WO2013136649A1 - 無線通信装置 - Google Patents
無線通信装置 Download PDFInfo
- Publication number
- WO2013136649A1 WO2013136649A1 PCT/JP2013/000335 JP2013000335W WO2013136649A1 WO 2013136649 A1 WO2013136649 A1 WO 2013136649A1 JP 2013000335 W JP2013000335 W JP 2013000335W WO 2013136649 A1 WO2013136649 A1 WO 2013136649A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- supply voltage
- power supply
- output
- wireless communication
- frequency
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims description 64
- 230000006866 deterioration Effects 0.000 claims description 29
- 230000003321 amplification Effects 0.000 claims description 10
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 10
- 238000002347 injection Methods 0.000 claims description 6
- 239000007924 injection Substances 0.000 claims description 6
- 230000003247 decreasing effect Effects 0.000 claims description 2
- 230000015556 catabolic process Effects 0.000 abstract description 18
- 238000006731 degradation reaction Methods 0.000 abstract description 18
- 230000005540 biological transmission Effects 0.000 description 30
- 238000010586 diagram Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 239000002784 hot electron Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0211—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
- H03F1/0216—Continuous control
- H03F1/0233—Continuous control by using a signal derived from the output signal, e.g. bootstrapping the voltage supply
- H03F1/0238—Continuous control by using a signal derived from the output signal, e.g. bootstrapping the voltage supply using supply converters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/52—Circuit arrangements for protecting such amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/189—High-frequency amplifiers, e.g. radio frequency amplifiers
- H03F3/19—High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/189—High-frequency amplifiers, e.g. radio frequency amplifiers
- H03F3/19—High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
- H03F3/193—High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/21—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/24—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/24—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
- H03F3/245—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/26—Push-pull amplifiers; Phase-splitters therefor
- H03F3/265—Push-pull amplifiers; Phase-splitters therefor with field-effect transistors only
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/393—A measuring circuit being coupled to the output of an amplifier
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/435—A peak detection being used in a signal measuring circuit in a controlling circuit of an amplifier
Definitions
- the present disclosure relates to a wireless communication apparatus using a transistor in an analog circuit of a high frequency power amplifier.
- HCI Hot-Carrier Injection
- a hot carrier deterioration detection circuit using a ring oscillator is known as a conventional technique for countermeasures against HCI deterioration (for example, Patent Document 1). That is, a ring oscillator configured using the same transistor as the main circuit is provided on the same chip as the main circuit whose detection target is deterioration due to hot carriers. As the transistor to be inspected deteriorates, the oscillation frequency of the ring oscillator changes. Therefore, the hot carrier deterioration detection circuit can detect whether or not the deterioration of the transistor of the main circuit to be detected has reached the lifetime based on the oscillation frequency of the ring oscillator.
- a transmission circuit having a variable output signal level is known (for example, Patent Document 2).
- the transmission circuit reduces the power supply voltage and the operating current when the output signal is small, and the output signal is large when the output signal is small, in order to suppress degradation of power efficiency or increase in power consumption when the output signal level is small.
- the power supply voltage and the operating current are increased.
- the transmission circuit can reduce power consumption adaptively with respect to the output signal.
- Patent Document 2 since the power supply voltage needs to be increased when the output signal is large, the DC voltage applied to the drain terminal of the transistor increases when the amplitude is large. For this reason, it becomes difficult to suppress the occurrence of HCI degradation.
- the present disclosure has been made in view of the above-described conventional circumstances, and provides a wireless communication device that prevents deterioration of characteristics of a power amplification element due to deterioration of hot carrier injection and controls transmission power according to an output signal level. For the purpose.
- the present disclosure includes a high-frequency power amplifier that amplifies a high-frequency signal using a power amplifying element, a detector that extracts the amplified high-frequency signal based on an output of the high-frequency power amplifier, and the extracted high-frequency signal.
- An analog-to-digital converter that determines an envelope peak voltage of the power supply, a power supply voltage adjustment circuit that adjusts a power supply voltage supplied to the high-frequency power amplifier, and an envelope peak of the determined high-frequency signal from the power supply voltage supplied
- a control unit that controls the power supply voltage supplied by the power supply voltage adjustment circuit so that a value added to the voltage does not exceed a prescribed value of hot carrier injection deterioration of the power amplification element.
- the present disclosure it is possible to prevent deterioration of the characteristics of the power amplifying element due to hot carrier injection deterioration and to control transmission power according to the output signal level.
- Block diagram of a wireless communication apparatus in the present embodiment 1 is a circuit diagram showing a specific analog circuit configuration of a high-frequency power amplifier in the wireless communication apparatus of FIG.
- Waveform diagram showing the signal waveform (voltage) of the positive phase drain output terminal during modulation in the high frequency power amplifier of FIG. 1 is a waveform diagram showing an output waveform at the coupler output terminal in the wireless communication apparatus shown in FIG. 1, that is, an output voltage of the detector.
- HCI deterioration is the following phenomenon. That is, when the electric field between the drain terminal and the source terminal of a transistor (for example, MOSFET: Metal-Oxide Semiconductor Field Effect Transistor) increases, high-energy electrons called hot electrons are generated. When hot electrons are injected into the gate terminal of the transistor, the threshold voltage of the transistor is increased and the drain terminal current is decreased, so that the performance of the transistor is deteriorated.
- a transistor for example, MOSFET: Metal-Oxide Semiconductor Field Effect Transistor
- ⁇ HCI degradation is closely related to the drain-source voltage. That is, as the voltage between the drain terminal and the source terminal applied to the transistor increases, the HCI deterioration proceeds more quickly.
- the general life of product quality is often guaranteed about 10 years. Therefore, for example, in order to guarantee the use of a product for 10 years, it is necessary to suppress the degree of decrease in the drain terminal current of the transistor within, for example, 10%. For this reason, normally, the maximum value of the voltage between the drain terminal and the source terminal applied to the transistor is limited.
- the HCI deterioration of the transistor can be suppressed by regulating the power supply voltage.
- the drain terminal voltage of the transistor may exceed the power supply voltage, and the HCI degradation is likely to proceed.
- the voltage between the drain terminal and the source terminal applied to the transistor affects the performance (for example, gain and saturation output) of the analog circuit. Therefore, simply reducing the power supply voltage is not a good idea.
- Patent Literature 1 and Patent Literature 2 were introduced as patent literatures relating to countermeasures against HCI degradation.
- Patent Document 1 Although it is possible to detect HCI degradation in Patent Document 1, it is difficult to extend the life of the device by suppressing the occurrence of HCI degradation.
- Patent Document 2 since the power supply voltage needs to be increased when the output signal is large, the DC voltage applied to the drain terminal of the transistor increases when the amplitude is large. For this reason, it becomes difficult to suppress the occurrence of HCI degradation.
- WiGig WiGig
- a transistor is manufactured by a fine process. Therefore, a current cutoff frequency ft that represents an upper limit of an operable frequency of the transistor and an actual frequency The difference from the operating frequency is small. Therefore, if the current cutoff frequency ft of the transistor is reduced due to HCI deterioration, the amplification factor of the transistor at the actual operating frequency is reduced, and the transmission output is reduced, making it difficult to withstand actual use.
- HPA high-frequency power amplifier
- FIG. 1 is a block diagram of the wireless communication device 20 in the present embodiment.
- the radio communication device 20 shown in FIG. 1 includes a transmission system circuit TX, a reception system circuit RX, a power supply voltage adjustment circuit 125, a current adjustment circuit 126, and a control unit 10 that controls the overall operation of the radio communication device 20. Including.
- the wireless communication device 20 of the present embodiment may not include the reception system circuit RX.
- the wireless communication device 20 according to the present embodiment uses, for example, a millimeter wave band frequency of about 60 GHz in WiGig standard wireless communication.
- a differential signal is input / output to / from the wireless communication device 20 shown in FIG. 1, a single-ended signal may be input / output.
- the transmission system circuit TX includes a DAC 106, a transmission system variable gain amplifier 105, a quadrature modulator 104, a 90-degree phase shifter 107, an oscillator 108, a driver amplifier 102, a high-frequency power amplifier 101, a coupler 204, a detector 103, An output terminal 205, a coupler output terminal 206, and the transmission antenna 100 are included.
- the output of the high frequency power amplifier 101 is input to the detector 103 via the coupler 204.
- the output of the detector 103 is input to the reception system circuit via the switch 113.
- the oscillator 108 may be included in the reception system circuit RX instead of the transmission system circuit TX.
- the reception circuit RX includes a reception antenna 110, a low noise amplifier (LNA) 111, a quadrature demodulator 112, a 90-degree phase shifter 109, a switch 113, a reception variable gain amplifier 114, and an ADC 115.
- the radio communication apparatus 20 is provided with two reception variable gain amplifiers 114, and the switch 113 selectively switches a signal input to one reception variable gain amplifier 114. That is, the switch 113 switches the signal input destination to the output of the detector 103 or the output of the quadrature demodulator 112 in accordance with the control signal output from the control unit 10.
- the transmission signal of the differential signal is converted from a digital signal to an analog signal by two DACs (digital-analog converters) 106, and 2 as an analog IQ signal. Output from one DAC 106.
- Each signal output from the two DACs 106 is amplified by two transmission system variable gain amplifiers 105.
- Each signal amplified by each transmission system variable gain amplifier 105 is based on two local signals having the same amplitude and 90 degrees different from each other, formed by the oscillator 108 and the 90 degree phase shifter 107 in the quadrature modulator 104.
- Quadrature modulated The quadrature modulated signal is input to the driver amplifier 102.
- the driver amplifier 102 inputs and amplifies the quadrature modulated signal, and outputs the amplified signal to the high frequency power amplifier 101.
- the high frequency power amplifier 101 amplifies the power (level) of the analog signal output from the driver amplifier 102.
- a power supply voltage adjustment circuit 125 and a current adjustment circuit 126 are connected to the high frequency power amplifier 101 of the present embodiment.
- the power supply voltage adjustment circuit 125 adjusts and applies a DC voltage as a power supply voltage of the high-frequency power amplifier 101 in accordance with an instruction from the control unit 10.
- the current adjustment circuit 126 adjusts and supplies the operating current of the high frequency power amplifier 101 in accordance with an instruction from the control unit 10.
- the high frequency signal amplified by the high frequency power amplifier 101 is transmitted as a radio wave from the transmission antenna 100 via the output terminal 205.
- a part of the high frequency signal amplified by the high frequency power amplifier 101 is extracted by the coupler 204 and input to the detector 103 via the coupler output terminal 206.
- An output signal of the detector 103 is input to one ADC (Analog-Digital Converter) 115 via the switch 113 and the reception system variable gain amplifier 114.
- ADC Analog-Digital Converter
- a radio frequency reception signal received by the reception antenna 110 is input to the low noise amplifier 111.
- the low noise amplifier 111 amplifies the input high frequency reception signal with low noise.
- the high frequency received signal output from the low noise amplifier 111 is demodulated in the quadrature demodulator 112 based on two local signals having the same amplitude and 90 degrees different from each other, formed by the oscillator 108 and the 90 degree phase shifter 109.
- One of the demodulated reception signals of the differential signal is input to the switch 113 and the other is input to the other of the two reception variable gain amplifiers 114.
- One of the reception signals output via the switch 113 is input to one of the two reception system variable gain amplifiers 114.
- the reception signals amplified by the two reception system variable gain amplifiers 114 are input to the two ADCs 115 and converted from analog reception signals to digital reception signals.
- the digital received signals converted by the two ADCs 115 are input to the control unit 10.
- FIG. 2 is a circuit diagram showing a specific analog circuit configuration of the high-frequency power amplifier 101 in the wireless communication apparatus 20 of FIG.
- the current on the secondary side of the input-side transformer 211 that is, the operating current (control current) of the transistors 207 and 208 is adjusted and supplied by the current adjustment circuit 116.
- the transistors 207 and 208 are manufactured by a miniaturized CMOS process and configured by using, for example, a MOSFET.
- the transistors 207 and 208 amplify the power of the signal output to the secondary side of the input-side transformer 211 in a high frequency band (millimeter wave band) of about 60 GHz, for example.
- the transistor 207 has a positive phase input gate terminal 200 and an inverted drain output terminal 209. The source terminal of the transistor 207 is grounded.
- the transistor 208 has an inverting input gate terminal 201 and a positive phase drain output terminal 210. The source terminal of the transistor 208 is grounded.
- One electrode of the output matching capacitor 202 is connected to the inverting drain output terminal 209, and the other electrode of the output matching capacitor 202 is connected to the positive phase drain output terminal 210. That is, the output matching capacitor 202 is connected to the inverting drain output terminal 209 and the positive phase drain output terminal 210.
- the transformer 203 on the output side is connected to the positive phase drain output terminal 210 and the inverting drain output terminal 209, and the result of one-phase synthesis of the differential outputs of the positive phase drain output terminal 210 and the inverting drain output terminal 209 is the result of the transformer 203.
- the voltage on the primary side of the output-side transformer 203 is adjusted by the power supply voltage adjustment circuit 125 and applied.
- the output of the secondary side of the transformer 203 is output to the output terminal 205 via the coupler 204.
- the output on the secondary side of the transformer 203 is output to the coupler output terminal 206 as a signal attenuated by about 20 dB to 30 dB by the coupler 204.
- FIG. 3 is a waveform diagram showing a signal waveform (voltage) of the positive phase drain output terminal 210 during modulation in the high frequency power amplifier 101 of FIG.
- the signal waveform shown in FIG. 3 is a modulated wave and includes a carrier wave component, that is, a high-frequency signal (a frequency of about 60 GHz) output from the oscillator 108.
- FIG. 4 is a waveform diagram showing an output waveform at the coupler output terminal 206 in the wireless communication apparatus 20 shown in FIG. 1, that is, an output voltage of the detector 103.
- the DC voltage (power supply voltage) applied to the high-frequency power amplifier 101 as the output of the power supply voltage adjustment circuit 125 is 1.2 V
- a voltage exceeding the power supply voltage (1.2 V) is output from the inverted drain due to the influence of the transformer 203. It occurs at the terminal 209 and the positive phase drain output terminal 210. That is, in FIG. 3, a fluctuation voltage of 1.7 V at maximum is generated around the power supply voltage of 1.2 V.
- the voltage between the drain terminal and the source terminal of the transistors 207 and 208 exceeds the power supply voltage.
- the HCI deterioration proceeds in the transistors 207 and 208.
- the current cutoff frequency ft of the transistors 207 and 208 decreases due to the HCI deterioration, the amplification factors of the transistors 207 and 208 at the operating frequency (for example, 60 GHz) decrease, and the transmission output decreases, making it difficult to withstand actual use. . That is, the product life of the wireless communication device 20 is shortened.
- the output signal of the detector 103 has an AC signal waveform corresponding to the envelope of the signal at the positive phase drain output terminal 210. Therefore, the output signal of the detector 103 represents transmission output information, but is different from the maximum voltage at the positive phase drain output terminal 210. That is, it is difficult to detect the maximum voltage at the positive phase drain output terminal 210 from the output signal of the detector 103.
- the maximum voltage at the positive-phase drain output terminal 210 is grasped because the output of the detector 103 is smoothed using an appropriate low-pass filter (LPF) and then fed back to the gain control system. Difficult to do.
- LPF low-pass filter
- the level of the signal smoothed by the low-pass filter is detected without using the envelope information. Therefore, it is necessary to feed back to the gain control system.
- the radio communication apparatus 20 shown in FIG. 1 performs the following control in order to prevent the HCI deterioration of the transistors 207 and 208. Specifically, the radio communication device 20 outputs the output of the detector 103 to obtain the absolute value of each voltage applied to the inverting drain output terminal 209 of the transistor 207 and the positive phase drain output terminal 210 of the transistor 208. Is detected without smoothing. The wireless communication device 20 detects the peak level in the output of the detector 103 using the ADC 115 that can operate at high speed.
