造方法
KR20100021045A (ko) 박막형 태양전지 및 그 제조방법
WO2010109567A1 (ja) 光電変換装置、太陽電池モジュール、及び光電変換装置の製造方法
JP2012532457A (ja) 太陽光発電装置及びその製造方法
JP2010258158A (ja) 配線シート、配線シート付き太陽電池セルおよび太陽電池モジュール
US20240057361A1 (en) Top-to-top connected thin solar module and method
WO2011030729A1 (ja) 太陽電池モジュール
US9076900B2 (en) Solar cell module and solar cell
US20210288198A1 (en) Thin Film Photo-Voltaic Module
US20120211060A1 (en) Thin-film solar cell module and method for manufacturing the same
WO2013122067A1 (ja) 光電変換素子
JPH0779004A (ja) 薄膜太陽電池
KR101231284B1 (ko) 태양전지 및 이의 제조방법
KR101081095B1 (ko) 태양전지 및 이의 제조방법
US20180122966A1 (en) Solar cell module
JP6971749B2 (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法
WO2017038733A1 (ja) 光電変換素子
KR102396820B1 (ko) 태양 전지 모듈 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842183

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09842183

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP