WO2013136377A1 - 車両用電力変換装置及び車両 - Google Patents

車両用電力変換装置及び車両 Download PDF

Info

Publication number
WO2013136377A1
WO2013136377A1 PCT/JP2012/003777 JP2012003777W WO2013136377A1 WO 2013136377 A1 WO2013136377 A1 WO 2013136377A1 JP 2012003777 W JP2012003777 W JP 2012003777W WO 2013136377 A1 WO2013136377 A1 WO 2013136377A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching device
phase
level converter
controllable switching
input
Prior art date
Application number
PCT/JP2012/003777
Other languages
English (en)
French (fr)
Inventor
佑介 河野
中沢 洋介
鈴木 健太郎
隆太 長谷川
牧野 友由
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to EP12871486.2A priority Critical patent/EP2827488B1/en
Priority to CN201280071500.3A priority patent/CN104185947B/zh
Priority to BR112014022800-0A priority patent/BR112014022800B1/pt
Priority to IN7476DEN2014 priority patent/IN2014DN07476A/en
Priority to KR1020147025393A priority patent/KR101709843B1/ko
Publication of WO2013136377A1 publication Critical patent/WO2013136377A1/ja
Priority to ZA2014/06536A priority patent/ZA201406536B/en
Priority to US14/479,204 priority patent/US9643496B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4837Flying capacitor converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/525Temperature of converter or components thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present embodiment relates to a vehicle power conversion device and a vehicle.
  • the converter of a Shinkansen power converter is often composed of a diode clamp type three-level circuit.
  • low-loss devices such as silicon carbide elements have been proposed. Therefore, in the future, it is expected to reduce the size of the converter by applying a low-loss device such as a silicon carbide element.
  • a flying capacitor method As a multilevel method, a flying capacitor method has been proposed as a method in which the number of switching elements is small with respect to the number of output voltage levels. However, this method increases the number of capacitors.
  • a diode clamp method has been proposed as a multi-level system that suppresses the number of capacitors.
  • the diode clamp method requires a filter capacitor voltage balance circuit, which may increase the volume.
  • Multicell Converters Active Control and Observation of Flying-Capacitor Voltages
  • the conventional technique can withstand a high voltage and reduce the number of capacitors, but the number of switching elements increases with respect to the number of output voltage levels. For this reason, it is difficult to reduce the size.
  • the vehicle power converter is a power converter that converts single-phase AC power into DC power, and includes a single-phase two-level converter and a single-phase three-level converter.
  • the single-phase two-level converter includes a capacitor, a first controllable switching device having a self-extinguishing capability, connected between one end of the capacitor and one AC input / output point, and the other end of the capacitor A second controllable switching device connected between the AC input / output point, a third controllable switching device connected between one end of the capacitor and the other AC input / output point, and the other end of the capacitor And a fourth controllable switching device connected between the other AC input / output point and a diode connected in antiparallel to each controllable switching device.
  • the single-phase three-level converter includes two capacitors connected in series, a fifth controllable switching device connected between one end of the two capacitors connected in series and one AC input / output point, and two A sixth controllable switching device connected between the other end of the capacitor connected in series and one AC input / output point, and between one end of the capacitor connected in series and the other AC input / output point
  • a bidirectional switch for connecting the ninth controllable switching device and the tenth controllable switching device in series with opposite polarity between the connection point between the capacitors and the other AC input / output point And a diode connected in antiparallel to each controllable switching device, in constructed.
  • the single-phase two-level converter and the single-phase three-level converter are connected in series at an AC input / output point.
  • the single-phase two-level converter has less switching loss than the single-phase three-level converter, and the single-phase three-level converter has higher voltage resistance than the single-phase two-level converter.
  • FIG. 5 is a diagram showing a current flow of a single-phase three-level converter of a multilevel converter when a condition of Vthr1 ⁇ Vref ⁇ ⁇ Vthr1 is satisfied.
  • FIG. 1 is a diagram illustrating a configuration of a multilevel converter 1 of a power conversion device 11 for a vehicle according to a first embodiment.
  • the multilevel converter 1 according to this embodiment includes a single-phase three-level converter 50 and a single-phase two-level converter 40 connected in series.
  • the multilevel converter 1 is connected to an AC power source 100 such as an electric power system through a passive element 2 having a reactor component, converts single-phase AC power into DC power, and then supplies power to the main motor 3.
  • an AC power source 100 such as an electric power system through a passive element 2 having a reactor component, converts single-phase AC power into DC power, and then supplies power to the main motor 3.
  • this embodiment does not restrict
  • the control unit 150 controls the single-phase three-level converter 50 and the single-phase two-level converter 40.
  • the control unit 150 is provided inside the power conversion device 11 and may be included inside the multilevel converter 1.
  • the single-phase two-level converter 40 is a general single-phase converter, and includes switching devices 4a to 4d, a capacitor 14, and (reflux) diodes 6a to 6d.
  • the single-phase two-level converter 40 according to the present embodiment is composed of SiC (silicon carbide device).
  • the single-phase two-level converter 40 can reduce switching loss by applying SiC (silicon carbide device).
  • the switching devices 4a to 4d have a self-extinguishing capability.
  • the switching device 4a is connected between one end of the capacitor 14 and one AC input / output point.
  • the switching device 4b is connected between the other end of the capacitor 14 and one AC input / output point.
  • the switching device 4c is connected between one end of the capacitor 14 and the other AC input / output point.
  • the switching device 4d is connected between the other end of the capacitor 14 and the other AC input / output point.
  • the diode 6a is connected in antiparallel to the switching device 4a
  • the diode 6b is connected in antiparallel to the switching device 4b
  • the diode 6c is connected in antiparallel to the switching device 4c
  • the diode 6d is reverse to the switching device 4d. Connected in parallel.
  • the single-phase three-level converter 50 includes switching devices 5a to 5f, two (filter) capacitors 15a and 15b connected in series, and diodes 8a to 8f.
  • the capacitor 15a connects the positive potential conductor 10a to the positive side and the neutral point 9 to the negative side.
  • the capacitor 15b connects the neutral point 9 to the positive side and the negative potential conductor 10b to the negative side.
  • the connection points of the switching devices 5c, 5d, and 5e are set as AC voltage input / output points.
  • the switching devices 5c, 5d, and 5e are connected to an AC power source 100 such as a power system through the passive element 2 from an AC voltage input / output point.
  • the single-phase three-level converter 50 includes two legs. Switching devices 5a to 5f included in single-phase three-level converter 50 have a self-extinguishing capability.
  • One leg is composed of two serial switching devices 5a and 5b.
  • the switching device 5a is connected between the positive potential of two capacitors 15a and 15b connected in series and one AC input / output point.
  • the switching device 5b is connected between the negative potential of two capacitors 15a and 15b connected in series and one AC input / output point.
  • the other leg is composed of two serial switching devices 5c and 5d. Further, the bidirectional switching device 7 is connected to the two serial switching devices 5c and 5d as described later.
  • the switching device 5c is connected between the positive potential of two capacitors 15a and 15b connected in series and the other AC input / output point.
  • the switching device 5d is connected between the negative potential of two capacitors 15a and 15b connected in series and the other AC input / output point.
  • the two serial switching devices 5c and 5d are connected between the positive potential and the other AC input / output point and between the other AC input / output point and the negative potential.
  • the bidirectional switching device 7 is composed of switching devices 5e and 5f and diodes 8e and 8f connected in series with opposite polarities.
  • the bidirectional switching device 7 is connected between the potential of the neutral point 9 between the two capacitors 15a and 15b connected in series and the other AC input / output point.
  • the number of used switching devices of the single-phase three-level converter 50 is six and the number of capacitors is two, and the number of necessary parts is small with respect to the number of output voltage levels.
  • the diode 8a is connected in antiparallel to the switching device 5a
  • the diode 8b is connected in antiparallel to the switching device 5b
  • the diode 8c is connected in antiparallel to the switching device 5c
  • the diode 8d is reverse to the switching device 5d.
  • the diode 8e included in the bidirectional switching device 7 is connected in antiparallel to the switching device 5e
  • the diode 8f is connected in antiparallel to the switching device 5f.
  • the single-phase two-level converter 40 is configured by a silicon carbide device (SiC) or the like with little switching loss.
  • the single-phase three-level converter 50 is composed of a high breakdown voltage silicon device or the like. As a result, the single-phase two-level converter 40 has a lower switching loss than the single-phase three-level converter 50, while the single-phase three-level converter 50 has higher voltage resistance than the single-phase two-level converter 40.
  • FIG. 2 is a diagram showing the command value voltage of each converter corresponding to the output voltage instruction for the multilevel converter 1 according to the first embodiment. 2, the output voltage command value Vref 201 of the multilevel converter 1, the command value voltage 202 of the single-phase three-level converter 50, the command value voltage 203 of the single-phase two-level converter 40, and the single-phase two-level converter 40 An output voltage 204 is shown.
  • the power conversion device 11 combines the command value voltage 202 of the single-phase three-level converter 50 and the command value voltage 203 of the single-phase two-level converter 40, thereby outputting the output voltage command of the multi-level converter 1.
  • the value Vref201 is realized.
  • the power converter 11 changes the output voltage command value Vref201 in detail after setting the switching frequency of the single-phase two-level converter 40 with low switching loss higher than that of the single-phase three-level converter 50.
  • the single-phase two-level converter 40 is controlled so as to follow. Thus, detailed voltage control and reduction of switching loss are realized.
  • the single-phase three-level converter 50 with high voltage resistance is controlled to realize a staircase waveform.
  • a threshold value is provided for the output voltage command value Vref201 of the multilevel converter 1 to be output by the capacitors 15a and 15b of the single-phase three-level converter 50.
  • the voltage threshold value for output by any one of the capacitors 15a and 15b of the single-phase three-level converter 50 is set to ⁇ Vthr1.
  • the voltage threshold for outputting both capacitors 15a and 15b of single-phase three-level converter 50 is set to ⁇ Vthr2.
  • the control unit 150 controls the switching devices 5a to 5f included in the single-phase three-level converter 50 based on whether or not the output voltage command value Vref exceeds the voltage threshold value ⁇ Vthr1 and the voltage threshold value ⁇ Vthr2. To do.
  • control unit 150 performs control so that the output voltage 204 of the single-phase two-level converter 40 is obtained. Next, specific control of the switching device will be described.
  • FIG. 3 is a diagram showing the switch control by the switching device included in each converter.
  • the switch control of the switching devices 5a to 5f on the single-phase three-level converter 50 side and the switch control of the switching devices 4a to 4d on the single-phase two-level converter 40 side are shown.
  • the control unit 150 When the condition of Vthr1 ⁇ Vref ⁇ ⁇ Vthr1 is satisfied (time 0 to t1, t4 to t5, and after t8), the control unit 150 combines the switching device 5a and the switching device 5c included in the single-phase three-level converter 50. , And a combination of the switching device 5b and the switching device 5d, the combination is turned on. Thereby, the voltage of the capacitors 15a and 15b is not superimposed on the converter output voltage, and the control unit 150 outputs the output voltage command value Vref of the entire converter by the pulse width modulation control for the single-phase two-level converter 40.
  • FIG. 4 is a diagram showing a current flow of the single-phase three-level converter 50 of the multilevel converter 1 when the condition of Vthr1 ⁇ Vref ⁇ ⁇ Vthr1 is satisfied.
  • the combination of the switching device 5a and the switching device 5c is turned on, and the other switching devices 5b, 5d to 5f are controlled in the off state.
  • the voltages of the capacitors 15a and 15b are not superimposed.
  • FIG. 4 shows an example in which only the combination of the switching device 5a and the switching device 5c is turned on, but only the combination of the switching device 5b and the switching device 5d may be turned on.
  • the control unit 150 turns on the switching devices 5a, 5e, and 5f included in the single-phase three-level converter 50. To control. As a result, the voltage of the capacitor 15a is added to the converter output voltage, so that the single-phase two-level converter 40 obtains the differential voltage obtained by subtracting the voltage of the capacitor 15a from the output voltage command value Vref of the entire converter by the control unit 150. Output according to pulse width modulation control.
  • FIG. 5 is a diagram showing a current flow of the single-phase three-level converter 50 of the multilevel converter 1 when the condition of Vthr2 ⁇ Vref> Vthr1 is satisfied.
  • Vthr2 ⁇ Vref> Vthr1
  • only the combination of the switching devices 5a, 5e, and 5f is controlled in the on state, and the other switching devices are controlled in the off state.
  • the current flows through the path indicated by the thick line 501, only the voltage of the capacitor 15a is superimposed.
  • the control unit 150 turns on the switching devices 5a and 5d included in the single-phase three-level converter 50.
  • the voltage of the capacitors 15a and 15b is added to the converter output voltage, so that the single-phase two-level converter 40 controls the differential voltage obtained by subtracting the voltages of the capacitors 15a and 15b from the output voltage command value Vref of the entire converter. Output by pulse width modulation control by the unit 150.
  • FIG. 6 is a diagram showing a current flow of the single-phase three-level converter 50 of the multilevel converter 1 when the condition of Vref> Vthr2 is satisfied.
  • Vref> Vthr2 the condition of Vref> Vthr2 is satisfied.
  • the combination of the switching device 5a and the switching device 5d is controlled in the on state.
  • the voltages of the capacitors 15a and 15b are superimposed.
  • the control unit 150 switches the switching devices 5b, 5e, and 5f included in the single-phase three-level converter 50. Is turned on. Thereby, since the voltage of the capacitor 15b is subtracted from the converter output voltage, the single-phase two-level converter 40 uses the difference voltage obtained by adding the voltage of the capacitor 15a to the output voltage command value Vref of the entire converter as the pulse width by the control unit 150. Output by modulation control.
  • the control unit 150 turns on the switching devices 5b and 5c included in the single-phase three-level converter 50. Thereby, since the voltage of the capacitors 15a and 15b is subtracted from the converter output voltage, the single-phase two-level converter 40 uses the difference voltage obtained by adding the capacitors 15a and 15b to the output voltage command value Vref of the entire converter, as the control unit 150. Output by pulse width modulation control.
  • control unit 150 controls the switching devices 5a to 5f included in the single-phase three-level converter 50 in predetermined voltage units (threshold ⁇ Vthr2, threshold ⁇ Vthr1).
  • the control unit 150 controls the switching devices 4a to 4d included in the single-phase two-level converter 40 in response to a change in the output voltage that is smaller than the predetermined voltage.
  • the power conversion device 11 can reduce the number of switching times of each of the switching devices 5a to 5f of the single-phase three-level converter 50 to four times in one cycle of the converter output voltage.
  • the number of switching is not limited to four, and the number of switching varies depending on the number of thresholds. By reducing the threshold value, the number of times of switching can be reduced. For example, the number of times of switching may be 1 to 3 times.
  • the single-phase three-level converter 50 creates a staircase waveform that serves as a basis for the converter output voltage of the multi-level converter 1. Since the single-phase three-level converter 50 is composed of a silicon element, the withstand voltage is high, but the switching loss is high. However, in this embodiment, since it becomes a staircase waveform, the number of times of switching in one cycle is reduced. Thereby, switching frequency can be suppressed and switching loss can be reduced.
  • the single-phase two-level converter 40 performs high-speed switching control to compensate for the differential voltage between the step waveform of the single-phase three-level converter 50 and the multi-level converter output voltage.
  • the single-phase two-level converter 40 compensates for the differential voltage between the staircase waveform of the single-phase three-level converter 50 and the multi-level converter output voltage.
  • the single-phase two-level converter 40 is used for compensation of the differential voltage. Therefore, a high voltage is not required, and a switching element having a low withstand voltage is used. Available.
  • the single-phase two-level converter 40 performs high-speed switching control to compensate for the differential voltage between the staircase waveform of the single-phase three-level converter 50 and the AC input / output voltage of the entire multi-level converter 1. In the present embodiment, a loss due to high-speed switching can be suppressed by using a silicon carbide element or the like having a small switching loss as the single-phase two-level converter 40.
  • the single-phase three-level converter 50 uses an element having a high withstand voltage in order to form a staircase wave that becomes the foundation of the output voltage of the multi-level converter 1. Thereby, the number of converters to be serialized can be suppressed.
  • the single-phase three-level converter 50 even when a silicon element having a large switching loss is used as the single-phase three-level converter 50, the number of times of switching can be reduced as compared with the case where the switching is performed a plurality of times by the conventional pulse width modulation control method based on the triangular wave comparison. Thereby, the loss reduction effect can be improved. That is, by applying a silicon carbide element or the like to the single-phase two-level converter 40, not only the switching loss reduction effect is produced, but also the single-phase three-level converter 50 using the conventional silicon element can reduce the switching loss. Thereby, the switching loss of the entire multilevel converter 1 can be further reduced.
  • FIG. 7 is a diagram illustrating a configuration of the multilevel converter 1 of the power conversion device according to the second embodiment.
  • the power conversion device 700 according to the present embodiment includes a switching device 21, a switching device 22, and a resistor 23 as a configuration for performing initial charging, as compared with the power conversion device 11 of the first embodiment. Furthermore, the power conversion device 700 according to the present embodiment is changed to a control unit 750 that is different in processing from the control unit 150, and a current detection unit 702 and a temperature detection unit 701 are added.
  • the current detection unit 702 detects the value of the current flowing through the multilevel converter 1.
  • the temperature detector 701 measures the temperature of the single-phase two-level converter 40.
  • a temperature detection unit for measuring the temperature of the single-phase three-level converter 50 may be provided.
  • Control part 750 performs control for performing initial charge besides performing control similar to control part 150 concerning a 1st embodiment.
  • the control unit 750 according to the present embodiment performs control during initial charging in consideration of the current value detected by the current detection unit 702 and the temperature detected by the temperature detection unit 701.
  • the switching device 21 is turned on when performing initial charging.
