WO2013133211A1 - データ通信装置、データ通信システム及びデータ通信方法 - Google Patents

データ通信装置、データ通信システム及びデータ通信方法 Download PDF

Info

Publication number
WO2013133211A1
WO2013133211A1 PCT/JP2013/055849 JP2013055849W WO2013133211A1 WO 2013133211 A1 WO2013133211 A1 WO 2013133211A1 JP 2013055849 W JP2013055849 W JP 2013055849W WO 2013133211 A1 WO2013133211 A1 WO 2013133211A1
Authority
WO
WIPO (PCT)
Prior art keywords
gateway
meter reading
reading data
frame
data frame
Prior art date
Application number
PCT/JP2013/055849
Other languages
English (en)
French (fr)
Inventor
陽輔 西潟
石橋 孝一
城倉 義彦
育朗 上村
幸夫 林
小原木 敬祐
好文 中嶋
泰二 近藤
孝男 伊藤
平田 真一
Original Assignee
三菱電機株式会社
東京電力株式会社
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 東京電力株式会社, 富士通株式会社 filed Critical 三菱電機株式会社
Priority to CN201380013303.0A priority Critical patent/CN104205999B/zh
Priority to JP2014503834A priority patent/JP5836477B2/ja
Publication of WO2013133211A1 publication Critical patent/WO2013133211A1/ja
Priority to US14/479,827 priority patent/US9628372B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/34Modification of an existing route
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • H04W84/22Self-organising networks, e.g. ad-hoc networks or sensor networks with access to wired networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • the present invention relates to a data communication device, a data communication system, and a data communication method applied to a system for automatically reading the amount of electricity used.
  • Non-Patent Document 1 a form has been proposed in which ad hoc communication in which a plurality of radio stations communicate with each other wirelessly and form a network by multi-hopping is used as a network infrastructure for automatic meter reading such as electricity.
  • ad hoc communication in which a plurality of radio stations communicate with each other wirelessly and form a network by multi-hopping is used as a network infrastructure for automatic meter reading such as electricity.
  • an automatic meter reading system that covers a wide area while reducing facility costs is realized (for example, Non-Patent Document 1).
  • this node device As a conventional wireless station that performs ad hoc communication, there is a node device described in Patent Document 1.
  • This node device is configured so that an appropriate route can be selected without knowing the network topology in advance.
  • this node device determines for each frame destination which of the adjacent nodes (adjacent node devices) to transmit. , Determined according to the priority of each adjacent node, and transmitted to the determined adjacent node.
  • transmission fails a new transmission destination is determined from the remaining adjacent nodes excluding the adjacent node that failed to transmit.
  • the node device of Patent Document 1 tries to transmit / transfer a frame to all adjacent nodes when transmitting or transferring a frame.
  • forwarding when transmission to all adjacent nodes fails (when there is no route to the destination node), the frame is returned to the previous node (source node), and the previous node is a frame to another route. Try resending / forwarding.
  • source node previous node
  • the previous node is a frame to another route. Try resending / forwarding.
  • the operation of returning the frame to the previous node increases, there is a problem that the time that the frame stays on the network increases.
  • the present invention has been made in view of the above, and a data communication device, a data communication system, and data that prevent an increase in the time that a frame stays on the network and prevent occurrence of useless frame transmission
  • the purpose is to obtain a communication method.
  • the present invention solves the above-described problems, and the present invention is a data communication device that forms a mesh network with one or more gateways, and generates a meter reading data frame that is a frame including meter reading data.
  • a frame generation unit for transmitting to the gateway and a frame transfer unit for transferring the meter reading data frame addressed to the gateway received from another data communication device, wherein the frame generation unit is a gateway of the destination of the meter reading data frame
  • the meter reading data frame to which the number of route detours that is the number of transmission attempts allowed to the gateway is added from the data communication device adjacent to the gateway, and the frame transfer unit transfers the meter reading data frame to the adjacent gateway.
  • Route detour that failed and added to the meter reading data frame If the number is more than one, and transfers the route bypassing number which is added to other data communication apparatus on changing once a value less than before, it is characterized.
  • the route detour operation it is possible to prevent the route detour operation from being repeated endlessly in a situation where the transfer to a specific device fails continuously, such as when the destination device is out of order.
  • an increase in the frame transfer delay time can be suppressed, and an increase in the time for which the frame stays on the network can be prevented.
  • FIG. 1 is a diagram showing a configuration example of an automatic meter reading system realized by applying a data communication apparatus according to the present invention.
  • FIG. 2 is a diagram illustrating a configuration example of a node.
  • FIG. 3 is a diagram illustrating a configuration example of a frame (meter reading data frame) for transmitting meter reading data.
  • FIG. 4 is a diagram illustrating an example of gateway information held by a node.
  • FIG. 5 is a diagram illustrating an example of route information.
  • FIG. 6 is a flowchart of an example of detouring operation of the meter reading data frame.
  • FIG. 7 is a diagram illustrating an example of rewriting operation of the meter reading data frame in the detour operation.
  • FIG. 1 is a diagram showing a configuration example of an automatic meter reading system realized by applying a data communication apparatus according to the present invention.
  • FIG. 2 is a diagram illustrating a configuration example of a node.
  • FIG. 3 is a diagram illustrating
  • FIG. 8 is a flowchart of an example of an operation for returning the meter reading data frame.
  • FIG. 9 is a diagram illustrating an example of rewriting operation of the meter reading data frame in the return operation.
  • FIG. 10 is a flowchart of an operation example of a node that is not adjacent to the gateway.
  • FIG. 11 is a flowchart of an operation example of a node adjacent to the gateway.
  • FIG. 1 is a diagram showing a configuration example of an automatic meter reading system realized by applying a data communication apparatus according to the present invention.
  • the automatic meter reading system shown in FIG. 1 includes a data collection server 1, gateways 2A and 2B, and radio stations (hereinafter referred to as nodes) 3 1 to 3 26 which are data communication devices.
  • the nodes 3 1 to 3 26 are installed in, for example, consumers, measure the power using the sensor function of each node itself, and regularly read the meter reading data as measurement data to the data collection server 1 Device. Note that each node may acquire the meter reading data from an external power meter and transmit it to the data collection server 1 instead of measuring the power by the sensor function.
  • the nodes 3 1 to 3 26 together with the gateways 2A and 2B form an ad hoc network that is a data communication system according to the present invention.
  • FIG. 1 broken lines connecting wireless communication devices (gateways 2A to 2B and nodes 3 1 to 3 26 ) indicate wireless communication links, and the wireless communication devices at both ends of each broken line are adjacent to each other. Direct communication is possible.
  • the node 3 1, gateway 2A, node 3 2, Node 3 10 and node 3 11 are adjacent, these and node 3 1 can directly communicate.
  • FIG. 1 shows two gateways, gateways 2A and 2B, the number of gateways may be other than two. One may be sufficient and three or more may be sufficient. Further, in the following description, when there is no need to distinguish between the nodes 3 13 26, referred to as node 3 these are collectively.
  • the data collection server 1 is connected to the network, and collects meter reading data transmitted from each node 3 via the gateway 2A or 2B that is also connected to the network.
  • the connection form of the data collection server 1 and each gateway is not ask
  • Each gateway and the data collection server 1 may be connected by wire or may be connected wirelessly.
  • the gateways 2A and 2B receive the meter reading data (frame) transmitted from the node 3, transfer it to the data collection server 1, and register the node 3 as a subordinate node.
  • the meter reading data may be transferred every time the data is received, or the meter reading data received from the node 3 may be collectively transferred during a certain period.
  • the gateways 2A and 2B check whether the destination node 3 is the subordinate node 3 or not. Transfer to the destination node 3.
  • FIG. 2 is a diagram illustrating a configuration example of the node 3.
  • the node 3 includes a wireless communication unit 31, a message transmission / reception unit 32, a measurement unit 33, a storage unit 34, a time management unit 35, and an antenna 36.
  • the wireless communication unit 31 transmits / receives a frame to / from other wireless communication devices (node 3, gateways 2A and 2B) via the antenna 36 by wireless communication.
  • the message transmission / reception unit 32 as a frame generation unit and a frame transfer unit processes the control information and data measured by the measurement unit 33 into a message and transmits the message to the data collection server 1, the data collection server 1, and other wireless communication A process of receiving a message transmitted from the device and a process of transferring the received message are performed.
  • the measuring unit 33 measures the amount of power used by the installed customer. In addition to the amount of power used, measurement of information required by the data collection server 1 (temperature, humidity, etc.) may be performed together.
  • the storage unit 34 stores various information, for example, information on other adjacent nodes 3 (adjacent nodes), information on connectable gateways, measurement results in the measurement unit 33, and the like.
  • the time management unit 35 manages the local time that is the time held in the node 3.
  • the nodes 3 forming the network and the nodes 3 and the gateway are synchronized in time, and transmission and reception of frames for maintaining the time synchronization are performed at a predetermined timing in the mesh network.
  • the gateway 2A periodically broadcasts a GW advertisement on a specific channel in order to notify the surrounding nodes 3 of its presence, operation state, and the like.
  • a GW advertisement at least the identification information (GW-ID) of the transmission source gateway and the communication state information between the transmission gateway and the data collection server 1 (that is, communication with the data collection server 1 can be normally performed). Information).
  • the gateway 2A monitors the communication state with the data collection server 1 by a predetermined method. Note that the number of nodes 3 that have selected themselves as the transmission destination of meter reading data (the number of connected nodes) may be included in the GW advertisement. The number of connected nodes is grasped, for example, by monitoring meter reading data (frames) periodically sent from the node 3 to the data collection server 1 over a certain period.
  • the gateway 2A periodically broadcasts a presence notification frame to be described later.
  • Each node 3 in the system monitors a GW advertisement transmitted from the gateway in order to grasp the gateway in a state where multi-hop communication is possible.
  • a presence notification frame including its own information (identification information, etc.) is periodically broadcast so that other nodes 3 can grasp its own presence.
  • the node 3 can grasp an adjacent node (another node 3 capable of direct communication) existing in the vicinity.
  • the node 3 measures the amount of electric power used by the consumer, and periodically transmits a frame including meter reading data as a measurement result to the gateway 2A or 2B.
  • the transmission timing is designated from the gateway by, for example, a GW advertisement.
  • FIG. 3 is a diagram showing a configuration example of a frame for transmitting meter reading data (hereinafter referred to as meter reading data frame).
  • the meter reading data frame includes, as control information, “global destination address”, “global source address”, “local destination address”, “local source address”, “frame identification information”, and “path bypass count”. Although not shown, meter reading data is stored in the payload.
  • Global destination address indicates the address of the device that is the final destination of the meter reading data frame, and in the case of the configuration shown in FIG. 1, the address of the gateway 2A or 2B is set.
  • the “global source address” is set to the address of the node 3 that first transmits the meter reading data frame, that is, the node 3 that acquired the meter reading data to be transmitted in the meter reading data frame.
  • the “local destination address” is a direct transmission destination (next transmission destination) of the meter reading data frame, and any one address in the adjacent nodes is set.
  • the “local source address” is set to the address of the node 3 that transmits or forwards the meter reading data frame.
  • the global destination address and global source address are unchanged.
  • the local destination address and the local source address are updated every time the meter reading data frame is transferred.
  • the node 3 11 gateway 2A when transmitting the meter reading data frames via nodes 3 1, Node 3 11, the address of the gateway 2A to global destination address of the meter reading data frame, its own global source address address, the address of the node 3 1 to local destination address, and transmits the set to the local source address its own address.
  • This frame is received by the node 3 1, node 3 1 transfers to the gateway 2A in terms of changing the local source address to its own address as well as change the local destination address of meter reading data frame received to the address of the gateway 2A .
  • “Frame identification information” is information that uniquely indicates a frame, and the nodes 3 and gateways 2A and 2B that have received the frame determine whether or not the same frame has been received by confirming this information.
  • the “route bypass number” is information used in control for realizing that the meter reading data frame stays on the network for a long time and prevents the occurrence of useless frame transmission.
  • this route detour count is determined when the node 3 adjacent to the gateway indicated as the global destination address of the meter reading data frame fails to transmit the frame to the gateway. Updated to For example, if the meter reading data frame transmission to the gateway 2A failed from node 3 1, node 3 1 1 is subtracted from the path detour number set in the meter reading data frame. Only when the transmission from the node 3 to the gateway 2A or 2B fails, the number of route detours is changed from the previously set number to one less.
  • the route detour count is changed when transmission of the meter reading data frame in which the same value is set for the global destination address and the local destination address fails.
  • the number of route detours indicates how many more attempts to transmit a meter reading data frame in which the same value is set for the global destination address and the local destination address.
  • FIG. 4 is a diagram showing an example of gateway information held by the node 3.
  • the node 3 holds information on connectable gateways (hereinafter referred to as gateway information).
  • the gateway information includes “GW-ID”, “communication with a host device”, “operation status”, “selection”. Status "and” latest GW advertisement reception time ".
  • GW-ID is gateway identification information.
  • “Communication with the host device” is information indicating whether communication between the gateway and the host device (referred to as the data collection server 1 in this embodiment) is normal.
  • the node 3 can know the communication state (whether it can communicate normally) between the gateway and the data collection server 1 by confirming the GW advertisement (already explained) distributed from each gateway in the system. If the GW advertisement is not received, “unknown” is displayed.
  • “Operation status” is information indicating whether the gateway is operating normally.
  • the node 3 cannot receive a GW advertisement or presence notification frame that is supposed to be transmitted from a certain gateway for a certain period of time, or the “communication with the host device” information included in the received GW advertisement is indicated as abnormal or unknown. If there is a failure, it is determined that a failure (device failure, power failure, etc.) has occurred in the gateway. If it is determined that a failure has occurred, the operation state of the gateway that has been determined to have failed is changed to “abnormal”. Thereafter, when a GW advertisement having a normal communication state with the host device is delivered from a gateway having an “operating state” of “abnormal”, the “operating state” is changed to “normal”.
  • “Selection status” is information indicating a gateway and a backup gateway as a transmission destination of the meter reading data frame.
  • the node 3 selects one of the gateways whose “operating state” and “communication with the higher-level device” are both “normal” to be “active” and the rest to be “reserved”. Which gateway is to be “working” when there are a plurality of selection candidates is determined based on the number of hops to the gateway, the communication quality in the route to the gateway, and the like. When selecting based on the number of hops, for example, the one having a smaller number of hops is preferentially selected. When selecting based on the communication quality, for example, the one having the highest transmission success rate in the past certain period is preferentially selected. Each time transmission fails, the current gateway may be switched sequentially. You may select based on several information, such as the number of hops, and communication quality.
  • Test GW advertisement reception time is the time when the GW advertisement was last received. As already explained, this information is used to determine the operational state of the gateway.
  • the gateway information is information that is generated / updated by receiving a GW advertisement distributed from each gateway in the system.
  • the node 3 determines whether or not the GW advertisement needs to be transferred.
  • the necessity of transfer is determined by, for example, TTL (Time To Live) whose value is changed every time it is transferred. At this time, when a GW advertisement having the same content as that already transferred is received again, the transfer is not performed regardless of the TTL.
  • the node 3 holds information illustrated in FIG. 5 as route information to be referred to when transmitting the meter reading data frame (see FIG. 3). That is, route information including “destination candidate”, “adjacent node ID”, and “number of hops to the destination” is held. Incidentally, the route information shown in FIG. 5 corresponds to that node 3 1 shown in FIG. 1 holds.
  • “Destination candidate” is identification information (for example, address) of a gateway that is a candidate to be set as the global destination address of the meter-reading data frame.
  • the node 3 receives the GW advertisement, the node 3 confirms whether or not the transmission source gateway has been registered as a destination candidate.
  • the “adjacent node ID” is identification information (for example, an address) of the adjacent node, and the meter reading data in which the identification information (or the address corresponding thereto) described in the “destination candidate” on the left is set as the global destination address. It is a list of adjacent nodes that can be selected as a transmission destination (direct transmission partner) when transmitting or transferring a frame. If direct communication with a gateway is possible, the identification information of the gateway is also held as an adjacent node ID. “G01” described at the top of FIG. 5 corresponds to gateway identification information.
  • the node 3 additionally registers the identification information of the adjacent node (other node 3 or gateway) that has transferred the GW advertisement or presence notification frame to the node 3 as the adjacent node ID.
  • the node 3 may receive a GW advertisement or presence notification frame transmitted from a gateway from a plurality of adjacent nodes.
  • a GW advertisement or presence notification frame is received from other than the adjacent node of the identification information registered in the adjacent node ID, the identification information of the adjacent node that has transferred the received GW advertisement or presence notification frame to itself is displayed as the GW advertisement. It is additionally registered in the adjacent node ID in association with the transmitted gateway (destination candidate).
  • the “number of hops to the destination” is indicated by the “destination candidate” on the left side when the node 3 (which may be a gateway) corresponding to the “adjacent node ID” on the left side is selected as the frame transmission destination.
  • the number of hops to the gateway can be known from, for example, a GW advertisement distributed from each gateway. By including information on the number of transfers in the GW advertisement, each node 3 can update the number of transfers information when transferring the GW advertisement so that the number of hops can be acquired.
  • the configuration of the route information shown in FIG. 5 is an example, and any configuration may be used as long as information necessary for transmitting / transferring the meter reading data frame can be managed.
  • Node 3 11 which receives the meter reading data frame transmitted determines the destination to check the global destination meter reading data frame (directly transmitted to the other party).
  • the transfer destination is determined based on the route information (see FIGS. 4 and 5).
  • the description will be continued assuming that the transfer destination is determined to be gateway 2A.
  • Node 3 1 Upon determining the transfer destination gateway 2A, as well as change the local destination address of meter reading data frame received from the node 3 11 to the gateway 2A, changes the local source address to its own address. Determination of the transfer destination, local changes the destination address and the local source address, the message transmission and reception unit 32 of the node 3 1 performs. Node 3 1 of message transceiver 32, the address change is completed, and transmits the meter reading data frame to the gateway 2A.
  • the gateway 2A When the gateway 2A normally receives the meter reading data frame, the gateway 2A takes out the meter reading data, re-frames it as necessary, and transmits it to the data collection server 1.
  • the node 3 11 illustrating the operation when the gateway 2A meter reading data frame transmitted to the gateway 2A can not be received.
  • Transmission operation of meter reading data frame by the node 3 11, and transfer operation of the gateway 2A of meter reading data frame by the node 3 1 are the same as described above (operation during normal). However, the gateway 2A are intended to be a state that can not normally receive the meter reading data frame transferred by the node 3 1.
  • Node 3 1 detects that the meter reading data frame transfer gateway 2A can not be received, it is first necessary to transmit the meter reading data frame (in the detour route) gateway 2A via another node 3 that are adjacent Or (need to bypass).
  • a detour operation is started. Specifically, as shown in the flow of FIG. 6, the route information is confirmed, and an adjacent node as a transfer destination (a detour destination) is determined (step S1).
  • the detour destination as determined in node 3 2.
  • the node 3 1 changes the local destination address of the meter reading data frame received from the node 3 11 to the node 3 2 and changes the local source address to its own address (step S2). ). Further, 1 is subtracted from the number of route detours (changed from 3 to 2) (step S3), and the meter reading data frame after the change is transferred (step S4).
  • FIG. 7 is a diagram relating to the rewriting operation of the meter reading data frame performed in steps S2 and S3 of FIG.
  • the node 3 1 sets the address of the node 3 2 which is the transfer destination determined in step S1 as the local destination address, and sets its own address as the local source address. Further, in step S3, the node 3 1 sets the value obtained by subtracting 1 from the path bypass times. The changed meter-reading data frame set as described above is transferred in step S4.
  • Node 3 1 Node 3 2 receives the meter reading data frame transferred by determines the destination to check the global destination meter reading data frame.
  • the transfer destination is determined to be gateway 2A.
  • Node 3 2 upon determining the transfer destination gateway 2A, as well as change the local destination address of meter reading data frame received to the gateway 2A, to change the local source address to its own address, and transmits to the gateway 2A.
  • the meter reading data frame is normally received by the gateway 2A, the operation ends here.
  • Node 3 2 optionally (diverting) transferring metering data frame to another node 3.
  • the node 3 2 detects that the meter reading data frame transfer gateway 2A can not be received, by a route bypassing the number of meter reading data frame received from the node 3 1 To determine whether one or more, must detour If it is necessary to make a detour, the route information is further confirmed to determine an adjacent node as a detour destination. Here, there is a need for bypass, and the description will be continued the detour destination as determined in node 3 3.
  • the node 3 3 in the detour destination node 3 2 serves to change the local destination address of meter reading data frame received from the node 3 1 to the node 3 3, it changes the local source address to its own address. Further, 1 is subtracted from the number of route detours (change from 2 to 1), and the meter reading data frame after the change is transferred.
  • Node 3 2 Node 3 3 receiving the meter reading data frame transferred by performs the same operation as node 3 2 receives the meter reading data frame transferred by the node 3 1, if necessary, the meter reading data frame Further detours. Here, the description will be continued as causing a further diverted to node 3 4. Note that the path detour count of the meter reading data frame transmitted from the node 3 3 to the node 3 4 is zero.
  • the node 3 4 that has received the meter-reading data frame transferred by the node 3 3 confirms the global destination of the meter-reading data frame and determines the transfer destination.
  • the transfer destination is determined to be gateway 2A.
  • Node 3 4 has determined the transfer destination gateway 2A, as well as change the local destination address of meter reading data frame received to the gateway 2A, to change the local source address to its own address, and transmits to the gateway 2A. If the meter reading data frame gateway 2A can not be received correctly, Node 3 4 is to determine the need for a bypass check the route bypassing number set in the meter reading data frame, a route bypassing number zero There is no further detouring.
  • the node 3 4 executes the operation in accordance with the flow shown in FIG. 8 (return operation). That is, the node 3 4 determines the transmission source node of the meter reading data frame (here, the node 3 3 ) by confirming the route information (step S11), and sets the local destination address of the meter reading data frame to the node 3 In addition to changing to 3 , the number of route detours remains 0 (step S12). Thereafter, the changed meter reading data frame is returned (step S13).
  • the node 3 4 determines that the condition that the route bypassing the number of meter reading data frames sent back is 0 times, gateway corresponding to the global destination address set in meter reading data frame is not successfully operate Then, the corresponding part of the gateway information shown in FIG. 4 is updated (step S14). In other words, the “operating state” of the gateway that has been determined not to operate normally is changed to “abnormal” (in FIG. 4, the operating state of G02 selected as the current operation is set to “abnormal”). As a result, a gateway that has a high possibility of not being normally received even if the meter reading data frame is transmitted can be excluded from transmission destination candidates when the meter reading data frame including the meter reading data measured by itself is transmitted.
  • FIG. 9 is a diagram relating to the rewriting operation of the meter reading data frame performed in step S12 of FIG.
  • the node 3 4 the address of the node 3 3 a transfer destination determined at the step S11 to the local destination address, and sets its own address to the local source address. Further, the number of route detours remains zero.
  • the changed meter-reading data frame set as described above is returned in step S13.