- the reception system circuit RX of the wireless communication device 20 is provided with two ADCs 115 as analog-digital converters that can operate at high speed.
- the ADC 115 detects a peak level of a signal having a high frequency at the output of the detector 103.
- the switch 113 connects the output of the quadrature demodulator 112 and the input of the ADC 115, and outputs a quadrature demodulated reception signal to the ADC 115.
- the switch 113 connects the output of the detector 103 and the input of the ADC 115.
- the control unit 10 adds the peak voltage information obtained as the conversion result of the ADC 115 based on the output of the detector 103 and the power supply voltage information output from the power supply voltage adjustment circuit 125. Therefore, the control unit 10 can obtain the maximum peak voltage values at the inverting drain output terminal 209 of the transistor 207 and the positive phase drain output terminal 210 of the transistor 208.
- the control unit 10 controls (adjusts) the power supply voltage of the high-frequency power amplifier 101 within a range in which the acquired maximum peak voltage value does not exceed the HCI deterioration suppression condition defined in the manufacturing process of the transistors 207 and 208.
- a specific example of the HCI deterioration suppression condition is 1.7 V that is 1.4 times the center voltage 1.2 V of the power supply voltage, for example.
- 1.7 V is set as the threshold value.
- the HCI deterioration suppression condition may be changed as necessary. Thereby, the control part 10 can control (adjust) the optimal power supply voltage in consideration of HCI degradation.
- the voltage waveform at the positive phase drain output terminal 210 is shown.
- the center voltage of the power supply voltage is 1.2V
- the amplitude is ⁇ 0.5V
- the maximum voltage is 1.7V.
- the example shown in FIG. 4 shows a voltage waveform normalized with respect to the voltage at the coupler output terminal 206 so that the amplitude peak is the same as the voltage waveform shown in FIG.
- the threshold value of the voltage between the drain terminal and the source terminal of the transistors 207 and 208 for suppressing the HCI deterioration is set to 1.7V. Accordingly, 1.2 V, which is the result of subtracting 1/2 of the maximum coupler output value 1 V from the threshold value 1.7 V, is determined in advance as the upper limit value of the power supply voltage at the drain terminal. That is, the power supply voltage adjustment circuit 125 adjusts the power supply voltage applied to the high-frequency power amplifier 101, that is, the drain terminal voltage values of the transistors 207 and 208 to 1.2V.
- the control unit 10 acquires the peak voltage of the high-frequency signal obtained as the output of the detector 103 from the ADC 115.
- the control unit 10 determines that the peak voltage obtained by adding the peak voltage obtained from the ADC 115 and a predetermined power supply voltage, that is, the maximum value of the voltage between the drain terminal and the source terminal of the transistors 207 and 208, is the threshold value (1 .7V) to control (adjust) the power supply voltage adjustment circuit 125 so as not to exceed.
- the radio communication device 20 can drive the high-frequency power amplifier 101 with the maximum voltage with little influence of HCI degradation in consideration of both the power supply voltage and the output amplitude.
- the power supply voltage adjustment circuit 125 can increase the amplitude of the high-frequency signal as necessary.
- the power supply source of the wireless communication device 20 is configured using, for example, a battery with a constant output voltage. Power corresponding to the difference between the output voltage of the power supply source (battery) and the power supply voltage output from the power supply voltage adjustment circuit 125 is consumed as heat in the power supply voltage adjustment circuit 125. That is, even when the output power of the wireless communication device 20 is low, power is consumed by the power supply voltage adjustment circuit 125 and battery consumption is promoted.
- the control unit 10 increases the power supply voltage of the high frequency power amplifier 101 by the power supply voltage adjustment circuit 125 and the operating current of the high frequency power amplifier 101 by the current adjustment circuit 126. Reduce. Thereby, the power consumption in the high frequency power amplifier 101 is suppressed.
- FIG. 5 is a table showing the relationship between transmission power (output power), power supply voltage, and operating current in the wireless communication apparatus 20 of FIG.
- FIG. 6 is a table showing the contents of specific control conditions.
- the control unit 10 decreases the power supply voltage applied to the high frequency power amplifier 101 by the power supply voltage adjustment circuit 125, The operating current of the amplifier 101 is increased by the current adjustment circuit 126.
- the control unit 10 increases the power supply voltage applied to the high-frequency power amplifier 101 by the power supply voltage adjustment circuit 125, and operates the high-frequency power amplifier 101.
- the current is reduced by the current adjustment circuit 126.
- control unit 10 can suppress the HCI deterioration of the transistors 207 and 208 and extend the product life of the wireless communication device 20. Further, the control unit 10 can suppress power consumption when the output power is small.
- case 1 and case 2 are defined as two types of control conditions.
- the control unit 10 reduces the power supply voltage to 1.2 V when the AC output amplitude of each drain terminal of the transistors 207 and 208 reaches 1 Vpp, and further operates. Increase current to 30 mA. As a result, the maximum voltage of the drain terminal is 1.7V.
- Data of the optimum values of the power supply voltage and the operating current determined by the calibration is stored as a table on the nonvolatile memory 15 that can be referred to by the control unit 10.
- control unit 10 refers to the data of the optimum values of the power supply voltage and the operating current in the table stored in the nonvolatile memory 15 based on the detected transmission power, and the power supply voltage adjustment circuit 125 and the current adjustment circuit. 126 applies and supplies the drain terminal voltage and the operating current in the high-frequency power amplifier 101.
- the control unit 10 determines the peak voltage value of the envelope of the high frequency signal detected from the output of the high frequency power amplifier 101 by the detector 103. (Output of ADC 115) is used.
- the control unit 10 detects the level.
- the correlation between the optimal control condition when using a modulated wave and the optimal control condition when using a non-modulated signal is measured in advance in the laboratory as calibration, and the resulting power supply voltage and Data of the optimum value of the operating current is held in the nonvolatile memory 15 and the optimum value data is used as a control condition.
- the control unit 10 controls the power supply voltage adjustment circuit 125 and the current adjustment circuit 126 based on the peak level of the high-frequency signal detected using the non-modulated signal, it is optimal for actually transmitting a modulated wave.
- the power supply voltage and the operating current can be controlled using the conditions. Therefore, the operating frequency of the ADC 115 can be lowered and the power consumption of the ADC 115 can be further reduced.
- the transistors 207 and 208 manufactured by a fine process are used in the analog circuit of the high-frequency power amplifier 101, the upper limit of the operable frequency of the transistors 207 and 208 is set.
- the load is an inductor (for example, , Transformer 203), and a drain-grounded amplifier whose drain output voltage is at the center of the power supply voltage and swings with a large amplitude must be used, and the effect of the present disclosure is further enhanced.
- the large amplitude is a voltage that cannot be ignored with respect to the center of the power supply voltage, and is, for example, about 10% or more of the center of the power supply voltage.
- the above-described wireless communication device 20 grasps the drain terminal voltages of the transistors 207 and 208 based on the envelope peak level of the high-frequency signal output from the detector 103 and the power supply voltage. Furthermore, in order to suppress the HCI deterioration of the transistors 207 and 208, the control unit 10 causes the power supply voltage adjustment circuit 125 and the current adjustment circuit 126 to adjust the power supply voltage and the operating current of the high-frequency power amplifier 101.
- the wireless communication device 20 can suppress the HCI deterioration of the transistors 207 and 208, and can extend the product life of the wireless communication device 20. Further, the wireless communication device 20 can suppress power consumption.
- the wireless communication device 20 can suppress the HCI deterioration of the transistor even in a situation where the drain-source voltage of the transistor exceeds the power supply voltage. Therefore, the product life of the wireless communication device 20 can be extended.
- the radio communication device 20 can suppress the HCI degradation of the transistors 207 and 208 when the output power of the high-frequency power amplifier 101 is large, and suppresses heat generation in the power source when the output power of the high-frequency power amplifier 101 is small. Power consumption can be suppressed.