  • the switching device 22 is turned on when a voltage is output to the main motor 3.
  • the resistor 23 is provided so as not to damage the element when charging.
  • the capacitor 14 and the capacitors 15a and 15b may be connected in series and both may be charged at the same time. However, due to the difference in capacitance, the capacitor 14 and the capacitor 15a. , 15b may be difficult to charge to the voltage peak value.
  • the control unit 750 charges the capacitors 15a and 15b to a desired voltage value and then charges the capacitor 14 to a desired voltage value.
  • the charging order is not limited.
  • the capacitors 15a and 15b may be charged after the capacitor 14 is charged first.
  • FIG. 8 is a diagram showing a current flow when charging two series-connected capacitors 15a and 15b included in the single-phase three-level converter 50.
  • the control unit 750 performs control to turn on the switching device 4b and the switching device 4d, and the other switching devices (switching devices 4a and 4c, all included in the single-phase three-level converter 50).
  • the switching devices 5a to 5f) are controlled to be turned off.
  • FIG. 9 is a diagram showing a current flow when charging two series-connected capacitors 15a and 15b included in the single-phase three-level converter 50.
  • the control unit 750 performs control to turn on the switching device 4a and the switching device 4c, and the other switching devices (switching devices 4b and 4d, all included in the single-phase three-level converter 50).
  • the switching devices 5a to 5f) are controlled to be turned off.
  • control unit 750 includes any one of the combination of the switching device 4a and the switching device 4c and the combination of the switching device 4b and the switching device 4d included in the single-phase two-level converter 40. Control to turn on the combination. By performing such control, the capacitors 15a and 15b are charged up to the voltage peak value of the AC power supply 100 through the freewheeling diodes 6a to 6d.
  • the present embodiment does not limit which of the combination of the switching device 4a and the switching device 4c and the combination of the switching device 4b and the switching device 4d is turned on.
  • the control unit 750 according to the present embodiment is based on the current value detected by the current detection unit 702 and the temperature detected by the temperature detection unit 701, and the combination of the switching device 4a and the switching device 4c, and the switching device. Among the combinations of 4b and the switching device 4d, which one is turned on is switched.
  • the control unit 750 according to the present embodiment uses the current value detected by the current detection unit 702 or the combination used up to now when the temperature detected by the temperature detection unit 701 exceeds a predetermined threshold. Was controlled to turn off the other combination.
  • the control unit 750 starts control for charging the capacitor 14.
  • FIG. 10 is a diagram showing a current flow when charging the capacitor 14 included in the single-phase two-level converter 40.
  • the control unit 750 performs control to turn on the switching device 5a and the switching device 5c, and other switching devices (all switching devices 4a included in the single-phase two-level converter 40). To 4d, and switching devices 5b and 5d to 5f) are controlled to be turned off.
  • the alternating current shown by the dotted line 1001 and the alternate long and short dash line 1002 in FIG. 10 flows. Therefore, the capacitor 14 is charged, and the capacitors 15a and 15b are not charged.
  • FIG. 11 is a diagram showing a current flow when charging the capacitor 14 included in the single-phase two-level converter 40.
  • the control unit 750 performs control to turn on the switching device 5b and the switching device 5d, and other switching devices (all switching devices 4a included in the single-phase two-level converter 40). To 4d, and switching devices 5a, 5c, 5e to 5f) are controlled to be turned off.
  • control unit 750 includes any one of the combination of the switching device 5a and the switching device 5c and the combination of the switching device 5b and the switching device 5d included in the single-phase three-level converter 50. Control to turn on the combination. By performing such control, the capacitor 14 is charged up to the voltage peak value of the AC power supply 100 through the freewheeling diodes 8a to 8d.
  • the present embodiment does not limit which of the combination of the switching device 5a and the switching device 5c and the combination of the switching device 5b and the switching device 5d is turned on.
  • the control unit 750 is based on the current value detected by the current detection unit 702, which of the combination of the switching device 5a and the switching device 5c and the combination of the switching device 5b and the switching device 5d. It was decided to switch whether to turn on.
  • the control unit 750 according to the present embodiment It was decided to perform control to turn off the combination that had been used up to the off state and turn on the other combination.
  • the capacitor 14 is charged up to the voltage peak value of the AC power supply 100 through the freewheeling diodes 8a to 8d.
  • the control shifts to control for operating the main motor 3. Since the control at that time has been described in the first embodiment, a description thereof will be omitted.
  • FIG. 12 is a flowchart illustrating a procedure of the above-described processing in the power conversion device 700 according to the present embodiment.
  • the control unit 750 starts charging the capacitors 15a and 15b of the single-phase three-level converter 50 (step S1201).
  • the charging method is the method shown in FIG. 8 or FIG.
  • the control unit 750 sets any one of the combination of the switching device 4a and the switching device 4c and the combination of the switching device 4b and the switching device 4d included in the single-phase two-level converter 40 to the on state. Control.
  • the switching devices 5a to 5f are all turned off.
  • control unit 750 determines whether the current detected by the current detection unit 702 or the temperature detected by the temperature detection unit 701 is equal to or higher than a predetermined threshold (step S1202).
  • the threshold value is set according to the actual mode. When it determines with it being smaller than a threshold value (step S1202: No), a process in particular is not performed but it changes to step S1204.
  • step S1202 determines with more than a predetermined threshold value (step S1202: Yes)
  • step S1203 switching is made to a combination of the switching device 4a and the switching device 4c, or a combination of the switching device 4b and the switching device 4d.
  • control unit 750 determines whether or not the voltage values of the capacitors 15a and 15b of the single-phase three-level converter 50 are equal to or higher than the first threshold (step S1204). And when it determines with the control part 750 being smaller than a 1st threshold value (step S1204: No), it performs from the process of step S1202.
  • step S1204 determines that the voltage values of the capacitors 15a and 15b of the single-phase three-level converter 50 are equal to or higher than the first threshold value (desired voltage value) (step S1204: Yes).
  • the third level side It is assumed that charging of the capacitors 15a and 15b is completed.
  • control part 750 starts charge of the capacitor
  • the charging method is the method shown in FIG.
  • the control unit 750 sets any one of the combination of the switching device 5a and the switching device 5c and the combination of the switching device 5b and the switching device 5d included in the single-phase three-level converter 50 to the on state. Control. Note that the switching devices 4a to 4d of the single-phase two-level converter 40 are turned off.
  • control unit 750 determines whether or not the current detected by the current detection unit 702 (or the temperature detected from the single-phase three-level converter 50) is equal to or higher than a predetermined threshold (step S1206).
  • the threshold value is set according to the actual mode. When it is determined that the value is smaller than the threshold (step S1206: No), no particular process is performed, and the process proceeds to step S1209.
  • step S1206 determines that the threshold value is equal to or greater than the predetermined threshold.
  • step S1206 determines that the threshold value is equal to or greater than the predetermined threshold.
  • step S1207 switching to the combination of the switching device 5a and the switching device 5c, or the combination of the switching device 5b and the switching device 5d is performed.
  • control unit 750 determines whether or not the voltage value of the capacitor 14 of the single-phase two-level converter 40 is equal to or greater than a second threshold value (desired voltage value) (step S1208). When it is determined that the value is smaller than the second threshold value (step S1208: No), the process is performed from step S1206.
  • a second threshold value desired voltage value
  • step S1208 determines that the voltage value of the capacitor 14 of the single-phase two-level converter 40 is equal to or higher than the second threshold value (step S1208: Yes)
  • the charging of the capacitor on the two-level side is completed (Step S1209).
  • control unit 750 can control charging of the capacitor 14 of the single-phase two-level converter 40 and the capacitors 15a and 15b of the single-phase three-level converter 50.
  • the main circuit loss can be reduced by performing the above-described charging method.
  • a multi-level circuit system capable of outputting a multi-level voltage while reducing the number of parts of a switching device and a capacitor as compared with the prior art is realized. It can. Furthermore, efficient cooling is facilitated by reducing the number of parts. Since the cooling is easy, a margin is generated, so that the size can be reduced.
  • the switching loss of the entire multilevel converter 1 can be further reduced.
  • the single-phase two-level converter is exemplified as the pulse width modulation unit.
  • the present invention is not limited to this, and for example, a single-phase three-level converter or a single-phase four-level or higher converter may be used.
  • SYMBOLS 1 Multi-level converter, 2 ... Passive element, 3 ... Main motor, 4a-4d, 5a-5f ... Switching device, 6a-6d, 8a-8f ... Diode, 7 ... Bidirectional switching device, 9 ... Neutral point, DESCRIPTION OF SYMBOLS 14 ... Capacitor, 15a, 15b ... Capacitor, 15 ... Capacitor, 15a ... Capacitor, 15b ... Capacitor, 15a ... Capacitor, 21, 22 ... Switching device, 23 ... Resistance, 40 ... Single phase 2 level converter, 50 ... Single phase 3 Level converter, 100 ... AC power supply, 150, 750 ... Control unit, 701 ... Temperature detection unit, 702 ... Current detection unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