  • Node 3 4 Node 3 3 that has received the bounced meter reading data frame by sends back to node 3 2 which is the transmission source when receiving the meter reading data frames first. At this time, the number of route detours is not changed. Further, it is determined that the gateway corresponding to the set global destination address is not operating normally, and the corresponding portion of the held gateway information is updated.
  • meter reading data frames gateway 2A is not normally received, via the respective nodes on the path which is first transmitted (Node 3 2 and Node 3 1), reaches the source node 3 11. The operation of the node 3 2 and the node 3 1 when returning the meter-reading data frame is the same as the return operation by the node 3 4 .
  • each node is configured to determine an adjacent node as a frame transmission destination based on the communication quality or update the priority (ease of selection) of the transmission destination candidates according to the communication quality.
  • the held communication quality is not updated.
  • Node 3 11 that has transmitted the meter reading data frame addressed to the gateway 2A for the first time, if the frame has been returned, it is determined that transmission fails, "selection status of the gateway (gateway information of the destination candidates other than the gateway 2A ”Is“ preliminary ”, and if there is another destination candidate, it is retransmitted to the other destination candidate gateway. Whether or not there are other transmission destination candidates is determined by checking the stored gateway information (FIG. 4). For example, if the gateway 2B is operating normally, the global destination address of the returned meter reading data frame is changed to the gateway 2B address, the route detour count is initialized (returned to 3 times), and retransmitted. To do. Further, the held gateway information is updated, and the “operation state” of the gateway set as the destination of the returned meter reading data frame is changed to “abnormal”.
  • the first node 3 that is not adjacent to the gateway transmits the meter reading data transmission time as shown in FIG. Then, the meter reading data is acquired, and a meter reading data frame with an initial value set for the route detour number is generated and transmitted (step S21). If the meter reading data frame is not returned, the operation is terminated (step S22: No). ). When the meter-reading data frame is returned (step S22: Yes), it is checked whether there is another destination candidate gateway for the meter-reading data frame (step S23), and the other destination candidate (gateway) is determined.
  • step S23: Yes the global destination address of the returned meter-reading data frame is changed to the address of another destination candidate gateway, and the local destination address is an address corresponding to the changed global destination address.
  • the address is changed to (adjacent node address), and the route detour count is initialized and retransmitted (step S24). If there is no other destination candidate (gateway) (step S23: No), the operation is terminated.
  • step S31 when a meter reading data frame is received (step S31), it is transferred to the adjacent gateway (step S32). If the transfer to the gateway is successful, the operation ends (step S33: Yes). If the transfer has failed (step S33: No), it is checked whether the path detour count of the meter reading data frame received in step S31 is other than 0 (positive integer) (step S34). If it is not 0 (step S34). : Yes), it is confirmed whether there is a detour route (step S35).
  • step S35 If there is a detour route (step S35: Yes), the route detour count of the meter reading data frame is updated (1 is subtracted) and transferred to an adjacent node on the detour route (step S36). If the number of route detours is 0 (step S34: No) or there is no detour route (step S35: No), the meter reading data frame is returned (step S37).
  • the node 3 When the node 3 receives a meter reading data frame whose route bypass count is 0, the node 3 forwards (returns) to the node 3 of the address set as the global source address (the route bypass count is not changed). Forward to).
  • each node sets the number of path detours for the meter reading data frame including the measurement information when transmitting the measurement result to the collection server, and If the meter reading data frame directly transmitted to the gateway cannot be received normally, check the route detour times set in the meter reading data frame, and if a value other than 0 is set, After subtracting 1 from the set value, it is decided to forward to another node (by bypassing to another route). Further, when the number of route detours is 0, the route is returned to the transmission source node without further detouring.
  • each node on the route that returns the meter reading data frame whose route detour count is 0 updates the gateway information held in the return operation, so that it is likely that the node is not likely to operate normally. From this point, it is possible to prevent an increase in the time for which the frame stays on the network, and it is possible to prevent unnecessary frame transmission from occurring.
  • the operation when the meter reading data frame transmitted to the gateway is received has been described.
  • the same control is performed on the frame addressed to the node 3 as well as the frame addressed to the gateway. May be. That is, the node that first transmits a frame sets the number of route bypasses, and each node has a route bypass count of 1 when the transmission (transfer) of the frame having the same setting value of the global destination address and the local destination address fails. If the number of times is greater than or equal to the number of times, the number of times of detouring the route of the frame may be changed (decrease once), and the frame may be transmitted (detoured) to another route.
  • Embodiment 2 the operation in the case where there are a plurality of transmission destination candidate gateways for the meter reading data frame has been described, but in this embodiment, the operation in the case where there is one transmission destination candidate gateway will be described.
  • the gateway periodically broadcasts GW advertisements and notifies the node 3 of its existence and communication status with the data collection server 1, but the gateway stops due to a power failure or the like, and GW advertisements are distributed. It may not be done.
  • the node 3 monitors the reception of the GW advertisement.
  • the node 3 determines that a failure has occurred in the gateway, and reads the meter reading data. Stop sending frames.
  • the “operation state” of the gateway information described above is changed to “abnormal”.
  • the receiving operation of the GW advertisement continues and the recovery of the gateway is monitored. Thereby, the meter reading data frame is prevented from being transmitted unnecessarily, and can be detected early when the gateway is restored.
  • the routing information referred to when transmitting the frame addressed to the gateway determined to have failed is kept for a second period longer than the first period so that the network can be restored immediately when the gateway is restored.
  • the route information is initialized and the network is reconstructed. Note that while the frame transmission is stopped, the measurement of power and the like is continued, and the measurement result is held so that the transmission can be performed after the network is restored.
  • the node 3 detects the occurrence of a gateway failure based on the reception result of the GW advertisement, and stops detecting the meter reading data frame addressed to the gateway after the failure occurrence is detected. In addition, after a failure occurs, the route information used when transmitting the frame addressed to the gateway is kept until a certain period (the second period) elapses. As a result, it is possible to prevent unnecessary frame transmission and to expect early network recovery after the gateway is restored. Further, even though the gateway is not expected to be restored, it is possible to keep waiting for the restoration and prevent the start of the network restructuring operation from being delayed more than necessary.
  • the node 3 holds meter reading data while the GW advertisement cannot be received, and when the gateway is restored, the meter reading data held without being transmitted is framed and transmitted.
  • Embodiment 2 can be implemented alone without being combined with Embodiment 1, and even in that case, early network recovery after the gateway is restored can be expected.
  • Embodiment 3 The third embodiment of the communication apparatus according to the present invention will be described in detail below. Here, only items different from the first embodiment will be described, and description of items common to the first embodiment will be omitted.
  • the configuration is shown in which the number of route detours is subtracted by detouring that occurs when transmission to the gateway 2A fails.
  • the node 3 1 determines that the operation state of the gateway 2A is abnormal, the node 3 1 does not attempt transmission to the gateway 2A, the node 3 1 immediately subtracts the number of route detours, and the node 3 2 It is set as the structure which transmits (bypasses) to.
  • Node 3 1 is monitoring whether the gateway 2A is operating properly by GW advertisement or presence notification frame or the like. In the case where the gateway 2A fails, periodically node 3 1 GW advertising or notify a frame or the like is transmitted is no longer received, thereby detecting an abnormality of the gateway 2A.
  • Node 3 priority route in 1 to the gateway 2A is a situation which is a path for direct transfer to the gateway 2A from node 3 1, if node 3 1 has detected abnormality of the gateway 2A, node 3 1, gateway Upon receiving a frame addressed 2A, without direct transmission to the gateway 2A, for example, it performs the bypass operation to be sent to the gateway 2A via the node 3 2 from the node 3 1, subtracts a route bypassing count .
  • the held communication quality may not be updated during the detouring operation of the meter reading data frame.
  • the abnormality detection includes information indicating a gateway abnormality in the GW advertisement or presence notification frame, and the GW advertisement or the presence notification frame can be received, and information indicating the gateway abnormality is included therein. If included, an abnormality of the gateway can be detected based on the information.
  • This configuration makes it possible to suppress unnecessary transmission attempts of frames to a gateway that has been determined to be abnormal in advance, and to prevent an increase in the time that frames stay on the network.
  • Embodiment 4 FIG. The communication apparatus according to the fourth embodiment will be described in detail below. Here, only items different from the first embodiment will be described, and description of items common to the first embodiment will be omitted.
  • the node 3 1 has been carried out to the gateway 2A A configuration for determining an abnormality of the gateway 2A based on the result of the trial will be described.
  • the node 3 1 receives a frame of the gateway 2A destined, and transmits the frame to the gateway 2A. If transmission of the node 3 1 to the gateway 2A has failed a predetermined number of times, the node 3 1 determines that the gateway 2A is abnormal.
  • the third embodiment when transferring a frame addressed to the gateway 2A, without transmission attempts for the gateway 2A, immediately a route bypassing number subtracted, to node 3 2 Sending (detouring) is performed.
  • This configuration makes it possible to suppress unnecessary transmission attempts of frames to the gateway that is determined to be abnormal, and to prevent an increase in the time for which frames stay on the network.
  • Embodiment 5 of the communication apparatus according to the present invention will be described in detail below. Here, only items different from the first embodiment will be described, and description of items common to the first embodiment will be omitted.
  • Embodiment 1 the configuration in which the number of route detours is subtracted by the detour that occurs when transmission to the gateway 2A fails.
  • the return to the node that was the local source address that occurred in the middle of the route to the gateway 2A is subtracted as the route detour number, and when the route detour number becomes 0, the node of the global source address The form to return to will be described.
  • the route detour times described above are the counter that subtracts when the transmission to the gateway 2A shown in the first embodiment fails and the detour occurs, and the route to the gateway 2A shown in the fifth embodiment. It may be configured to have two counters independently of the counter to be subtracted when the return to the node that was the local source address generated in step 1 occurs, or the two contents may be combined by one counter. In this embodiment, an example is shown in which subtraction of the number of route detours is performed when a return to the node that was the local source address occurs anywhere on the relay route. However, subtraction of the number of route detours is transmitted to the gateway. An embodiment is also conceivable only when a return to a node that has been a local source address is generated.
  • Embodiment 6 FIG. The sixth embodiment of the communication apparatus according to the present invention will be described in detail below. Here, only items different from the fifth embodiment will be described, and description of items common to the fifth embodiment will be omitted.
  • the node of the global source address is passed through the node that is the local source address.
  • the frame is returned to the destination, and the route detour count of the returned meter-reading data frame is initialized, and then retransmitted to another destination gateway.
  • a return to a node that is a local source address occurs, an operation when the node is a node of a global source address will be described.
  • the value of the number of route detours is 1 or more, and the address of the node that received the returned frame and the global of the returned frame If the source addresses match, the node that has received the returned frame immediately retransmits it to another destination candidate gateway regardless of the value of the number of route detours of the returned frame.
  • the configuration is shown in which the value of the route bypass count is initialized when retransmitting to another destination gateway, but the value of the route bypass count is retained (not initialized). ) Configuration is also possible.
  • the data communication apparatus is useful as a node forming an ad hoc network of an automatic meter reading system.
  • 1 Data collection server 2A, 2B gateway, 3 1 to 3 26 wireless stations (nodes), 31 wireless communication unit, 32 message transmission / reception unit, 33 measurement unit, 34 storage unit, 35 time management unit, 36 antenna.