- the wireless communication device 20 can easily control the power supply voltage adjustment circuit 125 and the current adjustment circuit 116 by using a table stored in the nonvolatile memory 15.
- the wireless communication device 20 controls the power supply voltage adjustment circuit 125 and the current adjustment circuit 116 using the switch 113 that switches a signal input to the ADC 115, the radio communication device 20 inputs an output signal from the detector 103 to the ADC 115. .
- the radio communication device 20 can share the reception ADC 115 capable of high-speed signal processing for control of the transmission system circuit. Therefore, the wireless communication device 20 can reduce the circuit scale of the ADC 115.
- Nonvolatile memory 10
- Wireless communication apparatus 100 Transmission antenna 101 High frequency power amplifier 102 Driver amplifier 103 Detector 104 Quadrature modulator 105 Transmission system variable gain amplifier 106 DAC 107 90-degree phase shifter 108 oscillator 109 90-degree phase shifter 110 receiving antenna 111 low noise amplifier 112 quadrature demodulator 113 switch 114 receiving system variable gain amplifier 115 ADC 125 Power supply voltage adjustment circuit 126 Current adjustment circuit 200 Positive phase input gate terminal 201 Inverted input gate terminal 202 Output matching capacity 203 Transformer 204 Coupler 205 Output terminal 206 Coupler output terminal 207 Transistor 208 Transistor 209 Inverted drain output terminal 210 Positive phase drain output terminal 211 transformer
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Amplifiers (AREA)
- Transmitters (AREA)
Abstract
高周波電力増幅器101の出力から抽出した高周波信号の包絡線のピーク情報と、高周波電力増幅器101に印加する電源電圧の情報とを検出し、これらの情報を加算した値に基づいてHCI劣化を抑制するために、制御部10が電源電圧調整回路125及び電流調整回路126を制御して、高周波電力増幅器101の電源電圧及び動作電流を自動的に調整する。出力電圧が電源電圧を超える場合であっても、トランジスタの印加電圧の最大値を把握でき、HCI劣化を抑制できる。
Description
本開示は、高周波電力増幅器のアナログ回路にトランジスタを用いた無線通信装置に関する。
近年、高周波集積回路を用いた無線通信装置では、CMOSプロセスの微細化に伴い高周波電力増幅器(HPA:High-Power Amplifier)のHCI(Hot Carrier Injection:ホットキャリアインジェクション)劣化が問題となっている。
HCI劣化の対策に関する従来技術として、リングオシレータを用いるホットキャリア劣化検出回路が知られている(例えば、特許文献1)。即ち、ホットキャリアによる劣化の検出対象の本体回路と同じチップ上に、本体回路と同じトランジスタを用いて構成したリングオシレータを設ける。検査対象のトランジスタの劣化に伴って、リングオシレータの発振周波数は変化する。従って、ホットキャリア劣化検出回路は、リングオシレータの発振周波数を基に、検出対象の本体回路のトランジスタの劣化の程度又は寿命に達したか否かを検出できる。
また、出力信号レベルが可変の送信回路が知られている(例えば、特許文献2)。具体的には、送信回路は、出力信号レベルを小さくした場合の電力効率の劣化又は消費電力の増加を抑えるために、出力信号が小さい場合は電源電圧及び動作電流を小さくし、出力信号が大きい場合には電源電圧及び動作電流を高くする。これにより、送信回路は、出力信号に対して適応的に消費電力を低減できる。
しかし、特許文献1ではHCI劣化を検出することは可能であるが、HCI劣化の発生を抑制してデバイスの寿命を延ばすことは困難である。一方、特許文献2では、出力信号が大きい場合に電源電圧を大きくする必要があることから、振幅の大きい場合にトランジスタのドレイン端子に印加される直流電圧が高くなる。このため、HCI劣化の発生の抑制が困難となる。
本開示は、上述した従来の事情に鑑みてなされたものであって、ホットキャリアインジェクション劣化による電力増幅素子の特性劣化を防ぎ、出力信号レベルに応じて送信電力を制御する無線通信装置を提供することを目的とする。
本開示は、電力増幅素子を用いて、高周波信号を増幅する高周波電力増幅器と、前記高周波電力増幅器の出力を基に、前記増幅された高周波信号を抽出する検波器と、前記抽出された高周波信号の包絡線ピーク電圧を判定するアナログデジタル変換器と、前記高周波電力増幅器に供給する電源電圧を調整する電源電圧調整回路と、前記供給される電源電圧と前記判定された前記高周波信号の包絡線ピーク電圧との加算値が、前記電力増幅素子のホットキャリアインジェクション劣化の規定値を超えないように、前記電源電圧調整回路が供給する前記電源電圧を制御する制御部と、を備える。
本開示によれば、ホットキャリアインジェクション劣化による電力増幅素子の特性劣化を防ぎ、出力信号レベルに応じて送信電力を制御できる。
<本開示の実施形態の内容に至る経緯>
先ず、本開示に係る無線通信装置の実施形態を説明する前に、本開示に係る無線通信装置の実施形態の内容に至る経緯について説明する。
先ず、本開示に係る無線通信装置の実施形態を説明する前に、本開示に係る無線通信装置の実施形態の内容に至る経緯について説明する。
HCI劣化は次のような現象である。即ち、トランジスタ(例えば、MOSFET:Metal-Oxide Semiconductor Field Effect Transistor)のドレイン端子-ソース端子間の電界が大きくなると、ホットエレクトロンと呼ばれる高エネルギーの電子が発生する。ホットエレクトロンがトランジスタのゲート端子に注入すると、トランジスタの閾値電圧の上昇及びドレイン端子電流の低下が引き起こされ、トランジスタの性能が劣化する。
HCI劣化はドレイン端子-ソース端子間電圧と密接な関係がある。即ち、トランジスタに印加されるドレイン端子-ソース端子間電圧が大きくなると、HCI劣化がより早く進行する。
一方、製品の品質の一般的な寿命は、10年程度を保証することが多い。従って、例えば10年間の製品使用を保証するため、トランジスタのドレイン端子電流の低下の程度を、例えば10%以内に抑制する必要がある。このため、通常はトランジスタに印加するドレイン端子-ソース端子間電圧の最大値に制限をかける。
デジタル回路では、トランジスタに印加されるドレイン端子-ソース端子間電圧が電源電圧を超えることがないため、電源電圧を規制すればトランジスタのHCI劣化を抑制できる。しかし、負荷としてインダクタを用いるアナログ回路では、トランジスタのドレイン端子電圧が電源電圧を超える場合があり、HCI劣化が進行しやすい。
また、トランジスタに印加するドレイン端子-ソース端子間電圧は、アナログ回路の性能(例えば利得、飽和出力)に影響を与える。従って、単純に電源電圧を下げることは得策ではない。
HCI劣化の対策に関する特許文献として、特許文献1及び特許文献2を紹介した。
しかし、特許文献1ではHCI劣化を検出することは可能であるが、HCI劣化の発生を抑制してデバイスの寿命を延ばすことは困難である。
一方、特許文献2では、出力信号が大きい場合に電源電圧を大きくする必要があることから、振幅の大きい場合にトランジスタのドレイン端子に印加される直流電圧が高くなる。このため、HCI劣化の発生の抑制が困難となる。
