CN102194900B - 太阳能电池及其制造方法 - Google Patents

太阳能电池及其制造方法 Download PDF

Info

Publication number
CN102194900B
CN102194900B CN201110057832.3A CN201110057832A CN102194900B CN 102194900 B CN102194900 B CN 102194900B CN 201110057832 A CN201110057832 A CN 201110057832A CN 102194900 B CN102194900 B CN 102194900B
Authority
CN
China
Prior art keywords
electrode
hole
semiconductor layer
separation channel
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110057832.3A
Other languages
English (en)
Other versions
CN102194900A (zh
Inventor
朴愿硕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jusung Engineering Co Ltd
Original Assignee
Jusung Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jusung Engineering Co Ltd filed Critical Jusung Engineering Co Ltd
Publication of CN102194900A publication Critical patent/CN102194900A/zh
Application granted granted Critical
Publication of CN102194900B publication Critical patent/CN102194900B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0465PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising particular structures for the electrical interconnection of adjacent PV cells in the module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

公开了一种太阳能电池及其制造方法,其有助于防止残余物质残留在第一和第二电极之间,即使是在高温条件下将多个层沉积在基板上,仍有助于基板凹陷问题的最小化,并且有助于最小化激光划线工序的次数。该太阳能电池包括:具有通孔的基板;在基板的一个表面上的第一电极,其中第一电极的一端延伸到通孔的内表面;在第一电极上的半导体层;在半导体层上的第二电极,其中第二电极的一端延伸到通孔的内表面;以及用于将第一电极的一端与第二电极的一端电连接的连接部。

Description

太阳能电池及其制造方法
本申请要求2010年3月5日提交的韩国专利申请P2010-0019712的优先权,在此援引该申请的全部内容作为参考。
技术领域
本发明涉及太阳能电池,尤其涉及薄膜型太阳能电池。
背景技术
具有半导体性质的太阳能电池将光能转换为电能。
太阳能电池形成为正(P)型半导体与负(N)型半导体构成结的PN结结构。当太阳光入射到具有PN结结构的太阳能电池上时,由于太阳光的能量,在半导体中产生空穴(+)和电子(-)。在PN结中产生的电场使空穴(+)向P型半导体漂移,电子(-)向N型半导体漂移,由此随着电势的出现而产生电能。
太阳能电池可以大致划分为晶片型太阳能电池和薄膜型太阳能电池。
晶片型太阳能电池使用由例如硅的半导体材料制成的晶片。而薄膜型太阳能电池通过在玻璃基板上形成薄膜型的半导体来制造。
在效率方面,晶片型太阳能电池比薄膜型太阳能电池更好。薄膜型太阳能电池具有制造成本比晶片型太阳能电池的制造成本相对较低的优势。
下面将参照附图描述现有技术的薄膜型太阳能电池。
图1是图示现有技术的薄膜型太阳能电池的剖面图。
如图1所示,现有技术的薄膜型太阳能电池包括基板10、第一电极20、半导体层30和第二电极40。
第一电极20形成在基板10上。隔着介于多个第一电极20之间的各个第一分隔沟道25按照固定的间隔提供多个第一电极20。
半导体层30形成在第一电极20上。隔着介于多个半导体层30之间的各个接触部35或第二分隔沟道45按照固定的间隔提供多个半导体层30。
第二电极40形成在半导体层30上。隔着介于多个第二电极40之间的各个第二分隔沟道45按照固定的间隔提供多个第二电极40。其中,第二电极40通过接触部35与第一电极20电连接。
现有技术的薄膜型太阳能电池具有多个单元电池由于第一电极20和第二电极40通过接触部35的电连接而串联电连接的结构。这种串联连接结构能够减小电极的尺寸,从而降低电阻。
图2A到2F是图示该现有技术的薄膜型太阳能电池的制造方法的剖面图。
首先,如图2A所示,在基板10上形成第一电极层20a。
然后,如图2B所示,通过从第一电极层20a中除去预定的部分而形成第一分隔沟道25。从而隔着介于多个第一电极20之间的各个第一分隔沟道25按照固定的间隔提供多个第一电极20。从第一电极层20a中除去预定部分的工序可以通过激光划线工艺来执行。
然后,如图2C所示,在包括第一电极20的基板10的整个表面上形成半导体层30。
如图2D所示,通过从半导体层30中除去预定的部分而形成接触部35。从半导体层30中除去预定部分的工序可以通过激光划线工艺来执行。
如图2E所示,在包括半导体层30的基板10的整个表面上形成第二电极层40a。
如图2F所示,通过从第二电极层40a和半导体层30中除去预定的部分而形成第二分隔沟道45。从而隔着介于多个第二电极40之间的各个第二分隔沟道45按照固定的间隔提供多个第二电极40。从第二电极层40a和半导体层30中除去预定部分的工序可以通过激光划线工艺来执行。
然而,现有技术的薄膜型太阳能电池具有下面的不足。
首先,如果通过上面图2D中示出的激光划线工艺来形成接触部35,则包括半导体材料的残余物质会残留在接触部35中。在这样的情况下,如果进行图2E和2F的工序,则第一电极20和第二电极40之间的接触电阻会由于残余物质而增加,这可能引起太阳能电池效率变差。
包括第一电极层20a的多层是在高温条件下沉积在基板10上的。如果在高温条件下进行沉积工序,则薄膜基板10会凹陷。而且,如果在凹陷的基板10上沉积另外的层,则该另外提供的层的均匀性会变差。
为了形成第一分隔沟道25、接触部35和第二分隔沟道45,进行三次激光划线工艺,由此使制造工艺复杂,也增加了制造时间。此外,必定需要三台划线装置,使得制造成本增加。
发明内容
因此,本发明涉及一种基本避免了由于现有技术的限制和不足而产生的一个或多个问题的太阳能电池及其制造方法。
本发明的目的是提供一种太阳能电池及其制造方法,其有助于防止残余物质残留在第一和第二电极之间,即使是在高温条件下将多个层沉积在基板上,仍有助于最小化基板凹陷问题,并且有助于最小化激光划线工序的次数。
本发明的其他优势、目的和特征将部分地在下面的描述中说明,并且在本领域技术人员阅读下面的内容后将部分地变得显而易见,或者可以从实践本发明中获知。本发明的目的和其他优势可以通过特别在说明书和权利要求以及附图中指出的结构来实现和获得。
为了实现这些目的和其他优势并根据本发明的目的,如在此具体和宽泛地描述的,提供一种太阳能电池,包括:具有通孔的基板;在该基板的一个表面上的第一电极,其中该第一电极的一端延伸到通孔的内表面;在该第一电极上的半导体层;在该半导体层上的第二电极,其中该第二电极的一端延伸到该通孔的内表面;和用来将该第一电极的一端与该第二电极的一端电连接的连接部。
本发明的另一个方面,提供一种太阳能电池的制造方法,包括:制备具有通孔的基板;在具有通孔的基板的一个表面上形成第一电极层;通过从该第一电极层中除去预定的部分,形成隔着第一分隔沟道按照预定间隔提供的第一电极,其中该第一电极的一端形成在该通孔的内表面上;在该第一电极上形成半导体层;在该半导体层上形成第二电极层;通过从该第二电极层中除去预定的部分,形成隔着第二分隔沟道按照预定间隔提供的第二电极,其中该第二电极的一端形成在该通孔的内表面上;以及形成用来将该第一电极的一端与该第二电极的一端电连接的连接部。
