WO2013132702A1 - 電力伝送システムおよび送電装置 - Google Patents

電力伝送システムおよび送電装置 Download PDF

Info

Publication number
WO2013132702A1
WO2013132702A1 PCT/JP2012/079919 JP2012079919W WO2013132702A1 WO 2013132702 A1 WO2013132702 A1 WO 2013132702A1 JP 2012079919 W JP2012079919 W JP 2012079919W WO 2013132702 A1 WO2013132702 A1 WO 2013132702A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power transmission
resonance
unit
voltage
Prior art date
Application number
PCT/JP2012/079919
Other languages
English (en)
French (fr)
Inventor
末定 剛
真治 郷間
明彦 柴田
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Priority to CN201290001176.3U priority Critical patent/CN204068434U/zh
Priority to JP2014503419A priority patent/JP5614510B2/ja
Publication of WO2013132702A1 publication Critical patent/WO2013132702A1/ja
Priority to US14/463,842 priority patent/US20140354075A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type

Definitions

  • the present invention relates to a power transmission system, and more particularly to a power transmission system that transmits electric power from a power transmission apparatus to a power reception apparatus using an electric field and / or a magnetic field.
  • the present invention also relates to a power transmission device, and relates to a power transmission device applied to the above-described power transmission system.
  • Patent Document 1 An example of this type of power transmission system is disclosed in Patent Document 1.
  • authentication information start code, manufacturer ID, product ID, rated power information, resonance characteristic information, etc.
  • the power transmission device performs device authentication and adjusts the maximum transmission power so as to conform to the rated power on the power reception device side. Normal power transmission is executed after such power adjustment is completed.
  • a main object of the present invention is to provide a power transmission system and a power transmission device capable of appropriately controlling power supplied to a load while simplifying a circuit configuration.
  • a power transmission system includes a power transmission device including an excitation unit that excites an electric field and / or a magnetic field based on an alternating voltage, a resonance unit that exhibits a resonance frequency corresponding to a rated power, and an electric field excited by the excitation unit and A power transmission system formed by a power receiving device including a supply unit that supplies power based on a magnetic field to a load, the power transmission device holding a correspondence relationship between a plurality of resonance frequencies and a plurality of rated powers Means for detecting the resonance frequency of the resonance means by sweeping the frequency of the AC voltage, and specifying the rated power corresponding to the resonance frequency detected by the detection means with reference to the correspondence relationship held by the holding means And the rated electric power specified by the specifying means for the magnitude of the electric field and / or magnetic field excited by the excitation means. Further comprising adjusting means for adjusting along the.
  • the excitation means includes a plurality of first electrodes to which an alternating voltage is applied, and the resonance means is excited by a plurality of second electrodes that are electric field-coupled to the plurality of first electrodes, and the plurality of second electrodes.
  • the supply means includes a first inductor to which an AC voltage is applied, and the supply means includes a second inductor that is inductively coupled to the first inductor.
  • the detecting means is measured by the measuring means among a plurality of frequencies designated by the changing means for repeatedly changing the frequency of the AC voltage, the measuring means for measuring impedance in parallel with the processing of the changing means, and the changing means. Determining means for determining the frequency corresponding to the maximum value of the impedance as the resonance frequency of the resonance means.
  • the power transmission device further includes current supply means for supplying a current, and switching means for periodically switching conduction of the current supplied by the current supply means for generation of an AC voltage, and the measurement means is a current The impedance is measured with reference to the voltage at the output terminal of the supply means.
  • the determining unit determines the frequency corresponding to the maximum value on the high frequency side as the resonance frequency.
  • the adjusting means includes voltage adjusting means for adjusting the height of the AC voltage.
  • the power transmission device further includes a generating unit that generates an AC voltage by electromagnetic induction, and the adjusting unit includes a specific adjusting unit that adjusts the electromagnetic induction characteristics of the generating unit.
  • the resonance frequency of the resonance unit decreases as the rated power increases, and the correspondence relationship held by the holding unit corresponds to a relationship in which the low rated power is associated with the high frequency resonance frequency.
  • a power transmission device is a power transmission device combined with a power receiving device including a resonance unit that exhibits a resonance frequency corresponding to a rated power, and a supply unit that supplies power based on an excitation electric field and / or an excitation magnetic field to a load.
  • Excitation means for exciting an electric field and / or magnetic field based on an alternating voltage
  • holding means for maintaining a correspondence relationship between a plurality of resonance frequencies and a plurality of rated powers, and a resonance frequency of the resonance means by sweeping the frequency of the alternating voltage Detecting means for detecting, specifying means for specifying the rated power corresponding to the resonance frequency detected by the detecting means with reference to the correspondence relationship held by the holding means, and the magnitude of the electric field and / or magnetic field excited by the exciting means
  • adjusting means for adjusting the height so as to conform to the rated power specified by the specifying means.
  • the resonance means provided in the power receiving device is designed to exhibit a resonance frequency corresponding to the rated power of the power receiving device. Therefore, the resonance means of the power receiving apparatus having a certain rated power shows a certain resonance frequency, and the resonance means of the power receiving apparatus having another rated power shows another resonance frequency. Such a correspondence relationship between the rated power and the resonance frequency is held in the holding means.
  • the power transmission device detects the resonance frequency of the resonance means provided in the power receiving device of the coupling destination, and refers to the correspondence relationship in which the rated power corresponding to the detected resonance frequency is held by the holding means. Identify.
  • the power supplied to the load can be appropriately controlled while simplifying the circuit configuration.
  • FIG. 1 Example It is a block diagram which shows the structure of one Example of this invention. It is an illustration figure which shows an example of the external appearance of FIG. 1 Example. It is an illustration figure which shows an example of a structure of the table referred by the power transmission apparatus of FIG. 1 Example. It is a graph which shows an example of the change of the impedance with respect to a frequency. It is a flowchart which shows a part of operation
  • a power transmission system 100 includes a power transmission device 10 having an upper surface in which power transmission electrodes E1 and E2 are embedded, and a power reception device having a lower surface in which power reception electrodes E3 and E4 are embedded. Formed by the device 30.
  • the power receiving device 30 When the lower surface of the power receiving device 30 is brought close to the upper surface of the power transmitting device 10 so that the power receiving electrodes E3 and E4 face the power transmitting electrodes E1 and E2 (see FIG. 2), the power receiving device 30 is electrically coupled to the power transmitting device 10. As a result, the power of the power transmission device 10 is transmitted to the power reception device 30.
  • the DC power supply 12 applies a DC voltage to the input terminal of the switch SW1 connected to one of the terminals T1 and T2.
  • the terminal T1 is directly connected to the inverter 18, and the terminal T2 is connected to the inverter 18 via the resistor R1. Therefore, when the switch SW1 is connected to the terminal T1, a DC voltage is supplied to the inverter 18, and when the switch SW1 is connected to the terminal T2, the voltage dropped by the resistor R1 is supplied to the inverter 18.
  • the inverter 18 is turned on during a period when the PWM signal output from the PWM generation circuit 14 is at the H level, and is turned off during a period when the PWM signal output from the PWM generation circuit 14 is at the L level. Inverter 18 is also connected to inductor L1 among inductors L1 and L2 that form transformer 20 and are inductively coupled.
  • the inverter 18 when the inverter 18 is turned on / off as described above, an AC voltage is induced in each of the inductors L1 and L2.
  • the number of turns of the inductor L2 is larger than the number of turns of the inductor L1
  • the AC voltage induced in the inductor L2 is higher than the AC voltage induced in the inductor L1.
  • the frequency and height of the AC voltage induced in each of the inductors L1 and L2 depend on the frequency and duty ratio of the PWM signal, respectively.
  • AC voltage induced in the inductance L2 is applied to the power transmission electrodes E1 and E2.
  • An AC voltage having a frequency that corresponds to the frequency of the applied AC voltage and a height that depends on the degree of electric field coupling is excited in the receiving electrodes E3 and E4 that are field-coupled with the power transmission electrodes E1 and E2.
  • the alternating voltage thus excited is supplied to the rectifier circuit 34 via the inductors L3 and L4 that form the transformer 32 and are inductively coupled.
  • the number of turns of the inductor L4 is smaller than the number of turns of the inductor L3, and the AC voltage supplied to the rectifier circuit 34 is lower than the AC voltage excited by the power receiving electrodes E3 and E4.
  • the rectifier circuit 34 rectifies such an AC voltage into a DC voltage and supplies the rectified DC voltage to the load 36.
  • the power receiving circuit 30 of the power transmission system 100 illustrated in FIG. 1 is provided with a parallel resonant circuit including a capacitance C and an inductor L3.
  • the characteristics of the capacitance C and the inductance L3 that is, the characteristics of the power receiving electrodes E3 to E4 and the transformer 32) so that the resonance frequency Fpr shows different values depending on the rated power of the power receiving device 30. Is adjusted.
  • the characteristics of the capacitance C and the inductance L3 are adjusted so that the resonance frequency Fpr is within the range of the frequencies f1 to f2, and the rated power of the power receiving device 30 is 3 W. If so, the characteristics of the capacitance C and the inductance L3 are adjusted so that the resonance frequency Fpr falls within the range of the frequencies f2 to f3.
  • the characteristics of the capacitance C and the inductance L3 are adjusted so that the resonance frequency Fpr is within the frequency f3 to f4, and if the rated power of the power receiving device 30 is 7 W.
  • the characteristics of the capacitance C and the inductance L3 are adjusted so that the resonance frequency Fpr falls within the range of the frequencies f4 to f5.
  • Such a relationship between the resonance frequency Fpr and the rated power is registered in the table 22 provided in the power transmission device 10 as shown in FIG.
  • the CPU 16 provided in the power transmitting device 10 specifies the rated power of the power receiving device 30 with reference to the table 22 when starting power feeding to the power receiving device 30 that is electric field coupled, and follows the specified rated power. Thus, the operation of the PWM generation circuit 14 is controlled.
  • the CPU 16 first switches the connection destination of the switch SW1 from the terminal T1 to the terminal T2, sets the duty ratio of the PWM signal to a constant value, and sets the frequency of the PWM signal from “f1” to “f5”. Sweep.
  • the PWM generation circuit 14 provides the inverter 18 with a PWM signal having the duty ratio and frequency thus defined. As a result, an AC voltage having a height and frequency depending on the duty ratio and frequency is applied to the power transmission electrodes E1 to E2, and the impedance Z is measured based on the voltage at the input terminal of the inverter 18.
  • the impedance Z shows a frequency characteristic indicated by a solid line in FIG.
  • the impedance Z shows a frequency characteristic indicated by a dotted line in FIG.
  • the CPU 16 detects the frequency at which the measured impedance Z has a maximum value as the resonance frequency Fpr, and compares the detected frequency with the description in the table 22 to identify the rated power of the power receiving device 30.
  • the rated power of 3 W is specified corresponding to the frequency characteristic indicated by the solid line in FIG. 4
  • the rated power of 5 W is specified corresponding to the frequency characteristic indicated by the dotted line in FIG.
  • the CPU 16 sets the frequency of the PWM signal to the resonance frequency Fpr, adjusts the duty ratio of the PWM signal so as to follow the rated power, and then returns the connection destination of the switch SW1 to the terminal T1. . Thereby, power supply to the power receiving device 30 is started.
  • the CPU 16 executes processing according to the flowcharts shown in FIGS.
  • a control program corresponding to this flowchart is stored in the flash memory 16m.
  • step S1 the connection destination of switch SW1 is switched from terminal T1 to terminal T2, in step S3, the frequency of the PWM signal is set to “f1”, and in step S5, the duty ratio of the PWM signal is set to a constant value.