例えば、60GHz程度のミリ波帯の周波数が用いられるWiGig(Wireless Gigabit)規格の無線通信では、トランジスタを微細プロセスによって製造するため、トランジスタの動作可能な周波数の上限を表す電流遮断周波数ftと実際の動作周波数との差が小さい。従って、HCI劣化によってトランジスタの電流遮断周波数ftが低下すると、実際の動作周波数におけるトランジスタの増幅率が低下し、送信出力が低下して実使用に耐えることが困難となる。
また、電流遮断周波数ftと実際の動作周波数との差が小さい場合には、高周波電力増幅器(HPA)の最終段回路では、1石のトランジスタをソース接地とし、負荷をインダクタとしたソース接地増幅器を用いる。このため、高周波電力増幅器では、HCI劣化の影響を受け易い。
そこで、以下では、ホットキャリアインジェクション劣化による電力増幅素子の特性劣化を防ぎ、出力信号レベルに応じて送信電力を制御する無線通信装置の例を説明する。
以下、本開示に係る無線通信装置の具体的な実施形態について、図面を参照して説明する。
<無線通信装置の構成>
図1は、本実施形態における無線通信装置20のブロック図である。図1に示す無線通信装置20は、送信系回路TXと、受信系回路RXと、電源電圧調整回路125と、電流調整回路126と、無線通信装置20の全体動作を制御する制御部10とを含む。
図1は、本実施形態における無線通信装置20のブロック図である。図1に示す無線通信装置20は、送信系回路TXと、受信系回路RXと、電源電圧調整回路125と、電流調整回路126と、無線通信装置20の全体動作を制御する制御部10とを含む。
なお、本実施形態の無線通信装置20は受信系回路RXを含まなくても良い。また、本実施形態の無線通信装置20は、例えば、WiGig規格の無線通信では、60GHz程度のミリ波帯の周波数を用いる。また、図1に示す無線通信装置20には差動信号が入出力されるが、シングルエンド信号が入出力されても良い。
図1では、送信系回路TXは、DAC106、送信系可変利得増幅器105、直交変調器104、90度移相器107、発振器108、ドライバアンプ102、高周波電力増幅器101、カプラ204、検波器103、出力端子205、カプラ出力端子206及び送信アンテナ100を含む。高周波電力増幅器101の出力は、カプラ204を介して、検波器103に入力される。検波器103の出力は、スイッチ113を介して、受信系回路に入力される。なお、発振器108は、送信系回路TXではなく受信系回路RXに含まれても良い。
図1では、受信系回路RXは、受信アンテナ110、低雑音増幅器(LNA:Low Noise Amplifier)111、直交復調器112、90度移相器109、スイッチ113、受信系可変利得増幅器114及びADC115を含む。無線通信装置20では受信系可変利得増幅器114が2つ設けられ、スイッチ113は、一方の受信系可変利得増幅器114に入力される信号を、選択的に切り替える。即ち、スイッチ113は、制御部10が出力する制御信号に従って、信号の入力先を、検波器103の出力又は直交復調器112の出力に切り替える。
図1に示す無線通信装置20の送信系回路TXでは、差動信号の送信信号は、2つのDAC(デジタル-アナログ変換器)106においてデジタル信号からアナログ信号に変換され、アナログのIQ信号として2つのDAC106から出力される。
2つのDAC106が出力した各信号は、2つの送信系可変利得増幅器105にて増幅される。各送信系可変利得増幅器105において増幅された各信号は、直交変調器104において、発振器108及び90度移相器107により形成された同振幅且つ位相が90度異なる2つのローカル信号を基にして直交変調される。直交変調された信号はドライバアンプ102に入力される。
ドライバアンプ102は、直交変調された信号を入力して増幅し、高周波電力増幅器101に出力する。高周波電力増幅器101は、ドライバアンプ102から出力されたアナログ信号の電力(レベル)を増幅する。
本実施形態の高周波電力増幅器101には、電源電圧調整回路125及び電流調整回路126が接続される。電源電圧調整回路125は、高周波電力増幅器101の電源電圧としての直流電圧を、制御部10の指示に従って調整して印加する。電流調整回路126は、高周波電力増幅器101の動作電流を、制御部10の指示に従って調整して供給する。
高周波電力増幅器101によって増幅された高周波信号は、出力端子205を介して、送信アンテナ100から電波として送信される。高周波電力増幅器101によって増幅された高周波信号の一部は、カプラ204により抽出され、カプラ出力端子206を介して検波器103に入力される。検波器103の出力信号は、スイッチ113及び受信系可変利得増幅器114を介して、一方のADC(Analog-Digital Converter)115に入力される。
一方、図1に示す無線通信装置20の受信系回路RXでは、受信アンテナ110が受信した電波の高周波受信信号が低雑音増幅器111に入力される。低雑音増幅器111は、入力された高周波受信信号を低雑音にて増幅する。低雑音増幅器111から出力された高周波受信信号は、直交復調器112において、発振器108及び90度移相器109により形成された同振幅且つ位相が90度異なる2つのローカル信号を基にして復調される。
復調された差動信号の受信信号は、一方がスイッチ113に入力され、他方が2つの受信系可変利得増幅器114の他方に入力される。スイッチ113を介して出力された受信信号の一方は、2つの受信系可変利得増幅器114の一方に入力される。2つの受信系可変利得増幅器114において増幅された受信信号は、2つのADC115に入力され、アナログの受信信号からデジタルの受信信号に変換される。2つのADC115により変換されたデジタルの受信信号は制御部10に入力される。
<高周波電力増幅器101の具体的構成>
図2は、図1の無線通信装置20における高周波電力増幅器101の具体的なアナログ回路の構成を示す回路図である。
図2は、図1の無線通信装置20における高周波電力増幅器101の具体的なアナログ回路の構成を示す回路図である。
図2に示す高周波電力増幅器101は、入力側のトランス211と、2つのトランジスタ207及び208と、出力整合容量202と、出力側のトランス203と、出力端子205とを含む。なお、入力側のトランス211の二次側における電流、即ち、トランジスタ207及び208の動作電流(制御電流)は、電流調整回路116によって調整されて供給される。
トランジスタ207及び208は、微細化CMOSプロセスによって製造され、例えばMOSFETを用いて構成される。トランジスタ207及び208は、例えば60GHz程度の高い周波数帯(ミリ波帯域)において、入力側のトランス211の二次側に出力された信号の電力を増幅する。
トランジスタ207は、正相入力ゲート端子200及び反転ドレイン出力端子209を有する。トランジスタ207のソース端子は接地している。
トランジスタ208は、反転入力ゲート端子201及び正相ドレイン出力端子210を有する。トランジスタ208のソース端子は接地している。
出力整合容量202の電極の一方は反転ドレイン出力端子209に接続され、出力整合容量202の電極の他方は正相ドレイン出力端子210に接続されている。即ち、出力整合容量202は、反転ドレイン出力端子209及び正相ドレイン出力端子210に接続されている。
出力側のトランス203は、正相ドレイン出力端子210及び反転ドレイン出力端子209に接続され、正相ドレイン出力端子210及び反転ドレイン出力端子209の差動出力を片相合成した結果を、トランス203の二次側に出力する。なお、出力側のトランス203の一次側における電圧は、電源電圧調整回路125によって調整されて印加される。
出力端子205には、カプラ204を介して、トランス203の二次側の出力が出力される。カプラ出力端子206には、トランス203の二次側の出力が、カプラ204により20dB~30dB程度減衰された信号として出力される。
<信号波形の具体例>
図3は、図2の高周波電力増幅器101における変調時の正相ドレイン出力端子210の信号波形(電圧)を示す波形図である。図3に示す信号波形は、変調波であり、搬送波成分、即ち、発振器108が出力した高周波信号(60GHz程度の周波数)を含む。図4は、図1に示す無線通信装置20におけるカプラ出力端子206における出力波形、即ち、検波器103の出力電圧を示す波形図である。
図3は、図2の高周波電力増幅器101における変調時の正相ドレイン出力端子210の信号波形(電圧)を示す波形図である。図3に示す信号波形は、変調波であり、搬送波成分、即ち、発振器108が出力した高周波信号(60GHz程度の周波数)を含む。図4は、図1に示す無線通信装置20におけるカプラ出力端子206における出力波形、即ち、検波器103の出力電圧を示す波形図である。
例えば、電源電圧調整回路125の出力として高周波電力増幅器101に印加される直流電圧(電源電圧)が1.2Vでは、トランス203の影響により、電源電圧(1.2V)を超える電圧が反転ドレイン出力端子209及び正相ドレイン出力端子210に生じる。即ち、図3では、電源電圧の1.2Vを中心として、最大1.7Vの変動電圧が生じている。
つまり、トランジスタ207及び208の各ドレイン端子-ソース端子間電圧が電源電圧を超える。ドレイン端子-ソース端子間電圧が電源電圧を超えると、各トランジスタ207及び208においてHCI劣化が進行する。HCI劣化によってトランジスタ207及び208の電流遮断周波数ftが低下すると、動作周波数(例えば60GHz)におけるトランジスタ207及び208の各増幅率が低下し、送信出力が低下して実使用に耐えることが困難となる。即ち、無線通信装置20の製品寿命が短くなる。