Abstract

 データ通信装置である無線局31~326は、検針データフレームを生成してゲートウェイ宛に送信するフレーム生成部と、受信した検針データフレームを転送するフレーム転送部と、を備え、フレーム生成部は、検針データフレームの宛先のゲートウェイに隣接している無線局からゲートウェイへの送信試行許可回数である経路迂回回数を付加した検針データフレームを送信し、フレーム転送部は、隣接しているゲートウェイに対する検針データフレームの転送に失敗し、かつ検針データフレームに付加されている経路迂回回数が1回以上の場合、付加されている経路迂回回数をそれまでよりも1回少ない値に変更した上で他の無線局へ転送する。

Description

データ通信装置、データ通信システム及びデータ通信方法
 本発明は、電気などの使用量を自動で検針するシステムに適用されるデータ通信装置、データ通信システム及びデータ通信方法に関するものである。
 近年、複数の無線局が相互に無線通信し、マルチホップすることでネットワークを形成するアドホック通信を、電気などの自動検針のネットワークインフラとして適用する形態が提案されている。アドホック通信を用いることで、設備コストを抑えつつ、広範囲エリアをカバーする自動検針システムの実現を図るものである(例えば、非特許文献1)。
 アドホック通信を行う従来の無線局として、特許文献1に記載されたノード装置が存在する。このノード装置は、ネットワークトポロジを予め認識しておかなくても適切な経路を選択できるように構成されている。このノード装置は、特定のノード装置宛のフレームを送信(転送を含む)する場合、隣接ノード(隣接しているノード装置)の中のどれに送信するかを、フレームの宛先ごとに決定された、各隣接ノードの優先度に従って決定し、決定した隣接ノードへ送信する。また、送信が失敗した場合には、送信失敗となった隣接ノードを除く残りの隣接ノードの中から、新たな送信先を決定する。隣接ノードから受信したフレームの転送動作では、受信したフレームの送信元の隣接ノードを除く全ての隣接ノードに対して転送を試みたにもかかわらず、送信失敗となった場合、すなわち、宛先のノードへの経路が存在しない場合、送信元の隣接ノードへフレームを返送する。
特許第4820464号公報
高橋勇治、他3名、「インテリジェントソサイエティを支えるネットワーク技術:WisReed」、雑誌FUJITSU、富士通株式会社、平成23年9月、第62巻、第3号、pp.348-355
 特許文献1のノード装置は、上述したように、フレームの送信または転送時に、全ての隣接ノードに対して、フレームの送信/転送を試行する。ここで、転送の場合、全隣接ノードに対する送信が失敗した場合(宛先ノードへ経路が存在しない場合)、前段のノード(送信元ノード)にフレームを戻し、前段のノードが他の経路へのフレーム再送信/転送を試行する。しかしながら、前段のノードにフレームを戻す動作が多くなると、フレームがネットワーク上に滞留する時間が増大するという問題がある。
 また、宛先ノードが故障した場合、または、宛先ノードに隣接している全てのノードが故障した場合、宛先ノードへの経路が存在しない状態であるにもかかわらず、故障したノードの周辺のノード間でフレームの転送および故障したノードへのフレーム送信が繰返し実行される。その結果、無駄なフレーム送信が発生し、通信リソースが無駄に消費されるという問題がある。
 本発明は、上記に鑑みてなされたものであって、フレームがネットワーク上に滞留する時間が増大するのを防止するとともに、無駄なフレーム送信の発生を防止するデータ通信装置、データ通信システム及びデータ通信方法を得ることを目的とする。
 本発明は、上述した課題を解決するものであって、本発明は、1台以上のゲートウェイとともにメッシュネットワークを形成するデータ通信装置であって、検針データを含んだフレームである検針データフレームを生成してゲートウェイ宛に送信するフレーム生成部と、他のデータ通信装置から受信したゲートウェイ宛の検針データフレームを転送するフレーム転送部と、を備え、前記フレーム生成部は、検針データフレームの宛先のゲートウェイに隣接しているデータ通信装置から当該ゲートウェイへの送信試行許可回数である経路迂回回数を付加した検針データフレームを送信し、前記フレーム転送部は、隣接しているゲートウェイに対する検針データフレームの転送に失敗し、かつ当該検針データフレームに付加されている経路迂回回数が1回以上の場合、付加されている経路迂回回数をそれまでよりも1回少ない値に変更した上で他のデータ通信装置へ転送する、ことを特徴とする。
 この発明によれば、宛先の装置が故障している場合など、特定の装置に対する転送が連続して失敗する状況において、経路の迂回動作を延々と繰り返してしまうのを防止できる。その結果、フレームの転送遅延時間が増大するのを抑制でき、フレームがネットワーク上に滞留する時間が増大するのを防止できる、という効果を奏する。
図1は、本発明にかかるデータ通信装置を適用して実現される自動検針システムの構成例を示す図である。 図2は、ノードの構成例を示す図である。 図3は、検針データを送信するフレーム(検針データフレーム)の構成例を示す図である。 図4は、ノードが保持しているゲートウェイ情報の一例を示す図である。 図5は、経路情報の一例を示す図である。 図6は、検針データフレームの迂回動作例のフローチャートである。 図7は、迂回動作における検針データフレームの書き換え動作例を表す図である。 図8は、検針データフレームの返送動作例のフローチャートである。 図9は、返送動作における検針データフレームの書き換え動作例を表す図である。 図10は、ゲートウェイに隣接していないノードの動作例のフローチャートである。 図11は、ゲートウェイに隣接しているノードの動作例のフローチャートである。
 以下に、本発明にかかるデータ通信装置、データ通信システム及びデータ通信方法の実施の形態を図面に基づいて詳細に説明する。なお、本発明は、本実施形態に限定されるものではない。
実施の形態1.
 図1は、本発明にかかるデータ通信装置を適用して実現される自動検針システムの構成例を示す図である。図1に示される自動検針システムは、データ収集サーバ1と、ゲートウェイ2Aおよび2Bと、データ通信装置である無線局(以下、ノードと称する)31~326と、を含んでいる。ノード31~326は、例えば、需要家に設置され、各ノード自身が有しているセンサ機能で電力を測定し、測定データである検針データを定期的にデータ収集サーバ1へ送信する検針装置である。なお、各ノードがセンサ機能により電力を測定するかわりに、外部の電力メータから検針データを取得してデータ収集サーバ1へ送信する構成としてもよい。
 ノード31~326は、ゲートウェイ2Aおよび2Bとともに、本発明にかかるデータ通信システムであるアドホックネットワークを形成している。図1において、無線通信機器(ゲートウェイ2A~2B、および、ノード31~326)を結ぶ破線は、無線通信のリンクを示しており、各破線の両端の無線通信機器は、隣接関係にあり直接通信が可能となっている。例えば、ノード31には、ゲートウェイ2A、ノード32、ノード310およびノード311が隣接しており、これらとノード31は直接通信が可能である。なお、図1にはゲートウェイ2Aおよび2Bの2台のゲートウェイを記載したが、ゲートウェイの数は2台以外でもよい。1台でもよいし、3台以上であっても構わない。また、以下の説明においては、ノード31~326を区別する必要がない場合、これらを総称してノード3と記載する。
 データ収集サーバ1は、ネットワークに接続されており、同じくネットワークに接続されているゲートウェイ2Aまたは2Bを介して、各ノード3から送信される検針データを収集する。なお、データ収集サーバ1と各ゲートウェイの接続形態については問わない。ネットワークを経由するのではなく、各ゲートウェイがデータ収集サーバ1に直接接続された構成でもよい。また、各ゲートウェイとデータ収集サーバ1は有線で接続されていてもよいし、無線で接続されていてもよい。
 ゲートウェイ2Aおよび2Bは、ノード3から送信された検針データ(フレーム)を受信し、データ収集サーバ1へ転送するとともに、ノード3を配下ノードとして登録する。検針データの転送は、データを受信するごとに行ってもよいし、一定期間の間にノード3から受信した検針データを一纏めにして転送してもよい。また、データ収集サーバ1などからノード3宛に送信されたフレームをネットワークから受信した場合、ゲートウェイ2Aおよび2Bは宛先のノード3が自身配下のノード3かどうかを確認し、自身配下の場合には宛先のノード3に向けて転送する。
 図2は、ノード3の構成例を示す図である。図示されるように、ノード3は、無線通信部31、メッセージ送受信部32、計測部33、記憶部34、時刻管理部35およびアンテナ36を備えている。
 ノード3において、無線通信部31は、アンテナ36を介して他の無線通信機器(ノード3、ゲートウェイ2A,2B)との間で無線通信によりフレーム送受信する。
 フレーム生成部およびフレーム転送部としてのメッセージ送受信部32は、制御情報や計測部33で測定されたデータなどをメッセージ化してデータ収集サーバ1宛に送信する処理、データ収集サーバ1や他の無線通信機器から送信されたメッセージを受信する処理、受信したメッセージを転送する処理、を行う。
 計測部33は、設置されている需要家における電力使用量を計測する。電力使用量に加え、データ収集サーバ1が必要とする情報の測定(温度や湿度など)を併せて行うようにしてもよい。
 記憶部34は、各種情報、例えば、隣接している他のノード3(隣接ノード)の情報、接続可能なゲートウェイの情報、計測部33における測定結果、などを記憶する。
 時刻管理部35は、ノード3に保持している時刻であるローカル時刻を管理する。なお、ネットワークを形成しているノード3同士およびノード3とゲートウェイは、時刻同期が図られており、メッシュネットワーク内では時刻同期を維持するためのフレームの送受信が所定のタイミングで実施されている。
 以上のような構成の自動検針システムの動作について詳しく説明する。まず、ゲートウェイ2Aおよび2Bの動作とノード3の動作をそれぞれ説明し、その後、ノード3が検針データを送信する場合の詳細動作を説明する。なお、各動作説明では、簡単化のために、本発明に関連する主要動作についてのみ説明し、その他の一般的な動作については説明を省略する。
<ゲートウェイ2A,2Bの主要動作>
 ゲートウェイ2Aおよびゲートウェイ2Bの動作は同じであるため、ゲートウェイ2Aの動作について説明する。
 ゲートウェイ2Aは、自身の存在、動作状態などを周囲のノード3に通知するために、特定のチャネルにおいて、GW広告を定期的にブロードキャストする。GW広告には、少なくとも、送信元ゲートウェイの識別情報(GW-ID)と、送信元ゲートウェイとデータ収集サーバ1の間の通信状態の情報(すなわち、データ収集サーバ1との通信が正常にできているかどうかの情報)とを含むこととする。ゲートウェイ2Aは、所定の方法により、データ収集サーバ1との通信状態を監視している。なお、検針データの送信先として自身を選択しているノード3の数(接続ノード数とする)をGW広告に含ませるようにしてもよい。接続ノード数は、例えば、ノード3からデータ収集サーバ1宛に定期的に送られる検針データ(フレーム)を一定期間にわたって監視することにより把握する。また、ゲートウェイ2Aは、後述する存在通知フレームを定期的にブロードキャストする。
<ノード3の主要動作>
 システム内の各ノード3は、マルチホップ通信が可能な状態にあるゲートウェイを把握するために、ゲートウェイから送信されるGW広告を監視する。また、自身の存在を他のノード3が把握できるように、自身の情報(識別情報など)を含んだ存在通知フレームを定期的にブロードキャストする。ノード3は、存在通知フレームを受信することにより、周囲に存在している隣接ノード(直接通信が可能な他のノード3)を把握できる。また、ノード3は、需要家における使用電力量を計測し、計測結果である検針データを含んだフレームをゲートウェイ2Aまたは2B宛に定期的に送信する。送信タイミングは、例えばGW広告などによりゲートウェイから指定される。
 図3は、検針データを送信するフレーム(以下、検針データフレームと称する)の構成例を示す図である。検針データフレームは、制御情報として、「グローバル宛先アドレス」、「グローバル差出アドレス」、「ローカル宛先アドレス」、「ローカル差出アドレス」、「フレーム識別情報」、「経路迂回回数」を含む。図示を省略しているが、ペイロードには検針データが格納される。
 「グローバル宛先アドレス」は、検針データフレームの最終的な宛先とする装置のアドレスを示し、図1に示される構成の場合はゲートウェイ2Aまたは2Bのアドレスが設定される。「グローバル差出アドレス」は、検針データフレームを最初に送信するノード3、すなわち、検針データフレームで送信する検針データを取得したノード3のアドレスが設定される。「ローカル宛先アドレス」は、検針データフレームの直接の送信先(次の送信先)であり、隣接ノードの中のいずれか一つのアドレスが設定される。「ローカル差出アドレス」は、検針データフレームを送信または転送するノード3のアドレスが設定される。
 グローバル宛先アドレスおよびグローバル差出アドレスは、不変である。一方、ローカル宛先アドレスおよびローカル差出アドレスは、検針データフレームが転送されるごとに更新される。例えば、ノード311がゲートウェイ2Aに対して、ノード31経由で検針データフレームを送信する場合、ノード311は、検針データフレームのグローバル宛先アドレスにゲートウェイ2Aのアドレスを、グローバル差出アドレスに自身のアドレスを、ローカル宛先アドレスにノード31のアドレスを、ローカル差出アドレスに自身のアドレスをそれぞれ設定して送信する。このフレームはノード31に受信され、ノード31は、受信した検針データフレームのローカル宛先アドレスをゲートウェイ2Aのアドレスに変更するとともにローカル差出アドレスを自身のアドレスに変更した上でゲートウェイ2Aへ転送する。
 「フレーム識別情報」は、フレームを一意に示す情報であり、フレームを受信したノード3,ゲートウェイ2Aおよび2Bは、この情報を確認することにより、同じフレームを受信済みかどうか判別する。
 「経路迂回回数」は、検針データフレームがネットワーク上に長時間滞留してしまうことの防止、および無駄なフレーム送信発生の防止を実現するための制御で使用する情報である。詳細な使用方法については後述するが、この経路迂回回数は、検針データフレームのグローバル宛先アドレスとして示されているゲートウェイに隣接しているノード3が当該ゲートウェイに対して当該フレームの送信を失敗した場合に更新される。例えば、ノード31からゲートウェイ2Aへの検針データフレーム送信が失敗した場合、ノード31は検針データフレームに設定されている経路迂回回数から1を減じる。なお、ノード3からゲートウェイ2Aまたは2Bへの送信が失敗した場合にのみ、経路迂回回数をそれまで設定されていた回数から1回少ない回数に変更する。すなわち、グローバル宛先アドレスとローカル宛先アドレスに同じ値が設定されている検針データフレームの送信が失敗した場合に経路迂回回数を変更する。この経路迂回回数は、グローバル宛先アドレスとローカル宛先アドレスに同じ値が設定されている検針データフレームの送信試行をあと何回許可するかを示す。
 図4は、ノード3が保持しているゲートウェイ情報の一例を示す図である。ノード3は、接続可能なゲートウェイの情報(以下、ゲートウェイ情報と称する)を保持しており、ゲートウェイ情報には、「GW-ID」、「上位装置との通信」、「動作状態」、「選択状況」、「最新GW広告受信時刻」を含む。
 「GW-ID」はゲートウェイの識別情報である。