容易理解的是,本发明的上面的概括描述和下面的详细描述都是示例性的和说明性的,目的是提供请求保护的本发明的进一步说明。
附图说明
所包括的用来提供本发明的进一步理解并合并构成本申请的一部分的附图图解了本发明的实施例,并且与说明书一起说明本发明的原理。在附图中:
图1是图示现有技术的薄膜型太阳能电池的剖面图;
图2A-2F是图示现有技术的薄膜型太阳能电池的制造方法的剖面图;
图3A是图示根据本发明一个实施例的太阳能电池的平面图;图3B是沿图3A的A-A线的剖面图;图3C是沿图3A的B-B线的剖面图;
图4A是图示根据本发明另一个实施例的太阳能电池的平面图;图4B是沿图4A的A-A线的剖面图;图4C是沿图4A的B-B线的剖面图;
图5A-5G是图示根据本发明一个实施例的太阳能电池的制造方法的剖面图;以及
图6A-6G是图示根据本发明另一个实施例的太阳能电池的制造方法的剖面图。
具体实施方式
现在详细参考本发明的优选实施例,在附图中图示了实施例的例子。可能的话,将在整个附图中用相同的参考数字指代相同或类似的部分。
下面,将参考附图描述根据本发明的太阳能电池及其制造方法。
图3A是图示根据本发明一个实施例的太阳能电池的平面图;图3B是沿图3A的A-A线的剖面图;图3C是沿图3A的B-B线的剖面图。
如图3A到3C所示,根据本发明一个实施例的太阳能电池包括:基板100、第一电极200、半导体层300、第二电极400和连接部500。
基板100可以是柔性基板。在这种情况下,可以实现易于应用到移动设备中的柔性太阳能电池。柔性基板可以由聚酰亚胺或聚酰胺形成。尤其是在柔性太阳能电池的情况下,基板100可以被设置在太阳能电池的后部的最外层。从而可以由不透明的材料以及透明的材料形成基板100。
在基板100中形成多个通孔110。第一电极200和第二电极400可以通过通孔110彼此电连接,由此可以串联电连接多个单元电池。参考下面的关于连接部500的说明将容易对此理解。
可以按照在预定的方向上排列通孔的方式设置多个通孔110。尤其是,可以沿直线按照固定的间隔设置多个通孔110。如果重复地排列通孔110的直线,则形成条带图案。可以基于通孔110的排列图案形成多个单元电池。
第一电极200形成在基板100的一个表面上,例如基板100的上表面上。可以隔着介于多个第一电极200之间的各个第一分隔沟道210按照固定的间隔提供多个第一电极200。
平行于基板100中多个通孔110的排列方向形成第一分隔沟道210。尤其是,第一分隔沟道210部分地重叠通孔110的预定部分。按照使通孔110与第一分隔沟道210的预定部分重叠的方式形成多个通孔110。通过第一分隔沟道210的上述结构,各个第一电极200可以具有下面的结构。
多个第一电极200的每一个的一端201延伸到在基板100中提供的通孔110的内表面。尤其是,在通孔110的内表面的局部中形成第一电极200的一端201,而第一电极200的另一端202不延伸到通孔110的内表面。从而第一电极200的另一端202形成在基板100的一个表面上,例如基板100的上表面上。
第一电极200可以由例如Ag、Al、Ag+Mo、Ag+Ni或Ag+Cu的金属形成,但是不限于这些实例。例如,第一电极200可以由透明导电材料形成,诸如ZnO、掺杂了包括元素周期表中的第III族元素的材料的ZnO(例如ZnO:B、ZnO:Al)、掺杂了包括氢元素的材料的ZnO(例如ZnO:H)、SnO2、SnO2:F或ITO(氧化铟锡)。
半导体层300形成在多个第一电极200上。此外,半导体层300延伸到在基板100中提供的通孔110的内表面。尤其是,半导体层300可以形成在通孔110的整个内表面中。半导体层300可以形成在通孔110的内表面中的第一电极200的一端201上,并且也可以形成在第二电极400的一端401之下。
半导体层300可以由硅基材料形成,诸如非晶硅或晶体硅,但不限于这些实例。例如,半导体层300可以由诸如CIGS(CuInGaSe2)的化合物形成。
半导体层300可以形成为顺次沉积N(负)型半导体层、I(本征)型半导体层和P(正)型半导体层的NIP结构。在具有NIP结构的半导体层300中,P型半导体层和N型半导体层使I型半导体层中产生耗尽,由此在其中产生电场。从而,该电场使由于太阳能产生的电子和空穴漂移,漂移的电子和空穴分别聚集在N型半导体层和P型半导体层中。
将半导体层300形成为NIP结构的原因是由于空穴的漂移迁移率低于电子的漂移迁移率。为了最大化入射太阳光的收集效率,将P型半导体层设置为邻近光入射面。
如从图3B和3C的放大图中可以获知的,半导体层300可以形成为顺序沉积第一半导体层301、缓冲层302和第二半导体层303的叠层结构。
第一半导体层301和第二半导体层303都可以形成为顺次沉积N型半导体层、I型半导体层和P型半导体层的NIP结构。
第一半导体层301可以形成为非晶半导体材料的NIP结构,第二半导体层303可以形成为微晶半导体材料的NIP结构。非晶半导体材料的特征在于吸收短波长的光,微晶半导体材料的特征在于吸收长波长的光。非晶半导体材料和微晶半导体材料的混合能够增强光吸收效率,但是不限于这种类型的混合。也就是说,第一半导体层301可以由非晶半导体/锗材料、或微晶半导体材料制成,第二半导体层303可以由非晶半导体材料、非晶半导体/锗材料、或者微晶半导体材料制成。