<電源電圧の制御>
次に、無線通信装置20の動作について説明する。ここでは、高周波電力増幅器101に印加される電源電圧が1.2Vであり、正相ドレイン出力端子210における電圧が最大1.7Vとなるケースを想定する(図3参照)。
次に、無線通信装置20の動作について説明する。ここでは、高周波電力増幅器101に印加される電源電圧が1.2Vであり、正相ドレイン出力端子210における電圧が最大1.7Vとなるケースを想定する(図3参照)。
図4では、検波器103の出力信号は、正相ドレイン出力端子210における信号の包絡線に相当する交流信号波形になる。従って、検波器103の出力信号は、送信出力情報を表すが、正相ドレイン出力端子210における最大電圧とは異なる。つまり、検波器103の出力信号では、正相ドレイン出力端子210における最大電圧を検出することが困難である。
例えば、上述した特許文献2では、検波器103の出力を適当な低域通過フィルタ(LPF)を用いて平滑化してから利得制御系にフィードバックするため、正相ドレイン出力端子210における最大電圧を把握することが困難である。つまり、特許文献2に示す利得制御系では、正相ドレイン出力端子210における最大電圧が考慮されていないため、包絡線情報を用いずに低域通過フィルタにて平滑化された信号のレベルを検出して利得制御系にフィードバックしなければならない。
図1に示す無線通信装置20は、トランジスタ207及び208のHCI劣化を防止するために、以下のように制御する。具体的には、無線通信装置20は、トランジスタ207の反転ドレイン出力端子209、及びトランジスタ208の正相ドレイン出力端子210に印加される各電圧の絶対値を取得するために、検波器103の出力を平滑化せずに検出する。無線通信装置20は、高速に動作可能なADC115を用いて、検波器103の出力におけるピークレベルを検出する。
無線通信装置20の受信系回路RXには、高速に動作可能なアナログデジタル変換器として、2つのADC115が設けられている。ADC115は、検波器103の出力における周波数の高い信号のピークレベルを検出する。
無線通信装置20の受信処理では、スイッチ113は、直交復調器112の出力とADC115の入力とを接続し、直交復調された受信信号をADC115に出力する。
また、送信系回路TXにおいて高周波電力増幅器101の電源電圧が調整される場合では、スイッチ113は、検波器103の出力とADC115の入力とを接続する。
制御部10は、検波器103の出力を基にしてADC115の変換結果として得られたピーク電圧情報と、電源電圧調整回路125が出力する電源電圧情報とを加算する。従って、制御部10は、トランジスタ207の反転ドレイン出力端子209、及びトランジスタ208の正相ドレイン出力端子210における最大ピーク電圧値を取得できる。
制御部10は、取得された最大ピーク電圧値がトランジスタ207及び208の製造プロセスにおいて規定されているHCI劣化抑圧条件を超えない範囲において、高周波電力増幅器101の電源電圧を制御(調整)する。
HCI劣化抑圧条件の具体例は、例えば電源電圧の中心電圧1.2Vの1.4倍である1.7Vである。この場合、1.7Vが閾値とされる。HCI劣化抑圧条件は、必要に応じて変更されても良い。これにより、制御部10は、HCI劣化を考慮した最適な電源電圧を制御(調整)できる。
図3に示す例では、正相ドレイン出力端子210における電圧波形を表している。図3に示す例では、電源電圧の中心電圧が1.2V、振幅が±0.5V、最大電圧が1.7Vである。図4に示す例では、カプラ出力端子206の電圧について、振幅ピークが図3に示す電圧波形と同じになるように正規化された電圧波形を示す。
本実施形態では、HCI劣化抑制のためのトランジスタ207及び208のドレイン端子-ソース端子間電圧の閾値が1.7Vに定められている。従って、閾値の1.7Vからカプラ出力の最大値1Vの1/2を減算した結果である1.2Vを、ドレイン端子における電源電圧の上限値と予め定めておく。つまり、電源電圧調整回路125は、高周波電力増幅器101に印加する電源電圧、即ち、トランジスタ207及び208の各ドレイン端子電圧値を1.2Vに調整する。
具体的には、制御部10は、検波器103の出力として得られた高周波信号のピーク電圧をADC115から取得する。制御部10は、ADC115から得られたピーク電圧と、予め定められた電源電圧とを加算した結果のピーク電圧、つまりトランジスタ207及び208のドレイン端子-ソース端子間電圧の最大値が、閾値(1.7V)を超えないように電源電圧調整回路125を制御(調整)する。
これにより、無線通信装置20は、電源電圧及び出力振幅の両方を考慮し、HCI劣化の影響が少ない最大電圧にて高周波電力増幅器101を駆動できる。
<動作電流の制御>
<出力電力が大きい場合>
HCI劣化を抑制するために電源電圧を下げる場合には、高周波電力増幅器101における高周波信号の振幅が大きいと、信号レベルが飽和し易くなり信号に歪みが発生する。これを避けるために、高周波信号の振幅を抑制する必要がある。しかし、振幅を抑制すると出力電力が低下する。そこで、制御部10は、電流調整回路126に、高周波電力増幅器101の動作電流を増大させ、高周波電力増幅器101の出力電力が変化させないようにする。
<出力電力が大きい場合>
HCI劣化を抑制するために電源電圧を下げる場合には、高周波電力増幅器101における高周波信号の振幅が大きいと、信号レベルが飽和し易くなり信号に歪みが発生する。これを避けるために、高周波信号の振幅を抑制する必要がある。しかし、振幅を抑制すると出力電力が低下する。そこで、制御部10は、電流調整回路126に、高周波電力増幅器101の動作電流を増大させ、高周波電力増幅器101の出力電力が変化させないようにする。
<出力電力が小さい場合>
一方、高周波電力増幅器101の出力電力が比較的小さい場合には、高周波電力増幅器101における高周波信号の振幅が比較的小さくなる。また、HCI劣化を考慮する必要がなく、電源電圧調整回路125は、高周波電力増幅器101に印加する電源電圧を上げる。
一方、高周波電力増幅器101の出力電力が比較的小さい場合には、高周波電力増幅器101における高周波信号の振幅が比較的小さくなる。また、HCI劣化を考慮する必要がなく、電源電圧調整回路125は、高周波電力増幅器101に印加する電源電圧を上げる。
高周波電力増幅器101に印加される電源電圧を上げると、信号レベルが飽和しにくいため、高周波信号の振幅を上げたとしても信号に歪みが生じにくい。つまり、電源電圧調整回路125は、必要に応じて高周波信号の振幅を上げることができる。
無線通信装置20の電力供給源は、例えば出力電圧が一定のバッテリーを用いて構成される。電力供給源(バッテリー)の出力電圧と、電源電圧調整回路125が出力する電源電圧との差分に相当する電力は、電源電圧調整回路125の内部において熱として消費される。つまり、無線通信装置20の出力電力が低い場合でも、電源電圧調整回路125によって電力が消費され、バッテリーの消耗が促進される。
そこで、高周波電力増幅器101の出力電力が比較的小さい場合には、制御部10は、電源電圧調整回路125により高周波電力増幅器101の電源電圧を上げ、電流調整回路126により高周波電力増幅器101の動作電流を減らす。これにより、高周波電力増幅器101における電力消費を抑制する。
<制御部10における制御内容>
図5は、図1の無線通信装置20における送信パワー(出力電力)と電源電圧及び動作電流との関係を示すテーブルである。図6は、具体的な制御条件の内容を示すテーブルである。
図5は、図1の無線通信装置20における送信パワー(出力電力)と電源電圧及び動作電流との関係を示すテーブルである。図6は、具体的な制御条件の内容を示すテーブルである。
つまり、図5では、制御部10は、送信パワー、即ち、高周波電力増幅器101の出力電力が大きい場合には、高周波電力増幅器101に印加する電源電圧を電源電圧調整回路125によって減少させ、高周波電力増幅器101の動作電流を電流調整回路126によって増大させる。
一方、制御部10は、送信パワー、即ち、高周波電力増幅器101の出力電力が小さい場合には、高周波電力増幅器101に印加する電源電圧を電源電圧調整回路125によって増大させ、高周波電力増幅器101の動作電流を電流調整回路126によって減少させる。
これにより、制御部10は、トランジスタ207及び208のHCI劣化を抑制し、無線通信装置20の製品寿命を延長できる。また、制御部10は、出力電力が小さい場合に電力消費を抑制できる。
次に、具体的な切換例について説明する。図6に示す例では、2種類の制御条件としてケース1及びケース2が定められている。
ケース1、即ち、送信パワーが「+7dBm」では、制御部10は、トランジスタ207及び208の各ドレイン端子のAC出力振幅が1Vppに達する場合には電源電圧を1.2Vに減少し、更に、動作電流を30mAに増大する。これより、ドレイン端子の最大電圧が1.7Vとなる。
ケース2、即ち、送信パワーが「+1dBm」では、制御部10は、トランジスタ207及び208の各ドレイン端子のAC出力振幅が0.5Vppに達する場合には電源電圧を1.45Vに増大し、更に、動作電流を27mAに減少させる。これより、ドレイン端子の最大電圧が1.7Vとなる。