 「上位装置との通信」は、ゲートウェイとその上位の装置(本実施の形態ではデータ収集サーバ1とする)との間の通信が正常かどうかを示す情報である。ノード3は、システム内の各ゲートウェイから配信されるGW広告(既に説明済み)を確認することにより、ゲートウェイとデータ収集サーバ1の通信状態(正常に通信できているかどうか)を知ることができる。GW広告が受信できていない場合は“不明”となる。
 「動作状態」はゲートウェイが正常に動作しているか否かを示す情報である。ノード3は、あるゲートウェイから送信されるはずのGW広告または存在通知フレームを一定期間にわたって受信できない場合、または、受信したGW広告に含まれる「上位装置との通信」情報が異常または不明と示されていた場合に、当該ゲートウェイで障害(装置故障や停電など)が発生したと判断する。障害が発生したと判断した場合、障害発生と判断したゲートウェイの動作状態を“異常”に変更する。その後、「動作状態」を“異常”としているゲートウェイから上位装置との通信状態が正常であるGW広告が配信されてきた場合、「動作状態」を“正常”に変更する。
 「選択状況」は、検針データフレームの送信先としているゲートウェイおよび予備のゲートウェイを示す情報である。ノード3は、「動作状態」および「上位装置との通信」が共に“正常”であるゲートウェイの中の1台を選択して“現用”とし、残りを“予備”とする。選択候補が複数ある場合にどのゲートウェイを“現用”とするかは、ゲートウェイまでのホップ数、ゲートウェイまでの経路における通信品質などに基づいて決定する。ホップ数に基づいて選択する場合、例えば、ホップ数がより少なくなるものを優先的に選択する。通信品質に基づいて選択する場合は、例えば、過去の一定期間における送信成功率が最も高いものを優先的に選択する。送信が失敗するごとに、現用とするゲートウェイを順次切り替えるようにしてもよい。ホップ数と通信品質など、複数の情報に基づいて選択してもよい。
 「最新GW広告受信時刻」は、最後にGW広告を受信した時刻である。既に説明したように、この情報は、ゲートウェイの動作状態を判別するために使用される。
 以上のように、ゲートウェイ情報は、システム内の各ゲートウェイから配信されるGW広告を受信することにより、生成・更新する情報である。なお、ノード3は、GW広告を受信した場合、これを転送する必要があるかどうか判断し、転送する必要がある場合には、ブロードキャストにより転送する。転送の必要性判断は、例えば、転送されるごとに値が変更されるTTL(Time To Live)により判断する。このとき、すでに転送済みのものと同じ内容のGW広告を再度受信した場合には、TTLによらず転送を行わない。
 また、ノード3は、検針データフレーム(図3参照)を送信する際に参照する経路情報として、図5に例示される情報を保持している。すなわち、「宛先候補」、「隣接ノードID」、「宛先までのホップ数」を含む経路情報を保持している。なお、図5に示される経路情報は、図1に示されるノード31が保持しているものに相当する。
 「宛先候補」は、検針データフレームのグローバル宛先アドレスに設定する候補となるゲートウェイの識別情報(例えばアドレス)である。ノード3は、GW広告を受信した場合、その送信元のゲートウェイが宛先候補に登録済かどうか確認し、未登録であれば追加登録する。
 「隣接ノードID」は、隣接ノードの識別情報(例えばアドレス)であり、左隣の「宛先候補」に記載された識別情報(またはこれに対応するアドレス)がグローバル宛先アドレスに設定された検針データフレームを送信または転送する際に送信先(直接送信する相手)として選択可能な隣接ノードのリストである。なお、ゲートウェイと直接通信が可能な場合、当該ゲートウェイの識別情報も隣接ノードIDとして保持される。図5の最上段に記載した「G01」がゲートウェイの識別情報に相当する。ノード3は、GW広告または存在通知フレームを自身へ転送してきた隣接ノード(他のノード3またはゲートウェイ)の識別情報を隣接ノードIDとして追加登録する。ノード3は、あるゲートウェイが送信したGW広告または存在通知フレームを複数の隣接ノードから受信することがある。隣接ノードIDに登録されている識別情報の隣接ノード以外からGW広告または存在通知フレームを受信した場合、受信したGW広告または存在通知フレームを自身へ転送してきた隣接ノードの識別情報を、GW広告を送信したゲートウェイ(宛先候補)と対応させて隣接ノードIDに追加登録する。
 「宛先までのホップ数」は、左隣の「隣接ノードID」に対応するノード3(ゲートウェイの場合もある)をフレームの送信先として選択した場合における、その左隣の「宛先候補」が示すゲートウェイまでのホップ数である。このホップ数は、例えば、各ゲートウェイから配信されるGW広告から知ることができる。GW広告に転送回数の情報を含め、各ノード3はGW広告を転送する際に転送回数情報を更新するようにして、ホップ数を取得できるようにできる。
 なお、図5に示される経路情報の構成は一例であり、検針データフレームを送信/転送する際に必要な情報が管理できるのであれば、どのような構成であっても構わない。
<ノード3による検針データの送信動作>
 次に、ノード3による検針データ(検針データフレーム)の送信、転送動作について、具体例を示しながら説明する。ここでは、一例として、図1に示されるノード311が検針データを送信する場合について説明する。なお、ノード311は、初期状態ではゲートウェイ2Aを検針データの送信先として選択しているものとする。
(正常時の動作)
 ノード311は、検針データの送信時刻になったかどうかを監視しており、送信時刻になると、検針データフレームを生成し、ゲートウェイ2Aに向けて送信する。すなわち、検針データフレームの送信時刻になると、ノード311のメッセージ送受信部32(図2参照)は、計測部33から計測データを取得し、検針データフレーム(図3参照)を生成する。このとき、まず、記憶部34で保持されているゲートウェイ情報(図4参照)を確認し、選択状況が“現用”とされているゲートウェイを認識する。ここでは、ゲートウェイ2Aが“現用”であるものとして説明を続ける。メッセージ送受信部32は、次に、記憶部34で保持されている経路情報(図5参照)を確認し、検針データフレームを直接送信する隣接ノード(ローカル宛先)を選択する。ここでは、ゲートウェイ2Aまでのホップ数が最小となるノード31を選択したものとして説明を続ける。ローカル宛先の選択が終了すると、検針データフレームのグローバル宛先アドレスにゲートウェイ2Aのアドレスを、ローカル宛先アドレスにはノード31のアドレスを設定し、グローバル差出アドレスおよびローカル差出アドレスには自身(ノード311)のアドレスを設定する。また、経路迂回回数には転送失敗時の迂回動作(詳細は後述する)の最大実行回数を設定する。ここでは、「3回」を設定するものとする。
 ノード311が送信した検針データフレームを受信したノード31は、検針データフレームのグローバル宛先を確認して転送先(直接送信する相手)を決定する。転送先の決定は、経路情報に基づいて行う(図4,図5参照)。ここでは、転送先をゲートウェイ2Aに決定したものとして説明を続ける。ノード31は、転送先をゲートウェイ2Aに決定すると、ノード311から受信した検針データフレームのローカル宛先アドレスをゲートウェイ2Aに変更するとともに、ローカル差出アドレスを自身のアドレスに変更する。転送先の決定、ローカル宛先アドレスおよびローカル差出アドレスの変更は、ノード31のメッセージ送受信部32が行う。ノード31のメッセージ送受信部32は、アドレスの変更が終了すると、検針データフレームをゲートウェイ2Aへ送信する。
 ゲートウェイ2Aは、検針データフレームを正常に受信すると、検針データを取り出し、必要に応じて再フレーム化などを行ってからデータ収集サーバ1へ送信する。
(異常時の動作)
 次に、装置故障や通信障害などにより、ノード311がゲートウェイ2Aに向けて送信した検針データフレームをゲートウェイ2Aが受信できない場合の動作を説明する。
 ノード311による検針データフレームの送信動作、およびノード31による検針データフレームのゲートウェイ2Aへの転送動作は、上記(正常時の動作)と同じである。ただし、ゲートウェイ2Aは、ノード31により転送された検針データフレームを正常に受信できない状態にあるものとする。
 ノード31は、転送した検針データフレームをゲートウェイ2Aが受信できないことを検出すると、まず、隣接している他のノード3経由で(迂回経路で)ゲートウェイ2Aに検針データフレームを送信する必要があるか(迂回させる必要があるか)どうかを確認する。ノード311から受信した検針データフレームに設定されている経路迂回回数を確認し、経路迂回回数が1以上であれば、迂回させる必要があると判断する。迂回させる必要がある場合、迂回動作を開始する。具体的には、図6のフローに示すように、経路情報を確認し、転送先(迂回先)とする隣接ノードを決定する(ステップS1)。ここでは、迂回させる必要があり、かつ迂回先をノード32に決定したものとして説明を続ける。ノード32を迂回先に決定すると、ノード31は、ノード311から受信した検針データフレームのローカル宛先アドレスをノード32に変更するとともに、ローカル差出アドレスを自身のアドレスに変更する(ステップS2)。さらに、経路迂回回数から1を減じ(3回から2回に変更し)(ステップS3)、変更後の検針データフレームを転送する(ステップS4)。
 図7は、図6のステップS2およびS3にて実施する検針データフレームの書き換え動作に関する図である。ステップS2において、ノード31は、ステップS1にて決定した転送先であるノード32のアドレスをローカル宛先アドレスに、また自身のアドレスをローカル差出アドレスに設定する。また、ステップS3において、ノード31は経路迂回回数から1を減じた値を設定する。以上のように設定を行った変更後の検針データフレームを、ステップS4で転送する。
 ノード31により転送された検針データフレームを受信したノード32は、検針データフレームのグローバル宛先を確認して転送先を決定する。ここでは、転送先をゲートウェイ2Aに決定したものとして説明を続ける。ノード32は、転送先をゲートウェイ2Aに決定すると、受信した検針データフレームのローカル宛先アドレスをゲートウェイ2Aに変更するとともに、ローカル差出アドレスを自身のアドレスに変更し、ゲートウェイ2Aへ送信する。この検針データフレームをゲートウェイ2Aが正常に受信できた場合には、ここで動作終了となる。一方、正常に受信できない場合、ノード32は、必要に応じて、検針データフレームを他のノード3へ転送する(迂回させる)。
 すなわち、ノード32は、転送した検針データフレームをゲートウェイ2Aが受信できないことを検出すると、ノード31から受信した検針データフレームの経路迂回回数が1以上かどうかを確認することにより、迂回の必要性について判断し、迂回が必要な場合には、さらに、経路情報を確認し、迂回先とする隣接ノードを決定する。ここでは、迂回の必要があり、かつ迂回先をノード33に決定したものとして説明を続ける。ノード33を迂回先に決定すると、ノード32は、ノード31から受信した検針データフレームのローカル宛先アドレスをノード3に変更するとともに、ローカル差出アドレスを自身のアドレスに変更する。さらに、経路迂回回数から1を減じ(2回から1回に変更し)、変更後の検針データフレームを転送する。
 ノード32により転送された検針データフレームを受信したノード33は、ノード31により転送された検針データフレームを受信したノード32と同様の動作を行い、必要に応じて、検針データフレームをさらに迂回させる。ここでは、ノード34へさらに迂回させるものとして説明を続ける。なお、ノード33がノード34へ送信する検針データフレームの経路迂回回数は0回となる。
 ノード33により転送された検針データフレームを受信したノード34は、検針データフレームのグローバル宛先を確認して転送先を決定する。ここでは、転送先をゲートウェイ2Aに決定したものとして説明を続ける。ノード34は、転送先をゲートウェイ2Aに決定すると、受信した検針データフレームのローカル宛先アドレスをゲートウェイ2Aに変更するとともに、ローカル差出アドレスを自身のアドレスに変更し、ゲートウェイ2Aへ送信する。この検針データフレームをゲートウェイ2Aが正常に受信できない場合、ノード34は、検針データフレームに設定されている経路迂回回数を確認して迂回の必要性を判断するが、経路迂回回数が0回であるため、さらに迂回させることはしない。この場合、ノード34は、図8に示したフローに従った動作(返送動作)を実行する。すなわち、ノード34は、当該検針データフレームの送信元のノード(ここではノード33となる)を経路情報を確認することで決定し(ステップS11)、検針データフレームのローカル宛先アドレスをノード33に変更するとともに、経路迂回回数は0回のままとする(ステップS12)。その後、変更した検針データフレームを返送する(ステップS13)。また、ノード34は、返送された検針データフレームの経路迂回回数が0回であることを条件として、検針データフレームに設定されているグローバル宛先アドレスに対応するゲートウェイが正常動作できていないと判断し、図4に示されるゲートウェイ情報の該当箇所を更新する(ステップS14)。すなわち、正常動作できていないと判断したゲートウェイの「動作状態」を“異常”に変更する(図4では、現用として選択されているG02の動作状態を“異常”とする)。これにより、検針データフレームを送信しても正常に受信できない可能性が高いゲートウェイを、自身で測定した検針データを含んだ検針データフレームを送信する際の送信先候補から除外することができる。よって、無駄な送信が発生するのを防止できるとともに、検針データフレームがネットワーク上に滞留する時間を短縮化できる。なお、「動作状態」を“異常”としているゲートウェイから上位装置との通信状態が正常であるGW広告が配信されてきた場合、「動作状態」を“正常”に戻す。
 図9は、図8のステップS12で実施する検針データフレームの書き換え動作に関する図である。ステップS12において、ノード34は、ステップS11で決定した転送先であるノード33のアドレスをローカル宛先アドレスに、また自身のアドレスをローカル差出アドレスに設定する。また、経路迂回回数は0のままとする。以上のように設定を行った変更後の検針データフレームを、ステップS13で返送する。
 ノード34により返送された検針データフレームを受信したノード33は、この検針データフレームを最初に受信したときの送信元であるノード32へ返送する。このとき、経路迂回回数は変更しない。また、設定されているグローバル宛先アドレスに対応するゲートウェイが正常動作できていないと判断し、保持しているゲートウェイ情報の該当箇所を更新する。以下、ゲートウェイ2Aが正常に受信できなかった検針データフレームは、最初に送信された経路上の各ノード(ノード32およびノード31)を経由して、送信元のノード311に到達する。なお、検針データフレームを返送する際のノード32およびノード31の動作はノード34による返送動作と同様である。
 なお、各ノードは、フレームの送信先とする隣接ノードを通信品質に基づいて決定する、または通信品質に応じて送信先候補の優先度(選択されやすさ)を更新する構成としている場合、検針データフレームの返送動作時には、保持している通信品質を更新しないこととする。
