WO2013135446A1 - Nanopartikel, permanentmagnet, motor und generator - Google Patents

Nanopartikel, permanentmagnet, motor und generator Download PDF

Info

Publication number
WO2013135446A1
WO2013135446A1 PCT/EP2013/052659 EP2013052659W WO2013135446A1 WO 2013135446 A1 WO2013135446 A1 WO 2013135446A1 EP 2013052659 W EP2013052659 W EP 2013052659W WO 2013135446 A1 WO2013135446 A1 WO 2013135446A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticle
nanoparticles
protective layer
permanent magnet
core
Prior art date
Application number
PCT/EP2013/052659
Other languages
English (en)
French (fr)
Inventor
Gotthard Rieger
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to US14/383,454 priority Critical patent/US20150034856A1/en
Priority to JP2014561339A priority patent/JP2015518266A/ja
Priority to KR1020147028802A priority patent/KR20140143405A/ko
Priority to EP13704408.7A priority patent/EP2798649A1/de
Priority to CN201380014238.3A priority patent/CN104170032A/zh
Publication of WO2013135446A1 publication Critical patent/WO2013135446A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C22/00Alloys based on manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • H01F1/0054Coated nanoparticles, e.g. nanoparticles coated with organic surfactant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/0302Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/068Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder having a L10 crystallographic structure, e.g. [Co,Fe][Pt,Pd] (nano)particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0579Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B with exchange spin coupling between hard and soft nanophases, e.g. nanocomposite spring magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • H01F1/14733Fe-Ni based alloys in the form of particles
    • H01F1/14741Fe-Ni based alloys in the form of particles pressed, sintered or bonded together

Definitions

  • Nanoparticles, permanent magnet motor and generator The invention relates to a nanoparticle, a Permanentmag ⁇ Neten and a motor and a generator.
  • Nanotechnological synthesis methods allow the formation of ensembles of aligned single-domain nanoparticles. That on the form effect
  • anisotropic field based on this (as the upper limit for the coercive field) is limited.
  • This invention is achieved with a nanoparticle to those recited in claim 1.
  • the nanoparticle according to the invention has at least
  • an elongated core formed with at least one first, magnetizable and / or magnetized material.
  • a nanoparticle is to be understood as meaning a particle having a transverse diameter of less than 1000 nm.
  • the nanoparticle has a transverse diameter of less than 300 nm.
  • an elongated core means a core with an aspect ratio, that is the ratio from longitudinal to transverse dimension, of at least 1.5 to understand.
  • the aspect ratio is at least 5, ideal ⁇ enough, at least 10.
  • the nanoparticles according to the invention also comprises a shell surrounding the core, which is formed with at least one second magneto crystalline anisotropic material.
  • the nanoparticles of the invention has a so- ⁇ called core-shell structure in which at least two Mate ⁇ rials are involved, the advantageous in a high duration ⁇ magnetic performance, namely a high remanence, high coercivity and high energy product and egg ⁇ ner high long-term stability, lead.
  • the core with the first material has a high magnetization and / or magnetizability, the second material of the shell having a high magnetocrystalline anisotropy.
  • This magnetocrystalline anisotropy sta ⁇ stabilizes the surface of the core, particularly the expedient ⁇ SSIG existing interface between the core and shell, and ver ⁇ prevents a magnetic reversal by defects in this upper or interface.
  • a magnetic exchange coupling is achieved by the choice of first and second material, which leads to a single-phase Ummagnetleiters and thus favors a homogeneous rotation at high Koerzitivfeidern. At least a doubling of the energy density compared to the prior art can be achieved.
  • an ensemble which is suitable for constructing an improved permanent magnet can be provided with the nanoparticle according to the invention.
  • the first material is preferably soft-magnetic, at least as a bulk material.
  • materials known as soft-magnetic metals and alloys such as, in particular, ferromagnetics such as NiFe or CoFe, due to the formanisotropic pie permanent magnetic properties with a considerable Ummagnetleitersstabiltician.
  • the first material with ferromagnetic Materi ⁇ al, particularly Fe are formed.
  • the ferromagnetic material is formed from or with an alloy and / or a mixed crystal with Fe, in particular NiFe or CoFe.
  • the first material expediently has one or more transition metals or FeCo, in particular with a high Fe content.
  • the second material is hard magnetic.
  • the second material is formed from or with MnBi and / or MnAlC and / or FePt.
  • the second material is formed by deposition of Pt on Fe and subsequent heating.
  • the second material is formed from or with CoPt, FePt, FePd, hard magnetic rare earth compounds such as SmCo and NdFeB or from / with hard ferrites such as SrBa ferrites.
  • the first Ma ⁇ TERIAL is formed of FeCo or preferably.
  • the nanoparticle and / or the core of the nanoparticle is formed in a preferred embodiment of the invention as a nanorod and / or nanowire (Engl.: Nanowire), — if any, a nanorod and / or nanowire (Engl.: Nanowire), — if any, a nanorod and / or nanowire (Engl.: Nanowire), — if any, a nanorod and / or nanowire (Engl.: Nanowire), — insomniaßi ⁇ gate as an elongated ellipsoid.
  • the nanoparticle according to the invention at least half the volume fraction of the nanoparticle, preferably more than 90 percent of the volume fraction, is eliminated on the nanoparticle
  • the second material is expediently formed as a self-aggregating monolayer (SAM, seif assembly monolayer).
  • SAM self-aggregating monolayer
  • the exchange-exchange effect between the second material of the shell and the first material of the core is independent of the thickness of the shell. Consequently, a good stabilization of the magnetization of the core can already be achieved by means of a single continuous monolayer as the shell.
  • the nanoparticle according to the invention has, in an advantageous embodiment, an outer protective layer designed to protect against corrosion, in particular oxidation.
  • the protective layer is advantageously formed as / with self-assembled monolayers (SAM, self-assembly monolay- ers) in which he ⁇ inventive nanoparticles.
  • SAM self-assembled monolayers
  • the protective layer is formed with FePt and / or MnAlC.
  • the shell particularly preferably forms the protective layer or at least part of the protective layer. Ideally it is chosen for the saddle ⁇ le FePt and / or MnAlC.
  • the shell in the case of FePt by deposition of Pt to Fe and subsequent ⁇ tder heat treatment in the interface is advantageously made.
  • the protective layer is arranged as a further layer on / on the shell.