缓冲层302介于第一半导体层301和第二半导体层303之间,其中缓冲层302能够通过隧道结使电子和空穴平缓地漂移。缓冲层302可以由透明材料形成,例如ZnO、掺杂了包括元素周期表中的第III族元素的材料的ZnO(例如ZnO:B、ZnO:Al)、掺杂了包括氢元素的材料的ZnO(例如ZnO:H)、SnO2、SnO2:F或ITO(氧化铟锡)。
除了前述的叠层结构,半导体层300可以形成为三重结构。在这种三重结构中,在半导体层300中包括的第一、第二、和第三半导体层的每一个之间插入有各个缓冲层。
第二电极400形成在半导体层300上。可以隔着介于多个第二电极400之间的各个第二分隔沟道410按照固定的间隔提供多个第二电极400。
平行于基板100中多个通孔110的排列方向形成第二分隔沟道410。尤其是,第二分隔沟道410部分地重叠通孔110的预定部分。也就是说,按照使多个通孔110与第二分隔沟道410的预定部分重叠的方式形成多个通孔110。而且,第二分隔沟道410与第一分隔沟道210部分重叠。也就是说,第二分隔沟道410与第一分隔沟道210的预定部分重叠。通过第二分隔沟道410的上述结构,各个第二电极400可以具有下面的结构。
多个第二电极400中每一个的一端401延伸到在基板100中提供的通孔110的内表面。尤其是,在通孔110的内表面上的没有形成第一电极200的一端201的其它部分中形成第二电极400的一端401。第二电极400的另一端402不延伸到通孔110的内表面,由此使第二电极400的另一端402形成在基板100的一个表面上,例如基板100的上表面上。
太阳光可以入射到第二电极400上。在这种情况下,第二电极400可以由透明导电材料形成。例如,第二电极400可以由诸如ZnO、掺杂了包括元素周期表中的第III族元素的材料的ZnO(例如ZnO:B、ZnO:Al)、掺杂了包括氢元素的材料的ZnO(例如ZnO:H)、SnO2、SnO2:F或ITO(氧化铟锡)的透明导电材料形成。
连接部500能够通过第一电极200和第二电极400的电连接将多个单元电池串联连接。更详细地说,连接部500形成在基板100的另一表面上。尤其是,连接部500与延伸到基板100的通孔110的内表面的第一电极200的一端201连接,并且也与延伸到基板100的通孔110的内表面的第二电极400的一端401连接,由此使第一电极200和第二电极400彼此电连接。因此,连接部500可以由诸如Ag的导电金属材料形成。
连接部500与在基板100中提供的多个通孔110在相同的方向上延伸,由此使连接部500分别与延伸到基板100的通孔110的内表面的第一电极200的一端201和第二电极400的一端401连接。
虽然没有示出,但是可以在第一电极200和半导体层300之间,或者第二电极400和半导体层300之间另外形成透明导电层。由于该透明导电层,在半导体层300中产生的电子或空穴可以很容易地向第一电极200或第二电极400漂移。
透明导电层可以由诸如ZnO、掺杂了包括元素周期表中的第III族元素的材料的ZnO(例如ZnO:B、ZnO:Al)、掺杂了包括氢元素的材料的ZnO(例如ZnO:H)、SnO2、SnO2:F或ITO(氧化铟锡)的透明导电材料形成。
图4A是图示根据本发明另一个实施例的太阳能电池的平面图;图4B是沿图4A的A-A线的剖面图;图4C是沿图4A的B-B线的剖面图。
除了通过改变第一分隔沟道210和第二分隔沟道410的位置而使第一电极200和第二电极400在结构上有所改变之外,图4A到4C中示出的根据本发明另一个实施例的太阳能电池与图3A到3C中示出的太阳能电池在结构上相同。从而将在整个附图中用相同的参考数字指代相同或类似的部分,并且将省略对相同部分的详细说明。
如图4A到4C中所示,根据本发明另一个实施例的太阳能电池包括:基板100、第一电极200、半导体层300、第二电极400和连接部500。
多个通孔110形成在基板100中,其中所述多个通孔110沿直线按照固定的间隔排列。
第一电极200形成在基板100的一个表面上,例如基板100的上表面上。隔着介于多个第一电极200之间的各个第一分隔沟道210按照固定的间隔提供多个第一电极200。
第一分隔沟道210平行于基板100中多个通孔110的排列方向形成。尤其是,第一分隔沟道210不与通孔110重叠。通过第一分隔沟道210的上述结构,各个第一电极200可以具有下面的结构。
多个第一电极200的每一个的一端201延伸到在基板100中提供的通孔110的内表面。尤其是,在通孔110的整个内表面上形成第一电极200的一端201。而且第一电极200的另一端202不延伸到通孔110的内表面。从而第一电极200的另一端202形成在基板100的一个表面上,例如基板100的上表面上。
半导体层300形成在多个第一电极200上。尤其是,半导体层300可以形成在通孔110的整个内表面上。而且半导体层300可以形成在通孔110的内表面中的第一电极200的一端201上,并且也可以形成在第二电极400的一端401之下。