 ゲートウェイ2A宛の検針データフレームを最初に送信したノード311は、このフレームが返信されてきた場合、送信に失敗したと判断し、ゲートウェイ2A以外に送信先候補のゲートウェイ(ゲートウェイ情報の「選択状況」が“予備”とされているゲートウェイ)が存在するかどうかを確認し、他の送信先候補が存在しているのであれば、当該他の送信先候補のゲートウェイ宛に再送する。他の送信先候補が存在しているかどうかは、保持しているゲートウェイ情報(図4)を確認することにより判断する。例えば、ゲートウェイ2Bが正常動作中であれば、上記の返送されてきた検針データフレームのグローバル宛先アドレスをゲートウェイ2Bのアドレスに変更し、経路迂回回数を初期化して(3回に戻して)、再送する。また、保持しているゲートウェイ情報を更新し、返送されてきた検針データフレームの宛先としたゲートウェイの「動作状態」を“異常”に変更する。
 ゲートウェイ2B宛に再送した検針データフレームも返送されてきた場合、再度、他の送信先候補の有無を確認し、他の送信先候補が存在していれば、その送信先候補宛に再送する。以下、送信先候補が無くなるまで、同様の処理を繰り返す。
 以上のように、本実施の形態の自動検針システムにおいて、ゲートウェイに隣接していない第1のノード3(例えば図1のノード311)は、図10に示したように、検針データの送信時刻になると、検針データを取得し、経路迂回回数に初期値を設定した検針データフレームの生成および送信を行い(ステップS21)、検針データフレームが返送されてこなければ動作終了となる(ステップS22:No)。検針データフレームが返送されてきた場合には(ステップS22:Yes)、検針データフレームの他の送信先候補のゲートウェイがあるかどうかを確認し(ステップS23)、他の送信先候補(ゲートウェイ)がある場合(ステップS23:Yes)、返送されてきた検針データフレームのグローバル宛先アドレスを他の送信先候補ゲートウェイのアドレスに変更し、また、ローカル宛先アドレスを、変更後のグローバル宛先アドレスに対応するアドレス(隣接ノードのアドレス)に変更し、経路迂回回数を初期化した上で再送する(ステップS24)。他の送信先候補(ゲートウェイ)が無い場合には(ステップS23:No)、動作を終了する。
 一方、ゲートウェイに隣接している第2のノード3(例えば図1のノード32)は、検針データフレームを受信すると図11に従った動作を行う。すなわち、検針データフレームを受信すると(ステップS31)、これを隣接しているゲートウェイへ転送する(ステップS32)。ゲートウェイへの転送が成功した場合は動作終了となる(ステップS33:Yes)。転送が失敗した場合には(ステップS33:No)、ステップS31で受信した検針データフレームの経路迂回回数が0以外(正の整数)かどうか確認し(ステップS34)、0以外の場合(ステップS34:Yes)、迂回経路があるかどうかを確認する(ステップS35)。そして、迂回経路がある場合には(ステップS35:Yes)、検針データフレームの経路迂回回数を更新(1を減算)し、迂回経路上の隣接ノードへ転送する(ステップS36)。上記の経路迂回回数が0の場合(ステップS34:No)や迂回経路が無い場合(ステップS35:No)には、検針データフレームを返送する(ステップS37)。
 なお、ノード3は、経路迂回回数が0の検針データフレームを受信した場合、そのグローバル差出アドレスに設定されているアドレスのノード3に向けて転送(返送)を行う(経路迂回回数は変更せずに転送する)。
 このように、本実施の形態の自動検針システムにおいて、各ノードは、測定結果を収集サーバに向けて送信する場合、測定情報を含んだ検針データフレームに対して経路迂回回数を設定し、また、ゲートウェイに対して直接送信した検針データフレームを当該ゲートウェイが正常に受信できない場合、当該検針データフレームに設定されている経路迂回回数を確認し、0回以外の値が設定されている場合には、設定値から1を減じた上で、他のノードへ転送する(他の経路へ迂回させる)こととした。また、経路迂回回数が0回の場合には、さらに迂回させること無く、送信元のノードへ返送することとした。これにより、例えば、宛先のゲートウェイが故障している場合に、故障中のゲートウェイと隣接関係にあるノードが迂回動作を延々と繰り返してしまうのを回避できる。その結果、フレームの転送遅延時間が増大するのを抑制でき、フレームがネットワーク上に滞留する時間が増大するのを防止できる。また、無駄なフレーム送信が発生するのを防止できる。
 また、経路迂回回数が0回の検針データフレームを返送する経路上の各ノードは、返送動作において、保持しているゲートウェイ情報を更新するので、正常に動作していない可能性が高いゲートウェイ宛にフレームを送信してしまうのを回避でき、この点からも、フレームがネットワーク上に滞留する時間が増大するのを防止できるとともに、無駄なフレーム送信が発生するのを防止できる。
 なお、本実施の形態では、ゲートウェイ宛に送信する検針データフレームを受信した場合の動作について説明したが、ゲートウェイ宛のフレームのみならず、ノード3宛のフレームに対して同様の制御を行うようにしてもよい。すなわち、最初にフレームを送信するノードが経路迂回回数を設定し、各ノードは、グローバル宛先アドレスとローカル宛先アドレスの設定値が同じフレームの送信(転送)に失敗した場合に、経路迂回回数が1回以上であれば、当該フレームの経路迂回回数を変更し(1回減らし)、他の経路にフレームを送信する(迂回させる)ようにしてもよい。
実施の形態2.
 実施の形態1では、検針データフレームの送信先候補のゲートウェイが複数存在する場合の動作を説明したが、本実施の形態では、送信先候補のゲートウェイが1台の場合の動作について説明する。
 既に説明したように、ゲートウェイは、定期的にGW広告をブロードキャストし、自身の存在とデータ収集サーバ1との通信状態をノード3に通知するが、停電などによりゲートウェイが停止し、GW広告が配信されなくなる場合もありうる。
 一方、ノード3は、GW広告の受信を監視しており、最後にGW広告を受信してから一定期間(第1の期間)が経過した場合、ゲートウェイで障害が発生したと判断し、検針データフレームの送信を停止する。このとき、上述したゲートウェイ情報の「動作状態」を“異常”に変更する。ただし、GW広告の受信動作は継続し、当該ゲートウェイの復旧を監視する。これにより、検針データフレームが不必要に送信されるのを防止するとともに、ゲートウェイが復旧した場合には早期に検出できる。また、障害発生と判断したゲートウェイ宛のフレームを送信する際に参照する経路情報は、第1の期間よりも長い第2の期間にわたって保持し続け、ゲートウェイが復旧した場合に直ちにネットワークが復旧できるようにする。第2の期間が経過した場合には、経路情報を初期化し、ネットワークを再構築する。なお、フレームの送信を停止している間も、電力等の測定は継続し、ネットワークが復旧した後に送信できるよう、測定結果を保持しておく。
 このように、ノード3は、GW広告の受信結果に基づいてゲートウェイの障害発生を検出し、障害発生検出後は、当該ゲートウェイ宛の検針データフレームの送信を停止することとした。また、障害発生後、一定の期間(上記第2の期間)が経過するまでは、当該ゲートウェイ宛のフレーム送信時に使用する経路情報を保持し続けることとした。これにより、無駄なフレーム送信が発生するのを防止できるとともに、ゲートウェイが復旧した後の早期のネットワーク回復が期待できる。また、ゲートウェイが復旧する見込みがないにもかかわらず、復旧を待ち続け、ネットワークの再構築動作の開始が必要以上に遅れてしまうのを防止できる。なお、ノード3は、GW広告が受信できない間の検針データを保持しておき、ゲートウェイが復旧した場合には、送信できずに保持しておいた検針データをフレーム化して送信する。
 実施の形態2は、実施の形態1と組み合わせることなく単独で実施することも可能であり、その場合においても、ゲートウェイが復旧した後の早期のネットワーク回復が期待できる。
実施の形態3.
 以下に、本発明にかかる通信装置の実施の形態3を詳細に説明する。なお、ここでは実施の形態1と異なる事項についてのみ説明し実施の形態1と共通する事項については説明を省略する。
 実施の形態1では、ゲートウェイ2Aへの送信が失敗した場合に発生した迂回により経路迂回回数を減算する構成を示した。本実施の形態3では、ゲートウェイ2Aの動作状態を異常とノード31が判断した場合は、ゲートウェイ2A向けの送信試行を行わず、ノード31は直ちに、経路迂回回数を減算し、ノード3に対して送信する(迂回させる)構成とする。
 ノード31はGW広告または存在通知フレーム等によりゲートウェイ2Aが正常に動作しているか否かをモニタしている。ここでゲートウェイ2Aが故障した場合、定期的に送信されるGW広告または存在通知フレーム等をノード31は受信しなくなり、これによりゲートウェイ2Aの異常を検出する。ノード31におけるゲートウェイ2Aへの最優先の経路が、ノード31からゲートウェイ2Aに直接転送を行う経路である状況で、ノード31がゲートウェイ2Aの異常を検出した場合、ノード31は、ゲートウェイ2A宛のフレームを受信すると、ゲートウェイ2Aに対しての直接送信を行わず、例えば、ノード31よりノード3を経由してゲートウェイ2Aに送信する迂回動作を行うとともに、経路迂回回数を減算する。
 また、通信品質に応じて送信先候補の優先度(選択されやすさ)を更新する構成としている場合、上記検針データフレームの迂回動作時には、保持している通信品質を更新しない構成としてもよい。
 なお、ノード31におけるゲートウェイ2Aへの最優先の経路が、ノード31からゲートウェイ2Aに直接転送を行う経路でない状態で、ノード31がゲートウェイ2Aの異常を検出した場合、ノード31が、ゲートウェイ2A宛のフレームを受信すると、最優先の経路への転送が行われ、迂回動作は行われない。また、異常の検出には、GW広告または存在通知フレーム等にゲートウェイの異常を示す情報が含まれ、GW広告または存在通知フレーム等を受信できているが、その中にゲートウェイの異常を示す情報が含まれる場合、当該情報に基づき、ゲートウェイの異常を検出することもできる。
 この構成により、事前に異常であると判断したゲートウェイに対するフレームの無駄な送信試行を抑制することが可能となるとともに、フレームがネットワーク上に滞留する時間が増大するのを防止する効果を奏する。
実施の形態4.
 以下に、本発明にかかる通信装置の実施の形態4を詳細に説明する。なお、ここでは実施の形態1と異なる事項についてのみ説明し実施の形態1と共通する事項については説明を省略する。
 実施の形態3では、ノード31がゲートウェイ2Aからの信号に基づき、ゲートウェイが異常と判断する構成について述べたが、本実施の形態4では、ノード31がゲートウェイ2Aに対して実施したフレーム送信試行の結果に基づき、ゲートウェイ2Aの異常を判断する構成を述べる。
 実施の形態4では、ノード31がゲートウェイ2Aを宛先とするフレームを受信し、ゲートウェイ2Aに対して当該フレームを送信する。ノード31のゲートウェイ2Aに対する送信が所定の回数失敗した場合は、ノード31はゲートウェイ2Aが異常であると判断する。
 以降、ノード31の動作は、実施の形態3と同様に、ゲートウェイ2A宛のフレームを転送する場合、ゲートウェイ2A向けの送信試行を行わず、直ちに、経路迂回回数を減算し、ノード3に対して送信する(迂回させる)動作を行う。
 この構成により、異常であると判断したゲートウェイに対するフレームの無駄な送信試行を抑制することが可能となるとともに、フレームがネットワーク上に滞留する時間が増大するのを防止する効果を奏する。また、実施の形態3の定期的に送信されるGW広告または存在通知フレーム等に基づいて異常と判断するよりも、短時間でゲートウェイの異常を検出する効果も奏する。
実施の形態5.
 以下に、本発明にかかる通信装置の実施の形態5を詳細に説明する。なお、ここでは実施の形態1と異なる事項についてのみ説明し実施の形態1と共通する事項については説明を省略する。
 実施の形態1では、ゲートウェイ2Aへの送信が失敗した場合に発生した迂回により経路迂回回数を減算する構成を示した。本実施の形態5では、ゲートウェイ2Aへの経路途中で発生するローカル差出アドレスであったノードへの返送を経路迂回回数として減算し、経路迂回回数が0となった場合は、グローバル差出アドレスのノードに戻す形態を説明する。
 ゲートウェイ2Aへの経路途中で、あるノードがゲートウェイ2A向きの複数の経路に対して送信を試みたが、全ての送信が行えなかった場合、該当ノードが受信したフレームのローカル差出アドレスで示されていたノードへのフレーム返送を行う。このローカル差出アドレスであったノードへの返送が発生した場合に経路迂回回数を減算する。経路迂回回数を減算しようとした時、値が0となっていた場合は、ローカル差出アドレスであったノードを介してグローバル差出アドレスのノードまでフレームを返送する。このように構成することにより、検針データ等のフレームがネットワーク上に滞留する時間が増大するのを抑制する。
 ここで、述べた経路迂回回数は、実施の形態1で示したゲートウェイ2Aへの送信が失敗し迂回が発生した場合に減算するカウンタと、本実施の形態5で示したゲートウェイ2Aへの経路途中で発生したローカル差出アドレスであったノードへの返送が発生した場合に減算するカウンタと独立に2つのカウンタを持つ構成としてもよいし、2つの内容を1つのカウンタで合わせる構成としてもよい。また、本実施の形態では、中継経路のどこでローカル差出アドレスであったノードへの返送が発生した場合でも経路迂回回数の減算を行う例を示したが、経路迂回回数の減算はゲートウェイ宛ての送信によるローカル差出アドレスであったノードへの返送が発生した場合に限って実施する形態も考えられる。
実施の形態6.
 以下に、本発明にかかる通信装置の実施の形態6を詳細に説明する。なお、ここでは実施の形態5と異なる事項についてのみ説明し実施の形態5と共通する事項については説明を省略する。
 実施の形態5では、ローカル差出アドレスであったノードへの返送が発生した場合に経路迂回回数の値が0となっていた場合は、ローカル差出アドレスであったノードを介してグローバル差出アドレスのノードまでフレームを返送し、返送された検針データフレームの経路迂回回数を初期化したうえで、他の送信先候補のゲートウェイ宛に再送する動作を示した。本実施の形態では、ローカル差出アドレスであったノードへの返送が発生した場合に、当該ノードがグローバル差出アドレスのノードである場合の動作を説明する。
 あるノードから、ローカル差出アドレスであったノードへの返送が発生した場合に、経路迂回回数の値が1以上であり、かつ返送されたフレームを受信したノードのアドレスと、返送されたフレームのグローバル差出アドレスが一致した場合、返送されたフレームを受信したノードは、返送されたフレームの経路迂回回数の値によらず、即座に他の送信先候補のゲートウェイ宛に再送する。なお、上述した実施の形態5では、他の送信先候補のゲートウェイに再送する際には経路迂回回数の値を初期化する構成を示したが、経路迂回回数の値を保持する(初期化しない)構成としてもよい。
 このように、グローバル差出アドレスにフレームが返送された場合に、経路迂回回数の値が1以上の場合において、現在選択しているゲートウェイ宛に送信するのではなく、他の送信先候補のゲートウェイに宛先を切り替える構成とすることにより、ネットワークの滞留する時間が増大するのを抑制することができる。
 各実施の形態では、需要家における電気量(使用電力量)測定とこれに関連する情報を計測するノードの例について説明したが、水道やガスなどの使用量を測定する場合にも適用できる。
 以上のように、本発明にかかるデータ通信装置は、自動検針システムのアドホックネットワークを形成するノードとして有用である。
 1 データ収集サーバ、2A,2B ゲートウェイ、31~326 無線局(ノード)、31 無線通信部、32 メッセージ送受信部、33 計測部、34 記憶部、35 時刻管理部、36 アンテナ。

