WO2013131462A1 - 一种实现对波长标签进行编码的方法和系统 - Google Patents

一种实现对波长标签进行编码的方法和系统 Download PDF

Info

Publication number
WO2013131462A1
WO2013131462A1 PCT/CN2013/072153 CN2013072153W WO2013131462A1 WO 2013131462 A1 WO2013131462 A1 WO 2013131462A1 CN 2013072153 W CN2013072153 W CN 2013072153W WO 2013131462 A1 WO2013131462 A1 WO 2013131462A1
Authority
WO
WIPO (PCT)
Prior art keywords
codeword
encoding
coding
illegal
determining
Prior art date
Application number
PCT/CN2013/072153
Other languages
English (en)
French (fr)
Inventor
刘征
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013131462A1 publication Critical patent/WO2013131462A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/0257Wavelength assignment algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/0258Wavelength identification or labelling

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and system for implementing encoding of a wavelength label. Background technique
  • WDM Widelength Division Multiplex
  • current optical communication networks can simultaneously transmit optical signals of tens to hundreds of wavelengths in the same fiber, and are based on ROADM (Reconfigurable Optical Add-Drop) Multiplexer, Reconfigurable Optical Add-Drop Multiplexer) technology facilitates on-demand configuration of individual wavelengths in optical communications, so that wavelengths in an optical network do not maintain the same path between two sites, or a certain wavelength is not Always assigned to two sites.
  • ROADM Reconfigurable Optical Add-Drop
  • Reconfigurable Optical Add-Drop Multiplexer Reconfigurable Optical Add-Drop Multiplexer
  • a low frequency tag signal may be superimposed on a wavelength in the optical network, and a tag signal in the optical channel is identified on each node in the network, and the information carried in the tag signal is solved.
  • Ways to load optical tag signals include the use of electrically tunable optical attenuators, optical transmitters with low speed modulation, high speed traffic modulators with low speed modulation, optical amplifiers, and the like.
  • the modulation depth of the wavelength tag signal is usually set between 2% and 10%.
  • the technology involved in the wavelength labeling technology is as follows: In the wavelength division multiplexing system, a pilot tone signal is added for each wavelength, which can realize a variety of special applications, which has been studied in the industry.
  • the topping signal is sometimes called the low-frequency dither signal, and the effect of the wavelength signal loading and tuning signal on the transmission performance is almost negligible.
  • the existing technology only studies how to use the EVOA (Electrical Variable Optical Attenuator) device to load the tag signal onto the wavelength channel.
  • the loaded tag signal is a continuous analog signal with a specific frequency, is a signal that can only characterize the tag frequency, and does not implement data encoding of the wavelength tag.
  • Data coding is for signal synchronization and anti-interference.
  • the specific coding methods are divided into analog signal coding and digital signal coding.
  • Analog signal coding is usually called signal modulation, including ASK (Amplitude Shift Keying) method, frequency shift keying. (FSK, Frequency Shift Keying) method, Phase Shift Keying (PSK) method.
  • ASK Amplitude Shift Keying
  • FSK Frequency Shift Keying
  • PSK Phase Shift Keying
  • Commonly used digital signal codes include NRZ (Non Return to Zero) codes, differential non-return to zero DNRZ codes, Manchester codes, and differential Manchester codes. Summary of the invention
  • a method for encoding a wavelength label comprising:
  • Determining a data encoding requirement for the wavelength label determining an encoding mode that satisfies the encoding requirement, determining a codeword mapping relationship in the encoding mode, and encoding the wavelength label accordingly.
  • the method for determining the requirements of data encoding is:
  • the appropriate codeword is selected as the starting location identifier in the illegal codeword space.
  • the method further includes: finding 0 and 1 equalized codewords in the illegal codeword for use as a special starting location identifier;
  • the codeword found in the illegal codeword is an independent codeword or is composed of multiple illegal codewords A special illegal codeword that is synthesized.
  • the determined coding mode is a 4B5B coding method
  • the selected legal codeword is:
  • connection 1 is not less than 2.
  • a system for encoding a wavelength tag comprising an encoding requirement determining unit, an encoding mode determining unit, and a codeword mapping relationship determining unit;
  • the encoding requirement determining unit is configured to determine a data encoding requirement for the wavelength label; the encoding mode determining unit is configured to determine, for the wavelength label, an encoding manner that satisfies the encoding requirement;
  • the codeword mapping relationship determining unit is configured to determine a codeword mapping relationship in the encoding mode for a wavelength label, and encode the wavelength label accordingly.
  • the encoding requirement determining unit is configured to: when determining the demand for data encoding:
  • the encoding requirement determining unit is configured to select an appropriate codeword in the illegal codeword space as the starting location identifier when determining the starting position of the data stream.
  • the coding requirement determining unit is further configured to find 0 and 1 equalized code words in the illegal codeword, and use it as a special starting position identifier;
  • the codeword found in the illegal codeword is an independent codeword or a special illegal codeword synthesized by a plurality of illegal codewords.
  • the determined coding mode is a 4B5B coding method
  • the selected legal codeword is:
  • connection 1 is not less than 2.
  • the technology of the invention for encoding a wavelength label realizes encoding a wavelength label, It has outstanding advantages of simple implementation and low cost.
  • Data encoding of the wavelength label can improve the codeword equalization of the channel and eliminate the long 0 or long connection 1 that may occur in the codeword, thereby ensuring a better signal to noise ratio at the receiving end; More data flow control information. If the wavelength label is not encoded, the codeword balance of the channel cannot be guaranteed, and the control information of the data stream cannot be transmitted in the wavelength label.
  • FIG. 1 is a flowchart of implementing encoding a wavelength label according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of preferred data encoding according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing a spatial distribution of codewords of a preferred data encoding according to an embodiment of the present invention
  • FIG. 4 is a system diagram for implementing encoding of a wavelength label according to an embodiment of the present invention. detailed description
  • Step A Determine the requirements for data encoding and perform analysis.
  • Different channels have different data coding requirements. For example, for higher baud rate channels, coding efficiency is an important requirement to be considered. For channels with relatively sensitive level shift, code stream equalization is an important requirement to be considered. .
  • Step B Select and design the coding method that satisfies the coding requirements.
  • Encoding is a technique that sacrifices other performance improvements at the expense of effective bandwidth. There are many ways to encode encoding requirements.
  • Step C Design the codeword mapping relationship in the coding mode in detail, and encode the wavelength label accordingly.
  • mapping relationship between data and codewords may be different, depending on factors such as the statistical probability that each codeword appears in the specific application of the transmission. According to the steps of the above technical solution, an encoding method suitable for the wavelength label can be obtained. The method of encoding the wavelength tag data will be described below with reference to the accompanying drawings.
  • FIG. 1 shows a flow chart of the technical solution of data encoding, and the process may include the following steps:
  • Step 110 Determine a requirement for data encoding.
  • the wavelength tag can transmit data information at a predetermined baud rate when transmitted along the optical path.
  • a baud of a wavelength tag can carry one bit of information, so a wavelength tag can be understood as a representation of a serial channel.
  • the serial channel can be subdivided into a synchronous serial channel and an asynchronous serial channel.
  • asynchronous serial communication a certain mechanism is needed to control the segmentation of the data stream, that is, the starting position of the data stream needs to be determined. So a requirement for data coding is needed, that is, it is necessary to be able to determine the starting position of the data stream.
  • the problem of receiving terminal error code if there is a long continuous 0 or continuous 1 , the receiving end can not even achieve the correct decision, so another requirement of data encoding can be obtained, that is, a sufficient amount is needed in the data stream.
  • the transition (from logic 0 to logic 1 or from logic 1 to logic 0) and is as balanced as possible. For example: When 30% to 60% of the total number of transmitted bits is reached, a sufficient number of transitions are considered.
  • data coding should satisfy two basic requirements, one is to determine the starting position of the data stream; the other is to have a sufficient number of hops to meet the current needs, and to be as balanced as possible.
  • Step 120 Select and design an encoding method that satisfies the encoding requirement.
  • the 4B5B encoding method converts 4-bit data into 5-bit symbols for transmission. These symbols maintain the AC (AC) balance of the line, and the DC (DC) component of the signal changes less than the nominal center point. 10%.
  • the efficiency of 4B5B encoding is 80%.
  • 16 code words correspond to 16 states of 4-bit data, and these code words which are mapped to data are called legal code words. There are 32 combinations of 5-bit symbols, except for 16 legal codewords, and the other 16 codewords are called illegal codewords.
  • each legal data code word has a maximum of 3 consecutive 0s. This feature can be used to avoid the occurrence of consecutive long series 0.
  • these illegal code words can be used as the identifier of the data start position. Therefore, the 4B5B encoding can satisfy the encoding requirements.
  • the four-insertion coding is a method of inserting redundant bits in the bit stream, which can eliminate long consecutive 0s or even ones. For example: If you encounter 4 consecutive 0s, insert a 1; if you encounter 4 consecutive 1s, insert a 0. The starting position of the data stream is identified by 6 consecutive 1's. Therefore, the four-insertion code can satisfy the coding requirements.
  • Scrambling code coding uses the pseudo-random principle to invert some data bits in the data stream, thereby reducing the probability of occurrence of even 0 or even 1 and using a special defined code stream as the starting position identifier of the data stream. Therefore, the scrambling code can satisfy the coding requirements.
  • the intra-frame byte encoding uses a specially defined code stream as the frame header to identify the starting position of the data stream, and the upper two bits of the effective byte in the frame are fixed to 0B10, thereby avoiding the long-connected 0 and the long-connected 1 Appears, the coding efficiency is 75%. Therefore, intraframe byte coding can satisfy the coding requirements.
  • Codeword intra-coding uses a high baud rate data stream to implement a low baud rate communication channel. Multiple baud groups are grouped to represent a low rate signal.
  • the codeword intra-coding uses a specially defined codeword combination state as the frame header to indicate the starting position of the data stream, and each low-speed codeword is forced to make both 0 and 1 appear when internally coded, thereby avoiding long Even 0 or long 1 The problem. Therefore, intra-codeword coding can satisfy the coding requirements.
  • the above coding method can be selected according to the actual application environment, such as: 4B5B coding.
  • Step 130 Design a codeword mapping relationship in the coding mode in detail, and encode the wavelength label accordingly.
  • the selected legal code words preferably have the following characteristics:
  • connection 1 is not less than 2.
  • Figure 2 shows the 4B5B coded codeword mapping table.
  • the 16 states of 4 bits are mapped to 16 states of 5 bits.
  • 16 illegal codewords can be selected.
  • the starting position is identified, and there are more than 16 combined states with less than 3 zeros, so the mapping requirement can be fully satisfied.
  • Figure 3 shows the spatial distribution of the codewords of the 4B5B code. It can be considered to select the appropriate codeword as the starting location identifier in the illegal codeword space. In the illegal codeword, a codeword that appears to be more balanced between 0 and 1 can be found as a special starting position identifier.
  • the longest number of consecutive 0s is 3, then consider using an illegal codeword with a number of 4 as a special illegal codeword to determine the starting position of the data stream.
  • codewords 10000, 00001, 00000, etc. that meet the requirements.
  • these codewords can be used as special illegal codewords, the number of 1s and 0s they contain is not balanced enough, so multiple illegal codewords can be further selected from the illegal codeword space to be combined into a special illegal codeword. Used to equalize the number of 1s and 0s. From the illegal codeword space, you can find 11000 and 01101. Combine the two illegal codewords to get a codeword with 4 consecutive 0s, and 1 and 0 numbers, each of which is 5 A complete special illegal codeword is 1100001101.
  • FIG. 4 is a diagram for implementing wavelength labeling according to an embodiment of the present invention.
  • a system diagram of a code the system includes an encoding requirement determining unit, an encoding mode determining unit, and a codeword mapping relationship determining unit that can be sequentially connected.
  • the encoding requirement determining unit can determine the data encoding requirement and perform analysis; the encoding mode determining unit can select and determine an encoding manner that satisfies the encoding requirement; the codeword mapping relationship determining unit can determine the encoding mode.
  • the code word mapping relationship according to which the wavelength label is encoded.
  • the method for encoding the wavelength label realizes the coding of the wavelength label in both the method and the system, and has the outstanding advantages of simple implementation and low cost.
  • Data encoding of the wavelength label can improve the codeword equalization of the channel and eliminate the long 0 or long connection 1 that may occur in the codeword, thereby ensuring a better signal to noise ratio at the receiving end; More data flow control information. If the wavelength label is not encoded, the codeword balance of the channel cannot be guaranteed, and the control information of the data stream cannot be transmitted in the wavelength label.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种实现对波长标签进行编码的方法和系统,可针对波长标签确定数据编码的需求,确定满足所述编码需求的编码方式,确定所述编码方式中的码字映射关系,据此对波长标签进行编码。本发明实现对波长标签进行编码的技术实现了对波长标签进行编码,具有实现简单、成本低的突出优势。对波长标签进行数据编码,可以改善信道的码字均衡性,并消除码字中可能出现的长的连0或长的连1,从而确保接收端具有更好的信噪比;另外还可以提供更多的数据流控制信息。而如果不对波长标签进行数据编码,则信道的码字均衡性则无法保证,且数据流的控制信息将无法在波长标签中进行传递。

Description

一种实现对波长标签进行编码的方法和系统 技术领域
本发明涉及通信领域, 具体涉及一种实现对波长标签进行编码的方法 和系统。 背景技术
随着 WDM ( Wavelength Division Multiplex, 波分复用) 的发展, 当前 的光通信网络可在同一根光纤中同时传输几十个至几百个波长的光信号, 而且基于 ROADM ( Reconfigurable Optical Add-Drop Multiplexer, 可重构光 分插复用器) 的技术方便了光通信中各个波长的按需配置, 使得光网络中 的各波长在两个站点之间并非保持同样的路径, 或者某波长也并非永远分 配给某两个站点。
为了进行网络拓朴识别和光信道探测, 可以在光网络中的波长上叠加 低频的标签信号, 同时在网络中的各节点上识别光通道中的标签信号, 通 过解出标签信号中所携带的信息, 得到光信号在网络中的传输路径和其它 波长相关等信息。 加载光标签信号的方式包括使用电可调光衰减器、 带有 低速调制方式的光发射器、 带有低速调制方式的高速业务调制器、 光放大 器等。 波长标签信号的调制深度通常设置在 2%~10%之间。
波长标签技术涉及到的技术介绍如下: 波分复用系统中为每个波长加 载一个调顶(pilot tone )信号, 可以实现多种特殊的应用, 这在业界早有研 究。 调顶信号有时也叫低频微扰(low-frequency dither )信号, 波长信号加 载调顶信号对传输性能的影响几乎可以忽略不计。
目前现存的技术, 仅仅研究了如何利用 EVOA ( Electrical Variable Optical Attenuator, 电可调光衰减器) 器件将标签信号加载到波长信道上, 但所加载的标签信号是一个具有特定频率的连续模拟信号, 是一个仅能表 征标签频率的信号, 并且并没有实现波长标签的数据编码。
在通信网络中, 接收端需要从接收的数据中提取时序信息来实现同步, 这就需要线路中传输的二进制码流中包含足够的跳变, 即不能有过多的连 续高电平或连续低电平, 而这就需要用到数据编码技术。 数据编码是为了 信号同步和抗干扰, 具体编码方法分为模拟信号编码和数字信号编码, 模 拟信号编码通常称为信号调制, 包括幅移键控 (ASK, Amplitude Shift Keying )法, 频移键控 ( FSK, Frequency Shift Keying )法,相移键控 ( PSK, Phase Shift Keying )法。 常用的数字信号编码有不归零( NRZ, Non Return to Zero )码、 差分不归零 DNRZ码、 曼彻斯特(Manchester )码及差分曼 彻斯特( Differential Manchester )码等。 发明内容
有鉴于此, 本发明的主要目的在于提供一种实现对波长标签进行编码 的方法和系统, 以实现对波长标签进行编码。
为达到上述目的, 本发明的技术方案是这样实现的:
一种实现对波长标签进行编码的方法, 该方法包括:
针对波长标签确定数据编码的需求, 确定满足所述编码需求的编码方 式, 确定所述编码方式中的码字映射关系, 据此对波长标签进行编码。
所述确定数据编码的需求的方法为:
确定数据流的起始位置; 确定有所需数量的均衡的跳变。
在确定数据流的起始位置时, 在非法码字空间中选择合适的码字作为 起始位置标识。
该方法还包括: 在非法码字中找到 0和 1均衡出现的码字, 用来作为 特殊的起始位置标识;
在非法码字中找到的所述码字, 是独立的码字, 或是由多个非法码字 组合成的特殊非法码字。
确定的所述编码方式为 4B5B编码方法;
确定所述码字映射关系时, 所挑选的合法码字为:
1 )连 0的长度不大于 3;
2 )连 1的长度不小于 2。
一种实现对波长标签进行编码的系统, 该系统包括编码需求确定单元、 编码方式确定单元、 码字映射关系确定单元; 其中,
所述编码需求确定单元, 用于针对波长标签确定数据编码的需求; 所述编码方式确定单元, 用于针对波长标签确定满足所述编码需求的 编码方式;
所述码字映射关系确定单元, 用于针对波长标签确定所述编码方式中 的码字映射关系, 据此对波长标签进行编码。
所述编码需求确定单元在确定数据编码的需求时, 用于:
确定数据流的起始位置; 确定有所需数量的均衡的跳变。
所述编码需求确定单元在确定数据流的起始位置时, 用于在非法码字 空间中选择合适的码字作为起始位置标识。
所述编码需求确定单元, 还用于在非法码字中找到 0和 1均衡出现的 码字, 用来作为特殊的起始位置标识;
在非法码字中找到的所述码字, 是独立的码字, 或是由多个非法码字 组合成的特殊非法码字。
确定的所述编码方式为 4B5B编码方法;
所述码字映射关系确定单元在确定所述码字映射关系时, 所挑选的合 法码字为:
1 )连 0的长度不大于 3;
2 )连 1的长度不小于 2。
本发明实现对波长标签进行编码的技术实现了对波长标签进行编码, 具有实现简单、 成本低的突出优势。 对波长标签进行数据编码, 可以改善 信道的码字均衡性, 并消除码字中可能出现的长的连 0或长的连 1 ,从而确 保接收端具有更好的信噪比; 另外还可以提供更多的数据流控制信息。 而 如果不对波长标签进行数据编码, 则信道的码字均衡性则无法保证, 且数 据流的控制信息将无法在波长标签中进行传递。 附图说明
图 1为本发明实施例实现对波长标签进行编码的流程图;
图 2为本发明实施例的优选数据编码示意图;
图 3为本发明实施例的优选数据编码的码字空间分布示意图; 图 4为本发明实施例实现对波长标签进行编码的系统图。 具体实施方式
在实现对波长标签进行编码时, 从总体的操作思路的角度出发, 可以 进行包括以下步驟的操作:
步驟 A、 确定数据编码的需求, 并进行分析。
不同的信道有不同的数据编码要求, 例如对于较高波特率的信道, 编 码效率是需要考虑的重要需求; 而对于电平漂移比较敏感的信道, 码流均 衡性则是需要考虑的重要需求。
步驟 B、 选择并设计满足编码需求的编码方式。
编码是以牺牲有效带宽为代价来换取其他性能改善的技术, 满足编码 需求的编码方式可以有多种。
步驟 C、 详细设计编码方式中的码字映射关系, 据此对波长标签进行 编码。
对于同一种编码方式, 数据和码字的映射关系可以是有差别的, 这取 决于各个码字在传输的具体应用中出现的统计概率等因素。 按照上述技术方案的步驟, 可以得到一个适合波长标签的编码方法。 下面结合附图对波长标签数据编码的方法进行说明。
在实际应用时, 可以进行如图 1所示的操作, 图 1给出了数据编码的 技术方案流程图, 该流程可以包括以下步驟:
步驟 110、 确定数据编码的需求。
具体而言, 波长标签在随光路发送时, 可以按照预定的波特率发送数 据信息。 对于一路光信号, 波长标签的一个波特可以携带一个比特的信息, 所以波长标签可以理解为串行信道的一种表现形式。
串行信道可以细分为同步串行信道和异步串行信道。 异步串行通信时, 需要有一定的机制来控制数据流的分段, 即需要确定数据流的起始位置。 所以得出数据编码的一个需求, 即需要能够确定数据流的起始位置。
波长标签的发送端存在电光转换, 接收端会存在光电转换, 所以需要 考虑到电信号在传输的过程中存在的失真问题, 例如电平漂移等; 另外, 需要考虑到连续的长串相同信号所带来的接收端误码的问题, 如果出现长 的连续的 0或者连续的 1 ,接收端甚至无法实现正确的判决, 所以可以得出 数据编码的另一个需求, 即数据流中需要有足够数量的跳变 (从逻辑 0到 逻辑 1或者是从逻辑 1到逻辑 0的翻转), 并且是尽量均衡的跳变。 比如: 当达到传输比特总数的 30%到 60%时, 即认为有足够数量的跳变。
可见, 数据编码应该满足两个基本的需求, 一个需求是确定数据流的 起始位置; 另一个需求是有满足当前需要的足够数量的跳变, 并且是尽量 均衡的 if兆变。
步驟 120、 选择并设计满足编码需求的编码方式。
具体而言, 根据前述的需求, 可以考虑如下几种备选的编码方法。
1 ) 4B5B编码。
4B5B编码方法是把 4位数据转换成 5位符号以供传输, 这些符号保持 线路的交流(AC ) 平衡, 信号的直流(DC ) 分量变化小于额定中心点的 10%。 4B5B编码的效率为 80%。
4B5B编码中, 有 16个码字对应于 4位数据的 16种状态, 这些与数据 形成映射关系的码字称为合法码字。 5位符号的组合状态一共有 32种, 除 去 16种合法码字, 另外的 16种码字称为非法码字。
4B5B编码中, 每个合法的数据码字中, 最长只有 3个连续的 0, 这个 特征可以用来避免连续的长串连 0的出现。另外, 由于 4B5B编码中存在大 量的非法码字, 这些非法码字可以用来作为数据起始位置的标识。 所以, 4B5B编码是可以满足所述编码需求的。
2 ) 四插入编码。
四插入编码是比特流中插入冗余比特的方法,可以消除长的连 0或连 1。 如: 如果遇到 4个连续的 0, 那么插入一个 1 ; 如果遇到 4个连续的 1 , 那 么插入一个 0。 数据流的起始位置用 6个连续的 1来标识。 所以, 四插入编 码是可以满足所述编码需求的。
3 )扰码编码。
扰码编码利用伪随机原理对数据流中的某些数据位进行翻转处理, 从 而降低了连 0或连 1 出现的概率, 利用特殊的定义的码流作为数据流的起 始位置标识。 所以扰码编码是可以满足所述编码需求的。
4 ) 帧内字节编码。
帧内字节编码利用特殊定义的码流作为帧头, 用来标识数据流的起始 位置, 而帧内有效字节的高两位固定为 0B10, 从而避免了长连 0和长连 1 的出现, 编码效率为 75%。 所以帧内字节编码是可以满足所述编码需求的。
5 )码字内编码。
码字内编码利用高波特率的数据流实现低波特率的通信信道, 多个波 特分为一组, 用来表示一个低速率的信号。 码字内编码利用特殊定义的码 字组合状态作为帧头, 用来表示数据流的起始位置, 而每个低速码字在内 部编码时, 强制使 0和 1均有机会出现, 从而避免长的连 0或者长的连 1 的问题。 所以, 码字内编码是可以满足所述编码需求的。
在具体应用时,可以根据实际应用环境选择上述的编码方法,如: 4B5B 编码。
步驟 130、详细设计编码方式中的码字映射关系,据此对波长标签进行 编码。
具体而言, 挑选出来的合法码字最好具备如下特点:
1 )连 0的长度不大于 3。
2 )连 1的长度不小于 2。
图 2给出了 4B5B编码的码字映射表, 4比特的 16种状态被映射为 5 比特的 16种状态, 这样, 5比特的 32种状态中, 有 16种非法码字可以供 选为起始位置标识, 而且连 0数少于 3个的组合状态多于 16个, 所以完全 可以满足映射需求。 图 3给出了 4B5B编码的码字空间分布图,可以考虑在非法码字空间中 选择合适的码字作为起始位置标识。 在非法码字中, 可以找到 0和 1 出现 得比较均衡的码字, 用来作为特殊的起始位置标识。
合法码字中, 连 0的最长个数为 3 , 那么可以考虑使用连 0的个数为 4 的非法码字作为特殊非法码字, 用来确定数据流的起始位置。 从非法码字 空间中可以找到满足要求的有 10000, 00001, 00000等码字。 虽然这几个码 字可以作为特殊非法码字, 但是他们含有的 1和 0的个数不够均衡, 所以 可以进一步从非法码字空间中选取多个非法码字以组合成为一个特殊非法 码字,用来均衡 1和 0的个数。从非法码字空间中,可以找到 11000和 01101 , 将这两个非法码字进行组合, 可以得到一个具有 4个连 0、 而 1和 0的个数 又各为 5个的码字, 即得到一个完整的特殊非法码字为 1100001101。
为了保证前述的操作思路以及具体技术描述能够顺利实现, 可以进行 如图 4所示的设置。 参见图 4, 图 4为本发明实施例实现对波长标签进行编 码的系统图, 该系统包括可以依次相连的编码需求确定单元、 编码方式确 定单元、 码字映射关系确定单元。
在实际应用时, 编码需求确定单元能够确定数据编码的需求, 并进行 分析; 编码方式确定单元能够选择并确定满足所述编码需求的编码方式; 码字映射关系确定单元能够确定所述编码方式中的码字映射关系, 据此对 波长标签进行编码。
综上所述可见, 无论是方法还是系统, 本发明实现对波长标签进行编 码的技术实现了对波长标签进行编码, 具有实现简单、 成本低的突出优势。 对波长标签进行数据编码, 可以改善信道的码字均衡性, 并消除码字中可 能出现的长的连 0或长的连 1 ,从而确保接收端具有更好的信噪比; 另外还 可以提供更多的数据流控制信息。 而如果不对波长标签进行数据编码, 则 信道的码字均衡性则无法保证, 且数据流的控制信息将无法在波长标签中 进行传递。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种实现对波长标签进行编码的方法, 包括:
针对波长标签确定数据编码的需求, 确定满足所述编码需求的编码方 式, 确定所述编码方式中的码字映射关系, 据此对波长标签进行编码。
2、 根据权利要求 1所述的方法, 其中, 所述确定数据编码的需求的方 法为:
确定数据流的起始位置; 确定有所需数量的均衡的跳变。
3、 根据权利要求 2所述的方法, 其中, 在确定数据流的起始位置时, 在非法码字空间中选择合适的码字作为起始位置标识。
4、 根据权利要求 3所述的方法, 其中, 该方法还包括: 在非法码字中 找到 0和 1均衡出现的码字, 用来作为特殊的起始位置标识;
在非法码字中找到的所述码字, 是独立的码字, 或是由多个非法码字 组合成的特殊非法码字。
5、 根据权利要求 1至 4任一项所述的方法, 其中,
确定的所述编码方式为 4B5B编码方法;
确定所述码字映射关系时, 所挑选的合法码字为:
1 )连 0的长度不大于 3;
2 )连 1的长度不小于 2。
6、 一种实现对波长标签进行编码的系统, 包括编码需求确定单元、 编 码方式确定单元、 码字映射关系确定单元; 其中,
所述编码需求确定单元, 用于针对波长标签确定数据编码的需求; 所述编码方式确定单元, 用于针对波长标签确定满足所述编码需求的 编码方式;
所述码字映射关系确定单元, 用于针对波长标签确定所述编码方式中 的码字映射关系, 据此对波长标签进行编码。
7、 根据权利要求 6所述的系统, 其中, 所述编码需求确定单元在确定 数据编码的需求时, 用于:
确定数据流的起始位置; 确定有所需数量的均衡的跳变。
8、 根据权利要求 7所述的系统, 其中, 所述编码需求确定单元在确定 数据流的起始位置时, 用于在非法码字空间中选择合适的码字作为起始位 置标识。
9、 根据权利要求 8所述的系统, 其中, 所述编码需求确定单元, 还用 于在非法码字中找到 0和 1均衡出现的码字, 用来作为特殊的起始位置标 识;
在非法码字中找到的所述码字, 是独立的码字, 或是由多个非法码字 组合成的特殊非法码字。
10、 根据权利要求 6至 9任一项所述的系统, 其中,
确定的所述编码方式为 4B5B编码方法;
所述码字映射关系确定单元在确定所述码字映射关系时, 所挑选的合 法码字为:
1 )连 0的长度不大于 3;
2 )连 1的长度不小于 2。
PCT/CN2013/072153 2012-03-05 2013-03-04 一种实现对波长标签进行编码的方法和系统 WO2013131462A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210054798.9 2012-03-05
CN2012100547989A CN102595259A (zh) 2012-03-05 2012-03-05 一种实现对波长标签进行编码的方法和系统

Publications (1)

Publication Number Publication Date
WO2013131462A1 true WO2013131462A1 (zh) 2013-09-12

Family

ID=46483390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/072153 WO2013131462A1 (zh) 2012-03-05 2013-03-04 一种实现对波长标签进行编码的方法和系统

Country Status (2)

Country Link
CN (1) CN102595259A (zh)
WO (1) WO2013131462A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102595259A (zh) * 2012-03-05 2012-07-18 中兴通讯股份有限公司 一种实现对波长标签进行编码的方法和系统
CN110266373B (zh) 2018-03-12 2021-01-22 中兴通讯股份有限公司 光网络保护倒换控制方法、装置和系统
CN110620635A (zh) * 2018-06-20 2019-12-27 深圳市华星光电技术有限公司 解码方法、设备及可读存储介质
CN113132048A (zh) * 2019-12-31 2021-07-16 中兴通讯股份有限公司 业务码流处理装置及方法
CN113037678B (zh) * 2021-02-26 2021-11-23 江苏科大亨芯半导体技术有限公司 标注光纤波长的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1040469A (zh) * 1989-07-22 1990-03-14 邮电部北京仪表研究所 一种光纤通信系统的编码方法
CN1581756A (zh) * 2003-08-06 2005-02-16 华为技术有限公司 光调顶传输方法和系统
CN102595259A (zh) * 2012-03-05 2012-07-18 中兴通讯股份有限公司 一种实现对波长标签进行编码的方法和系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6108113A (en) * 1995-12-29 2000-08-22 Mci Communications Corporation Method and system for transporting ancillary network data
CN102170310B (zh) * 2011-05-06 2016-12-28 中兴通讯股份有限公司 一种光网络通道检测的方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1040469A (zh) * 1989-07-22 1990-03-14 邮电部北京仪表研究所 一种光纤通信系统的编码方法
CN1581756A (zh) * 2003-08-06 2005-02-16 华为技术有限公司 光调顶传输方法和系统
CN102595259A (zh) * 2012-03-05 2012-07-18 中兴通讯股份有限公司 一种实现对波长标签进行编码的方法和系统

Also Published As

Publication number Publication date
CN102595259A (zh) 2012-07-18

Similar Documents

Publication Publication Date Title
JP6681217B2 (ja) 光情報伝送システム、及び光送信器
JP6745797B2 (ja) ヒットレス、マルチレートの光送信と受信
US20190149390A1 (en) Distribution matching for probabilistic constellation shaping with an arbitrary input/output alphabet
CN103840882B (zh) 光纤网络的发送、接收、通信系统及信号的调制方法
KR101898013B1 (ko) 플라스틱 광섬유를 통해 데이터 통신을 위한 적응형 오류 정정 코드
US11012187B1 (en) Error correction in optical networks with probabilistic shaping and symbol rate optimization
US7580632B1 (en) Method and apparatus for managing lightpaths in optically-routed networks
JP2018504041A (ja) 複数の変調を用いた離散マルチトーン伝送のための方法及びシステム
US10601517B1 (en) Probabilistic shaping on eight-dimensional super-symbols
JP2018519699A (ja) 第1のデータパケットから第2のデータパケットを生成するための方法および装置
WO2013131462A1 (zh) 一种实现对波长标签进行编码的方法和系统
US9806804B2 (en) Method and apparatus for configuring an optical path
EP3324583B1 (en) Data processing method, apparatus and system
US11265086B2 (en) Low rate loss bit-level distribution matcher for constellation shaping
US10225008B1 (en) Systems and methods for reconfiguring an adaptive optical network when adding an optical path
JP5697518B2 (ja) 局側終端装置、加入者側終端装置及び光伝送システム
JP2000151516A (ja) 光伝送システム、光送信機および光受信機
US7471903B1 (en) Optical communication system
Bülow et al. Coded modulation of polarization-and space-multiplexed signals
EP3549282B1 (en) Optical transmission method and optical receiver apparatus
JP6581059B2 (ja) 容量切り替え装置、送信側信号処理装置、受信側信号処理装置及び光伝送システム
Meloni et al. First demonstration of optical signal overlap
JP4388730B2 (ja) 差分波長分割多重/分離化方法とその装置
JP5767169B2 (ja) データ系列変調方法、データ系列復調方法、局側終端装置、加入者側終端装置及び受動光ネットワークシステム
Lee et al. A new line code for 10-Gigabit Ethernet: MB810

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13757933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13757933

Country of ref document: EP

Kind code of ref document: A1