  • PWM generation circuit 14 provides inverter 18 with a PWM signal having a set frequency and duty ratio.
  • step S7 the impedance Z is measured based on the voltage at the input terminal of the inverter 18, and in step S9, it is determined whether or not the set frequency has reached “f5”. If the determination result is NO, the set frequency is increased by a predetermined width in step S11, and then the process returns to step S7. As a result, the frequency characteristic of the impedance Z in the range of the frequencies f1 to f5 is found.
  • step S9 If the determination result of step S9 is YES, it will progress to step S13 and will detect the frequency in which the impedance Z shows the maximum value as the resonance frequency Fpr.
  • step S ⁇ b> 15 the rated power of the power receiving device 30 is specified by comparing the detected frequency with the table 22.
  • step S17 the frequency of the PWM signal is set to the resonance frequency Fpr, and in step S19, the duty ratio of the PWM signal is adjusted so as to conform to the rated power specified in step S15.
  • the connection destination of the switch SW1 is returned to the terminal T1 in step S21, and then the process ends.
  • the power receiving device 30 includes the power receiving electrodes E3 to E4 that are electric field coupled to the power transmitting electrodes E1 to E2 provided in the power transmitting device 10, and the electric field excited to the power receiving electrodes E3 to E4 by electric field coupling.
  • a transformer 32 and a rectifier circuit 34 for supplying power based on
  • the power receiving electrodes E3 to E4 and the transformer 32 form a parallel resonance circuit.
  • the power transmission device 10 includes a transformer 20 that generates an AC voltage applied to the power transmission electrodes E1 to E2, and a table 22 in which correspondence relationships between a plurality of resonance frequencies and a plurality of rated powers are described.
  • the CPU 16 of the power transmission device 10 sweeps the frequency of the PWM signal to detect the resonance frequency Fpr of the parallel resonance circuit, specifies the rated power corresponding to the detected resonance frequency Fpr with reference to the description of the table 22, and PWM Adjust the duty ratio of the signal to match the specified rated power.
  • the parallel resonant circuit provided in the power receiving device 30 is designed to exhibit a resonance frequency corresponding to the rated power of the power receiving device 30. Therefore, the resonance frequency Fpr of the parallel resonance circuit provided in the power receiving device 30 having a certain rated power shows a certain value, and the resonance frequency Fpr of the parallel resonance circuit provided in another power receiving device 30 having the rated power is Other values are shown.
  • the table 22 describes the correspondence between the rated power and the resonance frequency Fpr.
  • the power transmission device 10 detects the resonance frequency Fpr of the parallel resonance circuit provided in the power receiving device 30 of the coupling destination, and the rated power corresponding to the detected resonance frequency Fpr is described in the table 22 Identify by referring to the relationship.
  • the power supplied to the load can be appropriately controlled while simplifying the circuit configuration.
  • the duty ratio of the PWM signal is adjusted in order to match the height of the AC voltage applied to the power transmission electrodes E1 to E2 with the rated power of the power receiving device 30 (see step S19).
  • the four transformers 20a to 20d corresponding to 1W, 3W, 5W and 7W and switches SW2 and SW3 for controlling the connections are provided in the power transmitting apparatus 10 in place of the transformer 20 (see FIG. 7). You may make it adjust the connection of switch SW2 and SW3 so that a rated power may be met.
  • step S31 for adjusting the connection between the switches SW2 and SW3 needs to be executed instead of step S19 shown in FIG. 6 (see FIG. 8).
  • step S41 for adjusting the connection of the switch SW4 needs to be executed instead of step S19 shown in FIG. 6 (see FIG. 10).
  • the present invention can also be applied to the inductive coupling type power transmission system shown in FIG.
  • the capacitor C11 and the inductor L11 are connected in series to the inverter 18, the inductor L12 and the capacitor C12 are connected in parallel to the rectifier circuit 34, and the alternating voltage is transmitted via the inductors L11 and L12.
  • the resonance frequency Fpr of the power receiving device 30 is adjusted in the range of frequencies f1 to f2 corresponding to the rated power of 1 W, and the frequency f2 corresponding to the rated power of 3 W. Is adjusted in the range of f3, adjusted in the range of frequencies f3 to f4 corresponding to the rated power of 5 W, and adjusted in the range of frequencies f4 to f5 corresponding to the rated power of 7 W. Further, the correspondence relationship between the resonance frequency Fpr and the rated power is registered in the table 22 provided in the power transmission device 10 (see FIG. 3).
  • the frequency characteristics of the power receiving device 30 are adjusted so that the resonance frequency Fpr decreases as the rated power of the power receiving device 30 increases, and the correspondence relationship between the resonance frequency Fpr and the rated power is registered in the table 22. You may do it.
  • the resonance frequency Fpr of the power receiving device 30 is adjusted in the range of frequencies f1 to f2 corresponding to the rated power of 7 W, adjusted in the range of frequencies f2 to f3 corresponding to the rated power of 5 W, and 3 W
  • the frequency is adjusted in the range of frequencies f3 to f4 corresponding to the rated power, and is adjusted in the range of frequencies f4 to f5 corresponding to the rated power of 1 W.
  • the correspondence shown in FIG. 12 is registered in the table 22. According to FIG.
  • the table 22 shown in FIG. 12 is adopted, and the frequency characteristic of the power receiving device 30 is adjusted so as to correspond to this. As a result, it is possible to prevent the power receiving device 30 from being destroyed due to erroneous detection of the rated power.
  • step S1301 a maximum value, that is, a maximum impedance is detected from the impedance Z measured by the processing in steps S3 to S13, and the number of detected maximum impedances is set in a variable CNT.
  • step S1303 it is determined whether or not the variable CNT exceeds “1”. If the determination result is YES, the process proceeds directly to step S1305, whereas if the determination result is NO, the process proceeds to step S1307.
  • step S1305 the maximum impedance on the highest side is designated from the detected plurality of maximum impedances.
  • step S1307 the detected maximum impedance is specified.
  • the process of step S1305 or S1307 the process proceeds to step S1309, and the frequency corresponding to the specified maximum impedance is detected as the resonance frequency Fpr.
  • the process returns to the upper hierarchy routine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

受電装置30は、送電装置10に設けられた送電電極E1~E2と電界結合される受電電極E3~E4と、受電電極E3~E4に励起された電界に基づく電力を負荷36に供給するトランス32および整流回路34を備える。ここで、受電電極E3~E4およびトランス32は、並列共振回路を形成する。一方、送電装置10は、送電電極E1~E2に印加される交流電圧を生成するトランス20と、複数の共振周波数と複数の定格電力との対応関係が記述されたテーブル22とを備える。送電装置10のCPU16は、PWM信号の周波数を掃引して並列共振回路の共振周波数を検出し、検出された共振周波数に対応する定格電力を、テーブル22を参照して特定し、特定された定格電力に沿うようにPWM信号のデューティ比を調整する。

Description

電力伝送システムおよび送電装置
 この発明は、電力伝送システムに関し、特に電界および/または磁界を利用して送電装置から受電装置に電力を伝送する、電力伝送システムに関する。
 この発明はまた、送電装置に関し、上述の電力伝送システムに適用される、送電装置に関する。
 この種の電力電送システムの一例が、特許文献1に開示されている。この背景技術によれば、通常送電開始前の認証時において、受電装置から送電装置に対して認証情報(スタートコード,メーカーID,プロダクトID,定格電力情報,共振特性情報等)が送信される。送電装置は、機器認証を行うとともに、受電装置側の定格電力に適合するように最大伝送電力を調整する。通常送電は、このような電力調整が完了した後に実行される。
特開2008-206233号公報
 しかし、背景技術では、定格電力情報を取得するためには送電装置と受電装置との間での認証処理を実行する必要があり、さらには認証処理の前提として受電装置に電力を供給しておく必要がある。このため、背景技術では、回路構成が複雑化するおそれがある。
 それゆえに、この発明の主たる目的は、回路構成を簡略化しつつ負荷に供給する電力を適正に制御することができる、電力伝送システムおよび送電装置を提供することである。
 この発明に従う電力伝送システムは、交流電圧に基づいて電界および/または磁界を励起する励起手段を備える送電装置と、定格電力に対応する共振周波数を示す共振手段、および励起手段によって励起された電界および/または磁界に基づく電力を負荷に供給する供給手段を備える受電装置とによって形成された電力伝送システムであって、送電装置は、複数の共振周波数と複数の定格電力との対応関係を保持する保持手段、交流電圧の周波数を掃引して共振手段の共振周波数を検出する検出手段、検出手段によって検出された共振周波数に対応する定格電力を保持手段によって保持された対応関係を参照して特定する特定手段、および励起手段によって励起される電界および/または磁界の大きさを特定手段によって特定された定格電力に沿うように調整する調整手段をさらに備える。
 好ましくは、励起手段は交流電圧が印加される複数の第1電極を含み、共振手段は、複数の第1電極と電界結合される複数の第2電極、および複数の第2電極に励起された交流電圧が印加される第1インダクタを含み、供給手段は第1インダクタと誘導結合される第2インダクタを含む。
 好ましくは、検出手段は、交流電圧の周波数を繰り返し変更する変更手段、変更手段の処理と並列してインピーダンスを測定する測定手段、および変更手段によって指定された複数の周波数のうち測定手段によって測定されたインピーダンスの極大値に対応する周波数を共振手段の共振周波数として決定する決定手段を含む。
 或る局面では、送電装置は、電流を供給する電流供給手段、および電流供給手段によって供給された電流の導通を交流電圧の生成のために周期的に切り換える切り換え手段をさらに備え、測定手段は電流供給手段の出力端の電圧を参照してインピーダンスを測定する。
 他の局面では、決定手段は測定手段によって測定されたインピーダンスが複数の極大値を有するとき高域側の極大値に対応する周波数を共振周波数として決定する。
 好ましくは、調整手段は交流電圧の高さを調整する電圧調整手段を含む。
 好ましくは、送電装置は電磁誘導によって交流電圧を生成する生成手段 をさらに備え、調整手段は生成手段の電磁誘導特性を調整する特定調整手段を含む。
 好ましくは、共振手段の共振周波数は定格電力の増大に応じて減少し、保持手段によって保持された対応関係は高域共振周波数に低定格電力が対応付けられる関係に相当する。
 この発明に従う送電装置は、定格電力に対応する共振周波数を示す共振手段、および励起電界および/または励起磁界に基づく電力を負荷に供給する供給手段を備える受電装置と結合される送電装置であって、交流電圧に基づいて電界および/または磁界を励起する励起手段、複数の共振周波数と複数の定格電力との対応関係を保持する保持手段、交流電圧の周波数を掃引して共振手段の共振周波数を検出する検出手段、検出手段によって検出された共振周波数に対応する定格電力を保持手段によって保持された対応関係を参照して特定する特定手段、および励起手段によって励起される電界および/または磁界の大きさを特定手段によって特定された定格電力に沿うように調整する調整手段を備える。
 この発明によれば、受電装置に設けられた共振手段は、受電装置の定格電力に対応する共振周波数を示すように設計される。したがって、或る定格電力を有する受電装置の共振手段は或る共振周波数を示し、他の定格電力を有する受電装置の共振手段は他の共振周波数を示す。保持手段には、このような定格電力および共振周波数の対応関係が保持される。
 これを踏まえて、送電装置は、結合先の受電装置に設けられた共振手段の共振周波数を検出し、検出された共振周波数に対応する定格電力を保持手段によって保持された対応関係を参照して特定する。これによって、回路構成を簡略化しつつ負荷に供給する電力を適正に制御することができる。
 この発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う以下の実施例の詳細な説明から一層明らかとなろう。
この発明の一実施例の構成を示すブロック図である。 図1実施例の外観の一例を示す図解図である。 図1実施例の送電装置によって参照されるテーブルの構成の一例を示す図解図である。 周波数に対するインピーダンスの変化の一例を示すグラフである。 図1実施例に適用されるCPUの動作の一部を示すフロー図である。 図1実施例に適用されるCPUの動作の他の一部を示すフロー図である。 この発明の他の実施例に適用される送電装置の構成の一部を示すブロック図である。 他の実施例に適用されるCPUの動作の一部を示すフロー図である。 この発明のその他の実施例に適用される送電装置の構成の一部を示すブロック図である。 その他の実施例に適用されるCPUの動作の一部を示すフロー図である。 この発明のさらにその他の実施例の構成を示すブロック図である。 他の実施例の送電装置によって参照されるテーブルの構成の一例を示す図解図である。 その他の実施例の送電装置に適用されるCPUの動作の一部を示すフロー図である。