なお、図6に示す2種類以上の動作条件に関する具体的な電源電圧及び動作電流の最適値をキャリブレーションとして事前に測定することによって、無線通信装置20に対して決定することが好ましい。キャリブレーションにより決定された電源電圧及び動作電流の最適値のデータを、制御部10が参照可能な不揮発性メモリ15上にテーブルとして保存させておく。
従って、制御部10は、検出した送信パワーを基に、不揮発性メモリ15に保存されているテーブルの電源電圧及び動作電流の最適値のデータを参照して、電源電圧調整回路125及び電流調整回路126に、高周波電力増幅器101におけるドレイン端子電圧及び動作電流を印加及び供給させる。
<変形例>
上述の無線通信装置20では、高周波電力増幅器101が変調波を送信する場合に、制御部10は、検波器103により高周波電力増幅器101の出力から検出された高周波信号の包絡線のピーク電圧の値(ADC115の出力)を用いている。
上述の無線通信装置20では、高周波電力増幅器101が変調波を送信する場合に、制御部10は、検波器103により高周波電力増幅器101の出力から検出された高周波信号の包絡線のピーク電圧の値(ADC115の出力)を用いている。
無線通信装置20は、CW(Continuous Wave=無変調連続正弦波)信号を用いて、高周波電力増幅器101の出力を検出しても良い。即ち、トランジスタ207及び208のドレイン端子電圧を把握するために、無線通信装置20の送信系回路が無変調状態にて、つまり高周波電力増幅器101が搬送波を出力している状態にて、出力信号のレベルを制御部10が検出する。
この場合、検波器103の出力信号が図4に示す高速変化がないため、ピークレベル検出のためにADC115が高速にAD変換処理する必要がなくなる。従って、高速に動作可能なADC115を利用しなくても制御可能になり、アナログデジタル変換の処理速度を下げて電力消費を抑制できる。
但し、変調波を用いる場合と、無変調信号を用いる場合とでは、検波器103の出力信号に基づいて検出されるピークレベルと、トランジスタ207及び208のドレイン電圧との関係に違いが生じる。
従って、変調波を用いる場合の最適な制御条件と、無変調信号を用いる場合の最適な制御条件との相関関係を、キャリブレーションとして実験室にて予め測定し、結果として得られた電源電圧及び動作電流の最適値のデータを不揮発性メモリ15に保持しておき、最適値のデータを制御条件として用いる。
このため、無変調信号を用いて検出した高周波信号のピークレベルに基づいて制御部10が電源電圧調整回路125及び電流調整回路126を制御する場合でも、実際に変調波を送信する場合に最適な条件を用いて電源電圧及び動作電流を制御できる。従って、ADC115の動作周波数を下げ、更なるADC115における消費電力を低減できる。
なお、例えば60GHz程度のミリ波帯の無線通信において、微細プロセスによって製造されたトランジスタ207及び208を高周波電力増幅器101のアナログ回路に用いる場合であってトランジスタ207及び208の動作可能な周波数の上限を表す電流遮断周波数ftと実際の動作周波数との差が小さい場合には、図2に示す高周波電力増幅器101のように、最終段回路では、トランジスタ207及び208をソース接地させ、負荷をインダクタ(例えば、トランス203)とし、ドレインの出力電圧が電源電圧中心であり、かつ、大振幅で振れるソース接地増幅器を使わざるを得ず、より本開示の効果は高くなる。なお、大振幅とは、電源電圧中心に対して無視できない電圧であり、例えば、電源電圧中心の約10%以上となる。
上述の無線通信装置20は、検波器103が出力した高周波信号の包絡線ピークレベル及び電源電圧に基づいて、トランジスタ207及び208のドレイン端子電圧を把握している。更に、トランジスタ207及び208のHCI劣化を抑制するために、制御部10は、電源電圧調整回路125及び電流調整回路126に、高周波電力増幅器101の電源電圧及び動作電流を調整させている。
従って、無線通信装置20は、トランジスタ207及び208のHCI劣化を抑制でき、無線通信装置20の製品寿命を延ばすことができる。また、無線通信装置20は、消費電力を抑制できる。
これにより、無線通信装置20は、トランジスタのドレイン-ソース間電圧が電源電圧を超えるような状況であっても、トランジスタのHCI劣化を抑制できる。従って、無線通信装置20の製品寿命を延長できる。
また、無線通信装置20は、高周波電力増幅器101の出力電力が大きい場合にはトランジスタ207及び208のHCI劣化を抑制でき、高周波電力増幅器101の出力電力が小さい場合には電源における発熱を抑制し、電力消費を抑制できる。
また、無線通信装置20は、不揮発性メモリ15に保存されたテーブルを用いることで、電源電圧調整回路125及び電流調整回路116を簡易に制御できる。
また、無線通信装置20は、ADC115に入力される信号を切り替えるスイッチ113を用いて、電源電圧調整回路125及び電流調整回路116を制御する場合に、検波器103からの出力信号をADC115に入力する。これにより、無線通信装置20は、高速の信号処理が可能な受信系のADC115を、送信系回路の制御に共用できる。従って、無線通信装置20は、ADC115の回路規模を低減できる。
なお、本出願は、2012年3月16日出願の日本特許出願(特願2012-060543)に基づくものであり、その内容はここに参照として取り込まれる。
以上、図面を参照して各種の実施形態について説明したが、本開示はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。
10 制御部
15 不揮発性メモリ
20 無線通信装置
100 送信アンテナ
101 高周波電力増幅器
102 ドライバアンプ
103 検波器
104 直交変調器
105 送信系可変利得増幅器
106 DAC
107 90度移相器
108 発振器
109 90度移相器
110 受信アンテナ
111 低雑音増幅器
112 直交復調器
113 スイッチ
114 受信系可変利得増幅器
115 ADC
125 電源電圧調整回路
126 電流調整回路
200 正相入力ゲート端子
201 反転入力ゲート端子
202 出力整合容量
203 トランス
204 カプラ
205 出力端子
206 カプラ出力端子
207 トランジスタ
208 トランジスタ
209 反転ドレイン出力端子
210 正相ドレイン出力端子
211 トランス
15 不揮発性メモリ
20 無線通信装置
100 送信アンテナ
101 高周波電力増幅器
102 ドライバアンプ
103 検波器
104 直交変調器
105 送信系可変利得増幅器
106 DAC
107 90度移相器
108 発振器
109 90度移相器
110 受信アンテナ
111 低雑音増幅器
112 直交復調器
113 スイッチ
114 受信系可変利得増幅器
115 ADC
125 電源電圧調整回路
126 電流調整回路
200 正相入力ゲート端子
201 反転入力ゲート端子
202 出力整合容量
203 トランス
204 カプラ
205 出力端子
206 カプラ出力端子
207 トランジスタ
208 トランジスタ
209 反転ドレイン出力端子
210 正相ドレイン出力端子
211 トランス
Claims (6)
- 電力増幅素子を用いて、高周波信号を増幅する高周波電力増幅器と、
前記高周波電力増幅器の出力を基に、前記増幅された高周波信号を抽出する検波器と、
前記抽出された高周波信号の包絡線ピーク電圧を判定するアナログデジタル変換器と、
前記高周波電力増幅器に供給する電源電圧を調整する電源電圧調整回路と、
前記電源電圧調整回路が供給する前記電源電圧と前記判定された前記高周波信号の包絡線ピーク電圧との加算値を、予め定めた範囲内に調整する制御部と、を備える無線通信装置。 - 請求項1に記載の無線通信装置であって、
前記電力増幅素子の動作電流を調整する電流調整回路と、を更に備え、
前記制御部は、
前記電源電圧調整回路及び前記電流調整回路に、
前記高周波電力増幅器の出力電力が比較的大きい場合、前記高周波電力増幅器に供給する電源電圧を減少させ、更に前記電力増幅素子の動作電流を増大させ、
前記高周波電力増幅器の出力電力が比較的小さい場合、前記高周波電力増幅器に供給する電源電圧を増大させ、更に前記電力増幅素子の動作電流を減少させる無線通信装置。 - 請求項2に記載の無線通信装置であって、
前記制御部は、
前記高周波電力増幅器に入力される高周波信号が無変調信号である場合に、前記供給される電源電圧と前記判定された前記高周波信号の包絡線ピーク電圧との加算値を基に、前記電源電圧調整回路に前記電源電圧を制御させ、前記電流調整回路に前記動作電流を制御させる無線通信装置。 - 請求項2又は3に記載の無線通信装置であって、
前記高周波電力増幅器により増幅された高周波信号の出力電力と、前記高周波電力増幅器に供給する電源電圧と、前記電力増幅素子の動作電流との関係を表すテーブルと、を更に備え、
前記制御部は、
前記高周波電力増幅器により増幅された高周波信号の出力電力に基づき、前記テーブルに従って、前記電源電圧調整回路及び前記電流調整回路に前記電源電圧及び前記動作電流を制御させる無線通信装置。 - 請求項1~4のうちいずれか一項に記載の無線通信装置であって、
前記アナログデジタル変換器に入力される信号を切り替えるスイッチと、を更に備え、
前記制御部は、
前記スイッチを介して、前記検波器からの出力信号を前記アナログデジタル変換器に入力させる無線通信装置。 - 請求項1~5のうちいずれか一項に記載の無線通信装置であって、
前記予め定めた範囲は、