半导体层300可以形成为NIP结构。而且半导体层300可以形成为顺次沉积第一半导体层301、缓冲层302和第二半导体层303的叠层结构。
第二电极400形成在半导体层300上。隔着介于多个第二电极400之间的各个第二分隔沟道410按照固定的间隔提供多个第二电极400。
第二分隔沟道410平行于基板100中多个通孔110的排列方向形成。尤其是,第二分隔沟道410不与通孔110重叠。而且第二分隔沟道410不与第一分隔沟道210重叠。
通过第二分隔沟道410的上述结构,各个第二电极400可以具有下面的结构。
多个第二电极400中每一个的一端401延伸到在基板100中提供的通孔110的内表面。尤其是,在通孔110的整个内表面中形成第二电极400的一端401。而第二电极400的另一端402不延伸到通孔110的内表面。从而第二电极400的另一端402形成在基板100的一个表面上,例如基板100的上表面上。
连接部500形成在基板100的另一表面上。尤其是,连接部500分别与延伸到基板100的通孔110的内表面的第一电极200的一端201和第二电极400的一端401连接。最终,通过将第一电极200和第二电极400彼此电连接而串联电连接多个单元电池。
虽然未图示,但是可以在第一电极200和半导体层300之间,或者第二电极400和半导体层300之间另外形成透明导电层。
图5A到5G是图示根据本发明一个实施例的太阳能电池的制造方法的剖面图。图5A到5G是沿图3A的线A-A的剖面图,图示了图3A到3C中示出的太阳能电池的制造工艺。
首先,如图5A所示,制备包括通孔110的基板100。
基板100中包括的通孔110可以通过本领域技术人员通常知道的各种方法获得,例如机械加工方法。基板100和通孔110与前面提到的相同,从而将省略对基板100和通孔110的详细说明。
然后,如图5B所示,在基板100的一个表面上,例如基板100的上表面上形成第一电极层200a。
第一电极层200a可以通过诸如丝网印刷方法、喷墨印刷方法、凹版印刷方法、或微接触印刷方法的印刷方法;通过MOCVD(金属有机化学气相沉积);或通过溅射,由诸如Ag、Al、Ag+Mo、Ag+Ni和Ag+Cu的金属材料,或者诸如ZnO、掺杂了包括元素周期表中的第III族元素的材料的ZnO(例如ZnO:B、ZnO:Al)、掺杂了包括氢元素的材料的ZnO(例如ZnO:H)、SnO2、SnO2:F或ITO(氧化铟锡)的透明导电材料形成。
当进行印刷工序、MOCVD工序、或者溅射工序时,可以在提供于基板100中的通孔110的内表面上形成第一电极层200a。
如图5C所示,通过从第一电极层200a中除去预定的部分形成第一分隔沟道210。从而可以隔着介于多个第一电极200之间的各个第一分隔沟道210按照固定的间隔提供多个第一电极200。
平行于设置在基板100中的多个通孔110的排列方向形成第一分隔沟道210。尤其是,第一分隔沟道210部分重叠通孔110的预定部分。也就是说,多个通孔110与第一分隔沟道210的预定部分重叠。
通过第一分隔沟道210,在设置于基板100中的通孔110的内表面的局部上形成多个第一电极200中每一个的一端201,而多个第一电极200中每一个的另一端202不延伸到在基板100中提供的通孔110的内表面,也就是说,另一端202形成在基板100的一个表面上,例如基板100的上表面上。
可以通过激光划线工艺或化学蚀刻工艺执行用于形成第一分隔沟道210的工序。
如图5D所示,在多个第一电极200上形成半导体层300。
可以通过PECVD(等离子体增强化学气相沉积)由诸如非晶硅的硅基材料形成半导体层300。更详细地说,首先通过PECVD使用SiH4、H2和PH3气体来形成N型半导体层,通过PECVD使用SiH4和H2气体在N型半导体层上形成I型半导体层,然后使用SiH4、H2和B2H6气体在I型半导体层上形成P型半导体层,由此完成半导体层300。
形成半导体层300的工序可以包括下面的步骤:形成第一半导体层301、在第一半导体层301上形成缓冲层302和在缓冲层302上形成第二半导体层303。如上所述,第一半导体层301和第二半导体层303可以通过PECVD来形成,缓冲层302可以通过MOCVD来形成。
当进行PECVD工序时,可以在提供于基板100中的通孔110的内表面上形成半导体层300。
然后,如图5E所示,在半导体层300上形成第二电极层400a。
第二电极层400a可以通过MOCVD(金属有机化学气相沉积)或通过溅射,由诸如ZnO、掺杂了包括元素周期表中的第III族元素的材料的ZnO(例如ZnO:B、ZnO:Al)、掺杂了包括氢元素的材料的ZnO(例如ZnO:H)、SnO2、SnO2:F或ITO(氧化铟锡)的透明导电材料形成。
当进行MOCVD工序或溅射工序时,可以在提供于基板100中的通孔110的内表面上形成第二电极层400a。
如图5F所示,通过从第二电极层400a中除去预定的部分来形成第二分隔沟道410。可以隔着介于多个第二电极400之间的各个第二分隔沟道410按照固定的间隔提供多个第二电极400。
平行于基板100中多个通孔110的排列方向形成第二分隔沟道410。尤其是,第二分隔沟道410部分重叠通孔110的预定部分。按照使多个通孔110与第二分隔沟道410的预定部分重叠的方式形成多个通孔110。