電圧のマルチレベル制御を行う構成として、部品点数を少なくする。 実施形態の車両用電力変換装置は、単相2レベルコンバータと、単相3レベルコンバータとを備える。単相2レベルコンバータは、コンデンサと、自己消弧能力を有する第1~第4の可制御スイッチングデバイスと、可制御スイッチングデバイス毎に逆並列に接続されるダイオードと、で構成される。単相3レベルコンバータは、2個直列接続されるコンデンサと、第5~第10の可制御スイッチングデバイスと、可制御スイッチングデバイス毎に逆並列に接続されるダイオードと、で構成される。単相2レベルコンバータと、単相3レベルコンバータとは交流入出力点で直列接続される。単相2レベルコンバータは、単相3レベルコンバータより、スイッチング損失が少なく、単相3レベルコンバータは、単相2レベルコンバータより、耐電圧性が高い。

Description

車両用電力変換装置及び車両 関連出願の引用
 本出願は、2012年3月16日に出願した先行する日本国特許出願第2012-060300号による優先権の利益に基礎をおき、かつ、その利益を求めており、その内容全体が引用によりここに包含される。
 本実施形態は、車両用電力変換装置及び車両に関する。
 新幹線用電力変換器のコンバータとしては、ダイオードクランプ形3レベル回路で構成されていることが多い。
 これに対して、近年、シリコンカーバイド素子等の低損失デバイスが提案されている。そこで、今後、シリコンカーバイド素子等の低損失デバイスを適用することで、コンバータを小型化することが期待されている。
 しかしながら、現在提供されているシリコンカーバイド素子等においては、高い電圧に耐えられる素子がない。このため、素子の直列化や、現存のシリコン素子と組み合わせたマルチレベル化を行う必要がある。この2つのうち、素子の直列化は、損失増加、素子数増加、バランス制御等の課題がある。このため、現状ではマルチレベル化が実用的である。
 マルチレベル化として、出力電圧のレベル数に対するスイッチング素子の数が少ない方式としてフライングキャパシタ方式が提案されている。しかしながら、当該方式では、コンデンサ数が多くなる。
 コンデンサ数を抑止したマルチレベル化として、ダイオードクランプ方式が提案されている。ダイオードクランプ方式では、フィルタコンデンサ電圧のバランス回路が必要で、体積が増加する可能性がある。他にも単相フルブリッジコンバータ(インバータ)の交流入出力点を直列接続するカスケード方式や階調制御方式がある。ここで、その技術に関して、下記文献を引用し、その内容全体を引用によりここに包含する。
特開2004-7941号公報
"Multicell Converters:Active Control and Observation of Flying-Capacitor Voltages", IEEE Trans.Ind.Electron.vol.49, No.5, pp.998-1008, 2002.
 しかしながら、従来技術では、高い電圧に耐えることができる上で、コンデンサ数を少なくすることができるが、出力電圧のレベル数に対してスイッチング素子の数が多くなる。このため、小型化するのは難しい。
 上記状況を鑑みて、より小型な車両用電力変換装置が提供される。
 実施形態の車両用電力変換装置は、単相交流電力を直流電力に変換する電力変換装置であって、単相2レベルコンバータと、単相3レベルコンバータとを備える。単相2レベルコンバータは、コンデンサと、コンデンサの一端と一方の交流入出力点との間に接続される、自己消弧能力を有する第1の可制御スイッチングデバイスと、コンデンサの他端と一方の交流入出力点との間に接続される第2の可制御スイッチングデバイスと、コンデンサの一端と他方の交流入出力点との間に接続される第3の可制御スイッチングデバイスと、コンデンサの他端と他方の交流入出力点との間に接続される第4の可制御スイッチングデバイスと、可制御スイッチングデバイス毎に逆並列に接続されるダイオードと、で構成される。単相3レベルコンバータは、2個直列接続されるコンデンサと、2個直列接続されるコンデンサの一端と一方の交流入出力点との間に接続される第5の可制御スイッチングデバイスと、2個直列接続されるコンデンサの他端と一方の交流入出力点との間に接続される第6の可制御スイッチングデバイスと、2個直列接続されるコンデンサの一端と他方の交流入出力点との間に接続される第7の可制御スイッチングデバイスと、2個直列接続されるコンデンサの他端と他方の交流入出力点との間に接続される第8の可制御スイッチングデバイスと、2個直列接続されるコンデンサ間の接続点及び他方の交流入出力点の間に、第9の可制御スイッチングデバイスと第10の可制御スイッチングデバイスとを逆極性に直列接続する双方向スイッチと、可制御スイッチングデバイス毎に逆並列に接続されるダイオードと、で構成される。単相2レベルコンバータと、単相3レベルコンバータと、は交流入出力点で直列接続される。単相2レベルコンバータは、単相3レベルコンバータより、スイッチング損失が少なく、単相3レベルコンバータは、単相2レベルコンバータより、耐電圧性が高い。
第1の実施形態にかかる電力変換装置のマルチレベルコンバータの構成を示した図である。 第1の実施形態にかかるマルチレベルコンバータに対する出力電圧指示に対応する各コンバータの指令値電圧を示した図である。 第1の実施形態にかかる単相2レベルコンバータ及び単相3レベルコンバータに含まれている各スイッチングデバイスによるスイッチ制御を示した図である。 Vthr1≧Vref≧-Vthr1の条件を満たしている場合におけるマルチレベルコンバータの単相3レベルコンバータの電流の流れを示した図である。 Vthr2≧Vref>Vthr1の条件を満たしている場合のマルチレベルコンバータの単相3レベルコンバータの電流の流れを示した図である。 Vref>Vthr2の条件を満たしている場合のマルチレベルコンバータの単相3レベルコンバータの電流の流れを示した図である。 第2の実施形態にかかる電力変換装置のマルチレベルコンバータの構成を示した図である。 第2の実施形態にかかる単相3レベルコンバータに含まれている2個直列接続されたコンデンサに対して充電する場合の電流の流れを示した図である。 第2の実施形態にかかる単相3レベルコンバータに含まれている2個直列接続されたコンデンサに対して充電する場合の電流の流れを示した図である。 第2の実施形態にかかる単相2レベルコンバータに含まれているコンデンサに対して充電する場合の電流の流れを示した図である。 第2の実施形態にかかる単相2レベルコンバータに含まれているコンデンサに対して充電する場合の電流の流れを示した図である。 本実施形態にかかる電力変換装置におけるコンデンサの充電の処理手順の手順を示すフローチャートである。
(第1の実施形態)
 図1は、第1の実施形態にかかる車両用の電力変換装置11のマルチレベルコンバータ1の構成を示した図である。図1に示すように、本実施形態にかかるマルチレベルコンバータ1は、単相3レベルコンバータ50と、単相2レベルコンバータ40と、を直列接続している。そして、マルチレベルコンバータ1は、リアクトル成分を有する受動素子2を介して電力系統等の交流電源100と接続し、単相交流電力を直流電力に変換した後、主電動機3に対して電力を供給する。なお、本実施形態は、電力変換装置11が搭載される車両を制限するものではなく、様々な車両に搭載して良い。
 制御部150は、単相3レベルコンバータ50と、単相2レベルコンバータ40と、を制御する。なお、制御部150は、電力変換装置11の内部に設けられており、マルチレベルコンバータ1の内部に含まれても良い。
 単相2レベルコンバータ40は、一般的な単相コンバータであり、スイッチングデバイス4a~4dと、コンデンサ14と、(還流)ダイオード6a~6dとで構成される。本実施形態にかかる単相2レベルコンバータ40は、SiC(シリコンカーバイドデバイス)で構成される。単相2レベルコンバータ40は、SiC(シリコンカーバイドデバイス)を適用することで、スイッチング損失を低減できる。
 スイッチングデバイス4a~4dは、自己消弧能力を有する。また、スイッチングデバイス4aは、コンデンサ14の一端と一方の交流入出力点との間に接続される。また、スイッチングデバイス4bは、コンデンサ14の他端と一方の交流入出力点との間に接続される。スイッチングデバイス4cは、コンデンサ14の一端と他方の交流入出力点との間に接続される。スイッチングデバイス4dは、コンデンサ14の他端と他方の交流入出力点との間に接続される。
 ダイオード6aは、スイッチングデバイス4aに逆並列に接続され、ダイオード6bは、スイッチングデバイス4bに逆並列に接続され、ダイオード6cはスイッチングデバイス4cに逆並列に接続され、ダイオード6dは、スイッチングデバイス4dに逆並列に接続されている。
 単相3レベルコンバータ50は、スイッチングデバイス5a~5fと、2個直列接続された(フィルタ)コンデンサ15a、15bと、ダイオード8a~8fとを有する。コンデンサ15aは、正電位導線10aを正側に、中性点9を負側に接続する。コンデンサ15bは、中性点9を正側に、負電位導線10bを負側に接続する。そして、スイッチングデバイス5c、5d、5eの接続点を交流電圧入出力点とする。そして、スイッチングデバイス5c、5d、5eは、交流電圧入出力点から受動素子2を介して電力系統等の交流電源100と接続される。
 単相3レベルコンバータ50は、2個のレグを備える。そして、単相3レベルコンバータ50に含まれているスイッチングデバイス5a~5fは、自己消弧能力を有する。
 一方のレグは、2個の直列のスイッチングデバイス5a、5bで構成される。スイッチングデバイス5aは、2個直列接続されるコンデンサ15a、15bの正電位と一方の交流入出力点との間に接続される。スイッチングデバイス5bは、2個直列接続されるコンデンサ15a、15bの負電位と一方の交流入出力点との間に接続される。
 他方のレグは、2個の直列のスイッチングデバイス5c、5dで構成される。さらに、双方向スイッチングデバイス7が2個の直列のスイッチングデバイス5c、5dに後述のように接続される。スイッチングデバイス5cは、2個直列接続されるコンデンサ15a、15bの正電位と他方の交流入出力点との間に接続される。スイッチングデバイス5dは、2個直列接続されるコンデンサ15a、15bの負電位と他方の交流入出力点との間に接続される。
 2個の直列のスイッチングデバイス5c、5dは、正電位と他方の交流入出力点の間、および他方の交流入出力点と負電位の間に接続される。
 双方向スイッチングデバイス7は、逆極性に直列接続されたスイッチングデバイス5e、5fと、ダイオード8e、8fで構成される。そして、双方向スイッチングデバイス7は、2個直列接続されたコンデンサ15a、15bの間の中性点9の電位ともう一方の交流入出力点との間に接続される。
 この回路構成では単相3レベルコンバータ50の使用スイッチングデバイス数は6個、コンデンサは2個となり、出力電圧レベル数に対する必要部品数が少ない。
 ダイオード8aは、スイッチングデバイス5aに逆並列に接続され、ダイオード8bは、スイッチングデバイス5bに逆並列に接続され、ダイオード8cはスイッチングデバイス5cに逆並列に接続され、ダイオード8dは、スイッチングデバイス5dに逆並列に接続されている。さらに、双方向スイッチングデバイス7に含まれるダイオード8eはスイッチングデバイス5eに逆並列に接続され、ダイオード8fは、スイッチングデバイス5fに逆並列に接続されている。
 本実施形態にかかる単相2レベルコンバータ40は、スイッチング損失が少ないシリコンカーバイドデバイス(SiC)等で構成される。また、単相3レベルコンバータ50は、高耐圧のシリコンデバイス等で構成される。これにより、単相2レベルコンバータ40は、単相3レベルコンバータ50より、スイッチング損失が少なくなる一方、単相3レベルコンバータ50は、単相2レベルコンバータ40より、耐電圧性が高くなる。