 図1および図2を参照して、この実施例の電力電送システム100は、送電電極E1およびE2が埋め込まれた上面を有する送電装置10と、受電電極E3およびE4が埋め込まれた下面を有する受電装置30とによって形成される。受電電極E3およびE4が送電電極E1およびE2と対向するように受電装置30の下面を送電装置10の上面に近づけると(図2参照)、受電装置30が送電装置10と電界結合される。これによって、送電装置10の電力が受電装置30に伝送される。
 図1に示すように、直流電源12は、端子T1およびT2のいずれか一方と接続されるスイッチSW1の入力端に直流電圧を印加する。端子T1は直接的にインバータ18と接続され、端子T2は抵抗R1を介してインバータ18と接続される。したがって、スイッチSW1が端子T1と接続されるときは直流電圧がインバータ18に供給され、スイッチSW1が端子T2と接続されるときは抵抗R1で電圧降下された電圧がインバータ18に供給される。
 インバータ18は、PWM発生回路14から出力されたPWM信号がHレベルを示す期間にオン状態となり、PWM発生回路14から出力されたPWM信号がLレベルを示す期間にオフ状態となる。インバータ18はまた、トランス20を形成しかつ誘導結合されたインダクタL1およびL2のうち、インダクタL1と接続される。
 したがって、インバータ18が上述の要領でオン/オフされると、インダクタL1およびL2の各々に交流電圧が誘起される。ただし、インダクタL2の巻き数はインダクタL1の巻き数よりも大きく、インダクタL2に誘起される交流電圧はインダクタL1に誘起された交流電圧よりも高い値を示す。また、インダクタL1およびL2の各々に誘起される交流電圧の周波数および高さはそれぞれ、PWM信号の周波数およびデューティ比に依存する。
 インダクタンスL2に誘起された交流電圧は、送電電極E1およびE2に印加される。送電電極E1およびE2と電界結合された受電電極E3およびE4には、印加された交流電圧の周波数に相当する周波数と電界結合度に依存する高さとを有する交流電圧が励起される。
 こうして励起された交流電圧は、トランス32を形成しかつ誘導結合されたインダクタL3およびL4を介して整流回路34に供給される。ただし、インダクタL4の巻き数はインダクタL3の巻き数よりも小さく、整流回路34に供給される交流電圧は受電電極E3およびE4に励起された交流電圧よりも低い値を示す。整流回路34は、このような交流電圧を直流電圧に整流し、整流された直流電圧を負荷36に供給する。
 図1に示す電力伝送システム100の受電回路30には、キャパシタンスCとインダクタL3からなる並列共振回路が設けられている。並列共振回路の共振周波数は、数1によって定義される。
[数1]
Fpr=1/(2π√(L3*C)
Fpr:並列共振回路の共振周波数
 この実施例の電力伝送システム100では、共振周波数Fprが受電装置30の定格電力に応じて異なる値を示すように、キャパシタンスCおよびインダクタンスL3の特性(つまり受電電極E3~E4およびトランス32の特性)が調整される。
 具体的には、受電装置30の定格電力が1Wであれば、共振周波数Fprが周波数f1~f2の範囲に収まるようにキャパシタンスCおよびインダクタンスL3の特性が調整され、受電装置30の定格電力が3Wであれば、共振周波数Fprが周波数f2~f3の範囲に収まるようにキャパシタンスCおよびインダクタンスL3の特性が調整される。
 また、受電装置30の定格電力が5Wであれば、共振周波数Fprが周波数f3~f4の範囲に収まるようにキャパシタンスCおよびインダクタンスL3の特性が調整され、受電装置30の定格電力が7Wであれば、共振周波数Fprが周波数f4~f5の範囲に収まるようにキャパシタンスCおよびインダクタンスL3の特性が調整される。
 このような共振周波数Fprと定格電力との関係は、送電装置10に設けられたテーブル22に図3に示す要領で登録される。送電装置10に設けられたCPU16は、電界結合された受電装置30への給電を開始する際に、このテーブル22を参照して受電装置30の定格電力を特定し、特定された定格電力に沿うようにPWM発生回路14の動作を制御する。
 具体的に説明すると、CPU16はまず、スイッチSW1の接続先を端子T1から端子T2に切り換え、PWM信号のデューティ比を一定値に設定し、そしてPWM信号の周波数を“f1”から“f5”まで掃引する。
 PWM発生回路14は、こうして定義されたデューティ比および周波数を有するPWM信号をインバータ18に与える。これによって、デューティ比および周波数に依存する高さおよび周波数を有する交流電圧が送電電極E1~E2に印加され、さらにインピーダンスZがインバータ18の入力端の電圧に基づいて測定される。
 定格電力が3Wの受電装置30が送電装置10と電界結合されたとき、インピーダンスZは図4に実線で示す周波数特性を示す。これに対して、定格電力が5Wの受電装置30が送電装置10と電界結合されたとき、インピーダンスZは図4に点線で示す周波数特性を示す。
 CPU16は、測定されたインピーダンスZが極大値を示す周波数を共振周波数Fprとして検出し、検出された周波数をテーブル22の記述と照らし合わせて受電装置30の定格電力を特定する。この結果、図4に実線で示す周波数特性に対応して3Wの定格電力が特定され、図4に点線で示す周波数特性に対応して5Wの定格電力が特定される。
 定格電力が特性されると、CPU16は、PWM信号の周波数を共振周波数Fprに設定し、定格電力に沿うようにPWM信号のデューティ比を調整し、その後にスイッチSW1の接続先を端子T1に戻す。これによって、受電装置30への給電が開始される。
 CPU16は、具体的には、図5~図6に示すフロー図に従う処理を実行する。なお、このフロー図に対応する制御プログラムは、フラッシュメモリ16mに記憶される。
 図5を参照して、ステップS1ではスイッチSW1の接続先を端子T1から端子T2に切り換え、ステップS3ではPWM信号の周波数を“f1”に設定し、ステップS5ではPWM信号のデューティ比を一定値に設定する。PWM発生回路14は、設定された周波数およびデューティ比を有するPWM信号をインバータ18に与える。
 ステップS7ではインバータ18の入力端の電圧に基づいてインピーダンスZを測定し、ステップS9では設定周波数が“f5”に達したか否かを判別する。判別結果がNOであれば、ステップS11で設定周波数を既定幅だけ増大させ、その後にステップS7に戻る。これによって、周波数f1~f5の範囲におけるインピーダンスZの周波数特性が判明する。
 ステップS9の判別結果がYESであればステップS13に進み、インピーダンスZが極大値を示す周波数を共振周波数Fprとして検出する。ステップS15では、検出された周波数をテーブル22に照らし合わせて受電装置30の定格電力を特定する。ステップS17ではPWM信号の周波数を共振周波数Fprに設定し、ステップS19ではステップS15で特定された定格電力に沿うようにPWM信号のデューティ比を調整する。調整が完了すると、ステップS21でスイッチSW1の接続先を端子T1に戻し、その後に処理を終了する。
 以上の説明から分かるように、受電装置30は、送電装置10に設けられた送電電極E1~E2と電界結合される受電電極E3~E4と、電界結合によって受電電極E3~E4に励起された電界に基づく電力を負荷36に供給するトランス32および整流回路34を備える。ここで、受電電極E3~E4およびトランス32は、並列共振回路を形成する。一方、送電装置10は、送電電極E1~E2に印加される交流電圧を生成するトランス20と、複数の共振周波数と複数の定格電力との対応関係が記述されたテーブル22とを備える。送電装置10のCPU16は、PWM信号の周波数を掃引して並列共振回路の共振周波数Fprを検出し、検出された共振周波数Fprに対応する定格電力をテーブル22の記述を参照して特定し、PWM信号のデューティ比を特定された定格電力に沿うように調整する。
 受電装置30に設けられた並列共振回路は、受電装置30の定格電力に対応する共振周波数を示すように設計される。したがって、或る定格電力を有する受電装置30に設けられた並列共振回路の共振周波数Fprは或る値を示し、他の定格電力を有する受電装置30に設けられた並列共振回路の共振周波数Fprは他の値を示す。テーブル22には、このような定格電力および共振周波数Fprの対応関係が記述される。
 これを踏まえて、送電装置10は、結合先の受電装置30に設けられた並列共振回路の共振周波数Fprを検出し、検出された共振周波数Fprに対応する定格電力をテーブル22に記述された対応関係を参照して特定する。これによって、回路構成を簡略化しつつ負荷に供給する電力を適正に制御することができる。
 なお、この実施例では、送電電極E1~E2に印加される交流電圧の高さを受電装置30の定格電力に合わせるためにPWM信号のデューティ比を調整するようにしている(ステップS19参照)。しかし、1W,3W,5Wおよび7Wにそれぞれ対応する4つのトランス20a~20dおよびその接続を制御するスイッチSW2およびSW3をトランス20に代えて送電装置10に設け(図7参照)、受電装置30の定格電力に沿うようにスイッチSW2およびSW3の接続を調整するようにしてもよい。この場合、スイッチSW2およびSW3の接続を調整するステップS31を図6に示すステップS19に代えて実行する必要がある(図8参照)。
 また、1W,3W,5Wおよび7Wにそれぞれ対応する4つの出力端とそのいずれか1つを選択するスイッチSW4をトランス20のインダクタL2に接続し(図9参照)、受電装置30の定格電力に沿うようにスイッチSW4の接続を調整するようにしてもよい。この場合、スイッチSW4の接続を調整するステップS41を図6に示すステップS19に代えて実行する必要がある(図10参照)。
 さらに、この実施例では、電界結合方式の電力伝送システムを想定しているが、この発明は図11に示す誘導結合方式の電力伝送システムにも適用できる。図11によれば、キャパシタC11およびインダクタL11がインバータ18に直列接続され、インダクタL12およびキャパシタC12が整流回路34に並列接続され、交流電圧はインダクタL11およびL12を介して伝送される。
 また、図1~図10に示す実施例では、受電装置30の共振周波数Fprは、1Wの定格電力に対応して周波数f1~f2の範囲で調整され、3Wの定格電力に対応して周波数f2~f3の範囲で調整され、5Wの定格電力に対応して周波数f3~f4の範囲で調整され、そして7Wの定格電力に対応して周波数f4~f5の範囲で調整される。さらに、このような共振周波数Fprと定格電力との対応関係が送電装置10に設けられたテーブル22に登録される(図3参照)。
 しかし、受電装置30の定格電力の増大に応じて共振周波数Fprが減少するように受電装置30の周波数特性を調整し、このような共振周波数Fprと定格電力との対応関係をテーブル22に登録するようにしてもよい。
 この場合、受電装置30の共振周波数Fprは、7Wの定格電力に対応して周波数f1~f2の範囲で調整され、5Wの定格電力に対応して周波数f2~f3の範囲で調整され、3Wの定格電力に対応して周波数f3~f4の範囲で調整され、そして1Wの定格電力に対応して周波数f4~f5の範囲で調整される。さらに、テーブル22には図12に示す対応関係が登録される。図12によれば、7Wの定格電力が周波数f1~f2に割り当てられ、5Wの定格電力が周波数f2~f3に割り当てられ、3Wの定格電力が周波数f3~f4に割り当てられ、そして1Wの定格電力が周波数f4~f5に割り当てられる。
 送電装置10と受電装置30との間に異物が挟まったり、送電装置10に対する受電装置30の位置がずれたりすると、送電電極E1~E2と受電電極E3~E4との間の結合容量が減少し、これによって共振周波数Fprが高域側にシフトする。すると、図1~図10に示す実施例では、受電装置30の定格電力よりも高い電力が図3に示すテーブル22から誤って検出され、高電力の供給によって受電装置30が破壊されるおそれがある。
 そこで、この実施例では、図12に示すテーブル22を採用するとともに、これに対応するように受電装置30の周波数特性を調整するようにしている。これによって、定格電力の誤検出に起因する受電装置30の破壊を防止することができる。
 また、上述の実施例では、図5に示すステップS3~S11の処理によって測定されるインピーダンスZには受電装置30の共振周波数に対応する極大値しか現れないことを前提としている。しかし、掃引される周波数の範囲を拡大すると、受電装置30の共振周波数に対応する極大値に加えて、送電装置10の共振周波数に対応する極大値が測定インピーダンスZに現れる可能性がある。このような可能性を考慮すると、図5に示すステップS13では、図13に示すサブルーチンに従う処理を実行する必要がある。
 図13を参照して、ステップS1301では、ステップS3~S13の処理によって測定されたインピーダンスZから極大値つまり極大インピーダンスを検出し、検出された極大インピーダンスの数を変数CNTに設定する。ステップS1303では、変数CNTが“1”を上回るか否かを判別し、判別結果がYESであればそのままステップS1305に進む一方、判別結果がNOであればステップS1307に進む。
 ステップS1305では、検出された複数の極大インピーダンスの中から最も高域側の極大インピーダンスを指定する。ステップS1307では、検出された唯一の極大インピーダンスを指定する。ステップS1305またはS1307の処理が完了するとステップS1309に進み、指定された極大インピーダンスに対応する周波数を共振周波数Fprとして検出する。共振周波数Fprの検出が完了すると、上階層のルーチンに復帰する。
 この発明が詳細に説明され図示されたが、それは単なる図解および一例として用いたものであり、限定であると解されるべきではないことは明らかであり、この発明の精神および範囲は添付されたクレームの文言によってのみ限定される。
 10 …送電装置
 14 …PWM発生回路
 16 …CPU
 18 …インバータ
 20,32 …トランス
 22 …テーブル
 34 …整流回路
 E1~E2 …送電電極
 E3~E4 …受電電極