而且,第二分隔沟道410部分重叠第一分隔沟道210的预定部分。也就是说,第二分隔沟道410与第一分隔沟道210的预定部分重叠。
通过第二分隔沟道410的上述结构,在通孔110的内表面上的没有形成第一电极200的一端201的其它部分中形成多个第二电极400中每一个的一端401。而且第二电极400的另一端402不延伸到在基板100中提供的通孔110的内表面。从而第二电极400的另一端402形成在基板100的一个表面上,例如基板100的上表面上。
可以通过激光划线工艺或化学蚀刻工艺执行用于形成第二分隔沟道410的工序。
如图5G所示,在基板100的另一表面上形成连接部500。
连接部500与在基板100中提供的多个通孔在相同的方向上延伸,由此使连接部500分别与延伸到基板100的通孔110的内表面的第一电极200的一端201和第二电极400的一端401连接。
可以通过诸如丝网印刷方法、喷墨印刷方法、凹版印刷方法、或微接触印刷方面的印刷方法,用诸如Ag的导电金属材料的浆料来形成连接部500,但不限于这些实例。连接部500可以通过MOCVD(金属有机化学气相沉积)或通过溅射来形成。
虽然未示出,但是可以在第一电极200和半导体层300之间,或者第二电极400和半导体层300之间另外形成透明导电层。透明导电层可以通过MOCVD(金属有机化学气相沉积)或通过溅射,由诸如ZnO、掺杂了包括元素周期表中的第III族元素的材料的ZnO(例如ZnO:B、ZnO:Al)、掺杂了包括氢元素的材料的ZnO(例如ZnO:H)、SnO2、SnO2:F或ITO(氧化铟锡)的透明导电材料形成。
图6A-6G是图示根据本发明另一个实施例的太阳能电池的制造方法的剖面图。图6A-6G是沿图4A的A-A线的剖面图,图示图4A到4C中示出的太阳能电池的制造工艺。下面将省略对与前面提及的本发明的实施例相同的部分的详细说明。
首先,如图6A所示,制备包括通孔110的基板100。
然后,如图6B所示,在基板100的一个表面上,例如基板100的上表面上形成第一电极层200a。
如图6C所示,通过从第一电极层200a中除去预定的部分形成第一分隔沟道210。从而可以隔着介于多个第一电极200之间的各个第一分隔沟道210按照固定的间隔提供多个第一电极200。
平行于基板100中的多个通孔110的排列方向形成第一分隔沟道210。尤其是,第一分隔沟道210不与通孔110重叠。
通过第一分隔沟道210,在提供于基板100中的通孔110的整个内表面上形成多个第一电极200中每一个的一端201,多个第一电极200中每一个的另一端202不延伸到通孔110的内表面。从而第一电极200的另一端202形成在基板100的一个表面上,例如基板100的上表面上。
如图6D所示,在多个第一电极200上形成半导体层300。
然后如图6E所示,在半导体层300上形成第二电极层400a。
如图6F所示,通过从第二电极层400a中除去预定的部分形成第二分隔沟道410。隔着介于多个第二电极400之间的各个第二分隔沟道410按照固定的间隔提供多个第二电极400。
平行于多个通孔110的排列方向形成第二分隔沟道410。尤其是,第二分隔沟道410不与通孔110重叠。而且第二分隔沟道410不与第一分隔沟道210重叠。
通过第二分隔沟道410,在提供于基板100中的通孔110的整个内表面上形成多个第二电极400中每一个的一端401,而多个第二电极400中每一个的另一端402不延伸到通孔110的内表面。从而第二电极400的另一端402形成在基板100的一个表面上,例如基板100的上表面上。
如图6G所示,在基板100的另一表面上形成连接部500。
连接部500与在基板100中提供的多个通孔110形成在相同的方向上,由此使连接部500分别与延伸到基板100的通孔110的内表面的第一电极200的一端201和第二电极400的一端401连接。
因此,根据本发明的太阳能电池利用在基板100中提供的通孔110来实现第一电极200和第二电极400之间的电连接,而不是利用现有技术的通过除去半导体层而获得的接触孔。因此,根据本发明的太阳能电池能够通过防止包括半导体材料的残留物质残存在第一电极200和第二电极400之间和防止残留物质引起的第一电极200和第二电极400之间的接触电阻增加,来提高太阳能电池的效率。
即使在高温条件下在基板100上沉积多个层,也能够通过形成在根据本发明的太阳能电池的基板100中的通孔110缓解应力集中,从而使基板的凹陷最小化。结果是,可以提高沉积在基板100上的多个层的均匀性。
根据本发明的太阳能电池的制造方法不需要通过除去半导体层而形成接触孔的工序,由此通过减少激光划线工序的次数而减少了制造时间。而且由于减少了激光划线装置的数量,所以也降低了制造成本。即使执行激光划线工序,也是对由相似材料形成的第一电极200和第二电极400应用激光划线工序。也就是说,可以使用采用相同波长的激光划线装置,从而显著提高了效率。
当第一分隔沟道210、第二分隔沟道410与通孔110重叠时,由于死区(deadzone)的减少而使太阳能电池效率的降低最小化。
对本领域技术人员来说显而易见的是,可以不偏离本发明的精神和范围在本发明中进行各种修改和变化。从而,本发明旨在覆盖该发明的修改和变化,只要它们在权利要求及其等效物的范围内。