 図2は、第1の実施形態にかかるマルチレベルコンバータ1に対する出力電圧指示に対応する各コンバータの指令値電圧を示した図である。図2には、マルチレベルコンバータ1の出力電圧指令値Vref201と、単相3レベルコンバータ50の指令値電圧202と、単相2レベルコンバータ40の指令値電圧203と、単相2レベルコンバータ40の出力電圧204と、が示されている。
 つまり、本実施形態にかかる電力変換装置11は、単相3レベルコンバータ50の指令値電圧202と単相2レベルコンバータ40の指令値電圧203とを組み合わせることで、マルチレベルコンバータ1の出力電圧指令値Vref201を実現している。
 そして、本実施形態にかかる電力変換装置11は、スイッチング損失が低い単相2レベルコンバータ40を、単相3レベルコンバータ50よりスイッチング周波数を高くした上で、出力電圧指令値Vref201の詳細な変化に追従するように単相2レベルコンバータ40を制御する。これにより詳細な電圧の制御と、スイッチング損失の低減とを実現する。
 一般に、シリコンカーバイドデバイスなどのスイッチング損失が少ない素子は、耐電圧性が低いことが多い。そこで、本実施形態では、電圧の大きな変化を可能とするために、耐電圧性の高い単相3レベルコンバータ50に対して、階段波形を実現するための制御を行うこととした。
 本実施形態では、マルチレベルコンバータ1の出力電圧指令値Vref201について、単相3レベルコンバータ50のコンデンサ15a、15bが出力するための閾値が設けられている。例えば、単相3レベルコンバータ50のコンデンサ15a、15bのいずれか1つで出力するための電圧の閾値を±Vthr1とする。さらには、単相3レベルコンバータ50のコンデンサ15a、15bの両方が出力するための電圧の閾値を±Vthr2とする。そして、制御部150は、出力電圧指令値Vrefが、電圧の閾値±Vthr1及び電圧の閾値±Vthr2を超えたか否かに基づいて、単相3レベルコンバータ50に含まれるスイッチングデバイス5a~5fを制御する。
 さらには、単相2レベルコンバータ40の指令値電圧203に基づいて、制御部150は、単相2レベルコンバータ40の出力電圧204となるよう制御する。次に具体的なスイッチングデバイスの制御について説明する。
 図3は、各コンバータに含まれているスイッチングデバイスによるスイッチ制御を示した図である。図3に示す例では、単相3レベルコンバータ50側のスイッチングデバイス5a~5fのスイッチ制御と、単相2レベルコンバータ40側のスイッチングデバイス4a~4dのスイッチ制御と、が示されている。
 そして、Vthr1≧Vref≧-Vthr1の条件を満たす場合(時間0~t1、t4~t5、t8以降)、制御部150は、単相3レベルコンバータ50に含まれるスイッチングデバイス5a且つスイッチングデバイス5cの組み合わせ、及びスイッチングデバイス5b且つスイッチングデバイス5dの組み合わせ、のうちいずれか1つの組み合わせをオン状態とする。これにより、コンバータ出力電圧には、コンデンサ15a、15bの電圧が重畳されず、制御部150が、単相2レベルコンバータ40に対するパルス幅変調制御でコンバータ全体の出力電圧指令値Vrefを出力する。
 図4は、Vthr1≧Vref≧-Vthr1の条件を満たしている場合におけるマルチレベルコンバータ1の単相3レベルコンバータ50の電流の流れを示した図である。図4に示す例では、スイッチングデバイス5a且つスイッチングデバイス5cの組み合わせをオン状態とし、他のスイッチングデバイス5b、5d~5fがオフ状態で制御されている。この場合、太線401で示される経路を電流が流れるため、コンデンサ15a、15bの電圧が重畳されることがない。なお、図4では、スイッチングデバイス5a且つスイッチングデバイス5cの組み合わせのみオン状態とした例であるが、スイッチングデバイス5b且つスイッチングデバイス5dの組み合わせのみオン状態としてもよい。
 図3に戻り、Vthr2≧Vref>Vthr1の条件を満たす場合(時間t1~t2、t3~t4)、制御部150は、単相3レベルコンバータ50に含まれるスイッチングデバイス5a、5e、5fをオン状態に制御する。これにより、コンバータ出力電圧に、コンデンサ15aの電圧が足されるため、単相2レベルコンバータ40は、コンバータ全体の出力電圧指令値Vrefからコンデンサ15aの電圧を差し引いた差分電圧を、制御部150によるパルス幅変調制御に従って出力する。
 図5は、Vthr2≧Vref>Vthr1の条件を満たしている場合のマルチレベルコンバータ1の単相3レベルコンバータ50の電流の流れを示した図である。図5に示す例では、スイッチングデバイス5a、5e、5fの組み合わせのみがオン状態で、他のスイッチングデバイスがオフ状態で制御されている。この場合、太線501で示される経路を電流が流れるため、コンデンサ15aの電圧のみ重畳される。
 図3に戻り、Vref>Vthr2の条件を満たす場合(時間t2~t3)、制御部150は、単相3レベルコンバータ50に含まれるスイッチングデバイス5a、5dをオン状態とする。これにより、コンバータ出力電圧に、コンデンサ15a、15bの電圧が足されるため、単相2レベルコンバータ40はコンバータ全体の出力電圧指令値Vrefからコンデンサ15a、15bの電圧を差し引きした差分電圧を、制御部150によるパルス幅変調制御により出力する。
 図6は、Vref>Vthr2の条件を満たしている場合のマルチレベルコンバータ1の単相3レベルコンバータ50の電流の流れを示した図である。図6に示す例では、スイッチングデバイス5a、及びスイッチングデバイス5dの組み合わせのみオン状態で制御されている。この場合、太線601で示される経路を電流が流れるため、コンデンサ15a、15bの電圧が重畳される。
 図3に戻り、-Vthr1>Vref≧-Vthr2の条件を満たす場合(時間t5~t6、t7~t8)、制御部150は、単相3レベルコンバータ50に含まれるスイッチングデバイス5b、5e、及び5fをオン状態とする。これにより、コンバータ出力電圧から、コンデンサ15bの電圧が引かれるため、単相2レベルコンバータ40はコンバータ全体の出力電圧指令値Vrefにコンデンサ15aの電圧を加算した差分電圧を、制御部150によるパルス幅変調制御により出力する。
 -Vthr2>Vrefの条件を満たす場合(時間t6~t7)、制御部150は、単相3レベルコンバータ50に含まれるスイッチングデバイス5b、及び5cをオン状態とする。これにより、コンバータ出力電圧からコンデンサ15a、15bの電圧が引かれるため、単相2レベルコンバータ40は、コンバータ全体の出力電圧指令値Vrefに、コンデンサ15a、15bを加算した差分電圧を、制御部150によるパルス幅変調制御により出力する。
 このように、本実施形態にかかる制御部150は、単相3レベルコンバータ50に含まれるスイッチングデバイス5a~5fを、所定電圧単位(閾値±Vthr2、閾値±Vthr1)で制御する。そして、制御部150は、所定電圧より小さい出力電圧の変化に対応して、単相2レベルコンバータ40に含まれるスイッチングデバイス4a~4dを制御する。
 以上の制御を実施することで、本実施形態にかかる電力変換装置11は、コンバータ出力電圧の1周期において、単相3レベルコンバータ50の各スイッチングデバイス5a~5fのスイッチング回数を4回と少なくできる。なお、本実施形態は、スイッチング回数を4回に制限するものではなく、閾値の数等によってスイッチング回数が変化する。閾値を少なくすることで、スイッチング回数をより少なくできる。例えば、スイッチング回数が1~3回等であっても良い。
 単相3レベルコンバータ50が、マルチレベルコンバータ1のコンバータ出力電圧の土台となる階段波形を作成する。単相3レベルコンバータ50はシリコン素子で構成されているため、耐電圧性は高いが、スイッチング損失が高い。しかしながら、本実施形態では、階段波形となるため、1周期におけるスイッチングの回数が少なくなる。これにより、スイッチング回数を抑止して、スイッチング損失を低減できる。
 そして、単相2レベルコンバータ40が、単相3レベルコンバータ50の階段波形とマルチレベルコンバータ出力電圧の差分電圧を補償するために高速スイッチング制御を行う。このように、単相2レベルコンバータ40が、単相3レベルコンバータ50の階段波形とマルチレベルコンバータ出力電圧との間の差分電圧を補償する。
 本実施形態では、閾値電圧Vthr1、Vthr2を適切に設定することで、単相2レベルコンバータ40は差分電圧の補償に用いられるため、高い電圧は必要とならず、低耐電圧性のスイッチング素子を利用できる。また、単相2レベルコンバータ40は、単相3レベルコンバータ50の階段波形とマルチレベルコンバータ1全体の交流入出力電圧の差分電圧を補償するために高速スイッチング制御を行う。本実施形態では、単相2レベルコンバータ40として、スイッチング損失が小さいシリコンカーバイド素子等を用いることで、高速スイッチングによる損失を抑止できる。
 単相3レベルコンバータ50は、マルチレベルコンバータ1の出力電圧の土台となる階段波を形成するために、耐電圧性が高い素子を用いる。これにより、直列化するコンバータの数を抑止できる。
 さらに、単相3レベルコンバータ50として、スイッチングにおける損失が大きいシリコン素子を用いる場合でも、従来の三角波比較によるパルス幅変調制御方式で複数回スイッチングを行う場合と比べてスイッチング回数を低減できる。これにより、損失低減効果を向上させることができる。つまり、単相2レベルコンバータ40にシリコンカーバイド素子等を適用することで、スイッチング損失低減効果を生じさせるだけでなく、従来のシリコン素子を用いた単相3レベルコンバータ50でもスイッチング損失を低減できる。これにより、マルチレベルコンバータ1全体のスイッチング損失をより一層低減できる。
(第2の実施形態)
 第2の実施形態では、マルチレベルコンバータ1に対して初期充電を行う場合について説明する。図7は、第2の実施形態にかかる電力変換装置のマルチレベルコンバータ1の構成を示した図である。本実施形態にかかる電力変換装置700では、初期充電を行うための構成として、第1の実施形態の電力変換装置11と比べて、スイッチングデバイス21とスイッチングデバイス22と抵抗23とを備えている。さらに、本実施形態にかかる電力変換装置700は、制御部150と処理が異なる制御部750に変更され、電流検出部702と、温度検出部701と、が追加されている。
 電流検出部702は、マルチレベルコンバータ1に流れる電流値を検出する。温度検出部701は、単相2レベルコンバータ40の温度を計測する。なお、本実施形態は、単相3レベルコンバータ50の温度を計測するための温度検出部が設けられても良い。
 制御部750は、第1の実施形態にかかる制御部150と同様の制御を行うほか、初期充電を行うための制御を行う。本実施形態にかかる制御部750は、電流検出部702で検出された電流値や、温度検出部701で検出された温度を考慮して、初期充電時の制御を行う。
 スイッチングデバイス21は、初期充電を行う際にオン状態となる。また、スイッチングデバイス22は、主電動機3に電圧を出力する場合にオン状態となる。抵抗23は、充電する際に、素子を痛めないために設けられている。
 ところで、初期充電を行う際に、コンデンサ14と、コンデンサ15a、15bと、を直列に接続して、両方同時に充電を行っても良いが、静電容量の違い等から、コンデンサ14、及びコンデンサ15a、15bの全てを電圧ピーク値まで充電するのが難しい場合がある。
 そこで、本実施形態では、制御部750が、コンデンサ15a、15bを所望する電圧値まで充電した後、コンデンサ14を所望する電圧値まで充電を行う例とする。なお、本実施形態は、充電順序を制限するものではなく、例えば、コンデンサ14を先に充電した後、コンデンサ15a、15bを充電するようにしても良い。