  • the protective layer is preferably applied as / by means of self-aggregating monolayers (SAM, seif assembly monolayers).
  • the protective layer ideally covers the outer surface of the shell completely and preferably over the whole area. In this way, an effective stabilization of the magnetization of the core is achieved.
  • the protective layer is formed with FePt, in particular by means of deposition of Pt on Fe and subsequent heating.
  • the permanent magnet according to the invention comprises a plurality of nanoparticles according to the invention as described above. These permanent magnets can be used advantageously in high-efficiency drives and generators, such as in stators and rotors of drives and generators.
  • the nanoparticles are arranged such that the orientations of the longest dimensions of the nanoparticles have a preferred direction.
  • the nanoparticles are aligned with respect to their longest dimensions almost unidirectional and / or parallel, ie at least half, preferably at least 90 percent of Nanoparti ⁇ angle, in their orientation hardly, ie in particular by at most 20 degrees, from the preferred direction.
  • the motor according to the invention has a permanent magnet according to the invention as described above.
  • the generator according to the invention has a permanent magnet according to the invention as described above.
  • At least one rotor and / or at least one stator as known per se, which is formed with one or more permanent magnets according to the invention, as explained above.
  • FIG. 1 shows a nanoparticle according to the invention in one
  • FIG. 2 shows a permanent magnet according to the invention
  • FIG. 3 shows a generator according to the invention schematically in a schematic diagram.
  • the nanorod 5 according to the invention shown in FIG. 1 has an elongated core 10 made of FeCo.
  • the core 10 has an aspect ratio (ratio of longitudinal dimension to Querab ⁇ measurement) of about 5 (in not specifically shown embodiments, which otherwise correspond to those described here is the aspect ratio 10).
  • ratio 10 ratio of longitudinal dimension to Querab ⁇ measurement
  • the core carries a high Mag ⁇ netization.
  • the nanorod 5 also has a shell of magnetocrystalline anisotropic material, in the exemplary embodiment shown FePt.
  • the magnetocrystalline anisotropy of the shell 20 is stable ⁇ l cryomalt the surface of the core 10 and prevents Ummag- net accrual on the surface of the core 10 by defects.
  • the shell 20 acts in the formation of FePt due to its suitable corrosion properties simultaneously as
  • This protective layer protects the core 10 from oxidation.
  • the shell 20 of the nanorods 5 is thereby produced by Ab ⁇ divorced Pt to Fe and final heat treatment of the interface.
  • the shell 20 may also be formed as a thin layer, ie between one and five monolayers thick layer. for example by means of self-aggregating monolayers (SAM, seif assembly monolayers).
  • SAM self-aggregating monolayers
  • a protective layer is additionally applied to the shell 20, which is formed by means of self-aggregating monolayers (SAM, assembly assembly monolayers) of MnAlC.
  • SAM self-aggregating monolayers
  • the nanorod according to the invention corresponds to the previously be registered ⁇ nanorod 5, except that the core deviation does not consist of FeCo but from another soft magnetic material.
  • the nanorods 5 of the ensemble 30 have a preferred direction.
  • the nano ⁇ rods 5 are oriented parallel to each other.
  • the nanorods 5 of the ensemble 30 are located in a matrix, for example of aluminum, for the purpose of parallel orientation (not shown in detail).
  • the matrix On one surface, the matrix has a plurality of pores, which form openings parallel to one another in the matrix of penetrating na-noscopic blind holes. In these mutually parallel blind holes, the nanorods 5 are located. lent, wherein the longest dimensions of the nanorods extend along the extension direction of the blind holes.
  • the nanorods are oriented to each other according to the 5 pa ⁇ rallelen alignment of the blind holes parallel to each other exclusively.
  • the permanent magnetic fields of the individual nanorods sum up to a correspondingly increased overall field of En ⁇ ensembles of nanorods, so that the thus realized by ⁇ manentmagnet 40 has a sufficiently large permanent magnetic field.
  • the generator 60 according to the invention shown in FIG. 3 has, in a manner known per se, a rotor-stator arrangement 50 formed by means of permanent magazines 40.
  • the permanent magnets of the rotor-stator arrangement 50 are formed with permanent magnets 40 according to the invention.
  • the rotor-stator assembly 50 is part of a erfindungsge ⁇ MAESSEN motor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

Das Nanopartikel (5) weist zumindest einen elongierten Kern (10), der mit zumindest einem ersten, magnetisierbaren und/oder magnetisierten, Material gebildet ist und eine den Kern umgebende Schale (20), welche mit zumindest einem zweiten, magnetokristallin anisotropen, Material gebildet ist, auf. Der Permanentmagnet (40) umfasst eine Mehrzahl (30) solcher Nanopartikel. Der Motor oder Generator (60) weist zumindest einen solchen Permanentmagneten (40) auf.

Description

Beschreibung
Nanopartikel , Permanentmagnet, Motor und Generator Die Erfindung betrifft ein Nanopartikel, einen Permanentmag¬ neten sowie einen Motor und einen Generator.
Die Suche nach neuen dauermagnetischen Magnetmaterialien hat durch die Nanotechnologie eine starke Belebung erfahren. Dies liegt daran, dass permanentmagnetische Eigenschaften neben der hohen Magnetisierung (magnetischen Polarisation) aufgrund eines geeigneten atomaren und kristallographischen Aufbaus in hohem Maß von Magnetisierungsprozessen auf mesoskopischer Skala abhängen. Durch den mikrostrukturellen Aufbau als na- noskalige Eindomänenteilchen werden Dauermagneteigenschaften begünstigt wie dies theoretisch vorhergesagt und experimen¬ tell durch die Mikrostrukturausbildung bei Anwendung der Rascherstarrungstechnik bekannt ist. Der synthetische Aufbau permanentmagnetischer Materialien aus Nanopartikeln mit hoher spontaner Magnetisierung wird jedoch durch die steigende Oxidationsempfindlichkeit in Nanoparti¬ keln behindert. Ferner lassen sich die durch sogenannte Formanisotropie erreichbaren Koerzitivfeidstärken experimentell nicht erreichen.
Während in heutigen seltenerdbasierten Dauermagneten (z.B. SmCo oder NdFeB) durch eine hohe magnetokristalline Anisotro¬ pie in mikrokristallinen, metallurgisch erzeugten Mikrostruk- turen eine für fast alle derzeitigen Anwendungen ausreichend hohe Koerzitivfeidstärke erzeugt wird, bleibt die remanente Magnetisierung in diesen Systemen auf die spontane Magnetisierung der hartmagnetischen Phase (z.B. Nd2Fei4B von 1.61 T) begrenzt .
Durch nanotechnologische Syntheseverfahren lassen sich aufgrund der Formgebungsmöglichkeit Ensembles von ausgerichteten eindomänigen Nanopartikeln herstellen. Das auf dem Formeffekt beruhende Anisotropiefeld (als obere Grenze für das Koerzi- tivfeld) ist dabei jedoch begrenzt.
Denn aufgrund von Einflüssen aus dem Ensemble, aber auch auf- grund der Tatsache, dass das Koerzitivfeld durch Defekte an der Oberfläche sowie Ecken und Kanten reduziert ist, ist bis heute nicht klar, ob die Anisotropie im Ensemble von Nanopar- tikeln gesteigert werden kann und ob zusätzlich andere Ummag- netisierungsmoden (Curling, Fanning) auftauchen, die eben- falls ein geringeres Koerzitivfeld zur Folge haben.
Es ist daher Aufgabe der Erfindung, ein verbessertes Nanopartikel zu schaffen, mit welchem die vorgenannten Nachteile des Standes der Technik überwunden werden können. Insbesondere soll mit dem erfindungsgemäßen Nanopartikel die Schaffung eines verbesserten dauermagnetischen Magnetmaterials ermöglicht sein. Es ist ferner Aufgabe der Erfindung, einen verbesserten Permanentmagneten sowie einen verbesserten Motor und einen verbesserten Generator zu schaffen.
Diese Erfindung wird mit einem Nanopartikel mit den in An¬ spruch 1 angegebenen Merkmalen, mit einem Permanentmagneten mit den in Anspruch 13 angegebenen Merkmalen sowie mit einem Motor und einem Generator mit den in Anspruch 15 angegebenen Merkmalen gelöst.
Das erfindungsgemäße Nanopartikel weist zumindest
einen elongierten Kern auf, der mit zumindest einem ersten, magnetisierbaren und/oder magnetisierten, Material gebildet ist.
Dabei ist unter einem Nanopartikel im Sinne dieser Erfindung ein Partikel mit einem Querdurchmesser von weniger als 1000 nm zu verstehen. Insbesondere weist das Nanopartikel einen Querdurchmesser von weniger als 300 nm auf.
Unter einem elongierten Kern im Sinne dieser Erfindung ist ein Kern mit einem Aspektverhältnis, das ist das Verhältnis von Längs- zu Querabmessung, von mindestens 1,5 zu verstehen. Geeigneterweise ist das Aspektverhältnis zumindest 5, ideal¬ erweise zumindest 10. Das erfindungsgemäße Nanopartikel weist zudem eine den Kern umgebende Schale auf, welche mit zumindest einem zweiten, magnetokristallin anisotropen, Material gebildet ist. Zweckmäßig grenzt das zweite Material der Schale an das erste Ma¬ terial des Kerns mit einer Grenzfläche an.
Das erfindungsgemäße Nanopartikel weist folglich eine soge¬ nannte Core-Shell-Struktur auf, bei der zumindest zwei Mate¬ rialien beteiligt sind, die vorteilhaft zu einer hohen dauer¬ magnetischen Performance, nämlich einer hohen Remanenz, einem hohen Koerzitivfeld und einem hohen Energieprodukt sowie ei¬ ner hohen Langzeitstabilität, führen. Der Kern (engl.: Core) mit dem ersten Material weist eine hohe Magnetisierung und/oder Magnetisierbarkeit auf, wobei das zweite Material der Schale (engl.: Shell) eine hohe magnetokristalline Ani- sotropie aufweist. Diese magnetokristalline Anisotropie sta¬ bilisiert die Oberfläche des Kerns, insbesondere die zweckmä¬ ßig vorhandene Grenzfläche zwischen Kern und Schale, und ver¬ hindert ein Ummagnetisieren durch Defekte an dieser Oberoder Grenzfläche. Zudem wird durch die Wahl von erstem und zweitem Material eine magnetische Austauschkopplung erreicht, die zu einem einphasigen Ummagnetisierungsverhalten führt und somit eine homogene Rotation bei hohen Koerzitivfeidern begünstigt. Dabei lässt sich mindestens eine Verdoppelung der Energiedichte gegenüber dem Stand der Technik erreichen. So- mit lässt sich mit dem erfindungsgemäßen Nanopartikel ein Ensemble bereitstellen, welches zum Aufbau eines verbesserten Permanentmagneten geeignet ist.
Bevorzugt ist bei dem erfindungsgemäßen Nanopartikel das ers- te Material, zumindest als Volumenmaterial, weichmagnetisch. Vorteilhaft gewinnen als Volumenmaterial als weichmagnetische Metalle und Legierungen bekannte Materialien wie insbesondere Ferromagnetika wie NiFe oder CoFe aufgrund der Formanisotro- pie permanentmagnetische Eigenschaften mit einer erheblichen Ummagnetisierungsstabilität .
In einer bevorzugten Weiterbildung der Erfindung ist bei dem Nanopartikel das erste Material mit ferromagnetischem Materi¬ al, insbesondere Fe, gebildet. Geeigneterweise ist dabei das ferromagnetische Material aus oder mit einer Legierung und/oder einem Mischkristall mit Fe, insbesondere NiFe oder CoFe, gebildet. Zweckmäßigerweise weist das erste Material ein oder mehrere Übergangsmetalle oder FeCo, insbesondere mit hohem Fe-Anteil, auf.
Zweckmäßigerweise ist bei dem erfindungsgemäßen Nanopartikel das zweite Material hartmagnetisch.
Vorzugsweise ist bei dem erfindungsgemäßen Nanopartikel das zweite Material aus oder mit MnBi und/oder MnAlC und/oder FePt gebildet. Insbesondere ist im letztgenannten Fall das zweite Material mittels Abscheidung von Pt auf Fe und nach- folgender Erwärmung gebildet.
Alternativ oder zusätzlich ist das zweite Material aus oder mit CoPt, FePt, FePd, hartmagnetischen Seltenenerd- Verbindungen wie SmCo und NdFeB oder aus/mit Hartferriten wie SrBa-Ferriten gebildet. Vorzugsweise ist dabei das erste Ma¬ terial aus oder mit FeCo gebildet.
Das Nanopartikel und/oder der Kern des Nanopartikels ist in einer bevorzugten Weiterbildung der Erfindung als Nanorod und/oder Nanodraht (engl.: Nanowire) ausgebildet, zweckmäßi¬ gerweise als langgestrecktes Ellipsoid.
Geeigneterweise entfällt bei dem erfindungsgemäßen Nanoparti¬ kel zumindest der halbe Volumenanteil des Nanopartikels, vor- zugsweise mehr als 90 Prozent des Volumenanteils, auf den
Kern. Vorteilhaft kann so eine besonders hohe permanente Mag¬ netisierung des Nanopartikels und somit auch eine hohe perma¬ nente Magnetisierung eines Ensembles von Nanopartikeln im Verhältnis zum vom Nanopartikel beanspruchten Raum erreicht werden. Zweckmäßig ist dabei das zweite Material als/mit selbstaggregierenden Monolagen (SAM, seif assembly monolay- ers) gebildet. Vorteilhafterweise ist die Austauschwechsel- Wirkung zwischen dem zweiten Material der Schale und dem ersten Material des Kerns unabhängig von der Dicke der Schale. Folglich lässt sich bereits mittels einer einzigen zusammenhängenden Monolage als Schale eine gute Stabilisierung der Magnetisierung des Kerns erreichen.
Das erfindungsgemäße Nanopartikel weist in einer vorteilhaf¬ ten Weiterbildung eine äußere Schutzschicht ausgebildet zum Schutz vor Korrosion, insbesondere Oxidation, auf. Somit wird vermieden, dass der Kern des erfindungsgemäßen Nanopartikels korrodiert, insbesondere oxidiert. Zweckmäßig ist bei dem er¬ findungsgemäßen Nanopartikel die Schutzschicht als/mit selbstaggregierenden Monolagen (SAM, seif assembly monolay- ers) gebildet. Vorzugsweise ist die Schutzschicht mit FePt und/oder MnAlC gebildet.
Besonders bevorzugt bildet bei dem erfindungsgemäßen Nanopartikel dabei die Schale die Schutzschicht oder zumindest einen Teil der Schutzschicht. Idealerweise wird dabei für die Scha¬ le FePt und/oder MnAlC gewählt. Vorteilhaft ist die Schale im Falle von FePt durch Abscheidung von Pt auf Fe und anschlie¬ ßender Wärmebehandlung in der Grenzfläche hergestellt.
Alternativ und ebenfalls bevorzugt ist die Schutzschicht als weitere Schicht an/auf der Schale angeordnet. Bevorzugt ist die Schutzschicht als/mittels selbstaggregierender Monolagen (SAM, seif assembly monolayers) aufgebracht.
Idealerweise bedeckt bei dem erfindungsgemäßen Nanopartikel die Schutzschicht die äußere Oberfläche der Schale vollum- fänglich und vorzugsweise vollflächig. Auf diese Weise wird eine effektive Stabilisierung der Magnetisierung des Kerns erreicht . Vorteilhaft ist bei dem erfindungsgemäßen Nanopartikel die Schutzschicht mit FePt, insbesondere mittels Abscheidung von Pt auf Fe und nachfolgender Erwärmung, gebildet. Der erfindungsgemäße Permanentmagnet umfasst eine Mehrzahl von erfindungsgemäßen Nanopartikeln wie vorhergehend beschrieben. Diese Permanentmagnete lassen sich vorteilhaft in hocheffizienten Antrieben und Generatoren, etwa in Statoren und Rotoren von Antrieben und Generatoren, einsetzen.
Bei einer vorteilhaften Weiterbildung des erfindungsgemäßen Permanentmagneten sind die Nanopartikel derart angeordnet, dass die Orientierungen von längsten Abmessungen der Nanopartikel eine Vorzugsrichtung aufweisen. Insbesondere sind die Nanopartikel hinsichtlich ihrer längsten Abmessungen nahezu unidirektional und/oder parallel ausgerichtet, d.h. zumindest die Hälfte, vorzugsweise zumindest 90 Prozent der Nanoparti¬ kel, weichen in ihrer Ausrichtung kaum, d.h. insbesondere um höchstens 20 Grad, von der Vorzugsrichtung ab.
Der erfindungsgemäße Motor weist einen erfindungsgemäßen Permanentmagneten wie zuvor beschrieben auf.
Der erfindungsgemäße Generator weist einen erfindungsgemäßen Permanentmagneten wie zuvor beschrieben auf.
Zweckmäßig ist bei dem erfindungsgemäßen Motor oder dem erfindungsgemäßen Generator zumindest ein Rotor und/oder zumindest ein Stator wie an sich bekannt vorhanden, der/die mit einem oder mehreren erfindungsgemäßen Permanentmagneten, wie er oben erläutert ist, gebildet ist.
Nachfolgend wird die Erfindung anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert. Es zei- gen:
Fig. 1 ein erfindungsgemäßes Nanopartikel in einer
Prinzipskizze im Längsschnitt, Fig. 2 einen erfindungsgemäßen Permanentmagneten
schematisch in einer Prinzipskizze, und Fig. 3 einen erfindungsgemäßen Generator schematisch in einer Prinzipskizze.
Der in Fig. 1 dargestellte erfindungsgemäße Nanorod 5 weist einen elongierten Kern 10 aus FeCo auf. Der Kern 10 weist ein Aspektverhältnis (Verhältnis von Längsabmessung zur Querab¬ messung) von etwa 5 auf (in nicht eigens gezeigten Ausführungsbeispielen, die im Übrigen den hier Beschriebenen entsprechen ist das Aspektverhältnis 10) . Auf den Kern 5 ent¬ fällt nahezu der gesamte Volumenanteil, hier 90 Prozent des Volumenanteils, des Nanorods 5. Der Kern trägt eine hohe Mag¬ netisierung .
Der Nanorod 5 weist zudem eine Schale aus magnetokristallin anisotropem Material, im gezeigten Ausführungsbeispiel FePt, auf. Die magnetokristalline Anisotropie der Schale 20 stabi¬ lisiert die Oberfläche des Kerns 10 und verhindert ein Ummag- netisieren an der Oberfläche des Kerns 10 durch Defekte.
Zwischen den Materialien von Kern 10 und Schale 20 besteht eine magnetische Austauschkopplung, die zu einem einphasigen Ummagnetisierungsverhalten des Nanorods 5 führt und infolge¬ dessen zu einer homogenen Rotation bei hohen Koerzitivfelden .
Die Schale 20 wirkt in der Ausbildung aus FePt aufgrund des- sen geeigneter Korrosionseigenschaften gleichzeitig als
Schutzschicht. Diese Schutzschicht schützt den Kern 10 vor Oxidation. Die Schale 20 des Nanorods 5 wird dabei durch Ab¬ scheiden von Pt auf Fe und abschließender Wärmebehandlung der Grenzfläche hergestellt.
Die Schale 20 kann jedoch auch als dünne, d.h. zwischen einer und fünf Monolagen dicke, Schicht ausgebildet werden, bei- spielsweise mittels selbstaggregierender Monolagen (SAM, seif assembly monolayers) .
In einem alternativen Ausführungsbeispiel, welches im Übrigen dem zuvor beschriebenen Ausführungsbeispiel entspricht, ist zusätzlich eine Schutzschicht auf die Schale 20 aufgebracht, welche mittels selbstaggregierender Monolagen (SAM, seif assembly monolayers) aus MnAlC gebildet ist. In weiteren nicht eigens dargestellten Ausführungsbeispielen entspricht der erfindungsgemäße Nanorod dem vorhergehend be¬ schriebenen Nanorod 5, wobei der Kern abweichend jedoch nicht aus FeCo besteht sondern aus einem anderen weichmagnetischen Material .
Weitere nicht gesondert abgebildete Ausführungsbeispiele er¬ findungsgemäßer Nanorods entsprechen den in den vorhergehenden Ausführungsbeispielen beschriebenen Nanorods, jedoch besteht bei diesen die Schale abweichend nicht aus FePt, son- dern aus CoPt, FePd, MnAlC oder hartmagnetischen Seltenerd- Verbindungen wie SmCo oder NdFeB oder Hartferriten wie SrBa- Ferriten. Im Falle von MnAlC wirkt dabei die Schale ebenfalls zugleich als korrosionsschützende Schutzschicht des Nanorods. Ein Ensemble 30 von Nanorods wie vorstehend beschrieben, bei¬ spielsweise ein Ensemble 30 der Nanorods 5, ist Teil des in Fig. 2 gezeigten erfindungsgemäßen Permanentmagneten 40.
Dabei weisen die Nanorods 5 des Ensembles 30 eine Vorzugs- richtung auf. Im gezeigten Ausführungsbeispiel sind die Nano¬ rods 5 dabei parallel zueinander orientiert. Die Nanorods 5 des Ensembles 30 sind zum Zwecke der parallelen Orientierung in einer Matrix, beispielsweise aus Aluminium, befindlich (nicht im Detail dargestellt) . Die Matrix weist an einer Oberfläche eine Mehrzahl von Poren auf, welche Öffnungen sich zueinander parallel in die Matrix hineinerstreckender na- noskopischer Sacklöcher bilden. In diesen sich zueinander parallel erstreckenden Sacklöchern sind die Nanorods 5 befind- lieh, wobei sich die längsten Abmessungen der Nanorods entlang der Erstreckungsrichtung der Sacklöcher erstrecken.
Folglich sind die Nanorods 5 entsprechend der zueinander pa¬ rallelen Ausrichtung der Sacklöcher zueinander parallel aus- gerichtet. Beispielsweise kann die Herstellung derartig aus¬ gerichteter Nanorods wie von Narayanan et al . (Nanoscale Res. Lett. 2010 5_, 164-168, insbes. Fig. 1 und zugehöriger Text) beschrieben erfolgen. Infolge der parallelen Ausrichtung der Nanorods summieren sich die permanenten magnetischen Felder der einzelnen Nanorods zu einem entsprechend vergrößerten Gesamtfeld des En¬ sembles von Nanorods auf, sodass der derart realisierte Per¬ manentmagnet 40 ein hinreichend großes permanentmagnetisches Feld aufweist.
Der in Fig. 3 dargestellte erfindungsgemäße Generator 60 weist in an sich bekannter Weise eine mittels Permanentmagne¬ ten 40 gebildete Rotor-Stator-Anordnung 50 auf. Im Unter- schied zum Stand der Technik sind dabei die Permanentmagnete der Rotor-Stator-Anordnung 50 mit erfindungsgemäßen Permanentmagneten 40 gebildet.
In einem nicht eigens dargestellten Ausführungsbeispiel ist die Rotor-Stator-Anordnung 50 Bestandteil eines erfindungsge¬ mäßen Motors .

Claims

Patentansprüche
1. Nanopartikel , aufweisend zumindest
- einen elongierten Kern (10), der mit zumindest einem ers- ten, magnetisierbaren und/oder magnetisierten, Material gebildet ist und
- eine den Kern umgebende Schale (20), welche mit zumindest einem zweiten, magnetokristallin anisotropen, Material gebildet ist.
2. Nanopartikel nach Anspruch 1, bei welchem das erste Mate¬ rial, zumindest als Volumenmaterial, weichmagnetisch ist.
3. Nanopartikel nach einem der vorhergehenden Ansprüche, bei welchem das erste Material mit ferromagnetischem Material, insbesondere Fe, gebildet ist, vorzugsweise mit einer Legie¬ rung und/oder einem Mischkristall mit Fe, insbesondere NiFe oder CoFe.
4. Nanopartikel nach einem der vorhergehenden Ansprüche, bei welchem das zweite Material hartmagnetisch ist.
5. Nanopartikel nach einem der vorhergehenden Ansprüche, bei welchem das zweite Material mit einem magnetokristallin ani- sotropen Material, vorzugsweise MnBi und/oder MnAlC und/oder FePt, insbesondere mittels Abscheidung von Pt auf Fe und nachfolgender Erwärmung, gebildet ist.
6. Nanopartikel nach einem der vorhergehenden Ansprüche, wel- ches als Nanorod (5) und/oder Nanodraht ausgebildet ist.
7. Nanopartikel nach einem der vorhergehenden Ansprüche, bei welchem zumindest der halbe Volumenanteil des Nanopartikels auf den Kern (10) entfällt.
8. Nanopartikel nach einem der vorhergehenden Ansprüche, wel¬ ches eine äußere Schutzschicht ausgebildet zum Schutz vor Korrosion, insbesondere Oxidation, aufweist.
9. Nanopartikel nach Anspruch 8, bei welchem die Schale (20) zumindest einen Teil der Schutzschicht bildet.
10. Nanopartikel nach Anspruch 8, bei welchem die Schutzschicht die äußere Oberfläche der Schale (20) vollumfänglich und vorzugsweise vollflächig bedeckt.
11. Nanopartikel nach einem der Ansprüche 8 bis 10, bei wel- ehern die Schutzschicht mit selbstaggregierenden Monolagen
(SAM, seif assembly
monolayers) gebildet ist
12. Nanopartikel nach einem der Ansprüche 8 bis 11, bei wel- ehern die Schutzschicht mit FePt, insbesondere mittels Ab- scheidung von Pt auf Fe und nachfolgender Erwärmung, gebildet ist .
13. Permanentmagnet, umfassend eine Mehrzahl (30) von Nano- partikeln nach einem der vorhergehenden Ansprüche.
14. Permanentmagnet nach dem vorhergehenden Anspruch, bei welchem die Nanopartikel derart angeordnet sind, dass die Orientierungen von längsten Abmessungen der Nanopartikel eine Vorzugsrichtung aufweisen.
15. Motor oder Generator mit zumindest einem Permanentmagne¬ ten (40) nach Anspruch 13 oder 14.
PCT/EP2013/052659 2012-03-15 2013-02-11 Nanopartikel, permanentmagnet, motor und generator WO2013135446A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/383,454 US20150034856A1 (en) 2012-03-15 2013-02-11 Nanoparticle, permanent magnet, motor, and generator
JP2014561339A JP2015518266A (ja) 2012-03-15 2013-02-11 ナノ粒子、永久磁石、モーター及び発電機
KR1020147028802A KR20140143405A (ko) 2012-03-15 2013-02-11 나노입자, 영구 자석, 모터, 및 발전기
EP13704408.7A EP2798649A1 (de) 2012-03-15 2013-02-11 Nanopartikel, permanentmagnet, motor und generator
CN201380014238.3A CN104170032A (zh) 2012-03-15 2013-02-11 纳米颗粒、永久磁铁、发动机和发电机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012204083A DE102012204083A1 (de) 2012-03-15 2012-03-15 Nanopartikel, Permanentmagnet, Motor und Generator
DE102012204083.8 2012-03-15

Publications (1)

Publication Number Publication Date
WO2013135446A1 true WO2013135446A1 (de) 2013-09-19

Family

ID=47716019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/052659 WO2013135446A1 (de) 2012-03-15 2013-02-11 Nanopartikel, permanentmagnet, motor und generator

Country Status (7)

Country Link
US (1) US20150034856A1 (de)
EP (1) EP2798649A1 (de)
JP (1) JP2015518266A (de)
KR (1) KR20140143405A (de)
CN (1) CN104170032A (de)
DE (1) DE102012204083A1 (de)
WO (1) WO2013135446A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015204343A (ja) * 2014-04-11 2015-11-16 株式会社Ihi ナノコンポジット磁石およびナノコンポジット磁石の製造方法
CN105593951A (zh) * 2013-10-28 2016-05-18 西门子公司 用于高性能永磁体的纳米级复合磁体
WO2016146308A1 (de) * 2015-03-13 2016-09-22 Siemens Aktiengesellschaft Anisotroper hochleistungspermanentmagnet mit optimiertem nanostrukturellem aufbau und verfahren zu dessen herstellung

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106533262B (zh) * 2016-12-27 2018-10-12 中国人民解放军63908部队 自驱动碳基纳米发电机及其制备方法
CN114629256A (zh) * 2020-11-26 2022-06-14 通用汽车环球科技运作有限责任公司 用于电机的双材料永磁体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040134565A1 (en) * 2003-01-13 2004-07-15 International Business Machines Corporation Process of forming magnetic nanocomposites via nanoparticle self-assembly
US20050191231A1 (en) * 2002-04-17 2005-09-01 Shouheng Sun Synthesis of magnetite nanoparticles and the process of forming fe-based nanomaterials
WO2006060355A2 (en) * 2004-12-03 2006-06-08 The Regents Of The University Of California Multifunctional nanocrystals
WO2009117718A1 (en) * 2008-03-20 2009-09-24 Northeastern University Direct chemical synthesis of rare earth-transition metal alloy magnetic materials

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07272913A (ja) * 1994-03-30 1995-10-20 Kawasaki Teitoku Kk 永久磁石原料、その製造法及び永久磁石
JP3647995B2 (ja) * 1996-11-06 2005-05-18 株式会社三徳 永久磁石用粉末並びにその製造方法および該粉末を用いた異方性永久磁石
JP2006073157A (ja) * 2004-09-06 2006-03-16 Hitachi Maxell Ltd 磁気記録媒体及びその製造方法
JP2006082182A (ja) * 2004-09-16 2006-03-30 Tokyo Institute Of Technology 微粒子配列薄膜の作製方法
US20100054981A1 (en) * 2007-12-21 2010-03-04 Board Of Regents, The University Of Texas System Magnetic nanoparticles, bulk nanocomposite magnets, and production thereof
US20100216632A1 (en) * 2009-02-25 2010-08-26 Brookhaven Science Associates, Llc High Stability, Self-Protecting Electrocatalyst Particles
JP2011032496A (ja) * 2009-07-29 2011-02-17 Tdk Corp 磁性材料及び磁石、並びに磁性材料の製造方法
CN101692364B (zh) * 2009-10-12 2012-09-05 钢铁研究总院 硬磁管包覆软磁线型一维纳米永磁材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050191231A1 (en) * 2002-04-17 2005-09-01 Shouheng Sun Synthesis of magnetite nanoparticles and the process of forming fe-based nanomaterials
US20040134565A1 (en) * 2003-01-13 2004-07-15 International Business Machines Corporation Process of forming magnetic nanocomposites via nanoparticle self-assembly
WO2006060355A2 (en) * 2004-12-03 2006-06-08 The Regents Of The University Of California Multifunctional nanocrystals
WO2009117718A1 (en) * 2008-03-20 2009-09-24 Northeastern University Direct chemical synthesis of rare earth-transition metal alloy magnetic materials

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NARAYANAN ET AL., NANOSCALE RES. LETT., vol. 5, 2010, pages 164 - 168
Y. HOU ET AL: "A Facile Synthesis of SmCo5 Magnets from Core/Shell Co/Sm2O3 Nanoparticles", ADVANCED MATERIALS, vol. 19, no. 20, 19 October 2007 (2007-10-19), pages 3349 - 3352, XP055067444, ISSN: 0935-9648, DOI: 10.1002/adma.200700891 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105593951A (zh) * 2013-10-28 2016-05-18 西门子公司 用于高性能永磁体的纳米级复合磁体
JP2015204343A (ja) * 2014-04-11 2015-11-16 株式会社Ihi ナノコンポジット磁石およびナノコンポジット磁石の製造方法
WO2016146308A1 (de) * 2015-03-13 2016-09-22 Siemens Aktiengesellschaft Anisotroper hochleistungspermanentmagnet mit optimiertem nanostrukturellem aufbau und verfahren zu dessen herstellung

Also Published As

Publication number Publication date
JP2015518266A (ja) 2015-06-25
US20150034856A1 (en) 2015-02-05
CN104170032A (zh) 2014-11-26
DE102012204083A1 (de) 2013-09-19
EP2798649A1 (de) 2014-11-05
KR20140143405A (ko) 2014-12-16

Similar Documents

Publication Publication Date Title
US20180122570A1 (en) Bonded permanent magnets produced by big area additive manufacturing
DE102011005772B4 (de) Permanentmagnet und Motor und Generator, bei denen dieser verwendet wird
WO2013135446A1 (de) Nanopartikel, permanentmagnet, motor und generator
DE2231591C3 (de) Ringscheibenförmiger Dauermagnet für ein magnetisches Lager, vorzugsweise für Elektrizitätszähler, und daraus aufgebautes dauermagnetisches Lager
DE102009007479A1 (de) Dünnfilm-Magnetsensor
EP2984658A1 (de) Anisotroper seltenerdfreier matrixgebundener hochperformanter permanentmagnet mit nanokristalliner struktur und verfahren zu dessen herstellung
DE112011104619T5 (de) Bogenförmiger Magnet mit polar-anisotroper Ausrichtung und Verfahren und Bildungsform zu seiner Herstellung
DE112019007700T5 (de) Seltenerd-magnetlegierung, verfahren zu ihrer herstellung, seltenerd-magnet, rotor und rotierende maschine
WO2016020077A1 (de) Anisotrop weichmagnetisches komposit-material mit hoher anisotropie der permeabilität zur unterdrückung von querfluss und dessen herstellung
DE60031914T2 (de) Magnetpulver und isotroper Verbundmagnet
DE102017118630A1 (de) Magnetphasenkopplung in verbundpermanentmagnet
DE102008025703A1 (de) Elektrische Maschine mit kompaktem Aufbau und Verfahren zum Herstellen eines Stators für eine elektrische Maschine
DE102018206478A1 (de) Elektrische Maschine mit veränderlichem magnetischem Fluss
EP3105764B1 (de) Magnetischer werkstoff
DE69332038T2 (de) Magnetowiderstandeffekt-Element
WO2014166826A2 (de) Reluktanzmotor mit stabilisiertem rotor
WO2016034338A1 (de) Anisotrop weichmagnetisches material mit mittlerer anisotropie und geringer koerzitivfeldstärke sowie dessen herstellungsverfahren
DE102010063323A1 (de) Verfahren zur Herstellung einer Maschinenkomponente für eine elektrische Maschine sowie eine Maschinenkomponente
DE69903352T2 (de) Sicherungsvorrichtung mit weichmagnetischer dünnschicht
EP3020052A1 (de) Nanoskaliges magnetkomposit für hochperformante permanentmagnete
EP4128479B1 (de) Elektrischer motor
WO2016146308A1 (de) Anisotroper hochleistungspermanentmagnet mit optimiertem nanostrukturellem aufbau und verfahren zu dessen herstellung
DE19908054C2 (de) Ungekoppelter GMR-Sensor
WO2014060079A9 (de) Verfahren zur herstellung einer magnetischen legierung und mit diesem verfahren hergestellte magnetische legierung
DE102023121488A1 (de) Schnittstellenmaterialien für verbundmagnete

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13704408

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013704408

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14383454

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014561339

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147028802

Country of ref document: KR

Kind code of ref document: A