Claims (20)

1.一种太阳能电池,包括:
具有通孔的基板;
在所述基板的一个表面上的第一电极,其中所述第一电极的一端延伸到所述通孔的内表面;
在所述第一电极上的半导体层;
在所述半导体层上的第二电极,其中所述第二电极的一端延伸到所述通孔的内表面;和
连接部,用于将所述第一电极的一端与所述第二电极的一端电连接,
其中所述第一电极的另一端不形成在所述通孔的内表面上,所述第二电极的另一端不形成在所述通孔的内表面上。
2.如权利要求1所述的太阳能电池,其中多个第一电极是隔着介于所述多个第一电极之间的各个第一分隔沟道按照固定的间隔来提供的,多个第二电极是隔着介于所述多个第二电极之间的各个第二分隔沟道按照固定的间隔来提供的。
3.如权利要求2所述的太阳能电池,其中多个通孔平行于所述第一和第二分隔沟道排列。
4.如权利要求1所述的太阳能电池,其中所述第一电极的一端形成在所述通孔的内表面的局部上,所述第二电极的一端形成在所述通孔的内表面上的没有形成所述第一电极的一端的其它部分上。
5.如权利要求1所述的太阳能电池,其中所述第一电极的一端形成在所述通孔的整个内表面上,所述第二电极的一端形成在所述通孔的整个内表面上。
6.如权利要求1所述的太阳能电池,其中所述半导体层形成在所述通孔的内表面中的第一电极的一端上,而且还形成在所述第二电极的一端之下。
7.如权利要求1所述的太阳能电池,其中所述半导体层包括:
所述第一电极上的N型半导体层;
所述N型半导体层上的I型半导体层;和
所述I型半导体层上的P型半导体层。
8.如权利要求1所述的太阳能电池,其中所述半导体层包括:第一半导体层、第二半导体层和设置在所述第一和第二半导体层之间的缓冲层。
9.如权利要求1所述的太阳能电池,其中所述连接部形成在所述基板的另一表面上。
10.一种太阳能电池,包括:
具有通孔的基板;
在所述基板的一个表面上的第一电极,其中所述第一电极的一端延伸到所述通孔的内表面;
在所述第一电极上的半导体层;
在所述半导体层上的第二电极,其中所述第二电极的一端延伸到所述通孔的内表面;和
连接部,用于将所述第一电极的一端与所述第二电极的一端电连接,
其中多个第一电极是隔着介于所述多个第一电极之间的各个第一分隔沟道按照固定的间隔来提供的,多个第二电极是隔着介于所述多个第二电极之间的各个第二分隔沟道按照固定的间隔来提供的,
其中多个通孔平行于所述第一和第二分隔沟道排列,
其中所述多个通孔分别与所述第一分隔沟道的预定部分和所述第二分隔沟道的预定部分重叠,所述第一分隔沟道与所述第二分隔沟道的预定部分重叠。
11.一种太阳能电池,包括:
具有通孔的基板;
在所述基板的一个表面上的第一电极,其中所述第一电极的一端延伸到所述通孔的内表面;
在所述第一电极上的半导体层;
在所述半导体层上的第二电极,其中所述第二电极的一端延伸到所述通孔的内表面;和
连接部,用于将所述第一电极的一端与所述第二电极的一端电连接,
其中多个第一电极是隔着介于所述多个第一电极之间的各个第一分隔沟道按照固定的间隔来提供的,多个第二电极是隔着介于所述多个第二电极之间的各个第二分隔沟道按照固定的间隔来提供的,
其中多个通孔平行于所述第一和第二分隔沟道排列,
其中所述多个通孔不与所述第一和第二分隔沟道重叠,所述第一分隔沟道不与所述第二分隔沟道重叠。
12.一种太阳能电池的制造方法,包括:
制备具有通孔的基板;
在具有通孔的基板的一个表面上形成第一电极层;
通过从所述第一电极层中除去预定的部分而形成隔着第一分隔沟道按照预定的间隔提供的第一电极,其中所述第一电极的一端形成在所述通孔的内表面上;
在所述第一电极上形成半导体层;
在所述半导体层上形成第二电极层;
通过从所述第二电极层中除去预定的部分而形成隔着第二分隔沟道按照预定的间隔提供的第二电极,其中所述第二电极的一端形成在所述通孔的内表面上;以及
形成用于将所述第一电极的一端与所述第二电极的一端电连接的连接部,
其中所述第一电极的另一端不形成在所述通孔的内表面上,所述第二电极的另一端不形成在所述通孔的内表面上。
13.如权利要求12所述的方法,其中制备所述具有通孔的基板的工序包括:形成沿基板的预定方向排列的多个通孔,
其中所述第一和第二分隔沟道平行于所述通孔的排列方向形成。
14.如权利要求12所述的方法,其中所述第一电极的一端形成在所述通孔的内表面的局部上,所述第二电极的一端形成在所述通孔内表面上的没有形成所述第一电极的一端的其它部分上。
15.如权利要求12所述的方法,其中所述第一电极的一端形成在所述通孔的整个内表面上,所述第二电极的一端形成在所述通孔的整个内表面上。
16.如权利要求12所述的方法,其中所述半导体层形成在所述通孔的内表面中的第一电极的一端上,而且还形成在所述第二电极的一端之下。
17.如权利要求12所述的方法,其中形成所述半导体层的工序包括:
在所述第一电极上形成N型半导体层;
在所述N型半导体层上形成I型半导体层;
在所述I型半导体层上形成P型半导体层。
18.如权利要求12所述的方法,其中形成所述半导体层的工序包括:
在所述第一电极上形成第一半导体层;
在所述第一半导体层上形成缓冲层;
在所述缓冲层上形成第二半导体层。
19.一种太阳能电池的制造方法,包括:
制备具有通孔的基板;
在具有通孔的基板的一个表面上形成第一电极层;
通过从所述第一电极层中除去预定的部分而形成隔着第一分隔沟道按照预定的间隔提供的第一电极,其中所述第一电极的一端形成在所述通孔的内表面上;
在所述第一电极上形成半导体层;
在所述半导体层上形成第二电极层;
通过从所述第二电极层中除去预定的部分而形成隔着第二分隔沟道按照预定的间隔提供的第二电极,其中所述第二电极的一端形成在所述通孔的内表面上;以及
形成用于将所述第一电极的一端与所述第二电极的一端电连接的连接部,
其中制备所述具有通孔的基板的工序包括形成沿基板的预定方向排列的多个通孔,
其中所述第一和第二分隔沟道平行于所述通孔的排列方向形成,
其中所述第一和第二分隔沟道与所述多个通孔部分重叠,所述第二分隔沟道与所述第一分隔沟道部分重叠。
20.一种太阳能电池的制造方法,包括:
制备具有通孔的基板;
在具有通孔的基板的一个表面上形成第一电极层;
通过从所述第一电极层中除去预定的部分而形成隔着第一分隔沟道按照预定的间隔提供的第一电极,其中所述第一电极的一端形成在所述通孔的内表面上;
在所述第一电极上形成半导体层;
在所述半导体层上形成第二电极层;
通过从所述第二电极层中除去预定的部分而形成隔着第二分隔沟道按照预定的间隔提供的第二电极,其中所述第二电极的一端形成在所述通孔的内表面上;以及
形成用于将所述第一电极的一端与所述第二电极的一端电连接的连接部,
其中制备所述具有通孔的基板的工序包括形成沿基板的预定方向排列的多个通孔,
其中所述第一和第二分隔沟道平行于所述通孔的排列方向形成,
其中所述第一和第二分隔沟道不与所述多个通孔重叠,所述第二分隔沟道不与所述第一分隔沟道重叠。
CN201110057832.3A 2010-03-05 2011-03-04 太阳能电池及其制造方法 Active CN102194900B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0019712 2010-03-05
KR1020100019712A KR101676368B1 (ko) 2010-03-05 2010-03-05 태양전지 및 그 제조방법