Claims (9)

  1.  交流電圧に基づいて電界および/または磁界を励起する励起手段を備える送電装置と、定格電力に対応する共振周波数を示す共振手段、および前記励起手段によって励起された電界および/または磁界に基づく電力を負荷に供給する供給手段を備える受電装置とによって形成された電力伝送システムであって、
     前記送電装置は、
      複数の共振周波数と複数の定格電力との対応関係を保持する保持手段、
      前記交流電圧の周波数を掃引して前記共振手段の共振周波数を検出する検出手段、
      前記検出手段によって検出された共振周波数に対応する定格電力を前記保持手段によって保持された対応関係を参照して特定する特定手段、および
      前記励起手段によって励起される電界および/または磁界の大きさを前記特定手段によって特定された定格電力に沿うように調整する調整手段をさらに備える、電力伝送システム。
  2.  前記励起手段は前記交流電圧が印加される複数の第1電極を含み、
     前記共振手段は、前記複数の第1電極と電界結合される複数の第2電極、および前記複数の第2電極に励起された交流電圧が印加される第1インダクタを含み、
     前記供給手段は前記第1インダクタと誘導結合される第2インダクタを含む、請求項1記載の電力伝送システム。
  3.  前記送電装置は、前記交流電圧を昇圧するトランスを有し、
     前記検出手段は、前記交流電圧の周波数を繰り返し変更する変更手段、前記変更手段の処理と並列して前記トランスのインピーダンスを測定する測定手段、および前記変更手段によって指定された複数の周波数のうち前記測定手段によって測定されたインピーダンスの極大値に対応する周波数を前記共振手段の共振周波数として決定する決定手段を含む、請求項1または2記載の電力伝送システム。
  4.  前記送電装置は、電流を供給する電流供給手段、および前記電流供給手段によって供給された電流の導通を前記交流電圧の生成のために周期的に切り換える切り換え手段をさらに備え、
     前記測定手段は前記電流供給手段の出力端の電圧を参照して前記インピーダンスを測定する、請求項3記載の電力伝送システム。
  5.  前記決定手段は前記測定手段によって測定されたインピーダンスが複数の極大値を有するとき高域側の極大値に対応する周波数を前記共振周波数として決定する、請求項3または4記載の電力伝送システム。
  6.  前記調整手段は前記交流電圧の高さを調整する電圧調整手段を含む、請求項1ないし5のいずれかに記載の電力伝送システム。
  7.  前記送電装置は電磁誘導によって前記交流電圧を生成する生成手段をさらに備え、
     前記調整手段は前記生成手段の電磁誘導特性を調整する特定調整手段を含む、請求項1ないし5のいずれかに記載の電力伝送システム。
  8.  前記共振手段の共振周波数は前記定格電力の増大に応じて減少し、
     前記保持手段によって保持された対応関係は高域共振周波数に低定格電力が対応付けられる関係に相当する、請求項1ないし7のいずれかに記載の電力伝送システム。
  9.  定格電力に対応する共振周波数を示す共振手段、および励起電界および/または励起磁界に基づく電力を負荷に供給する供給手段を備える受電装置と結合される送電装置であって、
     交流電圧に基づいて電界および/または磁界を励起する励起手段、
     複数の共振周波数と複数の定格電力との対応関係を保持する保持手段、
     前記交流電圧の周波数を掃引して前記共振手段の共振周波数を検出する検出手段、
     前記検出手段によって検出された共振周波数に対応する定格電力を前記保持手段によって保持された対応関係を参照して特定する特定手段、および
     前記励起手段によって励起される電界および/または磁界の大きさを前記特定手段によって特定された定格電力に沿うように調整する調整手段を備える、送電装置。
PCT/JP2012/079919 2012-03-07 2012-11-19 電力伝送システムおよび送電装置 WO2013132702A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201290001176.3U CN204068434U (zh) 2012-03-07 2012-11-19 电力传输系统以及输电装置
JP2014503419A JP5614510B2 (ja) 2012-03-07 2012-11-19 電力伝送システムおよび送電装置
US14/463,842 US20140354075A1 (en) 2012-03-07 2014-08-20 Electric power transmission system and power transmission device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-049996 2012-03-07
JP2012049996 2012-03-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/463,842 Continuation US20140354075A1 (en) 2012-03-07 2014-08-20 Electric power transmission system and power transmission device

Publications (1)

Publication Number Publication Date
WO2013132702A1 true WO2013132702A1 (ja) 2013-09-12

Family

ID=49116201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079919 WO2013132702A1 (ja) 2012-03-07 2012-11-19 電力伝送システムおよび送電装置

Country Status (4)

Country Link
US (1) US20140354075A1 (ja)
JP (1) JP5614510B2 (ja)
CN (1) CN204068434U (ja)
WO (1) WO2013132702A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015072374A1 (ja) * 2013-11-13 2015-05-21 株式会社村田製作所 周波数特性測定方法
CN106068607A (zh) * 2014-02-12 2016-11-02 飞利浦灯具控股公司 包括led阵列的光照系统
WO2020039594A1 (ja) * 2018-08-24 2020-02-27 トヨタ自動車東日本株式会社 電力伝送装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204721100U (zh) * 2012-12-28 2015-10-21 株式会社村田制作所 电力输送系统
CN113358912B (zh) * 2021-06-11 2022-03-08 南方电网数字电网研究院有限公司 电压测量装置、电压测量方法和存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008206233A (ja) * 2007-02-16 2008-09-04 Seiko Epson Corp 送電制御装置、受電制御装置、無接点電力伝送システム、送電装置、受電装置および電子機器
JP2010022076A (ja) * 2008-07-08 2010-01-28 Mitsumi Electric Co Ltd 無接点電力伝送装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008206233A (ja) * 2007-02-16 2008-09-04 Seiko Epson Corp 送電制御装置、受電制御装置、無接点電力伝送システム、送電装置、受電装置および電子機器
JP2010022076A (ja) * 2008-07-08 2010-01-28 Mitsumi Electric Co Ltd 無接点電力伝送装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015072374A1 (ja) * 2013-11-13 2015-05-21 株式会社村田製作所 周波数特性測定方法
JPWO2015072374A1 (ja) * 2013-11-13 2017-03-16 株式会社村田製作所 周波数特性測定方法
US10018659B2 (en) 2013-11-13 2018-07-10 Murata Manufacturing Co., Ltd. Frequency characteristic measurement method
CN106068607A (zh) * 2014-02-12 2016-11-02 飞利浦灯具控股公司 包括led阵列的光照系统
WO2020039594A1 (ja) * 2018-08-24 2020-02-27 トヨタ自動車東日本株式会社 電力伝送装置
JPWO2020039594A1 (ja) * 2018-08-24 2021-08-10 トヨタ自動車東日本株式会社 電力伝送装置
JP7116288B2 (ja) 2018-08-24 2022-08-10 弘 櫻庭 電力伝送装置

Also Published As

Publication number Publication date
CN204068434U (zh) 2014-12-31
US20140354075A1 (en) 2014-12-04
JP5614510B2 (ja) 2014-10-29
JPWO2013132702A1 (ja) 2015-07-30

Similar Documents

Publication Publication Date Title
TWI710196B (zh) 執行異物檢測的方法和裝置
JP5093386B2 (ja) 送電装置および電力伝送システム
JP4774217B2 (ja) 電力伝送装置、電力伝送方法
CN110546855B (zh) 非接触供电装置以及异常停止方法
EP3393009B1 (en) Detecting foreign objects in wireless power transfer systems
WO2013132702A1 (ja) 電力伝送システムおよび送電装置
CN110582922B (zh) 非接触供电装置
US8664803B2 (en) Wireless power feeder, wireless power receiver, and wireless power transmission system
US10411525B2 (en) System and method for frequency prediction
WO2014125698A1 (ja) 受電装置及び非接触給電装置
JP2019208315A (ja) 非接触給電装置
JP2013187963A (ja) 電力伝送システムおよび送電装置
JP6037022B2 (ja) 送電装置、ワイヤレス電力伝送システム及び電力伝送判別方法
JP6384569B1 (ja) 非接触給電装置
CN110582923B (zh) 非接触供电装置
CN110603712B (zh) 非接触供电装置
EP3675599A1 (en) Induction-heating cooker
JP7070347B2 (ja) 非接触給電装置
KR101305828B1 (ko) 무선전력 송신장치, 무선전력 수신장치, 무선전력 전송 시스템 및 무선전력 전송 방법
KR101428162B1 (ko) 전력 공급 장치, 무선전력 송신장치 및 공진 주파수 검출 방법
KR101905882B1 (ko) 무선전력 송신장치, 무선전력 수신장치, 무선전력 전송 시스템 및 무선전력 전송 방법
WO2015104768A1 (ja) 非接触給電装置の制御方法及び非接触給電装置
JP2023088141A (ja) 非接触給電装置
JP2019165564A (ja) 非接触給電装置
CN116636114A (zh) 无线功率传输

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201290001176.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870718

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014503419

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12870718

Country of ref document: EP

Kind code of ref document: A1