前記電力増幅素子のホットキャリアインジェクション劣化の規定値を超えない値である、無線通信装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/118,011 US9160278B2 (en) | 2012-03-16 | 2013-01-23 | Wireless communication device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012060543A JP5829957B2 (ja) | 2012-03-16 | 2012-03-16 | 無線通信装置 |
JP2012-060543 | 2012-03-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013136649A1 true WO2013136649A1 (ja) | 2013-09-19 |
Family
ID=49160602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/000335 WO2013136649A1 (ja) | 2012-03-16 | 2013-01-23 | 無線通信装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9160278B2 (ja) |
JP (1) | JP5829957B2 (ja) |
WO (1) | WO2013136649A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6204222B2 (ja) * | 2014-02-19 | 2017-09-27 | パナソニック株式会社 | 無線通信装置 |
JP6780453B2 (ja) * | 2016-11-07 | 2020-11-04 | 富士通株式会社 | 位相切り替え機能付き可変増幅装置及びフェーズシフタ |
US10878386B2 (en) | 2018-11-26 | 2020-12-29 | Assa Abloy Entrance Systems Ab | Systems and methods for automated dock station servicing |
US11142413B2 (en) | 2019-01-28 | 2021-10-12 | Assa Abloy Entrance Systems Ab | Systems and methods for automated loading and unloading at a dock station |
JP7431197B2 (ja) | 2021-06-24 | 2024-02-14 | 株式会社クボタ | 作業車両のためのタンク及びその製造方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005191791A (ja) * | 2003-12-25 | 2005-07-14 | Matsushita Electric Ind Co Ltd | 電力増幅器の保護回路 |
WO2009057385A1 (ja) * | 2007-10-31 | 2009-05-07 | Nec Corporation | 電力増幅器、電力増幅器の制御方法 |
WO2010135711A1 (en) * | 2009-05-21 | 2010-11-25 | Qualcomm Incorporated | Adaptive parametric power amplifier protection circuit |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05314705A (ja) | 1992-05-13 | 1993-11-26 | Nec Corp | 3.5インチフレキシブルディスク |
JPH07170202A (ja) | 1993-12-15 | 1995-07-04 | Hitachi Ltd | 送信回路 |
JP2858556B2 (ja) | 1996-04-17 | 1999-02-17 | 日本電気株式会社 | 3次元形状通信システム |
JP3075233B2 (ja) | 1997-10-15 | 2000-08-14 | 日本電気株式会社 | ホットキャリア劣化検出回路 |
US6166598A (en) * | 1999-07-22 | 2000-12-26 | Motorola, Inc. | Power amplifying circuit with supply adjust to control adjacent and alternate channel power |
-
2012
- 2012-03-16 JP JP2012060543A patent/JP5829957B2/ja not_active Expired - Fee Related
-
2013
- 2013-01-23 US US14/118,011 patent/US9160278B2/en not_active Expired - Fee Related
- 2013-01-23 WO PCT/JP2013/000335 patent/WO2013136649A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005191791A (ja) * | 2003-12-25 | 2005-07-14 | Matsushita Electric Ind Co Ltd | 電力増幅器の保護回路 |
WO2009057385A1 (ja) * | 2007-10-31 | 2009-05-07 | Nec Corporation | 電力増幅器、電力増幅器の制御方法 |
WO2010135711A1 (en) * | 2009-05-21 | 2010-11-25 | Qualcomm Incorporated | Adaptive parametric power amplifier protection circuit |
Also Published As
Publication number | Publication date |
---|---|
US20150145605A1 (en) | 2015-05-28 |
JP5829957B2 (ja) | 2015-12-09 |
US9160278B2 (en) | 2015-10-13 |
JP2013197698A (ja) | 2013-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7471155B1 (en) | Cancelling switching power supply ripple from a radio frequency signal | |
JP4750463B2 (ja) | 高周波電力増幅器およびそれを用いた送信器および移動体通信端末 | |
US11856525B2 (en) | High-frequency signal processing apparatus and wireless communication apparatus | |
US9203353B2 (en) | Noise conversion gain limited RF power amplifier | |
US10601374B2 (en) | Power amplifier module | |
KR101738730B1 (ko) | 전력 증폭기 시스템에서의 엔벨로프 정형화 장치 및 방법 | |
US8975959B2 (en) | Monotonic conversion of RF power amplifier calibration data | |
US8519787B2 (en) | High frequency amplifier, wireless device, and control method | |
EP3130075B1 (en) | Circuits and methods for biasing a power amplifier | |
JP5829957B2 (ja) | 無線通信装置 | |
US9325288B2 (en) | Wireless communication device | |
US8145148B2 (en) | Transmitter and communication apparatus | |
Chung et al. | Dual-band integrated Wi-Fi PAs with load-line adjustment and phase compensated power detector | |
US8274329B2 (en) | Signal compensation device and communication apparatus | |
JP2013026941A (ja) | 増幅装置、送信装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13760387 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14118011 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13760387 Country of ref document: EP Kind code of ref document: A1 |