Claims (11)

  1.  1台以上のゲートウェイとともにメッシュネットワークを形成するデータ通信装置であって、
     検針データを含んだフレームである検針データフレームを生成してゲートウェイ宛に送信するフレーム生成部と、
     他のデータ通信装置から受信したゲートウェイ宛の検針データフレームを転送するフレーム転送部と、
     を備え、
     前記フレーム生成部は、検針データフレームの宛先のゲートウェイに隣接しているデータ通信装置から当該ゲートウェイへの送信試行許可回数である経路迂回回数を付加した検針データフレームを送信し、
     前記フレーム転送部は、隣接しているゲートウェイに対する検針データフレームの転送に失敗し、かつ当該検針データフレームに付加されている経路迂回回数が1回以上の場合、付加されている経路迂回回数をそれまでよりも1回少ない値に変更した上で他のデータ通信装置へ転送する、
     ことを特徴とするデータ通信装置。
  2.  隣接しているゲートウェイに対する検針データフレームの転送に失敗し、かつ当該検針データフレームに付加されている経路迂回回数が0回の場合、当該検針データフレームの送信元へ当該検針データフレームを返送することを特徴とする請求項1に記載のデータ通信装置。
  3.  過去に転送した検針データフレームが返送されてきた場合、当該検針データフレームを最初に受信した際の送信元へ当該検針データフレームを返送することを特徴とする請求項1または2に記載のデータ通信装置。
  4.  自身が生成した検針データフレームが返送されてきた場合、当該検針データフレームの宛先としたゲートウェイとは異なる他のゲートウェイが存在していれば、当該他のゲートウェイを新たな宛先に設定して当該検針データフレームを再送することを特徴とする請求項1、2または3に記載のデータ通信装置。
  5.  自身が生成した検針データフレームが返送されてきた場合、当該検針データフレームに付加されている経路迂回回数が1回以上であり、かつ当該検針データフレームの宛先としたゲートウェイとは異なる他のゲートウェイが存在していれば、当該他のゲートウェイを新たな宛先に設定し、付加されている経路迂回回数を初期化して当該検針データフレームを再送することを特徴とする請求項1~4のいずれか一つに記載のデータ通信装置。
  6.  返送されてきた検針データフレームを受信した場合、当該検針データフレームの宛先のゲートウェイが故障中であると判断し、以降の検針データフレーム送信では、宛先の候補から当該ゲートウェイを除外することを特徴とする請求項1~5のいずれか一つに記載のデータ通信装置。
  7.  各ゲートウェイから定期的にブロードキャストされる、送信元ゲートウェイに関する情報を含んだGW広告が受信できなくなった場合、受信できなくなったGW広告の送信元ゲートウェイを、検針データフレームの宛先の候補から除外することを特徴とする請求項1~6のいずれか一つに記載のデータ通信装置。
  8.  各ゲートウェイから定期的にブロードキャストされる、送信元ゲートウェイに関する情報を含んだGW広告を受信し、当該GW広告により、前記ゲートウェイと該ゲートウェイの上位装置の間の通信状態が異常であると判断した場合、前記GW広告の送信元ゲートウェイを、検針データフレームの宛先の候補から除外することを特徴とする請求項1~7のいずれか一つに記載のデータ通信装置。
  9.  各ゲートウェイから定期的にブロードキャストされる、送信元ゲートウェイに関する情報を含んだGW広告と、他のデータ通信装置から定期的に送信される、送信元データ通信装置に関する情報を含んだ存在通知フレームと、に基づいて、前記検針データフレームを送信する際に参照する経路情報を生成・保持し、メッシュネットワークを形成しているゲートウェイが1台の場合には、当該ゲートウェイからのGW広告が受信できない状態となってから第1の期間が経過すると、検針データフレームの生成・送信動作を停止し、さらに、第2の期間が経過すると、保持している経路情報を初期化する、
     ことを特徴とする請求項1~8のいずれか一つに記載のデータ通信装置。
  10.  1台以上のゲートウェイと、
     前記ゲートウェイとともにメッシュネットワークを形成し、検針データを含んだフレームである検針データフレームを生成してゲートウェイ宛に送信するフレーム生成部、および他の装置から受信したゲートウェイ宛の検針データフレームを転送するフレーム転送部を備えたデータ通信装置と、
     を備え、
     前記フレーム生成部は、検針データフレームの宛先のゲートウェイに隣接しているデータ通信装置から当該ゲートウェイへの送信試行許可回数である経路迂回回数を付加した検針データフレームを送信し、
     前記フレーム転送部は、隣接しているゲートウェイに対する検針データフレームの転送に失敗し、かつ当該検針データフレームに付加されている経路迂回回数が1回以上の場合、付加されている経路迂回回数をそれまでよりも1回少ない値に変更した上で他のデータ通信装置へ転送する、
     ことを特徴とするデータ通信システム。
  11.  1台以上のゲートウェイと、前記ゲートウェイとともにメッシュネットワークを形成し、検針データを含んだフレームである検針データフレームを生成してゲートウェイ宛に送信する複数の無線局と、を備えた通信システムで実行するデータ通信方法であって、
     第1の無線局が、検針データフレームの宛先のゲートウェイに隣接している第2の無線局から当該ゲートウェイへの送信試行許可回数である経路迂回回数を付加した検針データフレームを生成するフレーム生成ステップと、
     前記第2の無線局が、隣接しているゲートウェイに対する検針データフレームの転送に失敗し、かつ当該検針データフレームに付加されている経路迂回回数が1回以上の場合、付加されている経路迂回回数をそれまでよりも1回少ない値に変更した上で他の無線局へ転送するフレーム転送ステップと、
     を含むことを特徴とするデータ通信方法。
PCT/JP2013/055849 2012-03-09 2013-03-04 データ通信装置、データ通信システム及びデータ通信方法 WO2013133211A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380013303.0A CN104205999B (zh) 2012-03-09 2013-03-04 数据通信装置、数据通信系统以及数据通信方法
JP2014503834A JP5836477B2 (ja) 2012-03-09 2013-03-04 データ通信装置、データ通信システム及びデータ通信方法
US14/479,827 US9628372B2 (en) 2012-03-09 2014-09-08 Data communication apparatus, data communication system, and data communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012053830 2012-03-09
JP2012-053830 2012-03-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/479,827 Continuation US9628372B2 (en) 2012-03-09 2014-09-08 Data communication apparatus, data communication system, and data communication method

