WO2013135100A1 - 一种纤维素基-硅杂化微球及其制备方法 - Google Patents

一种纤维素基-硅杂化微球及其制备方法 Download PDF

Info

Publication number
WO2013135100A1
WO2013135100A1 PCT/CN2013/000255 CN2013000255W WO2013135100A1 WO 2013135100 A1 WO2013135100 A1 WO 2013135100A1 CN 2013000255 W CN2013000255 W CN 2013000255W WO 2013135100 A1 WO2013135100 A1 WO 2013135100A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
silicon
microspheres
silicon hybrid
sodium silicate
Prior art date
Application number
PCT/CN2013/000255
Other languages
English (en)
French (fr)
Inventor
戴亚
马明
谭兰兰
李峰
周金平
Original Assignee
川渝中烟工业有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川渝中烟工业有限责任公司 filed Critical 川渝中烟工业有限责任公司
Priority to DE201311001481 priority Critical patent/DE112013001481T5/de
Publication of WO2013135100A1 publication Critical patent/WO2013135100A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/124Treatment for improving the free-flowing characteristics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose

Definitions

  • the invention relates to a cellulose material-based adsorbent, in particular to a cellulose-silicon hybrid microsphere and a preparation method thereof, and belongs to the field of polymer chemistry.
  • Cellulose is the most common organic compound on earth. It has a wide range of sources. All plant matter contains about 33% cellulose, of which cotton has a cellulose content of 90% and wood has a cellulose content of 50%. Plants produce hundreds of millions of tons of cellulose per year through photosynthesis. Therefore, cellulose has the advantages of being natural, inexpensive, degradable, environmentally friendly, and free from contamination.
  • Cellulose is one of the most uniform and simple polymers in the field of polysaccharides. It is composed of D-anhydroglucopyranoside (AGU) and is a linear syndiotactic homopolymer with (1-4) Glycosidic linkages are formed. Each AGU unit has hydroxyl groups at C2, C3, and C6, which are capable of reacting with typical primary and secondary alcohols. A series of chemical modifications can be made to prepare polymer materials with different uses. At the same time, intermolecular and intramolecular hydrogen bonds can be formed between the polyhydroxy groups of cellulose, so that the cellulose molecules have a good spatial network structure. Therefore, cellulosic materials are currently widely used as adsorbents and ion exchangers.
  • AGU D-anhydroglucopyranoside
  • cellulose products are mainly prepared by using a cellulose copper ammonia solution, a cellulose cadmium ethylenediamine solution, a cellulose iron tartrate solution, a cellulose NM 0 solution or a viscose solution as a solvent.
  • solvents are toxic and flammable or flammable and explosive.
  • a large amount of waste water, waste gas and waste are generated in the production process, which causes great pollution to the environment.
  • Most of the products obtained are powdery or granular, with low adsorption capacity and poor pressure resistance.
  • the preparation of the cellulose-based inorganic carrier mainly has two methods, one is to disperse inorganic nano or micro particles in a cellulose solution, or to soak the cellulose carrier in an inorganic hybrid material solution, and utilize cellulose. Preparation of the adsorption properties of the carrier.
  • the cellulose-based inorganic carrier materials prepared by the two methods are easily subjected to heterogeneous conditions, which tend to cause uneven distribution and phase separation of cellulose and composite materials. This imposes significant limitations on the performance and application of the material.
  • the Chinese patent publication discloses a "surface silanized regenerated cellulose microsphere filler and a preparation method and use thereof" (CN1598570), which is composed of cellulose, konjac glucomannan and silicon germanium. Mainly used to separate, classify or purify high molecular substances in water, alkaline water or organic solvent systems. However, the adsorption capacity needs to be improved. The scope of application is small. Summary of the invention
  • An object of the present invention is to provide a cellulose-silicon hybrid microsphere having a large specific surface area and a strong adsorption ability.
  • the object of the present invention is achieved by: a cellulose-silicon hybrid microsphere having cellulose as a substrate, sodium silicate as a hybrid material, alkali and urea or The aqueous solution of alkali and thiourea is used as a solvent to prepare a homogeneous solution of cellulose-sodium silicate, and then a combination of acid curing and thermal curing is used to convert the sol phase to the gel phase to prepare cellulose-silicon hybridization.
  • the microspheres; the cellulose-silicon hybrid microspheres have a particle diameter of 1 to 1000 ⁇ m, a specific surface area of 100 to 800 m 7 g, and a pore diameter of 200 to 1000 nm.
  • the method of combining the acid curing and the heat curing is dispersing a cellulose-sodium silicate homogeneous solution in an organic solvent containing an emulsifier or a composite emulsifier, stirring at a constant speed until the droplets are uniformly dispersed, and stirring at a normal temperature. Formed ⁇ 8h, add dilute acid to the solution system is acidic (pH ⁇ 5), then heat 40 ⁇ 80 °C for l ⁇ 5h.
  • a method for preparing the above cellulose-silicon hybrid microspheres comprising the steps of:
  • the above organic solvent is petroleum ether, n-hexane, or liquid paraffin, or a mixed organic solvent of two or more of them, and the volume of the organic solvent is 3 to 10 times that of the cellulose-sodium silicate homogeneous solution.
  • Span series emulsifiers such as Span 60, Span 85, or Tween series emulsifiers, such as Tween 80, Tween 85, or a mixed emulsifier composed of two or more of them.
  • the curing conditions of the cellulose-silicon hybrid microspheres in the above step 2) are simultaneous with acid curing and heat curing.
  • the constant speed stirring speed is 200 ⁇ 1500r/min ; the obtained cellulose base-silicon miscellaneous
  • the microspheres are washed with water or ethanol to obtain pure cellulose-silicon hybrid microspheres, which are freeze-dried or dried to obtain cellulose-silicon hybrid particles.
  • the cellulose-silicon hybrid microspheres are used for the separation and purification of biological macromolecules such as proteins, enzymes, nucleic acids, polysaccharides, and the adsorption and release of water, oil, heavy metal ions, dyes, and flavors and fragrances.
  • the invention has the beneficial effects that: the invention can control the pore structure and particle size of the cellulose-silicon hybrid microsphere by adjusting the process parameters, and the mechanical properties and thermal stability can be controlled by adjusting the ratio of cellulose and sodium silicate.
  • the obtained product has the advantages of good pore structure, small particle size (l ⁇ 1000um), large specific surface area (100 ⁇ 800 mVg), high porosity (pore size 200 ⁇ 1000nm) and large adsorption capacity, which can make up for the shortage of existing commodities. It is applied to the separation and purification of biological macromolecules such as proteins, enzymes, nucleic acids, polysaccharides, etc., as well as the adsorption of water, oil, heavy metal ions, dyes and flavors.
  • the invention adopts cellulose with a wide range of raw materials and low price as a substrate, non-toxic sodium silicate as a hybrid material, and low-cost, non-polluting alkali/urea aqueous solution or alkali/sulfur
  • the urea aqueous solution is used as a solvent to prepare a cellulose-sodium silicate homogeneous solution, and then the sol-gel phase transition is achieved by a combination of acid curing and thermal curing to prepare cellulose-silicon hybrid microspheres.
  • the whole preparation process is simple, the time is short, the equipment requirements are not high, and the industrial production is convenient, and the organic solvent used can be repeatedly used, and the cost is low.
  • the obtained cellulose-silicon hybrid microspheres not only preserve the advantages of the cellulose microspheres, but also the addition of the silicon compound enhances the hydrophobic properties, mechanical properties and thermal stability of the microspheres. And, at the same time, since the hybrid microspheres are prepared under homogeneous conditions, the inorganic silicon compound is uniformly distributed in the cellulose microspheres, and the pore structure and adsorption performance of the cellulose microspheres are enhanced. Further, the surface functional group of the cellulose-silicon hybrid microsphere is a hydroxyl group, which can be converted into other functional groups as needed.
  • the cellulose-silicon hybrid microspheres prepared by the invention are widely used, and can be applied to adsorption of water, oil, heavy metal ions, dyes and flavors, and at the same time, because cellulose and silicon-based compounds are non-toxic and biocompatible.
  • the hybrid microspheres can also be applied to the separation and purification of biological macromolecules such as proteins, enzymes, nucleic acids, and polysaccharides.
  • Figure 1 is a scanning electron micrograph of a cellulose-silicon hybrid microsphere of the present invention.
  • Figure 2 is a graph comparing the retention of menthol by different cellulose microspheres.
  • Figure 3 is a graph comparing the retention of limonene by different cellulose microspheres.
  • the invention uses cellulose as a substrate, sodium silicate as a hybrid material, and water soluble in alkali/urea or thiourea.
  • the liquid is a solvent, and a homogeneous solution of cellulose-sodium silicate is prepared, and then a sol-gel phase transition is realized by a combination of acid curing and thermal curing to prepare cellulose-silicon hybrid microspheres.
  • the preparation process of the above cellulose-silicon hybrid microspheres is divided into two steps: preparation of a cellulose-sodium silicate homogeneous solution and preparation of cellulose-silicon hybrid microspheres.
  • cellulose-sodium silicate homogeneous solution Add sodium silicate to alkali/urea aqueous solution or alkali/thiourea aqueous solution, freeze to -12 ⁇ -5 °C, then add cellulose, stir to 200 ⁇ 1500r/min After dissolving the cellulose, defoaming and decontamination were carried out by low speed centrifugation to obtain a cellulose-sodium silicate homogeneous solution.
  • Preparation of cellulose-silicon hybrid microspheres Disperse the cellulose-sodium silicate homogeneous solution in an organic solvent of an emulsifier or a composite emulsifier, stir at 300 ⁇ 1500r/min until the droplets are evenly dispersed, at room temperature Stir for 1-8h, add dilute acid to the solution system is acidic (pH ⁇ 5), heat 40'C ⁇ 80 °C for 1 ⁇ 5h, solidify the cellulose-silicon hybrid material to form microspheres, wait for solution After cooling the system to room temperature, the layer was allowed to stand. The upper layer was an organic phase, the lower layer was an aqueous phase, and the upper organic phase was poured out.
  • the organic solvent is petroleum ether, n-hexane, liquid paraffin, or a mixed organic solvent of two or more of them, and the volume of the organic solvent is 3 to 10 times that of the cellulose-sodium silicate homogeneous solution.
  • the emulsifier is a Span series emulsifier such as Span 60, Span 85, or Tween series emulsifier such as Tween 80, Tween 85, or a mixed emulsifier of two or more of them.
  • the obtained cellulose-silicon hybrid microspheres had an average particle diameter of 600 ⁇ m, an average pore diameter of 450 nm, and a specific surface area of 500 m 7 g, and their scanning electron micrographs are shown in Fig. 1 .
  • Example 2
  • the obtained cellulose-silicon hybrid particles were washed with distilled water and lyophilized to obtain solid cellulose-silicon hybrid particles.
  • the obtained cellulose-based silicon hybrid microspheres had an average particle diameter of 600 ⁇ m, an average pore diameter of 300 nm, and a specific surface area of 300 m 7 g.
  • the stirring was stopped, and the layers were allowed to stand.
  • the upper layer was an organic phase
  • the lower layer was an aqueous phase
  • the cellulose-silicon hybrid particles were precipitated in the lower aqueous phase.
  • the upper organic phase is poured out, and the cellulose-silicon hybrid particles are separated from the aqueous phase.
  • the obtained cellulose-silicon hybrid particles were washed with distilled water and lyophilized to obtain solid cellulose-silicon hybrid particles.
  • the obtained cellulose-silicon-based hybrid microspheres had an average particle diameter of lum, an average pore diameter of 100 nm, and a specific surface area of 300 m 2 /g.
  • the agent (volume ratio is 1/1), and 2g Tween 60 and 6g Tween 80 mixed emulsifier, 300 r / min stirring to make it evenly dispersed, slowly add the cellulose-sodium silicate homogeneous solution prepared by the above method After 100 mL, stirring at room temperature for 5 h, 10% hydrochloric acid was added until the solution was acidic (pH ⁇ 5), and then heated to 80 ° C for 1 h to solidify the cellulose-silicon hybrid material to form microspheres. Stirring was stopped, and the layers were allowed to stand. The upper layer was an organic phase, the lower layer was an aqueous phase, and the cellulose-silicon hybrid particles were precipitated in the lower layer.
  • the upper organic phase is poured out, and the aqueous phase is removed to obtain cellulose-silicon hybrid particles.
  • the obtained cellulose-silicon hybrid particles were washed with distilled water and lyophilized to obtain solid cellulose-based silicon hybrid particles.
  • the obtained cellulose-silicon hybrid microspheres had an average particle diameter of 100 ⁇ m, an average pore diameter of 700 nm, and a specific surface area of 500 m 2 /g.
  • the adsorption was carried out at 150 r/min under C, and the microspheres were separated after 2 hours.
  • the content of BSA in the solution was measured by an ultraviolet spectrophotometer.
  • the adsorption isotherm is simulated by the Languir curve, and the correlation coefficient R 2 is above 0.95.
  • the saturated adsorption capacity of different microspheres to BSA is shown in Table 2.
  • the cellulose-silicon hybrid microsphere prepared by the method of the invention has wide application, and the microsphere can be applied to the separation and purification of biological macromolecules such as proteins, enzymes, nucleic acids and polysaccharides, as well as water, oil and heavy metal ions. , dyes and fragrances for adsorption and release.
  • biological macromolecules such as proteins, enzymes, nucleic acids and polysaccharides, as well as water, oil and heavy metal ions. , dyes and fragrances for adsorption and release.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Cosmetics (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

一种纤维素基一硅杂化微球及其制备方法,该杂化纤维素微球粒径为1-1000um,比表面积为100-800m2/g,孔径为200-1000nm,所述杂化纤维素微球以纤维素为基材,以硅酸钠为杂化材料,以碱/尿素或者硫脲的水溶液为溶剂,制备纤维素-硅酸钠均相溶液,然后运用酸固化和热固化结合的方法,实现溶胶凝胶相转变,制备纤维素基-硅杂化微球,所用有机溶剂可重复使用,整个制备工艺简单,耗时短,对设备要求不高,便于工业化生产,且制得的杂化纤维素微球有良好的流动性能和机械性能,用途广泛。

Description

一种纤维素基 -硅杂化微球及其制备方法 技术领域
本发明涉及一种纤维素材料类吸附剂, 具体来说涉及一种纤维素基-硅杂化 微球及其制备方法, 属于高分子化学领域。
背景技术
纤维素是地球上最常见的有机化合物, 它来源广泛, 所有植物物质均含有 约 33%的纤维素, 其中棉花的纤维素含量为 90%, 木材的纤维素含量为 50%。 植 物每年通过光合作用产生亿万吨纤维素。因此,纤维素具有天然、价廉、可降解、 环境友好和不产生污染的优点。
纤维素是多糖领域内最均一和最简单的聚合物之一, 它是由 D-脱水吡喃葡 萄糖苷 (AGU ) 组成, 是一种线型间规均聚物, 彼此以 (1-4 ) 糖苷键连接而成。 每个 AGU单元拥有的羟基分别在 C2、 C3、 和 C6位置, 能够进行典型的伯醇和仲 醇反应, 可经过一系列的化学改性, 制备具有不同用途的高分子材料。 同时,纤 维素的多羟基之间能够形成分子间和分子内氢键,使纤维素分子具有较好的空间 网络结构。 因此, 纤维素材料是目前应用广泛的吸附剂和离子交换剂。 但是,目 前商品化的纤维素产品主要是以纤维素铜氨溶液、纤维素镉乙二胺溶液、纤维素 酒石酸铁溶液、 纤维素 NM 0溶液或黏胶液为溶剂制备。 这些溶剂都是有毒有害 或者易燃易爆, 生产过程中产生大量的废水、 废气、 废料, 对环境造成很大的污 染, 所得产品大多为粉末状或颗粒状, 吸附量低, 耐压性能差, 这些缺点极大限 制了其应用范围。 而纤维素基-无机载体的制备主要有两种方法, 一种是将无机 纳米或微米粒子分散于纤维素溶液中制备,又或者将纤维素载体浸泡于无机杂化 材料溶液中, 利用纤维素载体的吸附性能制备。 这两种方法制备的纤维素基-无 机载体材料由于是在异相条件下进行,容易造成纤维素和复合材料的分布不均和 相分离。 这对材料的性能和应用造成了较大的限制。
中国专利文献公开了一种 "表面硅烷化再生纤维素微球填料及其制备方法 和用途" (CN1598570 ) , 它由纤维素、魔芋葡甘聚糖和硅垸组成。主要应用在水、 碱水或有机溶剂体系中分离、分级或纯化高分子物质。但是吸附能力还有待提高, 应用范围较小。 发明内容
本发明的目的是提供一种比表面积大、吸附能力强的纤维素基-硅杂化微球。 本发明的目的是这样实现的: 一种纤维素基-硅杂化微球, 所述杂化纤维素 微球以纤维素为基材, 以硅酸钠为杂化材料, 以碱和尿素或者碱和硫脲的水溶液 为溶剂, 制备纤维素-硅酸钠的均相溶液,然后运用酸固化和热固化结合的方法, 实现溶胶相到凝胶相的转变, 制备纤维素基-硅杂化微球; 上述纤维素基-硅杂化 微球粒径为 l〜1000um, 比表面积为 100〜800m7g, 孔径为 200〜1000nm。 所述 酸固化和热固化结合的方法是将纤维素 -硅酸钠均相溶液分散于含有乳化剂或复 合乳化剂的有机溶剂中,恒速搅拌至滴液分散均匀后,在常温下搅拌 l~8h成形, 加入稀酸至溶液体系为酸性 (pH<5), 然后加热 40〜80°C保持 l〜5h。
本发明的又一目的是提供上述纤维素基-硅杂化微球的制备方法。
本发明的目的是这样实现的: 提供上述纤维素基 -硅杂化微球的制备方法, 包括以下步骤:
1 ) 向 5〜10Wt%碱和 8〜16Wt%尿素水溶液, 或 5〜10Wt%碱和 8〜16Wt%硫脲 水溶液中加入硅杂化材料硅酸钠, 溶解后冷冻至 -12'C〜- 5°C, 然后加入纤维素, 搅拌溶解纤维素后, 离心脱泡和除杂, 得到杂化纤维素均相溶液;
2) 将纤维素-硅酸钠均相溶液分散于含有乳化剂或复合乳化剂的有机溶剂 中, 恒速搅拌至滴液分散均匀后, 在常温下搅拌 l〜8h成形, 加入稀酸至溶液体 系为酸性 (pH<5), 然后加热 40〜8(TC保持 l〜5h, 使纤维素-硅杂化材料固化 再生成微球, 待溶液体系冷却至室温后静置分层, 倒出上层溶液, 过滤干燥后, 即得到纤维素基-硅杂化微球。
上述有机溶剂为石油醚, 正己垸, 或液体石蜡, 或者它们中的两种或两种以 上的混合有机溶剂, 有机溶剂体积为纤维素-硅酸钠均相溶液的 3〜10倍。
上述乳化剂为斯潘系列乳化剂, 如斯潘 60, 斯潘 85, 或者吐温系列乳化剂, 如吐温 80, 吐温 85, 或者它们中的两种或者两种以上组成的混合乳化剂。
上述步骤 2) 中纤维素基-硅杂化微球的固化条件为酸固化和热固化同时进 行。
上述步骤 2) 中恒速搅拌速度为 200〜1500r/min; 将得到的纤维素基-硅杂 化微球用水或者乙醇洗涤, 得到纯净的纤维素基-硅杂化微球, 冷冻干燥或者烘 干后得到纤维素基-硅杂化颗粒。
所述纤维素基-硅杂化微球, 应用于蛋白质、 酶、 核酸、 多糖等生物大分子 的分离和纯化, 以及水、 油、 重金属离子、 染料和香精香料的吸附和释放。
本发明的有益效果是: 本发明可以通过工艺参数的调整控制纤维素基 -硅杂 化微球的孔结构和粒度,机械性能和热稳定性能可以通过调整纤维素和硅酸钠的 比例控制, 所得产品具有孔结构好、 粒度小 (l〜1000um), 比表面积大 (100〜 800 mVg), 孔隙率高(孔径 200〜1000nm) 以及吸附量大等优点, 弥补了现有商 品的不足, 可以应用于蛋白质、 酶、 核酸、 多糖等生物大分子的分离和纯化,以 及水、 油、 重金属离子、 染料和香精香料的吸附。
与现有技术相比, 本发明以原料来源广泛、价格低廉的纤维素为基材, 以无 毒的硅酸钠为杂化材料, 以价格低廉、无污染的碱 /尿素水溶液或碱 /硫脲水溶液 为溶剂, 制备了纤维素 -硅酸钠均相溶液, 然后运用酸固化和热固化结合的方法 实现溶胶凝胶相转变, 制备纤维素基-硅杂化微球。整个制备工艺简单, 耗时短, 对设备要求不高, 便于工业生产, 所用有机溶剂均可重复使用, 成本低廉。 与原 有纤维素微球相比, 所得纤维素基 -硅杂化微球既保存了纤维素类微球的优点, 含硅化合物的加入又增强了微球的疏水性能、机械性能和热稳定性, 同时, 由于 杂化微球是在均相条件下制备, 因此无机硅化合物在纤维素微球中分布均匀,增 强了纤维素微球的孔结构和吸附性能。 而且, 纤维素基-硅杂化微球表面功能基 团为羟基, 可以根据需要转变为其它功能基团。 因此, 本发明制备的纤维素基- 硅杂化微球用途广泛,可以应用于水、油、重金属离子、染料和香精香料的吸附, 同时, 由于纤维素和硅基化合物无毒和生物相容性好,此杂化微球也可应用于蛋 白质、 酶、 核酸、 多糖等生物大分子的分离和纯化。
附图说明
图 1是本发明纤维素基 -硅杂化微球扫描电镜图。
图 2是不同纤维素微球对薄荷醇的保留率的对比图。
图 3是不同纤维素微球对柠檬烯的保留率的对比图。
具体实施方式
本发明以纤维素为基材, 以硅酸钠为杂化材料, 以碱 /尿素或者硫脲的水溶 液为溶剂, 制备纤维素-硅酸钠的均相溶液, 然后运用酸固化和热固化结合的方 法, 实现溶胶凝胶相转变, 制备纤维素基-硅杂化微球。
上述纤维素基 -硅杂化微球的制备工艺分为两个步骤: 纤维素 -硅酸钠均相 溶液的制备和纤维素基-硅杂化微球的制备。
纤维素 -硅酸钠均相溶液的制备: 向碱 /尿素水溶液或碱 /硫脲水溶液中加入 硅酸钠后冷冻至 -12Ό〜- 5°C, 然后加入纤维素, 200〜1500r/min搅拌溶解纤维 素后, 低速离心脱泡和除杂, 得到纤维素 -硅酸钠均相溶液。
纤维素基-硅杂化微球的制备: 将纤维素-硅酸钠均相溶液分散于乳化剂或 复合乳化剂的有机溶剂中, 300〜1500r/min搅拌至滴液分散均匀后, 在常温下 搅拌 l-8h成形,加入稀酸至溶液体系为酸性(pH<5),加热 40'C〜80°C保持 1〜 5h,使纤维素-硅杂化材料固化再生成微球,待溶液体系冷却至室温后静置分层, 上层为有机相, 下层为水相, 倒出上层有机相, 过滤干燥后, 即得到纤维素基- 硅杂化微球。 有机溶剂为石油醚, 正己烷, 液体石蜡, 或者它们中的两种或两种 以上的混合有机溶剂, 有机溶剂体积为纤维素-硅酸钠均相溶液的 3〜10倍。 乳 化剂为斯潘系列乳化剂, 如斯潘 60, 斯潘 85, 或者吐温系列乳化剂, 如吐温 80, 吐温 85, 或者它们中的两种或者两种以上组成的混合乳化剂。
以下实例将对本发明提供的方法进行进一步说明。
实施例 1 :
在 100g含有 6g NaOH和 16g尿素水溶液中加入 5g九水硅酸钠, 溶解后冷 冻至 -12'C, 然后加入 5g纤维素, 以 1500r/min剧烈搅拌溶解纤维素。在配有回 流冷凝管和恒温水浴的 500 mL三口烧瓶中加入 300 mL液体石蜡和 5g斯潘 85乳 化剂, 500 r/min搅拌使其分散均匀后, 缓慢加入上述方法制备的纤维素 -硅酸 钠均相溶液 50 mL, 常温下搅拌 lh后, 加入 10%的盐酸至溶液为酸性 (PH<5), 然后加热至 50°C并保持 2h, 使纤维素-硅杂化材料固化再生成微球。冷却至室温 后, 停止搅拌, 静置分层, 上层为有机相, 下层为水相, 纤维素基 -硅杂化颗粒 沉淀在下层水相中。 倒出上层有机相, 从下层水相中分离得到纤维素基-硅杂化 颗粒。所得纤维素基 -硅杂化颗粒用蒸馏水浸泡洗涤,冻干后即得固体纤维素基- 硅杂化颗粒。制得的纤维素基-硅杂化微球平均粒径为 600um,平均孔径为 450nm, 比表面积为 500m7g, 其扫描电镜图见图 1。 实施例 2:
在 100 g含有 6g NaOH和 16g尿素水溶液中加入 lg九水硅酸钠, 溶解后冷 冻至- 10'C, 然后加入 5g纤维素, 以 1000 r/min剧烈搅拌溶解纤维素。 在配有 回流冷凝管和恒温水浴的 500mL三口烧瓶中加入 300mL石油醚和正己烷的混合溶 剂 (体积比为 1/1 ), 和 2g斯潘 60和 6g斯潘 80混合乳化剂, 800r/min搅拌使 其分散均匀后, 缓慢加入上述方法制备的纤维素-硅酸钠均相溶液 lOOmL, 常温 下搅拌 2h后, 加入 10%的盐酸至溶液为酸性 (PH<5), 然后加热至 40Ό并保持 3h, 使纤维素-硅杂化材料固化再生成微球。 冷却至室温后, 停止搅拌, 静置分 层, 上层为有机相, 下层为水相, 纤维素基 -硅杂化颗粒沉淀在下层水相中。 倒 出上层有机相, 从水相中分离得到纤维素-硅基杂化颗粒。所得纤维素基-硅杂化 颗粒用蒸馏水浸泡洗涤, 冻干后即得固体纤维素基-硅杂化颗粒。 制得的纤维素 基 硅杂化微球平均粒径为 600um, 平均孔径为 300nm, 比表面积为 300m7g。
实施例 3:
在 100g 含有 8g LiOH和 14g尿素水溶液中加入 4g九水硅酸钠, 溶解后冷 冻至- 7°C, 然后加入 5g纤维素, 以 600 r/min剧烈搅拌溶解纤维素。 在配有回 流冷凝管和恒温水浴的 500 mL三口烧瓶中加入 300 mL正己垸和液体石蜡的混合 溶剂 (体积比为 1/1 ), 和 30g斯潘 60和斯潘 85混合乳化剂(质量比为 1/1) , 1200r/rain搅拌使其分散均匀后, 缓慢加入上述方法制备的纤维素 硅酸钠均相 溶液 30mL常温下搅拌 6h后, 加入 10%的盐酸至溶液为酸性 (pH<5), 然后加热 至 70°C并保持 5h, 使纤维素-硅杂化材料固化再生成微球。冷却至室温后, 停止 搅拌, 静置分层, 上层为有机相, 下层为水相, 纤维素基-硅杂化颗粒沉淀在下 层水相中。 倒出上层有机相, 从水相中分离得到纤维素基-硅杂化颗粒。 所得纤 维素基-硅杂化颗粒用蒸馏水浸泡洗涤, 冻干后即得固体纤维素基 -硅杂化颗粒。 制得的纤维素 -硅基杂化微球平均粒径为 lum, 平均孔径为 lOOnm, 比表面积为 300m2/g。
实施例 4:
在 100 g含有 5g NaOH和 14g硫脲水溶液中加入 lg九水硅酸钠, 溶解后冷 冻至- 5°C, 然后加入 5g纤维素, 以 200 r/min剧烈搅拌溶解纤维素。 在配有回 流冷凝管和恒温水浴的 500mL三口烧瓶中加入 300mL石油醚和液体石蜡的混合溶 剂 (体积比为 1/1 ), 和 2g吐温 60和 6g吐温 80混合乳化剂, 300 r/min搅拌使 其分散均匀后, 缓慢加入上述方法制备的纤维素-硅酸钠均相溶液 100mL, 常温 下搅拌 5h后, 加入 10%的盐酸至溶液为酸性 (pH<5), 然后加热至 80°C并保持 lh, 使纤维素-硅杂化材料固化再生成微球。 停止搅拌, 静置分层, 上层为有机 相, 下层为水相, 纤维素基 -硅杂化颗粒沉淀在下层。 倒出上层有机相, 除去水 相, 即得纤维素基-硅杂化颗粒。 所得纤维素基 -硅杂化颗粒用蒸馏水浸泡洗涤, 冻干后即得固体纤维素基 硅杂化颗粒。制得的纤维素基-硅杂化微球平均粒径为 lOOOum, 平均孔径为 700nm, 比表面积为 500m2/g。
实施例 5:
分别称量 2g纤维素微球和纤维素基-硅杂化微球, 水中浸泡 30分钟, 抽滤 至无明显液滴滴下后, 称量湿态微球重量。 将湿态微球在 100'C下烘干, 称量干 态微球重量。 计算微球含水量(w)和密度(p)。 纤维素微球和纤维素基-硅杂化 微球物理性能如表 1所示。
表 1 :
Figure imgf000008_0001
实施例 6:
分别称取干燥的纤维素微球、 纤维素基-硅杂化微球各 2g, 分别加入到浓度 为 0. 5mg/mL的 BSA溶液中, 37。C下 150r/min振荡吸附, 2小时后分离出微球, 溶液中 BSA的含量通过紫外分光光度计测量。吸附等温曲线用 Languir曲线模拟, 相关系数 R2都在 0. 95以上。 不同微球对 BSA的饱和吸附量见表 2。
表 2
Figure imgf000008_0002
实施例 7:
分别称取干燥的纤维素微球、 纤维素基-硅杂化微球各 2g, 分别加入到浓度 为 0. 5mg/mL的薄荷醇的乙醇溶液中, 37°C下 150r/min振荡吸附, 6小时后分离 出微球, 乙醇溶液中薄荷醇的含量通过气相色谱测量。 吸附等温曲线用 Languir 曲线模拟, 相关系数 R2都在 0. 95以上。 不同微球对薄荷醇的饱和吸附量见表 3。
表 3
Figure imgf000009_0001
实施例 8:
分别称取干燥的纤维素微球、 纤维素基-硅杂化微球各 2g, 分别加入到浓度 为 0. 5mg/mL的薄荷醇的乙醇溶液中, 37°C下 150r/min振荡吸附, 6小时后分离 出微球, 在 60'C烘箱中放置 2小时后, 将所得含有薄荷醇的微球平铺与表面皿 中, 测量纤维素微球、 纤维素基-硅杂化微球对薄荷醇的保留能力。 不同微球对 薄荷醇的保留率如图 2所示。
实施例 9:
分别称取干燥的纤维素微球、 纤维素基-硅杂化微球各 2g, 分别加入到浓度 为 0. 5mg/mL的柠檬烯的乙醇溶液中, 37'C下 150r/min振荡吸附, 6小时后分离 出微球, 在 60°C烘箱中放置 2小时后, 将所得含有柠檬烯的微球平铺与表面皿 中, 测量纤维素微球、 纤维素基-硅杂化微球对柠檬烯的保留能力。 不同微球对 柠檬烯的保留率如图 3所示。
本发明所述方法制备的纤维素基-硅杂化微球具有广泛的用途, 此微球能够 应用于蛋白质、 酶、 核酸、 多糖等生物大分子的分离和纯化, 以及水、 油、 重金 属离子、 染料和香精香料的吸附和释放。

Claims

杈 利 要 求 书
1. 一种纤维素基-硅杂化微球, 其特征是, 所述杂化纤维素微球以纤维素为 基材, 以硅酸钠为杂化材料, 以 5~ 10Wt%碱和 8〜16Wt%尿素的水溶液, 或者 5~10Wt%碱和 8〜16\\^%硫脲的水溶液为溶剂, 制备纤维素基-硅酸钠的均相溶 液, 然后运用酸固化和热固化结合的方法, 实现溶胶相到凝胶相转变, 制备纤维 素基-硅杂化微球; 上述纤维素-硅基杂化微球粒径为 l〜1000um, 比表面积为 100〜800m2/g, 孔径为 200〜1000nm。
2. 一种如权利要求 1所述的一种纤维素基 -硅杂化微球的制备方法,其特征 是, 包括以下步骤:
1 ) 向碱和尿素水溶液、 或碱和硫脲水溶液中加入杂化硅材料硅酸钠, 溶解 后冷冻至 -12'C〜- 5'C, 然后加入纤维素, 搅拌溶解纤维素后, 离心脱泡和除杂, 得到纤维素-硅酸钠溶液;
2) 将纤维素 -硅酸钠均相溶液分散于含有乳化剂或复合乳化剂的有机溶剂 中, 恒速搅拌至滴液分散均匀后, 在常温下搅拌 l〜8h成形, 加入稀酸至溶液体 系为酸性 (pH<5 ), 然后加热 40〜80°C保持 l〜5h, 使纤维素-硅杂化材料固化 再生成微球, 待溶液体系冷却至室温后静置分层, 倒出上层溶液, 过滤干燥后, 即得到纤维素基-硅杂化微球。
3. 根据权利要求 2所述的一种纤维素基 -硅杂化微球的制备方法,其特征是, 所述有机溶剂为正己烷, 石油醚, 或液体石蜡, 或者它们中的两种或两种以上的 混合有机溶剂, 有机溶剂体积为纤维素 -硅酸钠均相溶液的 3〜10倍。
4. 根据权利要求 2所述的一种纤维素基 -硅杂化微球的制备方法,其特征是, 所述乳化剂为斯潘系列乳化剂,或者吐温系列乳化剂,或者它们中的两种组成的 混合乳化剂。
5. 根据权利要求 4所述的一种纤维素基 -硅杂化微球的制备方法,其特征是, 所述斯潘系列乳化剂包括斯潘 60、 斯潘 85。
6. 根据权利要求 4所述的一种纤维素基 -硅杂化微球的制备方法,其特征是, 所述吐温系列乳化剂包括吐温 80、 吐温 85。
7. 根据权利要求 2所述的一种纤维素基 -硅杂化微球的制备方法,其特征是, 上述步骤 2) 中纤维素基 -硅杂化微球的固化条件为酸固化和热固化同时进行。
8. 根据权利要求 2所述的一种纤维素基 -硅杂化微球的制备方法,其特征是, 所述步骤 2 )中搅拧速度为 200〜1500r/min; 将得到的纤维素基-硅杂化微球用水 或者乙醇洗涤, 得到纯净的纤维素-硅基杂化微球, 冷冻干燥或者烘干后得到纤 维素基-硅杂化颗粒。
9. 根据权利要求 1所述的一种纤维素基-硅杂化微球应用于蛋白质、 酶、 核 酸、 多糖等生物大分子的分离和纯化, 以及水、 油、 重金属离子、 染料和香精香 料的吸附和释放。
PCT/CN2013/000255 2012-03-16 2013-03-11 一种纤维素基-硅杂化微球及其制备方法 WO2013135100A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE201311001481 DE112013001481T5 (de) 2012-03-16 2013-03-11 Eine Zellulosebasis-Silizium-Hybrid Mikrosphären und deren Vorbereitungsverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210070177.X 2012-03-16
CN201210070177.XA CN102580691B (zh) 2012-03-16 2012-03-16 一种纤维素基-硅杂化微球及其制备方法

Publications (1)

Publication Number Publication Date
WO2013135100A1 true WO2013135100A1 (zh) 2013-09-19

Family

ID=46470244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000255 WO2013135100A1 (zh) 2012-03-16 2013-03-11 一种纤维素基-硅杂化微球及其制备方法

Country Status (3)

Country Link
CN (1) CN102580691B (zh)
DE (1) DE112013001481T5 (zh)
WO (1) WO2013135100A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113694877A (zh) * 2021-08-24 2021-11-26 天津朗华科技发展有限公司 一种用于汽油提纯的选择性吸附剂及其制备方法和应用
CN114272907A (zh) * 2021-12-30 2022-04-05 洛阳双罗铼材料科技有限公司 一种磁性木质纤维素纳米微球及其应用方法
CN114479165A (zh) * 2022-02-28 2022-05-13 苏州大学 蒙脱土微球和再生纤维素制备复合气凝胶的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102580691B (zh) * 2012-03-16 2014-05-07 川渝中烟工业有限责任公司 一种纤维素基-硅杂化微球及其制备方法
CN102794161B (zh) * 2012-09-10 2014-01-08 重庆希尔康血液净化器材研发有限公司 一种血液灌流用多孔纤维素微球吸附剂及其制备方法
CN102823946B (zh) * 2012-09-17 2014-08-06 川渝中烟工业有限责任公司 一种卷烟滤嘴添加剂及其应用
CN107126932A (zh) * 2017-06-16 2017-09-05 青岛科技大学 一种疏水废纸纤维素气凝胶复合材料及其制备方法
CN109012611A (zh) * 2018-07-26 2018-12-18 华中科技大学鄂州工业技术研究院 一种纤维素微球、纤维素微柱及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101274985A (zh) * 2008-05-12 2008-10-01 武汉大学 一种磁性纤维素微球及其制备方法和用途
JP2010214219A (ja) * 2009-03-13 2010-09-30 Shinichi Nakao 中空微粒子、中空微粒子の製造方法及び中空微粒子の製造装置
CN102580691A (zh) * 2012-03-16 2012-07-18 川渝中烟工业有限责任公司 一种纤维素基-硅杂化微球及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101274985A (zh) * 2008-05-12 2008-10-01 武汉大学 一种磁性纤维素微球及其制备方法和用途
JP2010214219A (ja) * 2009-03-13 2010-09-30 Shinichi Nakao 中空微粒子、中空微粒子の製造方法及び中空微粒子の製造装置
CN102580691A (zh) * 2012-03-16 2012-07-18 川渝中烟工业有限责任公司 一种纤维素基-硅杂化微球及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YU, QISI ET AL.: "Synthesis and Characterization of Natural Cellulose/Silica Hybrids in Supercritical Carbon Dioxide", ABSTRACT BOOK OF 2007 NATIONAL POLYMER ACADEMIC REPORT THESIS (A), 2007, pages 314 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113694877A (zh) * 2021-08-24 2021-11-26 天津朗华科技发展有限公司 一种用于汽油提纯的选择性吸附剂及其制备方法和应用
CN113694877B (zh) * 2021-08-24 2023-11-28 天津朗华科技发展有限公司 一种用于汽油提纯的选择性吸附剂及其制备方法和应用
CN114272907A (zh) * 2021-12-30 2022-04-05 洛阳双罗铼材料科技有限公司 一种磁性木质纤维素纳米微球及其应用方法
CN114479165A (zh) * 2022-02-28 2022-05-13 苏州大学 蒙脱土微球和再生纤维素制备复合气凝胶的方法
CN114479165B (zh) * 2022-02-28 2023-10-24 苏州大学 蒙脱土微球和再生纤维素制备复合气凝胶的方法

Also Published As

Publication number Publication date
CN102580691B (zh) 2014-05-07
DE112013001481T5 (de) 2014-12-04
CN102580691A (zh) 2012-07-18

Similar Documents

Publication Publication Date Title
WO2013135100A1 (zh) 一种纤维素基-硅杂化微球及其制备方法
Xiong et al. Preparation of lignin-based silica composite submicron particles from alkali lignin and sodium silicate in aqueous solution using a direct precipitation method
Yin et al. Pickering emulsion: A novel template for microencapsulated phase change materials with polymer–silica hybrid shell
CN102897779B (zh) 一种透明二氧化硅气凝胶的制备方法
CN106867019A (zh) 一锅法制备SiO2‑纤维素复合气凝胶材料的方法
WO2013016982A1 (zh) 一种醋酸纤维素微球的制备方法及由该方法制备的产品
CN109437159B (zh) 一种石墨烯-碳纳米管双组份悬浮液的制备方法
CN105399889A (zh) 一种相变储能材料的杂化壁材纳米胶囊及其制备方法
Zhang et al. Surfactant-free synthesis of silica aerogel microspheres with hierarchically porous structure
CN102504285A (zh) 一种再生纤维素微球及其制备方法
CN113181846B (zh) 一种基于Pickering乳液溶剂挥发的纯木质素微胶囊的制备方法
CN106661263A (zh) 多孔性纤维素介质的制造方法
CN102259871B (zh) 利用lbl法合成介孔二氧化硅纳米管的方法
TW201641544A (zh) 氣凝膠顆粒及其製備方法
CN102515173A (zh) 一种介孔sba-15无粘连微球的制备方法
Pan et al. A recognition strategy combining effective boron affinity technology and surface imprinting to prepare highly selective and easily recyclable polymer membrane for separation of drug molecule
CN103214604B (zh) 一种用于悬浮聚合的无机-有机复合分散剂及其应用方法
CN102502667A (zh) 一种大孔径、大窗口、三维连通的有序介孔材料及其制备方法
Yao et al. Preparation of cellulose-based chromatographic medium for biological separation: A review
CN101735633A (zh) 功能化有机/无机杂化不对称结构粒子及其合成方法
Lv et al. Solvent-free halloysite nanotubes nanofluids based polyacrylonitrile fibrous membranes for protective and breathable textiles
CN103990439A (zh) 一种制备醋酸丁酸纤维素微球吸附材料的方法
CN102583400A (zh) 一种介孔二氧化硅空心球的制备方法
CN106832357A (zh) 一种纤维素微球改性的制备方法
CN109232993A (zh) 一种纤维素/微米纤维素长丝多孔小球的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13760509

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112013001481

Country of ref document: DE

Ref document number: 1120130014815

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13760509

Country of ref document: EP

Kind code of ref document: A1