 図8は、単相3レベルコンバータ50に含まれている2個直列接続されたコンデンサ15a、15bに対して充電する場合の電流の流れを示した図である。図8に示す例では、制御部750が、スイッチングデバイス4b及びスイッチングデバイス4dをオン状態とする制御を行い、それ以外のスイッチングデバイス(スイッチングデバイス4a、4c、単相3レベルコンバータ50に含まれる全てのスイッチングデバイス5a~5f)をオフ状態とする制御を行う。
 これにより、本実施形態にかかる電力変換装置700では、図8の点線に示すような電流が流れる。よって、コンデンサ15a、15bに充電が行われ、コンデンサ14の充電が行われないことになる。
 図9は、単相3レベルコンバータ50に含まれている2個直列接続されたコンデンサ15a、15bに対して充電する場合の電流の流れを示した図である。図9に示す例では、制御部750が、スイッチングデバイス4a及びスイッチングデバイス4cをオン状態とする制御を行い、それ以外のスイッチングデバイス(スイッチングデバイス4b、4d、単相3レベルコンバータ50に含まれる全てのスイッチングデバイス5a~5f)をオフ状態とする制御を行う。
 これにより、本実施形態にかかる電力変換装置700では、図9の点線に示すような電流が流れる。よって、コンデンサ15a、15bに充電が行われ、コンデンサ14の充電が行われないことになる。
 このように、本実施形態にかかる制御部750は、単相2レベルコンバータ40が備える、スイッチングデバイス4a且つスイッチングデバイス4cの組み合わせ、及びスイッチングデバイス4b且つスイッチングデバイス4dの組み合わせのうち、いずれか一方の組み合わせをオン状態とする制御を行う。このような制御を行うことで、コンデンサ15a、15bは、還流ダイオード6a~6dを介して、最大で交流電源100の電圧ピーク値まで充電される。
 本実施形態は、スイッチングデバイス4a且つスイッチングデバイス4cの組み合わせ、及びスイッチングデバイス4b且つスイッチングデバイス4dの組み合わせのどちらをオン状態にするのかを制限するものではない。
 さらに、スイッチングデバイス4a且つスイッチングデバイス4cの組み合わせ、及びスイッチングデバイス4b且つスイッチングデバイス4dの組み合わせのうち、どちらをオン状態にするのかを、各スイッチングデバイスの損失を考慮して切り替えても良い。
 そこで、本実施形態にかかる制御部750は、電流検出部702で検出された電流値や、温度検出部701で検出された温度に基づいて、スイッチングデバイス4a且つスイッチングデバイス4cの組み合わせ、及びスイッチングデバイス4b且つスイッチングデバイス4dの組み合わせのうち、どちらをオン状態にするのかを切り替えることとした。本実施形態にかかる制御部750は、電流検出部702で検出された電流値、又は温度検出部701で検出された温度が予め定められた閾値を超えた場合に、現在まで利用していた組み合わせをオフ状態とし、他方の組み合わせをオン状態とする制御を行うこととした。
 そして、ピーク値までの間にコンデンサ15a、15bが、所望する電圧値に達した場合、制御部750は、コンデンサ14を充電するための制御を開始する。
 図10は、単相2レベルコンバータ40に含まれているコンデンサ14に対して充電する場合の電流の流れを示した図である。図10に示す例では、制御部750が、スイッチングデバイス5a及びスイッチングデバイス5cをオン状態とする制御を行い、それ以外のスイッチングデバイス(単相2レベルコンバータ40に含まれている全てのスイッチングデバイス4a~4d、スイッチングデバイス5b、5d~5f)をオフ状態とする制御を行う。
 これにより、本実施形態にかかる電力変換装置700では、図10の点線1001及び一点鎖線1002に示す交流電流が流れる。よって、コンデンサ14に充電が行われ、コンデンサ15a、15bの充電が行われないことになる。
 図11は、単相2レベルコンバータ40に含まれているコンデンサ14に対して充電する場合の電流の流れを示した図である。図11に示す例では、制御部750が、スイッチングデバイス5b及びスイッチングデバイス5dをオン状態とする制御を行い、それ以外のスイッチングデバイス(単相2レベルコンバータ40に含まれている全てのスイッチングデバイス4a~4d、スイッチングデバイス5a、5c、5e~5f)をオフ状態とする制御を行う。
 これにより、本実施形態にかかる電力変換装置700では、図10の点線1101及び一点鎖線1102に示す交流電流が流れる。よって、コンデンサ14に充電が行われ、コンデンサ15a、15bの充電が行われないことになる。
 このように、本実施形態にかかる制御部750は、単相3レベルコンバータ50が備える、スイッチングデバイス5a且つスイッチングデバイス5cの組み合わせ、及びスイッチングデバイス5b且つスイッチングデバイス5dの組み合わせのうち、いずれか一方の組み合わせをオン状態とする制御を行う。このような制御を行うことで、コンデンサ14は、還流ダイオード8a~8dを介して、最大で交流電源100の電圧ピーク値まで充電される。
 本実施形態は、スイッチングデバイス5a且つスイッチングデバイス5cの組み合わせ、及びスイッチングデバイス5b且つスイッチングデバイス5dの組み合わせのどちらをオン状態にするのかを制限するものではない。
 さらに、スイッチングデバイス5a且つスイッチングデバイス5cの組み合わせ、及びスイッチングデバイス5b且つスイッチングデバイス5dの組み合わせのうち、どちらをオン状態にするのかを、各スイッチングデバイスの損失を考慮して切り替えても良い。
 そこで、本実施形態にかかる制御部750は、電流検出部702で検出された電流値に基づいて、スイッチングデバイス5a且つスイッチングデバイス5cの組み合わせ、及びスイッチングデバイス5b且つスイッチングデバイス5dの組み合わせのうち、どちらをオン状態にするのかを切り替えることとした。本実施形態にかかる制御部750は、電流検出部702で検出された電流値(なお、単相3レベルコンバータ50から検出された温度でも良い)が予め定められた閾値を超えた場合に、現在まで利用していた組み合わせをオフ状態とし、他方の組み合わせをオン状態とする制御を行うこととした。
 コンデンサ14は、還流ダイオード8a~8dを介して、最大で交流電源100の電圧ピーク値まで充電される。ピーク値までの間にコンデンサ14が所望の電圧値に達した場合、主電動機3を動作させるための制御に移行する。その際の制御は、第1の実施形態で説明したので省略する。
 次に、本実施形態にかかる電力変換装置700におけるコンデンサの充電の処理手順について説明する。図12は、本実施形態にかかる電力変換装置700における上述した処理の手順を示すフローチャートである。
 まずは、制御部750が、単相3レベルコンバータ50のコンデンサ15a、15bの充電を開始する(ステップS1201)。充電手法は、図8又は図9に示した手法とする。このために、制御部750は、単相2レベルコンバータ40が備える、スイッチングデバイス4a且つスイッチングデバイス4cの組み合わせ、及びスイッチングデバイス4b且つスイッチングデバイス4dの組み合わせのうち、いずれか一方の組み合わせをオン状態とする制御を行う。なお、スイッチングデバイス5a~5fは全てオフ状態とする。
 次に、制御部750が、電流検出部702で検出された電流、又は温度検出部701で検出された温度が、所定の閾値以上であるか否かを判定する(ステップS1202)。なお、閾値は、実際の態様に合わせて設定されるものとする。閾値より小さいと判定した場合(ステップS1202:No)、特に処理は行われず、ステップS1204に遷移する。
 一方、制御部750が、所定の閾値以上と判定した場合(ステップS1202:Yes)、オン状態とする単相2レベルコンバータ40のスイッチングデバイスの組み合わせを切り替える(ステップS1203)。本実施形態では、スイッチングデバイス4a且つスイッチングデバイス4cの組み合わせ、又はスイッチングデバイス4b且つスイッチングデバイス4dの組み合わせに切り替える。
 その後、制御部750は、単相3レベルコンバータ50のコンデンサ15a、15bの電圧値が、第1の閾値以上であるか否かを判定する(ステップS1204)。そして、制御部750が、第1の閾値より小さいと判定した場合(ステップS1204:No)、ステップS1202の処理から行う。
 一方、制御部750が、単相3レベルコンバータ50のコンデンサ15a、15bの電圧値が、第1の閾値(所望する電圧値)以上であると判定した場合(ステップS1204:Yes)、3レベル側のコンデンサ15a、15bの充電が終了したものとする。
 そして、制御部750は、単相2レベルコンバータ40のコンデンサ14の充電を開始する(ステップS1205)。充電手法は、図10又は図11に示した手法とする。このために、制御部750は、単相3レベルコンバータ50が備える、スイッチングデバイス5a且つスイッチングデバイス5cの組み合わせ、及びスイッチングデバイス5b且つスイッチングデバイス5dの組み合わせのうち、いずれか一方の組み合わせをオン状態とする制御を行う。なお、単相2レベルコンバータ40のスイッチングデバイス4a~4dはオフ状態とする。
 次に、制御部750が、電流検出部702で検出された電流(又は単相3レベルコンバータ50から検出された温度でも良い)が、所定の閾値以上であるか否かを判定する(ステップS1206)。なお、閾値は、実際の態様に合わせて設定されるものとする。閾値より小さいと判定した場合(ステップS1206:No)、特に処理は行われず、ステップS1209に遷移する。
 一方、制御部750が、所定の閾値以上と判定した場合(ステップS1206:Yes)、オン状態とするスイッチングデバイスの組み合わせを切り替える(ステップS1207)。本実施形態では、スイッチングデバイス5a且つスイッチングデバイス5cの組み合わせ、又はスイッチングデバイス5b且つスイッチングデバイス5dの組み合わせに切り替える。
 その後、制御部750は、単相2レベルコンバータ40のコンデンサ14の電圧値が、第2の閾値(所望する電圧値)以上であるか否かを判定する(ステップS1208)。第2の閾値より小さいと判定した場合(ステップS1208:No)、ステップS1206の処理から行う。
 一方、制御部750が、単相2レベルコンバータ40のコンデンサ14の電圧値が、第2の閾値以上であると判定した場合(ステップS1208:Yes)、2レベル側のコンデンサの充電が終了したものとする(ステップS1209)。
 上述した手法により、制御部750は、単相2レベルコンバータ40のコンデンサ14、及び単相3レベルコンバータ50のコンデンサ15a、15bの充電制御が可能となる。
 第2の実施形態にかかる電力変換装置700では、上述した充電手法を行うことで、主回路損失の低減を実現できる。
 以上説明したとおり、第1~第2の実施形態によれば、スイッチングデバイスと、コンデンサと、の部品点数を従来と比べて少なくした上で、多レベル電圧が出力可能なマルチレベル回路方式を実現できる。さらに、部品点数を少なくすることで、効率的な冷却を容易にする。冷却が容易になったことで、マージンに余裕が生じるため、小型化が可能となる。
 さらに、第1~第2の実施形態によれば、マルチレベルコンバータ1全体のスイッチング損失をより一層低減できる。
 本実施形態では、パルス幅変調部として、単相2レベルコンバータを例示したが、これに限らず、例えば、単相3レベルコンバータでも単相4レベル以上のコンバータでもよい。
 本発明の実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 1…マルチレベルコンバータ、2…受動素子、3…主電動機、4a~4d、5a~5f…スイッチングデバイス、6a~6d、8a~8f…ダイオード、7…双方向スイッチングデバイス、9…中性点、14…コンデンサ、15a、15b…コンデンサ、15…コンデンサ、15a…コンデンサ、15b…コンデンサ、15a…コンデンサ、21、22…スイッチングデバイス、23…抵抗、40…単相2レベルコンバータ、50…単相3レベルコンバータ、100…交流電源、150、750…制御部、701…温度検出部、702…電流検出部

Claims (19)

  1.  単相交流電力を直流電力に変換する電力変換装置であって、
     コンデンサと、前記コンデンサの一端と一方の交流入出力点との間に接続される、自己消弧能力を有する第1の可制御スイッチングデバイスと、前記コンデンサの他端と前記一方の交流入出力点との間に接続される第2の可制御スイッチングデバイスと、前記コンデンサの前記一端と他方の交流入出力点との間に接続される第3の可制御スイッチングデバイスと、前記コンデンサの前記他端と前記他方の交流入出力点との間に接続される第4の可制御スイッチングデバイスと、可制御スイッチングデバイス毎に逆並列に接続されるダイオードと、で構成される単相2レベルコンバータと、
     2個直列接続されるコンデンサと、前記2個直列接続されるコンデンサの一端と一方の交流入出力点との間に接続される第5の可制御スイッチングデバイスと、前記2個直列接続されるコンデンサの他端と前記一方の交流入出力点との間に接続される第6の可制御スイッチングデバイスと、前記2個直列接続されるコンデンサの前記一端と他方の交流入出力点との間に接続される第7の可制御スイッチングデバイスと、前記2個直列接続されるコンデンサの前記他端と前記他方の交流入出力点との間に接続される第8の可制御スイッチングデバイスと、前記2個直列接続されるコンデンサ間の接続点及び前記他方の交流入出力点の間に、第9の可制御スイッチングデバイスと第10の可制御スイッチングデバイスとを逆極性に直列接続する双方向スイッチと、可制御スイッチングデバイス毎に逆並列に接続されるダイオードと、で構成される単相3レベルコンバータと、を備え、
     前記単相2レベルコンバータと、前記単相3レベルコンバータと、を交流入出力点で直列接続し、
     前記単相2レベルコンバータは、前記単相3レベルコンバータより、スイッチング損失が少なく、前記単相3レベルコンバータは、前記単相2レベルコンバータより、耐電圧性が高い、
     車両用電力変換装置。
  2.  前記単相2レベルコンバータに含まれる可制御スイッチングデバイスは、前記単相3レベルコンバータに含まれる可制御スイッチングデバイスより、スイッチング周波数が高い、
     請求項1に記載の車両用電力変換装置。
  3.  前記単相3レベルコンバータに含まれる可制御スイッチングデバイスを所定電圧単位で制御し、前記所定電圧単位より小さい出力電圧の変化に対応して、前記単相2レベルコンバータに含まれる可制御スイッチングデバイスを制御する制御手段を、
     さらに備える請求項2に記載の車両用電力変換装置。
  4.  前記単相2レベルコンバータにSiC(シリコンカーバイド)を用いる、
     請求項1に記載の車両用電力変換装置。
  5.  前記制御手段は、前記単相2レベルコンバータが備える、前記第1の可制御スイッチングデバイス且つ前記第3の可制御スイッチングデバイスの組み合わせ、及び前記第2の可制御スイッチングデバイス且つ前記第4の可制御スイッチングデバイスの組み合わせのうち、いずれか一方の組み合わせをオン状態とし、前記単相3レベルコンバータが備える全ての可制御スイッチングデバイスを全てオフ状態として、前記単相3レベルコンバータ内に2個直列に接続される前記コンデンサが第1の所望電圧値となるまで充電を行う、
     請求項1に記載の車両用電力変換装置。
  6.  前記制御手段は、電力変換装置を流れる電流、又は前記単相2レベルコンバータが発する温度に基づいて、オン状態とする、前記単相2レベルコンバータに含まれるスイッチングデバイスの前記組み合わせを切り替える、
     請求項4に記載の車両用電力変換装置。
  7.  前記制御手段は、前記単相3レベルコンバータが備える、前記第5の可制御スイッチングデバイス且つ前記第7の可制御スイッチングデバイスの組み合わせ、及び前記第6の可制御スイッチングデバイス且つ前記第8の可制御スイッチングデバイスの組み合わせのうち、いずれか一方の組み合わせをオン状態とし、前記単相2レベルコンバータが備える全ての可制御スイッチングデバイスを全てオフ状態として、前記単相2レベルコンバータ内に接続される前記コンデンサが第2の所望電圧値となるまで充電を行う、
     請求項1に記載の車両用電力変換装置。
  8.  前記制御手段は、電力変換装置を流れる電流、又は前記単相3レベルコンバータが発する温度に基づいて、オン状態とする、前記単相3レベルコンバータに含まれるスイッチングデバイスの前記組み合わせを切り替える、
     請求項7に記載の車両用電力変換装置。

  9.  コンデンサと、前記コンデンサの一端と一方の交流入出力点との間に接続される、自己消弧能力を有する第1の可制御スイッチングデバイスと、前記コンデンサの他端と前記一方の交流入出力点との間に接続される第2の可制御スイッチングデバイスと、前記コンデンサの前記一端と他方の交流入出力点との間に接続される第3の可制御スイッチングデバイスと、前記コンデンサの前記他端と前記他方の交流入出力点との間に接続される第4の可制御スイッチングデバイスと、可制御スイッチングデバイス毎に逆並列に接続されるダイオードと、で構成される単相2レベルコンバータと、2個直列接続されるコンデンサと、前記2個直列接続されるコンデンサの一端と一方の交流入出力点との間に接続される第5の可制御スイッチングデバイスと、前記2個直列接続されるコンデンサの他端と前記一方の交流入出力点との間に接続される第6の可制御スイッチングデバイスと、前記2個直列接続されるコンデンサの前記一端と他方の交流入出力点との間に接続される第7の可制御スイッチングデバイスと、前記2個直列接続されるコンデンサの前記他端と前記他方の交流入出力点との間に接続される第8の可制御スイッチングデバイスと、前記2個直列接続されるコンデンサ間の接続点及び前記他方の交流入出力点の間に、第9の可制御スイッチングデバイスと第10の可制御スイッチングデバイスとを逆極性に直列接続する双方向スイッチと、可制御スイッチングデバイス毎に逆並列に接続されるダイオードと、で構成される単相3レベルコンバータと、を有し、前記単相2レベルコンバータと、前記単相3レベルコンバータと、を交流入出力点で直列接続し、前記単相2レベルコンバータは、前記単相3レベルコンバータより、スイッチング損失が少なく、前記単相3レベルコンバータは、前記単相2レベルコンバータより、耐電圧性が高い、電力変換装置と
     前記電力変換装置により、変換された電力が供給される主電動機と、
    を備えたことを特徴とする車両。

  10.  交流電源に接続され、複数のスイッチングデバイスと複数のダイオードとコンデンサからなるパルス幅変調部と
     入力側で前記パルス変調手段に直列接続され、出力側で主電動機に接続され、
    2個直列接続されるコンデンサと、前記2個直列接続されるコンデンサの一端と一方の交流入出力点との間に接続される第5のスイッチングデバイスと、前記2個直列接続されるコンデンサの他端と前記一方の交流入出力点との間に接続される第6のスイッチングデバイスと、前記2個直列接続されるコンデンサの前記一端と他方の交流入出力点との間に接続される第7のスイッチングデバイスと、前記2個直列接続されるコンデンサの前記他端と前記他方の交流入出力点との間に接続される第8のスイッチングデバイスと、前記2個直列接続されるコンデンサ間の接続点及び前記他方の交流入出力点の間に接続された双方向スイッチと、可制御スイッチングデバイス毎に逆並列に接続されるダイオードと、で構成される単相3レベルコンバータと、
     前記単相3レベルコンバータの出力電圧指令値が、前記単相3レベルコンバータの2つのコンデンサのいずれか1つで出力するための第一電圧閾値と前記単相3レベルコンバータの2つのコンデンサの両方が出力するための電圧の第二電圧閾値とを超えたか否かに基づいて、前記単相3レベルコンバータに含まれるスイッチングデバイスを制御する制御部とを備えたことを特徴とする電力変換装置。
  11.  前記制御部は、さらに、前記単相3レベルコンバータの出力電圧指令値から前記2つのコンデンサの電圧を差し引いた差分電圧を前記パルス幅変調部により出力制御する、
     請求項10に記載の車両用電力変換装置。
  12.  前記パルス幅変調部は、コンデンサと、前記コンデンサの一端と一方の交流入出力点との間に接続される、自己消弧能力を有する第1の可制御スイッチングデバイスと、前記コンデンサの他端と前記一方の交流入出力点との間に接続される第2の可制御スイッチングデバイスと、前記コンデンサの前記一端と他方の交流入出力点との間に接続される第3の可制御スイッチングデバイスと、前記コンデンサの前記他端と前記他方の交流入出力点との間に接続される第4の可制御スイッチングデバイスと、可制御スイッチングデバイス毎に逆並列に接続されるダイオードと、である、
     請求項10に記載の車両用電力変換装置。
  13.  前記パルス幅変調部に含まれるスイッチングデバイスは、前記単相3レベルコンバータに含まれるスイッチングデバイスより、スイッチング周波数が高い、
     請求項10に記載の車両用電力変換装置。
  14.  前記制御手段は、前記単相3レベルコンバータに含まれるスイッチングデバイスを所定電圧単位で制御し、前記所定電圧単位より小さい出力電圧の変化に対応して、前記パルス幅制御部を制御する、
     請求項11に記載の車両用電力変換装置。
  15.  前記パルス幅変調部にSiC(シリコンカーバイド)を用いる、
     請求項10に記載の車両用電力変換装置。
  16.  前記制御手段は、前記パルス幅変調部が備える、前記第1の可制御スイッチングデバイス且つ前記第3の可制御スイッチングデバイスの組み合わせ、及び前記第2の可制御スイッチングデバイス且つ前記第4の可制御スイッチングデバイスの組み合わせのうち、いずれか一方の組み合わせをオン状態とし、前記単相3レベルコンバータが備える全てのスイッチングデバイスを全てオフ状態として、前記単相3レベルコンバータ内に2個直列に接続される前記コンデンサが第1の所望電圧値となるまで充電を行う、
     請求項12に記載の車両用電力変換装置。
  17.  前記制御手段は、電力変換装置を流れる電流、又は前記単相2レベルコンバータが発する温度に基づいて、オン状態とする、前記パルス幅変調部に含まれるスイッチングデバイスの前記組み合わせを切り替える、
     請求項10に記載の車両用電力変換装置。
  18.  前記制御手段は、前記単相3レベルコンバータが備える、前記第5のスイッチングデバイス且つ前記第7のスイッチングデバイスの組み合わせ、及び前記第6のスイッチングデバイス且つ前記第8のスイッチングデバイスの組み合わせのうち、いずれか一方の組み合わせをオン状態とし、前記パルス幅変調部が備える全てのスイッチングデバイスを全てオフ状態として、前記パルス幅変調手段内に接続される前記コンデンサが第2の所望電圧値となるまで充電を行う、
     請求項10に記載の車両用電力変換装置。
  19.  前記制御手段は、電力変換装置を流れる電流、又は前記単相3レベルコンバータが発する温度に基づいて、オン状態とする、前記単相3レベルコンバータに含まれるスイッチングデバイスの前記組み合わせを切り替える、
     請求項18に記載の車両用電力変換装置。
PCT/JP2012/003777 2012-03-16 2012-06-11 車両用電力変換装置及び車両 WO2013136377A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP12871486.2A EP2827488B1 (en) 2012-03-16 2012-06-11 Vehicle power conversion device and vehicle
CN201280071500.3A CN104185947B (zh) 2012-03-16 2012-06-11 车辆用电力转换装置以及车辆
BR112014022800-0A BR112014022800B1 (pt) 2012-03-16 2012-06-11 aparelho de conversão de energia para veículo e veículo
IN7476DEN2014 IN2014DN07476A (ja) 2012-03-16 2012-06-11
KR1020147025393A KR101709843B1 (ko) 2012-03-16 2012-06-11 차량용 전력 변환 장치 및 차량
ZA2014/06536A ZA201406536B (en) 2012-03-16 2014-09-05 Power conversion apparatus for vehicle and vehicle
US14/479,204 US9643496B2 (en) 2012-03-16 2014-09-05 Power conversion apparatus for vehicle and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012060300A JP5624577B2 (ja) 2012-03-16 2012-03-16 車両用電力変換装置
JP2012-060300 2012-03-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/479,204 Continuation US9643496B2 (en) 2012-03-16 2014-09-05 Power conversion apparatus for vehicle and vehicle

Publications (1)

Publication Number Publication Date
WO2013136377A1 true WO2013136377A1 (ja) 2013-09-19

Family

ID=49160352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003777 WO2013136377A1 (ja) 2012-03-16 2012-06-11 車両用電力変換装置及び車両

Country Status (9)

Country Link
US (1) US9643496B2 (ja)
EP (1) EP2827488B1 (ja)
JP (1) JP5624577B2 (ja)
KR (1) KR101709843B1 (ja)
CN (1) CN104185947B (ja)
BR (1) BR112014022800B1 (ja)
IN (1) IN2014DN07476A (ja)
WO (1) WO2013136377A1 (ja)
ZA (1) ZA201406536B (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015190005A1 (ja) * 2014-06-10 2015-12-17 株式会社東芝 車両用電力変換装置
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
EP3046246A3 (en) * 2015-01-13 2016-11-09 Hamilton Sundstrand Corporation Multilevel active rectifiers
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5872494B2 (ja) * 2013-01-24 2016-03-01 株式会社東芝 車両用電力変換装置
JP6129650B2 (ja) * 2013-06-06 2017-05-17 株式会社東芝 車両用電力変換装置
JP6821685B2 (ja) * 2016-08-24 2021-01-27 東芝三菱電機産業システム株式会社 Pwmコンバータ用入力フィルタの通電評価試験装置
JP7039430B2 (ja) * 2018-09-19 2022-03-22 株式会社東芝 Ac/dcコンバータ
CN111742280B (zh) * 2019-01-21 2022-03-01 东芝三菱电机产业系统株式会社 电力转换装置及电力转换系统
DE102019106484A1 (de) 2019-03-14 2020-09-17 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Gleichrichteranordnung
CN110169598A (zh) * 2019-05-14 2019-08-27 筑思有限公司 电子烟、烟具和烟弹
CN113412566B (zh) * 2019-05-24 2024-06-04 华为数字能源技术有限公司 包括变压器和多电平功率变换器的集成充电和电机控制系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004007941A (ja) 2002-04-05 2004-01-08 Mitsubishi Electric Corp 電力変換装置
JP2010063326A (ja) * 2008-09-08 2010-03-18 Mitsubishi Electric Corp 電力変換装置
JP2011114972A (ja) * 2009-11-27 2011-06-09 Mitsubishi Electric Corp 電力変換装置
WO2011151940A1 (ja) * 2010-05-31 2011-12-08 三菱電機株式会社 電力変換装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE416508T1 (de) * 2005-10-24 2008-12-15 Conergy Ag Wechselrichter
TWI381619B (zh) * 2009-04-01 2013-01-01 Delta Electronics Inc 單相與三相雙重升降壓功率因數校正電路及其控制方法
JP4969614B2 (ja) * 2009-07-21 2012-07-04 株式会社日立製作所 電力変換装置
JP5374336B2 (ja) 2009-12-01 2013-12-25 三菱電機株式会社 電力変換装置
JP5467964B2 (ja) * 2010-08-18 2014-04-09 オムロンオートモーティブエレクトロニクス株式会社 電力変換制御装置および電力変換制御方法
CN101917133B (zh) * 2010-08-30 2012-08-22 南京航空航天大学 一种五电平逆变器
TWI479794B (zh) * 2011-08-04 2015-04-01 Ablerex Electonic Co Ltd 五階式直流轉交流電源電路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004007941A (ja) 2002-04-05 2004-01-08 Mitsubishi Electric Corp 電力変換装置
JP2010063326A (ja) * 2008-09-08 2010-03-18 Mitsubishi Electric Corp 電力変換装置
JP2011114972A (ja) * 2009-11-27 2011-06-09 Mitsubishi Electric Corp 電力変換装置
WO2011151940A1 (ja) * 2010-05-31 2011-12-08 三菱電機株式会社 電力変換装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Multicell Converters: Active Control and Observation of Flying-Capacitor Voltages", IEEE TRANS. IND. ELECTRON., vol. 49, no. 5, 2002, pages 998 - 1008
GUILLAUME GATEAU ET AL.: "Multicell Converters: Active Control and Observation of Flying- Capacitor Voltages", IEEE TRANS.IND.ELECTRON, vol. 49, no. 5, 2002, pages 998 - 1008, XP011073764 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US12119758B2 (en) 2013-03-14 2024-10-15 Solaredge Technologies Ltd. High frequency multi-level inverter
US11742777B2 (en) 2013-03-14 2023-08-29 Solaredge Technologies Ltd. High frequency multi-level inverter
US11545912B2 (en) 2013-03-14 2023-01-03 Solaredge Technologies Ltd. High frequency multi-level inverter
US11296590B2 (en) 2014-03-26 2022-04-05 Solaredge Technologies Ltd. Multi-level inverter
US10886832B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US11855552B2 (en) 2014-03-26 2023-12-26 Solaredge Technologies Ltd. Multi-level inverter
US10153685B2 (en) 2014-03-26 2018-12-11 Solaredge Technologies Ltd. Power ripple compensation
US10404154B2 (en) 2014-03-26 2019-09-03 Solaredge Technologies Ltd Multi-level inverter with flying capacitor topology
US10680506B2 (en) 2014-03-26 2020-06-09 Solaredge Technologies Ltd. Multi-level inverter
US10680505B2 (en) 2014-03-26 2020-06-09 Solaredge Technologies Ltd. Multi-level inverter
US10700588B2 (en) 2014-03-26 2020-06-30 Solaredge Technologies Ltd. Multi-level inverter
US11632058B2 (en) 2014-03-26 2023-04-18 Solaredge Technologies Ltd. Multi-level inverter
US10886831B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
WO2015190005A1 (ja) * 2014-06-10 2015-12-17 株式会社東芝 車両用電力変換装置
CN106416041A (zh) * 2014-06-10 2017-02-15 株式会社东芝 车辆用电力变换装置
US10027242B2 (en) 2014-06-10 2018-07-17 Kabushiki Kaisha Toshiba Vehicle power conversion device
EP3157154A4 (en) * 2014-06-10 2017-11-01 Kabushiki Kaisha Toshiba Vehicle power conversion device
US9843270B2 (en) 2015-01-13 2017-12-12 Hamilton Sundstrand Corporation Phase leg arrangements for multilevel active rectifiers
EP3046246A3 (en) * 2015-01-13 2016-11-09 Hamilton Sundstrand Corporation Multilevel active rectifiers

Also Published As

Publication number Publication date
EP2827488B1 (en) 2020-10-21
BR112014022800B1 (pt) 2021-01-19
US9643496B2 (en) 2017-05-09
US20140375121A1 (en) 2014-12-25
KR101709843B1 (ko) 2017-03-08
IN2014DN07476A (ja) 2015-04-24
KR20140123099A (ko) 2014-10-21
ZA201406536B (en) 2016-04-28
JP2013198200A (ja) 2013-09-30
EP2827488A1 (en) 2015-01-21
EP2827488A4 (en) 2016-06-29
CN104185947B (zh) 2016-11-16
JP5624577B2 (ja) 2014-11-12
CN104185947A (zh) 2014-12-03

Similar Documents

Publication Publication Date Title
JP5624577B2 (ja) 車両用電力変換装置
JP5872494B2 (ja) 車両用電力変換装置
JP6295485B2 (ja) プリチャージ回路及び太陽光発電インバータ
US9197135B2 (en) Bi-directional DC/DC converter with frequency control change-over
EP2184843B1 (en) Direct type ac power converting device
JP6079407B2 (ja) マルチレベル変換回路
JP6232944B2 (ja) マルチレベル電力変換装置
US9401655B2 (en) Power conversion apparatus with inverter circuit and series converter circuit having power factor control
WO2018110440A1 (ja) スナバ回路及びそれを用いた電力変換システム
US20140192573A1 (en) Power conversion circuit
US8064232B2 (en) Power conversion device and power conversion system
JP6009003B2 (ja) Dc/dcコンバータ
EP2814165A2 (en) DC Power Supply
JP5814759B2 (ja) 電力変換装置
JP5971685B2 (ja) 電力変換装置
JP2016226223A (ja) 7レベル電力変換器
US11038436B2 (en) Inverter system
WO2015174454A1 (ja) 5レベル電力変換器の制御方法
JP6191542B2 (ja) 電力変換装置
JP6129650B2 (ja) 車両用電力変換装置
JP2013099226A (ja) 半導体電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871486

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012871486

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147025393

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014022800

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014022800

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140915