Publications (1)

Publication Number Publication Date
WO2013133211A1 true WO2013133211A1 (ja) 2013-09-12

Family

ID=49116688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055849 WO2013133211A1 (ja) 2012-03-09 2013-03-04 データ通信装置、データ通信システム及びデータ通信方法

Country Status (3)

Country Link
US (1) US9628372B2 (ja)
JP (1) JP5836477B2 (ja)
WO (1) WO2013133211A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015065625A (ja) * 2013-09-26 2015-04-09 関西電力株式会社 通信装置、無線ネットワークシステム、無線ネットワーク制御方法、及び、無線ネットワーク制御プログラム
JP2015095723A (ja) * 2013-11-11 2015-05-18 富士通株式会社 通信システム、通信方法および通信プログラム
JP2015097347A (ja) * 2013-11-15 2015-05-21 富士通株式会社 ノード装置、制御プログラム、及びノード装置の動作方法
WO2016152307A1 (ja) * 2015-03-25 2016-09-29 日本電気株式会社 通信装置、通信方法、およびプログラム
JP2017529792A (ja) * 2014-09-16 2017-10-05 マイクロソフト テクノロジー ライセンシング,エルエルシー コンピュータネットワークにおけるエンドポイント識別方法
JP2019028953A (ja) * 2017-08-03 2019-02-21 パナソニックIpマネジメント株式会社 中継装置、受信機、防災システム、及びプログラム
JP2019215704A (ja) * 2018-06-13 2019-12-19 パナソニックIpマネジメント株式会社 通信装置、通信システム
WO2020145026A1 (ja) * 2019-01-09 2020-07-16 国立研究開発法人情報通信研究機構 無線通信システム
US10904130B2 (en) 2014-09-11 2021-01-26 Microsoft Technology Licensing, Llc Method for scalable computer network partitioning
WO2021020051A1 (ja) * 2019-07-30 2021-02-04 日本電気株式会社 データ収集システム、データ出力装置、及びデータ収集方法
CN114868367A (zh) * 2019-11-08 2022-08-05 沃达丰Ip许可有限公司 用于在移动电信网络中交换周期性数据的方法和系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6077728B2 (ja) * 2014-12-01 2017-02-08 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 不正検知電子制御ユニット、車載ネットワークシステム及び不正検知方法
CN107205059B (zh) * 2016-03-17 2021-02-12 华为技术有限公司 管理表计设备地址的方法、采集终端和表计设备
US20180062879A1 (en) * 2016-08-31 2018-03-01 Cooper Technologies Company Systems and methods for increasing network access capacity
FR3068559B1 (fr) * 2017-06-30 2019-08-02 Enensys Technologies Procede de generation d'un flux de donnees, passerelle de diffusion, procede et equipement de selection d'un flux de donnees et programme d'ordinateur correspondant
CN108055679B (zh) * 2018-01-26 2020-11-13 乐鑫信息科技(上海)股份有限公司 一种mesh网络流控的方法
JP7388303B2 (ja) * 2020-07-06 2023-11-29 トヨタ自動車株式会社 異常検出システム
US11929935B2 (en) * 2021-02-26 2024-03-12 Landis+Gyr Technology, Inc. Systems and methods to maintain time synchronization between networked devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010141656A (ja) * 2008-12-12 2010-06-24 Yokogawa Electric Corp ゲートウェイ装置及びこれを用いた無線制御ネットワーク管理システム
JP2010178145A (ja) * 2009-01-30 2010-08-12 Oki Electric Ind Co Ltd パケット中継システム及び無線ノード

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61189747A (ja) * 1985-02-18 1986-08-23 Mitsubishi Electric Corp パケツト交換網におけるパケツト伝送方法
JP2006511115A (ja) * 2002-12-18 2006-03-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ パケット交換方式ネットワークにおけるリターンパス導出
US7457293B2 (en) * 2004-04-05 2008-11-25 Panasonic Corporation Communication apparatus, method and program for realizing P2P communication
US8279870B2 (en) * 2007-08-01 2012-10-02 Silver Spring Networks, Inc. Method and system of routing in a utility smart-grid network
KR101301885B1 (ko) 2009-07-27 2013-08-29 후지쯔 가부시끼가이샤 노드 장치, 기억 매체 및 프레임 송신 방법
JP2011066536A (ja) * 2009-09-15 2011-03-31 Wakayama Univ 経路制御装置
US8981959B2 (en) * 2010-06-02 2015-03-17 Badger Meter, Inc. Apparatus and method for priority addressing and message handling in a fixed meter reading network
US8456982B2 (en) * 2010-08-26 2013-06-04 Verizon Patent And Licensing Inc. System and method for fast network restoration

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010141656A (ja) * 2008-12-12 2010-06-24 Yokogawa Electric Corp ゲートウェイ装置及びこれを用いた無線制御ネットワーク管理システム
JP2010178145A (ja) * 2009-01-30 2010-08-12 Oki Electric Ind Co Ltd パケット中継システム及び無線ノード

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015065625A (ja) * 2013-09-26 2015-04-09 関西電力株式会社 通信装置、無線ネットワークシステム、無線ネットワーク制御方法、及び、無線ネットワーク制御プログラム
JP2015095723A (ja) * 2013-11-11 2015-05-18 富士通株式会社 通信システム、通信方法および通信プログラム
JP2015097347A (ja) * 2013-11-15 2015-05-21 富士通株式会社 ノード装置、制御プログラム、及びノード装置の動作方法
US10904130B2 (en) 2014-09-11 2021-01-26 Microsoft Technology Licensing, Llc Method for scalable computer network partitioning
JP2017529792A (ja) * 2014-09-16 2017-10-05 マイクロソフト テクノロジー ライセンシング,エルエルシー コンピュータネットワークにおけるエンドポイント識別方法
WO2016152307A1 (ja) * 2015-03-25 2016-09-29 日本電気株式会社 通信装置、通信方法、およびプログラム
JPWO2016152307A1 (ja) * 2015-03-25 2018-01-18 日本電気株式会社 通信装置、通信方法、およびプログラム
JP2019028953A (ja) * 2017-08-03 2019-02-21 パナソニックIpマネジメント株式会社 中継装置、受信機、防災システム、及びプログラム
JP2019215704A (ja) * 2018-06-13 2019-12-19 パナソニックIpマネジメント株式会社 通信装置、通信システム
JP7149512B2 (ja) 2018-06-13 2022-10-07 パナソニックIpマネジメント株式会社 通信装置、通信システム
WO2020145026A1 (ja) * 2019-01-09 2020-07-16 国立研究開発法人情報通信研究機構 無線通信システム
US11722206B2 (en) 2019-01-09 2023-08-08 National Institute Of Information And Communications Technology Wireless communication system
WO2021020051A1 (ja) * 2019-07-30 2021-02-04 日本電気株式会社 データ収集システム、データ出力装置、及びデータ収集方法
CN114868367A (zh) * 2019-11-08 2022-08-05 沃达丰Ip许可有限公司 用于在移动电信网络中交换周期性数据的方法和系统

Also Published As

Publication number Publication date
US20140376359A1 (en) 2014-12-25
JPWO2013133211A1 (ja) 2015-07-30
CN104205999A (zh) 2014-12-10
JP5836477B2 (ja) 2015-12-24
US9628372B2 (en) 2017-04-18

Similar Documents

Publication Publication Date Title
JP5836477B2 (ja) データ通信装置、データ通信システム及びデータ通信方法
AU2008267052B2 (en) Method and system for providing network and routing protocols for utility services
TW201014396A (en) Network utilities in wireless mesh communications networks
TW201014395A (en) Load management in wireless mesh communications networks
WO2008156546A2 (en) Method and system for providing network and routing protocols for utility services
JP6197468B2 (ja) 通信装置、通信システム、通信制御方法および通信制御プログラム
JP2009302694A (ja) 無線通信ネットワークシステム
JP5709649B2 (ja) 通信システム、自動検針システムおよび監視サーバ
CN103873336A (zh) 分布式弹性网络互连的业务承载方法及装置
CN106161234A (zh) 路由消息递送方法、使用该方法的网络节点和通信网络
JP5870806B2 (ja) ブロードキャストパケット転送方法、通信ユニット、およびブロードキャストパケット転送プログラム
EP2958273A1 (en) Power line carrier communication terminal and meter reading terminal
US9801128B2 (en) Approach for extended battery life network nodes
WO2013129670A1 (ja) 端末、経路生成方法および経路生成プログラム
JP5853227B2 (ja) マルチホップ通信方法、マルチホップ通信システム、および通信端末
JP5788000B2 (ja) 通信システム、通信経路制御方法及び通信装置
JP2016119616A (ja) リング型ネットワークシステム、そのマスタノード
US10257763B2 (en) Routing protocol for advanced metering infrastructure system
JP5592298B2 (ja) 無線通信システム、無線制御装置及び無線制御装置のプログラム
JP5870286B2 (ja) マルチホップ通信方法、マルチホップ通信システム、および通信端末
JP7316909B2 (ja) 光通信システム、通信装置および通信方法
CN102625406B (zh) 一种应用层信令路由保护方法和设备
JP6512037B2 (ja) 無線通信装置、方法、及びプログラム
JP2012169951A (ja) ネットワーク接続装置
JP2010157783A (ja) 通信装置、通信システム、送信装置、受信装置、通信方法、プログラム及びデータ構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13757030

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014503834

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13757030

Country of ref document: EP

Kind code of ref document: A1