Publications (2)

Publication Number Publication Date
CN102194900A CN102194900A (zh) 2011-09-21
CN102194900B true CN102194900B (zh) 2015-12-16

Family

ID=44530265

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110057832.3A Active CN102194900B (zh) 2010-03-05 2011-03-04 太阳能电池及其制造方法

Country Status (3)

Country Link
US (1) US20110214731A1 (zh)
KR (1) KR101676368B1 (zh)
CN (1) CN102194900B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101428146B1 (ko) 2011-12-09 2014-08-08 엘지이노텍 주식회사 태양전지 모듈 및 이의 제조방법
CN103252984A (zh) * 2012-02-17 2013-08-21 无锡尚德太阳能电力有限公司 丝网印刷设备
KR102098100B1 (ko) 2013-09-17 2020-04-08 엘지이노텍 주식회사 태양전지 및 이의 제조 방법
KR102567037B1 (ko) * 2016-01-19 2023-08-14 주성엔지니어링(주) 박막형 태양전지 및 그 제조 방법
WO2019069643A1 (ja) * 2017-10-04 2019-04-11 株式会社カネカ 太陽電池の製造方法、太陽電池および太陽電池モジュール
CN110574170B (zh) * 2018-06-20 2023-04-11 天津三安光电有限公司 一种柔性薄膜太阳电池及其制造方法
WO2024101216A1 (ja) * 2022-11-10 2024-05-16 株式会社カネカ 太陽電池セル及び太陽電池モジュール

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0452588A1 (en) * 1990-04-18 1991-10-23 Mitsubishi Denki Kabushiki Kaisha Solar cell and method for manufacturing the same
US5421908A (en) * 1992-12-28 1995-06-06 Fuji Electric Co., Ltd. Thin-film solar cell and method for the manufacture thereof
CN1230033A (zh) * 1998-03-25 1999-09-29 阿苏拉布股份有限公司 光电池的批量制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5821597A (en) * 1992-09-11 1998-10-13 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
JP3239657B2 (ja) * 1994-12-28 2001-12-17 富士電機株式会社 薄膜太陽電池およびその製造方法
US5977476A (en) * 1996-10-16 1999-11-02 United Solar Systems Corporation High efficiency photovoltaic device
KR20100021045A (ko) * 2008-08-14 2010-02-24 주성엔지니어링(주) 박막형 태양전지 및 그 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0452588A1 (en) * 1990-04-18 1991-10-23 Mitsubishi Denki Kabushiki Kaisha Solar cell and method for manufacturing the same
US5421908A (en) * 1992-12-28 1995-06-06 Fuji Electric Co., Ltd. Thin-film solar cell and method for the manufacture thereof
CN1230033A (zh) * 1998-03-25 1999-09-29 阿苏拉布股份有限公司 光电池的批量制造方法

Also Published As

Publication number Publication date
KR101676368B1 (ko) 2016-11-15
CN102194900A (zh) 2011-09-21
KR20110100725A (ko) 2011-09-15
US20110214731A1 (en) 2011-09-08

Similar Documents

Publication Publication Date Title
CN102194900B (zh) 太阳能电池及其制造方法
US7829785B2 (en) Thin film solar cell with finger pattern
CN101743643B (zh) 薄膜太阳能电池模块及其制造方法
EP2439788A2 (en) Solar cell apparatus and method for manufacturing same
US8779282B2 (en) Solar cell apparatus and method for manufacturing the same
EP3096360A1 (en) Solar cell and solar cell module
US9818897B2 (en) Device for generating solar power and method for manufacturing same
CN103681930A (zh) 太阳能电池及其制造方法
US20120160318A1 (en) Solar cell apparatus and method of fabricating the same
WO2013039019A1 (ja) 光電変換デバイス用電極及び光電変換デバイス
US8536447B2 (en) Electrode of solar cell and fabricating method thereof
US20180114873A1 (en) Solar cell, method for manufacturing same, solar cell module and wiring sheet
CN115663053A (zh) 叠层太阳能电池及其制备方法
US9559223B2 (en) Solar cell apparatus and method of fabricating the same
US20130133740A1 (en) Photovoltaic device and method for manufacturing same
KR101000383B1 (ko) 집적형 박막 태양전지 및 그 제조 방법
CN103066133A (zh) 光电装置
US9087953B2 (en) Solar cell module and method for manufacturing the same
US20120240980A1 (en) Interconnection Schemes for Photovoltaic Cells
US9954122B2 (en) Solar cell apparatus and method of fabricating the same
WO2010109567A1 (ja) 光電変換装置、太陽電池モジュール、及び光電変換装置の製造方法
US20140311565A1 (en) Solar cell apparatus and method of fabricating the same
US20120211060A1 (en) Thin-film solar cell module and method for manufacturing the same
KR102084854B1 (ko) 2이상의 태양전지 셀을 포함하는 태양전지 셀 스트링 및 그의 제조방법
US20150129028A1 (en) Solar cell and method of fabricating the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant