WO2013131402A1 - 用于射线扫描成像的设备和方法 - Google Patents

用于射线扫描成像的设备和方法 Download PDF

Info

Publication number
WO2013131402A1
WO2013131402A1 PCT/CN2012/088079 CN2012088079W WO2013131402A1 WO 2013131402 A1 WO2013131402 A1 WO 2013131402A1 CN 2012088079 W CN2012088079 W CN 2012088079W WO 2013131402 A1 WO2013131402 A1 WO 2013131402A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
radiation
detecting
detectors
inspection object
Prior art date
Application number
PCT/CN2012/088079
Other languages
English (en)
French (fr)
Inventor
陈志强
张丽
赵自然
刑宇翔
郝佳
李亮
Original Assignee
同方威视技术股份有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司, 清华大学 filed Critical 同方威视技术股份有限公司
Priority to JP2014502986A priority Critical patent/JP5676049B2/ja
Priority to KR1020147027486A priority patent/KR101654271B1/ko
Priority to RU2014138823/28A priority patent/RU2571170C1/ru
Priority to EP12870875.7A priority patent/EP2713156B1/en
Priority to US14/129,655 priority patent/US9448325B2/en
Publication of WO2013131402A1 publication Critical patent/WO2013131402A1/zh

Links

Classifications

    • G01V5/22
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/40Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4007Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis characterised by using a plurality of source units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/40Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4007Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis characterised by using a plurality of source units
    • A61B6/4014Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis characterised by using a plurality of source units arranged in multiple source-detector units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/40Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4064Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis specially adapted for producing a particular type of beam
    • A61B6/4078Fan-beams
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4275Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis using a detector unit almost surrounding the patient, e.g. more than 180°
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2985In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)
    • G01V5/226

Definitions

  • the present invention relates to the field of radiation imaging, and more particularly to an apparatus and method for radiographic imaging. Background technique
  • the radiation imaging apparatus is based on the principle of exponential decay of the radiation, and the inspection object is scanned by the radiation source of the radiation source, and the radiation beam passes through the inspection object and is received by the radiation collection device. Based on the ray detection values received by the ray acquisition device, the three-dimensional image can be synthesized or reconstructed and displayed.
  • Fig. 1 shows a schematic structural view of a conventional radiation imaging apparatus.
  • the radiation imaging apparatus comprises a slip ring 13, a radiation source 11 connected to the slip ring 13, a detection setting 12 connected to the radiation source 11 and connected to the slip ring 13, and a conveying means 14 for conveying the inspection object.
  • the slip ring 13 drives the radiation source 11 and the detecting device 12 to rotate to obtain the ray projection values at different angles, and acquires the tomographic image of the inspection object by the reconstruction method.
  • the applicant has conducted in-depth research on the existing radiation imaging apparatus, and found that the existing radiation imaging apparatus needs to rotate the radiation source 11 and the detecting device 12 by the slip ring 13, and the rotation speed of the slip ring 13 is limited, so that the detection efficiency is not high. .
  • the clearance rate required for civil aviation goods is 0.5 m / s, and the existing radiation imaging equipment is difficult to achieve. "Need.
  • the inventors of the present invention have proposed a new one for the problem that the existing radiation imaging apparatus has low detection efficiency.
  • Technical solutions The inventors of the present invention have proposed a new one for the problem that the existing radiation imaging apparatus has low detection efficiency.
  • An object of the present invention is to provide an apparatus for radiographic imaging which effectively shortens the inspection time of an inspection subject.
  • Another object of the present invention is to provide a method for radiographic imaging which obtains a ray acquisition value using a device for ray scanning imaging and processes the value to obtain an image of the inspection object.
  • an apparatus for radiographic imaging includes a plurality of ray generators and a ray detecting device. Among them, a plurality of ray generators are evenly distributed along the arc. During a scanning cycle, a plurality of ray generators sequentially emit a beam of rays to the inspection object to complete scanning of a slice. A ray detecting device is used to collect ray projection values of a beam of rays emitted by a plurality of ray generators.
  • the central angle of the arc formed by the plurality of ray generators is at least ⁇ + 2 ⁇ .
  • 2 ⁇ is the fan angle of the fan beam emitted by the ray generator.
  • each ray generator comprises at least one ray emitting unit.
  • the beam is a fan beam or a beam set consisting of a plurality of linear beams parallel to each other.
  • the radiation detecting device is an arc-shaped array of radiation detectors.
  • a plurality of radiation detecting units are evenly distributed along a circular arc.
  • the radiation detecting device comprises a linear array of a plurality of radiation detectors.
  • Each linear array of ray detectors consists of a plurality of ray detector units arranged in a line.
  • the linear arrays of the plurality of ray detectors are located in the same plane and are sequentially connected through the ends, and the linear arrays of the two ray detectors at both ends are not connected to form a semi-closed frame.
  • the number of linear arrays of ray detectors may be greater than three.
  • the linear array of multiple ray detectors is arranged as follows: The linear array of two adjacent ray detectors is angled greater than ⁇ /2, and the linear array of multiple ray detectors is capable of detecting all ray generators The beam of rays emitted.
  • the number of linear arrays of radiation detectors may be three.
  • the linear array of three ray detectors is arranged as follows: The linear array of ray detectors on both sides are perpendicular to the linear array of intermediate ray detectors, and the linear array of the three ray detectors can The beam of rays emitted by all the ray generators is detected.
  • the plane of the linear array of the plurality of radiation detectors is parallel to the plane of the plurality of radiation generators, and the two planes are perpendicular to the moving direction of the inspection object.
  • the device further comprises an imaging unit.
  • the imaging unit detects the radiation collected by the radiation detecting device The values are processed to obtain an image of the inspection object.
  • the plurality of radiation detecting units corresponding to the at least one radiation generator are not formed with the radiation beam emitted by the radiation generator.
  • the imaging unit sets a linear array of equidistant virtual detectors for each of the at least one of the ray generators described above.
  • the linear array of equidistant virtual detectors includes a plurality of virtual sounding units arranged in a straight line and equally spaced. Each ray generator is equidistant from the corresponding equidistant virtual detector array.
  • the imaging unit may determine a ray detecting unit corresponding to the virtual detecting unit according to the connection between the ray generator and the ray detecting unit, and obtain a ray detecting value of the virtual detecting unit based on the ray detecting value of the ray detecting unit.
  • the ray detection values of all linear arrays of equidistant virtual detectors can form equidistant fan beam projection values.
  • the ray detection values obtained by the device when the beam is a fan beam, constitute an equidistant fan beam projection value;
  • the ray detection values obtained by the device For a beam set consisting of a plurality of parallel straight beams, constitute parallel beam projection values.
  • the radiation detecting unit may be a pseudo dual energy detecting unit.
  • the imaging unit can perform dual-energy decomposition processing on the equidistant fan beam projection values or the parallel beam projection values to obtain the dual energy decomposition coefficients of different base materials, and use the filtered back projection algorithm to perform dual energy decomposition on the dual energy decomposition coefficients of different base materials. Rebuild to obtain an image of the inspection object.
  • the device may also comprise a database.
  • This database is used to store the atomic number and electron density of suspicious items.
  • the imaging unit can compare the atomic number and electron density distribution of the inspection object obtained in the dual energy reconstruction with the data in the database to determine whether the inspection object is a suspicious item.
  • an apparatus for radiographic imaging includes a radiation detecting device and a plurality of radiation generators. Among them, a plurality of ray generators are evenly distributed along the arc. During one scan period, multiple ray generators simultaneously emit a beam of radiation to the inspection object to complete the scanning of a fault.
  • the ray detector is used to collect ray projection values of the beam of rays emitted by the plurality of ray generators.
  • the arc angle formed by the plurality of ray generators is at least ⁇ .
  • each of said ray generators may comprise a plurality of ray emitting units.
  • the radiation beams emitted by the plurality of radiation emitting units are linear beams parallel to each other.
  • the radiation detecting device may comprise a plurality of radiation detecting units. The ray detecting units corresponding to all of the ray emitting units do not overlap.
  • the plurality of radiation detecting units are evenly distributed along the circular arc.
  • Ray emitting unit and radiation detecting unit One-to-one correspondence.
  • the ray detection values obtained by all of the ray detecting units may constitute parallel beam projection values.
  • the plane of the plurality of radiation detecting units is parallel to the plane of the plurality of radiation generators, and the two planes are perpendicular to the moving direction of the inspection object.
  • the device further comprises an imaging unit.
  • the imaging unit processes the radiation detection values collected by the radiation detecting device to obtain an image of the inspection object.
  • the radiation detecting unit may be a pseudo dual energy detecting unit.
  • the imaging unit can perform dual energy decomposition processing on the parallel beam projection values to obtain the dual energy decomposition coefficients of different base materials, and use the filtered back projection algorithm to perform dual energy reconstruction on the dual energy decomposition coefficients of different base materials, thereby obtaining the inspection object. image.
  • the device may also comprise a database.
  • the database stores the atomic number and electron density of suspicious items.
  • the imaging unit compares the atomic number and electron density distribution of the inspection object obtained in the dual energy reconstruction with the data in the database to determine whether the inspection object is a suspicious object.
  • a method for radiographic imaging includes - scanning the inspection object with any one of the two devices described above and obtaining a radiation detection value.
  • the first device is composed of a linear array of multiple ray detectors
  • a ray detecting device wherein the plurality of ray detecting units corresponding to the at least one ray generator does not form a straight line perpendicular to a central axis of the ray beam emitted by the ray generator, and is each of the at least one ray generator Set up a linear array of equidistant virtual detectors.
  • the linear array of equally spaced virtual detectors can include a plurality of virtual probing units arranged in a line and equidistantly distributed. Each ray generator is equidistant from the corresponding equidistant virtual detector array.
  • the ray detecting unit corresponding to the virtual detecting unit is determined, and based on the ray detecting value of the ray detecting unit, the ray detecting value of the virtual detecting unit is obtained.
  • the ray detection values of all linear arrays of equidistant virtual detectors constitute equidistant fan beam projection values.
  • the radiation detection values obtained by the device constitute an equidistant fan beam projection value or a parallel beam projection value.
  • the radiation detecting values obtained by the apparatus constitute parallel beam projection values.
  • the isometric fan beam projection values or the parallel beam projection values are subjected to dual energy decomposition processing to obtain dual energy decomposition coefficients of different base materials.
  • the filtered back projection algorithm can be used to perform dual energy reconstruction on the dual energy decomposition coefficients of different base materials to obtain an image of the inspection object.
  • the method further comprises: obtaining an atomic number and an electron density distribution of the inspection object, and assigning an atomic number and an electron density distribution of the inspection object to an atomic number and an electron density distribution of the suspicious item stored in the database The comparison is made to determine whether the object to be inspected is a suspicious item.
  • the apparatus of the present invention includes a plurality of matching radiation generators and radiation detecting devices.
  • the plurality of ray generators are evenly distributed along the circular arc
  • the ray detecting means may be a multi-segment semi-closed frame composed of a plurality of linear arrays of ray detectors or an elliptical ray detecting array.
  • the rotary slip ring device in the conventional radiographic imaging device is omitted.
  • a plurality of ray generators sequentially emit a beam of rays to the inspection object, and the ray detector is responsible for collecting the ray projection values, thereby completing scanning of a slice.
  • multiple ray generators and ray detectors can quickly obtain complete ray projection values without rotation, which effectively reduces the time required for inspection.
  • FIG. 1 is a schematic structural diagram of a conventional apparatus for radiographic imaging.
  • FIG. 2 is a schematic block diagram of one embodiment of an apparatus for radiographic imaging in accordance with the present invention.
  • Figure 3 is a schematic illustration of the positional relationship of the ray generator and the linear array of ray detectors in this embodiment.
  • 4A and 4B are schematic diagrams showing the positional relationship of a ray generator, a ray detector, and a virtual ray detector in different regions.
  • Figure 5 is a schematic illustration of one embodiment of an apparatus for radiographic imaging in accordance with the present invention.
  • FIG. 6 is a flow diagram of one embodiment of a method of processing radiation detection values in accordance with the present invention. detailed description
  • Fig. 2 shows a schematic structural view of an embodiment of an apparatus for radiographic imaging according to the present invention.
  • the ray scanning imaging apparatus may include a ray detecting device and a plurality of ray generators 21.
  • the plurality of ray generators 21 may sequentially emit a beam of rays to the inspection object, thereby scanning a slice of the inspection object.
  • All rays pass through the inspection object and are collected by the radiation detecting device.
  • the radiation detecting device may be of any shape, for example, a multi-section semi-closed structure or a circular arc structure.
  • a multi-segment semi-closed connection structure composed of a plurality of linear arrays of radiation detectors will be described as an example.
  • the plurality of ray generators 21 may be distributed along a specific shape to facilitate inspection of an object passing through a space formed by the specific shape.
  • the plurality of ray generators 21 may be disposed along a rectangular border, a polygonal border, or other geometrically shaped borders, and the inspection object passes through the internal space formed by the above-described frame.
  • the plurality of radiation generators 21 are evenly distributed along the circular arc.
  • the central angle of the arc is at least ⁇ +2 ⁇ , where 2 ⁇ is the size of the full fan angle of the fan beam.
  • the plurality of linear arrays of radiation detectors are connected in a segmented configuration. Specifically, the linear array of radiation detectors 22, the linear array of radiation detectors 23, and the linear array of radiation detectors 24 are located in the same plane and are sequentially connected by ends, and the linear array of radiation detectors 22 and the linear array of radiation detectors 24 are not connected. To form a semi-closed frame with a inverted door frame. Wherein, each linear array of radiation detectors may comprise a plurality of radiation detecting units arranged in a straight line.
  • the inspection object can be carried by the transport device 25 through the scanning area. Multiple rays in one scan cycle
  • the generator 21 sequentially emits a beam of rays to the inspection object to complete scanning of a slice. After the beam of rays emitted by the ray generator 21 passes through the inspection object, it is collected by a linear array of ray detectors. By processing the acquired ray values, a reconstructed image of the inspection object can be obtained.
  • the plane in which the plurality of ray generators 21 are located and the linear array of the plurality of ray detectors should have two different planes.
  • the two planes may be parallel to each other and both perpendicular to the direction of movement of the inspection object. In this way, crosstalk and illumination dead zones of different detection units can be avoided.
  • the data completeness conditions include: First, the completeness condition of the angle, that is, the ray irradiation angle for the inspection object is at least 2 ⁇ is the size of the complete fan angle of the fan beam. Second, it is guaranteed that the ray values collected by the ray detector are not truncated at all scanning angles. That is to say, at all scanning angles, the beam generated by each ray generator can be effectively detected by the ray detector.
  • the beam of rays emitted by each of the ray generators 21 may be a fan beam having a fan angle of 2 ⁇ .
  • the beam can also be of other shapes, not limited to a fan beam.
  • each of the radiation generators 21 may be provided with one or more radiation emitting ports, each of which may emit a linear beam.
  • a plurality of ray emitting ports of each ray generator 21 can emit a set of parallel beams.
  • the ray generator 21 may be an X-ray generator or other types of ray generators.
  • a carbon nanotube X-ray generator is selected as the radiation emitting source.
  • the advantage of the carbon nanotube X-ray generator compared to a conventional X-ray machine is that it can generate radiation without using high temperature, can be quickly turned on and off, and is smaller in size.
  • the carbon nanotube X-ray generator is used to multi-angle the inspection object, the radiation imaging speed can be effectively improved.
  • the carbon nanotube X-ray generator see the following documents - GZ Yue, Q. Qiu, B. Gao, et al.
  • the central angle of the arc formed by the plurality of ray generators 21 in the present embodiment is JI + 2 Y , it corresponds to the scanning by the ray generator 21 with an angular range of ⁇ + 2 ⁇ for the inspection object. That is, the structural arrangement of the plurality of ray generators 21 of the present invention satisfies the angle completeness requirement in the data completeness condition.
  • the linear array of the ray detectors 22, the linear array of the ray detectors 23 and the linear array of the ray detectors 24 constitute a frame-like semi-closed structure corresponding to each of the ray generators
  • the wire harness can be effectively detected by a linear array of radiation detectors. Therefore, this structural setup can meet the second requirement in the data integrity condition.
  • the radiation detecting unit may be a pseudo dual energy detecting unit.
  • the radiation detecting unit can also adopt other types of detecting units, such as a single-energy detecting unit, a multi-energy detecting unit or a true dual-energy detecting unit.
  • the pseudo dual energy detection unit employed includes two layers of crystals and a filter between the two crystals.
  • the filter can be a copper filter.
  • the first layer of crystals obtains low energy ray values, and the second layer of crystals obtains shaped high energy ray values.
  • the pseudo dual-energy detection unit has the characteristics of being inexpensive and easy to popularize and apply.
  • the number of linear arrays of the radiation detectors is not limited to three shown in FIG.
  • ray values can be acquired using a linear array of four or more numbers of ray detectors.
  • the angle between the adjacent two linear arrays of ray detectors should be greater than /2.
  • the number, angle and length of the linear array of detectors can also be adjusted according to the volume and shape of the object to be inspected, but the linear array of radiation detectors must first satisfy the data integrity condition.
  • the linear array of the plurality of radiation detectors of the present invention not only can completely collect the ray projection values, but also has a higher cost performance than the circular arc detector array due to the multi-segment semi-closed frame structure. Specifically, for the same number of detecting units, the linear array of the plurality of radiation detectors of the present invention constitutes a larger internal space, allowing a larger volume of the inspection object to pass; and when the internal space formed is equivalent, the present invention This structural arrangement uses fewer detection units and can reduce equipment costs.
  • a radial detection arc array can be used.
  • the array of ray detecting arcs may include a plurality of ray detecting units uniformly distributed along a circular arc.
  • the apparatus for radiographic imaging of the present invention may further include an imaging unit.
  • the imaging unit can process the ray detection values acquired by the linear array of ray detectors to obtain a tomographic image of the inspection object.
  • the ray detection values collected by the linear array of ray detectors can also be sent to the main control and data processing terminals via the data transmission system, and processed by the main control and data processing terminals.
  • the standard fan beam weighted filtered back projection (FBP) reconstruction method is only applicable to the arrangement of two types of detection units: one is an isometric structure, that is, multiple detection units are arranged in an arc shape, corresponding to each detection unit. The angle between the rays is equal; the other is an equidistant structure, that is, multiple detector units are arranged in a straight line, between each detector unit The distance is the same, and the central axis of the beam emitted by the ray generator is perpendicular to the line formed by the plurality of detecting units.
  • FBP fan beam weighted filtered back projection
  • the plurality of ray detecting units corresponding to the partial ray generators do not conform to the foregoing reconstruction method.
  • the requirements of the required isometric structure Specifically, the plurality of ray detecting units corresponding to the partial ray generators do not form a straight line perpendicular to the central axis of the ray bundle emitted by the ray generator. This problem is explained in detail below in conjunction with Figures 3 and 4.
  • Fig. 3 is a view showing the positional relationship of the linear array of the ray generator and the ray detector in this embodiment.
  • the plurality of ray detecting units corresponding to the ray generator A are all located on the linear array 24 of the ray detectors, and the straight line of the plurality of ray detecting units and the central axis of the ray beam emitted by the ray generator A
  • the phase is vertical and the distance between each detector unit is the same. That is to say, for ray generator A, these detector units belong to the equidistant structure required by the standard fan beam FBP reconstruction method.
  • a plurality of detector units corresponding to the ray generators B and C are included.
  • the plurality of detector units corresponding to the remaining ray generators are not the equidistant structures required by the standard fan beam FBP reconstruction method.
  • the beam emitted by the ray generator in the area 1 is only collected by the line detector 24 on the right side; the beam emitted by the ray generator in the area 2 is detected by the detector 24 on the right side and the bottom
  • the device 23 is responsible for the acquisition; the beam emitted by the ray generator in the region 3 is only collected by the detector 23 at the bottom; the beam emitted by the ray generator in the region 4 is detected by the detector 22 on the left and the bottom.
  • the device 23 is responsible for the acquisition; the beam emitted by the ray generator in the region 5 is only collected by the detector 22 on the left.
  • the collected ray values are non-equidistant ray acquisition values.
  • Fig. 4A is a schematic diagram showing the positional relationship of the ray generator, the ray detector, and the virtual ray detector in the area 1.
  • the actual detector array 24 is perpendicular to the central axis of the beam emitted by the ray generator A, but not perpendicular to the central axis of the beam emitted by the ray generator D.
  • the ray acquisition values obtained by the detector array 24 are not equidistant ray acquisition values.
  • is the sampling angle corresponding to the projection data
  • 2 ⁇ is the maximum fan angle of the fan beam.
  • the imaging unit may set a linear array 24' of equidistant virtual detectors corresponding to the ray generator D for the ray generator D.
  • the linear array of equally spaced virtual detectors 24' may include a plurality of virtual sounding elements arranged in a straight line and equidistantly distributed.
  • the linear array of equidistant virtual detectors 24' is perpendicular to the central axis of the beam emitted by the ray generator D.
  • the imaging unit determines the radiation detecting unit ml corresponding to the virtual detecting unit n1 according to the connection between the radiation generator D and the radiation detecting unit 24, and obtains the radiation of the virtual detecting unit n1 based on the radiation detecting value of the radiation detecting unit ml. Detect the value.
  • Other virtual sounding units on the linear array of equally-spaced virtual detectors 24' can also be obtained using this method.
  • Figure 4B is a schematic diagram showing the positional relationship of the ray generator E, the ray detector array, and the virtual ray detector in the area 2.
  • the beam emitted by the ray generator E in the area 2 is jointly acquired by the detector 24 on the right side and the detector 23 at the bottom, so that the collected ray values are not equidistant ray acquisition values.
  • the imaging unit sets the virtual detector linear array 23' and the virtual detector linear array 24', and arranges the two virtual detector linear arrays in a straight line.
  • the imaging unit determines that the virtual detecting unit n2 corresponds to the ray detecting unit m2 according to the line connecting the ray generator E with the ray detecting unit 23 and the ray detecting unit 24, and the virtual detecting unit ⁇ 3 corresponds to the ray detecting unit m3.
  • the ray detection values of the virtual detecting units ⁇ 2 and ⁇ 3 can be obtained based on the ray detecting values of the ray detecting units m2 and m3.
  • the plurality of virtual ray detecting units may not be equidistant, or one actual ray detecting unit corresponds to the plurality of virtual detecting units.
  • post-processing may be performed; or the position of the obtained plurality of virtual detecting units may be appropriately adjusted to meet the equal distance between each virtual ray detecting unit by using a suitable method. Claim.
  • the distance between each ray generator and the corresponding equidistant virtual detector array should also be equal.
  • the distance can be set to the distance between the ray generator ⁇ and the linear array of ray detectors 24.
  • the linear array of all equidistant virtual detectors and the ray detection values of the linear array of detectors corresponding to ray generators A, B and C constitute equidistant fan beam projection values.
  • the ray detection values obtained by the device constitute an equidistant fan beam projection value;
  • a plurality of bundles of linear beams that are parallel to each other, the ray detection values obtained by the device constitute parallel beam projection values. I will not repeat them here.
  • the imaging unit can perform dual energy decomposition processing on the isometric fan beam projection values to obtain the dual energy decomposition coefficients of different base materials. Then, the filtered back projection algorithm is used to perform dual energy reconstruction on the dual energy decomposition coefficients of different base materials, thereby obtaining an image of the inspection object.
  • the device can also include a database.
  • the database can store the atomic number and electron density of suspicious items.
  • the imaging unit compares the atomic number and electron density distribution of the inspection object obtained in the dual energy reconstruction with the data in the database to determine whether the inspection object is a suspicious object.
  • the apparatus of the present invention can perform scanning imaging of an inspection object without providing a slip ring device.
  • a plurality of ray generators sequentially emit a beam of rays to the inspection object, and a linear array of the plurality of ray detectors is responsible for acquiring the ray projection values, thereby completing scanning of a tomogram.
  • the device can quickly obtain complete ray projection values without rotating, effectively reducing the time spent on inspections.
  • the apparatus of the present invention does not need to provide a slip ring device, the overall volume of the device is smaller, the equipment cost is lower, and the image unclear caused by the rotation process is avoided, so that the image quality of the obtained inspection object is higher. .
  • the technical solution of the present invention adopts a linear array of pseudo dual-energy detectors combined with short-scan CT scanning and reconstruction, thereby effectively reducing the influence of baggage article occlusion on security inspection.
  • Fig. 5 shows a schematic structural view of another apparatus for radiographic imaging according to the present invention.
  • the apparatus includes a plurality of radiation generators 31 and a radiation detecting device 32.
  • the plurality of ray generators 31 are evenly distributed along the circular arc.
  • the central angle of the arc 312 formed is at least hoisted.
  • the plurality of ray generators 31 can simultaneously emit a beam of rays to the inspection object during one scanning period. The beam is detected by the radiation detecting device 32 after passing through the inspection object.
  • Each of the ray generators 31 can be provided with a plurality of ray emitting units.
  • each of the radiation generators is provided with five radiation emitting units 311.
  • the five ray emitting units 311 can simultaneously emit linear beams parallel to each other to form a beam group.
  • the overlapping area of the plurality of beam groups is the scanning area 313 (Field of View, FOV).
  • the detection device 32 comprises a plurality of radiation detection units 321.
  • Multiple ray detecting units 321 along an arc 322 is evenly distributed.
  • the arc 322 has the same radius as the arc 312, and the central angles are all flat angles.
  • the ray emitting unit 311 on the ray generator 31 is in one-to-one correspondence with the ray receiving unit 312 on the ray detecting device 32.
  • the beams of rays emitted by all of the ray-emitting units 311 do not overlap at the arrival of the ray detecting means.
  • the ray detection values obtained by the device constitute parallel beam projection values.
  • the plane in which the radiation detecting device 32 and the radiation generator 31 are located should have two planes.
  • the two planes are parallel to each other and are perpendicular to the direction of movement of the inspection object.
  • the imaging unit processes the detected value of the radiation collected by the radiation detecting device 32 to obtain an image of the inspection object.
  • the distance between all the ray emitting units 311 and the corresponding ray detecting unit 321 is equal, and the obtained ray detecting values do not need to be rearranged, and the parallel beam projection values can be directly subjected to dual energy decomposition processing.
  • the dual energy decomposition coefficients of different base materials are obtained, and the dual energy reconstruction coefficients of different base materials are reconstructed by a filtered back projection algorithm to obtain an image of the inspection object.
  • the imaging unit can also obtain the atomic number and electron density of the inspection object in the dual energy reconstruction, and compare the data with the atomic number and electron density of the suspicious item stored in the database to determine whether the inspection object is suspicious. article.
  • the reconstruction method may be the same as the method in the previous embodiment, and details are not described herein again.
  • the device of the present invention is not limited to the structure shown in the figure, as long as it can be ensured that the beam of rays emitted by all the ray emitting units does not overlap when reaching the ray detecting device, that is, one ray should be avoided.
  • the detecting unit 321 can simultaneously acquire the beam of rays emitted by the two or more ray emitting units 311.
  • the central angle of the arc 322 may be greater than the central angle of the arc 312 formed by the plurality of ray generators.
  • the radius of the arc 322 can be greater than the radius of the arc 321 .
  • the number of the radiation detecting units 321 may be more than the number of the radiation emitting units.
  • the arc shape of the radiation detecting device 32 may be replaced by other structures, for example, the three-segment connection structure or the multi-segment connection structure in the foregoing embodiment. It suffices that the radiation beams emitted from all of the radiation emitting units 311 do not overlap when they reach the radiation detecting device 32. Correspondingly, it is necessary to first obtain a virtual detecting unit corresponding to the actual detecting unit, and obtain the detected value of the virtual detecting unit based on the detected value of the actual detecting unit. The reconstruction is then performed using the ray detection values of the virtual detection unit to obtain an image of the inspection object.
  • the inspection time is made Effectively shortened, greatly reducing the customs clearance time of the inspection object.
  • Figure 6 shows a flow diagram of one embodiment of a method of processing radiation detection values in accordance with the present invention.
  • step S11 the inspection object is subjected to ray scanning and a ray detection value is obtained.
  • Scanning and detection can be performed using any of the aforementioned devices for radiographic imaging.
  • a plurality of ray generators can be used to sequentially emit a beam of rays to the inspection object to scan a slice.
  • the beam is collected by a ray detector to obtain a ray detection value.
  • step S12 the ray detection values are rearranged to obtain an equidistant fan beam projection value.
  • the values can be radiographically pre-processed and corrected. This includes de-air values and local negative logarithm operations, uniformity correction, detector bad track determination and removal.
  • a radiation detecting device and a fan beam composed of a plurality of linear arrays of radiation detectors will be described as an example.
  • the method can be appropriately adjusted with reference to the method.
  • a linear array of equidistant virtual detectors can be provided for each such ray generator.
  • the linear array of equally spaced virtual detectors can include a plurality of virtual sounding units arranged in a straight line and equidistantly distributed.
  • Each ray generator should be at the same distance from the corresponding equidistant virtual detector array.
  • the ray detecting unit corresponding to the virtual detecting unit is determined, and based on the ray detecting value of the ray detecting unit, the ray detecting value of the virtual detecting unit is obtained.
  • the linear array of all equidistant virtual detectors and the ray detection values of the linear array of detectors corresponding to ray generators A, B and C constitute the equidistant fan beam projection values.
  • the method for processing the radiation detection value may further include:
  • Step S13 performing dual energy decomposition processing on the isometric fan beam projection values to obtain dual energy decomposition coefficients of different base materials.
  • the base material decomposition method can be used to perform dual energy decomposition on the isometric fan beam projection values and decompose into the dual energy decomposition coefficients A 1 and A 2 under different base materials.
  • Step S14 Perform dual-energy reconstruction on the dual energy decomposition coefficients of the different base materials by using a filtered back projection algorithm, thereby obtaining an image of the inspection object.
  • CT weight can be performed on the dual energy decomposition coefficient 4 1 and the method of reconstructing according to the short scan weight respectively. Thereby obtaining the reconstructed dual energy reconstruction coefficients al and a2 £
  • the weighting factor used can be:
  • 2 ⁇ is the maximum fan angle of the fan beam.
  • the weighting coefficient selected is not limited to the above manner, and other methods may be used to obtain the weighting coefficient.
  • the method may further comprise:
  • step S15 it is judged whether the inspection object is a suspicious item.
  • the dual energy reconstruction coefficients ⁇ and 3 ⁇ 4 can be substituted into the following two equations to obtain the atomic number and electron density of the object to be inspected.
  • Pe a lPel + 3 ⁇ 4Pe2 ( 2 ), where , and are the atomic order values of the two base materials, respectively, 3 ⁇ 41 and ⁇ are the electron density values of the two base materials, respectively.
  • the distribution value of the atomic number and the electron density of the inspection object is compared with the atomic number and the electron density distribution data of the suspicious object to determine whether the inspection object is a suspicious item.
  • the atomic number and electron density distribution of the suspicious item can be stored in a database or stored in other devices.
  • step S16 is performed.
  • the type of the suspicious item can be displayed, and the area where the suspicious item is located is marked, and the staff member performs an open package inspection.
  • step S17 is performed.
  • the inspection object is passed and the next layer is scanned, and when all the objects to be inspected pass, the three-dimensional reconstructed image of the inspection object can be displayed.

Abstract

一种用于射线扫描成像的设备和方法。其中,该设备包括多个射线发生器(21,31)和射线探测装置(32)。其中,多个射线发生器(21,31)沿圆弧均匀分布,并且在一个扫描周期内,多个射线发生器(21,31)依次或者同时向检查对象发出射线束;射线探测装置(32)可以是由多个射线探测器线性阵列构成的多段式半封闭结构,也可以是圆弧状结构,其上设有多个沿圆弧均匀分布的射线探测单元。在整个检查过程中,该设备无需转动即可快速得到完备的射线投影数值,有效减少了检查所用时间。

Description

用于射线扫描成像的设备和方法 本申请要求了 2012年 3月 9日提交的、 申请号为 201210059992.6、 发明名称为 "用 于射线扫描成像的设备和方法"的中国专利申请的优先权,其全部内容通过引用结合在本 申请中。 技术领域
本发明涉及辐射成像领域, 特别涉及用于射线扫描成像的设备和方法。 背景技术
当前,由于安全检查日益受到世界各国的重视,辐射成像设备巳广泛应用在机场、 车站、 海关、 地铁、 码头等公共场所和关键部门, 从而对行李、 货物等物品进行高效 稳定的安全检查。
辐射成像设备是根据射线的指数衰减原理, 由射线源发射射线束对检查对象进行 扫描, 射线束穿过检查对象后被射线采集装置接收。 根据射线采集装置所接收的射线 检测数值, 可合成或者重建三维图像并进行显示。
图 1示出了现有的辐射成像设备的结构示意图。
辐射成像设备包括滑环 13、 与滑环 13连接的射线源 11、 与射线源 11相对并连 接在滑环 13上的探测设置 12, 以及传送检查对象的传送装置 14。 在检查过程中, 滑 环 13带动射线源 11和探测装置 12旋转, 以获取不同角度上的射线投影数值, 并通 过重建方法获取检查对象的断层图像。
申请人对现有的辐射成像设备进行了深入研究,发现现有的辐射成像设备需要由 滑环 13带动射线源 11和探测装置 12旋转, 而滑环 13的旋转速度有限, 使得探测效 率不高。 例如, 民航物品所要求的通关率为 0. 5米 /秒, 而现有的辐射成像设备难以 两足这 ~ "需要。 发明内容
本发明的发明人针对现有的辐射成像设备探测效率不高的问题,提出了一种新的 技术方案。
本发明的一个目的是提供一种用于射线扫描成像的设备,有效缩短检查对象的检 查时间。
本发明的另一目的是提供一种用于射线扫描成像的方法,该方法利用射线扫描成 像的设备获得射线采集数值, 并对该数值进行处理, 以获得检查对象的图像。
根据本发明的第一方面, 提供了一种用于射线扫描成像的设备。 该设备包括多个 射线发生器和射线探测装置。 其中, 多个射线发生器沿圆弧均匀分布。 在一个扫描周 期内, 多个射线发生器依次向检查对象发出射线束, 以完成对一个断层的扫描。 射线 探测装置用于采集多个射线发生器所发出的射线束的射线投影数值。
优选地, 多个射线发生器所构成的圆弧的圆心角至少为 π + 2 γ。 其中, 2 γ 为射 线发生器所发出的扇形射线束的扇角。
优选地, 每个射线发生器包括至少一个射线发射单元。
可选地, 射线束为扇形射线束或者为由多个彼此平行的直线形射线束构成的射线 束组。
可选地, 射线探测装置为圆弧状的射线探测器阵列。 在该射线探测器阵列中, 多 个射线探测单元沿圆弧均匀分布。
优选地, 射线探测装置包括多个射线探测器线性阵列。 每个射线探测器线性阵列 由多个沿直线排列的射线探测单元构成。 多个射线探测器线性阵列位于同一平面并通 过端部依次连接, 并且两端的两个射线探测器线性阵列不相连, 以构成半封闭框架。
可选地, 射线探测器线性阵列的数目可以大于 3。 在这种情况下, 多个射线探测器 线性阵列按照如下方式设置: 相邻两个射线探测器线性阵列所成角度大于 π /2, 并且 多个射线探测器线性阵列能够检测全部射线发生器所发出的射线束。
优选地, 射线探测器线性阵列的数目可以为 3。 在这种情况下, 3 个射线探测器 线性阵列按照如下方式设置: 位于两侧的射线探测器线性阵列均与中间的射线探测器 线性阵列相垂直, 并且所述 3 个射线探测器线性阵列能够检测全部射线发生器所发出 的射线束。
优选地, 多个射线探测器线性阵列所在平面与多个射线发生器所在平面相平行, 且该两平面与检查对象的运动方向相垂直。
优选地, 该设备还包括成像单元。 该成像单元对射线探测装置所采集的射线检测 数值进行处理, 以获得检查对象的图像。
优选地, 在一个实施例中, 对于由多个射线探测器线性阵列构成的射线探测装置, 至少一个射线发生器所对应的多个射线探测单元未形成与该射线发生器所发出的射线 束的中轴线相垂直的直线。 成像单元针对上述至少一个射线发生器中的每一个, 设置 等距型虚拟探测器线性阵列。 该等距型虚拟探测器线性阵列包括多个沿直线排列且等 距分布的虚拟探测单元。 每个射线发生器与相应的等距型虚拟探测器阵列的距离相等。 成像单元可根据射线发生器与射线探测单元的连线, 确定与虚拟探测单元相对应的射 线探测单元, 并基于该射线探测单元的射线检测数值, 获得该虚拟探测单元的射线检 测数值。 全部等距型虚拟探测器线性阵列的射线检测数值可构成等距扇束投影数值。
在另一个实施例中, 对于由圆弧状射线探测器阵列构成的射线探测装置, 当射线 束为扇形射线束时, 该装置所获得的射线检测数值构成等距扇束投影数值; 当射线束 为由多个平行的直线束构成的射线束组时, 该装置所获得的射线检测数值构成平行束 投影数值。
优选地, 射线探测单元可以为伪双能探测单元。 成像单元可以对等距扇束投影数 值或者平行束投影数值进行双能分解处理, 以获得不同基材料的双能分解系数, 并利 用滤波反投影算法对不同基材料的双能分解系数进行双能重建, 从而获得检查对象的 图像。
优选地, 该设备还可包括数据库。 该数据库用于存储可疑物品的原子序数和电子 密度。 成像单元可将在双能重建中所获得的检查对象的原子序数和电子密度分布与该 数据库中的数据进行比对, 以判断检查对象是否为可疑物品。
根据本发明的第一方面, 还提供了另外一种用于射线扫描成像的设备。 该设备包 括射线探测装置和多个射线发生器。 其中, 多个射线发生器沿圆弧均匀分布。 在一个 扫描周期内, 多个射线发生器同时向检查对象发出射线束, 以完成对一个断层的扫描。 射线探测装置用于采集多个射线发生器所发出的射线束的射线投影数值。
优选地, 多个射线发生器所构成的圆弧的圆心角至少为 π 。
优选地, 每个所述射线发生器可包括多个射线发射单元。 其中, 多个射线发射单 元所发射的射线束为彼此平行的直线束。 射线探测装置可包括多个射线探测单元。 全 部射线发射单元所对应的射线探测单元不重叠。
优选地, 多个射线探测单元可沿圆弧均匀分布。 射线发射单元可与射线探测单元 一一对应。 全部射线探测单元所获得的射线检测数值可构成平行束投影数值。
优选地, 多个射线探测单元所在平面与多个射线发生器所在平面相平行, 且该两 平面与检查对象的运动方向相垂直。
优选地, 该设备还包括成像单元。 该成像单元对射线探测装置所采集的射线检测 数值进行处理, 以获得检查对象的图像。
优选地, 射线探测单元可以为伪双能探测单元。 成像单元可以对平行束投影数值 进行双能分解处理, 以获得不同基材料的双能分解系数, 并利用滤波反投影算法对不 同基材料的双能分解系数进行双能重建, 从而获得检查对象的图像。
优选地, 该设备还可包括数据库。 该数据库可存储可疑物品的原子序数和电子密 度。 成像单元将在双能重建中所获得的检查对象的原子序数和电子密度分布与数据库 中的数据进行比对, 以判断检查对象是否为可疑物品。
根据本发明的第二方面, 提供了一种用于射线扫描成像的方法。 该方法包括- 利用上述两种设备中的任意一种对检查对象进行射线扫描并获得射线检测数值。 当采用前述第一种设备时, 对于由多个射线探测器线性阵列构成
的射线探测装置, 针对至少一个射线发生器所对应的多个射线探测单元未形成与该射 线发生器所发出的射线束的中轴线相垂直的直线, 为上述至少一个射线发生器中的每 一个设置等距型虚拟探测器线性阵列。 该等距型虚拟探测器线性阵列可包括多个沿直 线排列且等距分布的虚拟探测单元。 每个射线发生器与相应的等距型虚拟探测器阵列 的距离相等。 然后, 根据射线发生器与射线探测单元的连线, 确定与虚拟探测单元相 对应的射线探测单元, 并基于该射线探测单元的射线检测数值, 获得该虚拟探测单元 的射线检测数值。 全部等距型虚拟探测器线性阵列的射线检测数值构成等距扇束投影 数值。
对于由多个沿圆弧分布的射线探测单元构成的射线探测装置, 该装置所获得的射 线检测数值构成等距扇束投影数值或者平行束投影数值。
当利用前述第二种设备时, 对于由多个沿圆弧分布的射线探测单元构成的射线探 测装置, 该装置所获得的射线检测数值构成平行束投影数值。
优选地, 对等距扇束投影数值或者平行束投影数值进行双能分解处理, 以获得不 同基材料的双能分解系数。 可利用滤波反投影算法对不同基材料的双能分解系数进行 双能重建, 从而获得检查对象的图像。 优选地, 该方法还包括: 获得所述检查对象的原子序数和电子密度分布, 并将所 述检查对象的原子序数和电子密度分布与所述数据库所存储的可疑物品的原子序数和 电子密度分布进行比对, 以判断检查对象是否为可疑物品。
本发明的设备包括相配套的多个射线发生器和射线探测装置。 其中, 多个射线发 生器可沿圆弧均匀分布,射线探测装置可以是多个射线探测器线性阵列构成的多段式 半封闭框架或者是由呈椭圆形的射线探测阵列。 通过采用这种结构设置, 省去了传统 射线扫描成像设备中的旋转滑环装置。 在实际探测中, 多个射线发生器依次向检查对 象发出射线束, 射线探测装置负责采集射线投影数值, 从而完成对一个断层的扫描。 在整个检查过程, 多个射线发生器和射线探测装置无需转动, 即可快速得到完备的射 线投影数值, 有效减少了检查所用时间。 附图说明
构成说明书的一部分的附图描述了本发明的实施例,并且连同说明书一起用于解 释本发明的原理。
参照附图, 根据下面的详细描述, 可以更加清楚地理解本发明, 其中- 图 1是现有的用于射线扫描成像的设备的结构示意图。
图 2是根据本发明的一种用于射线扫描成像的设备的一个实施例的结构示意图。 图 3是该实施例中的射线发生器与射线探测器线性阵列的位置关系示意图。 图 4A和图 4B示出了不同区域中的射线发生器、射线探测器和虚拟射线探测器的 位置关系示意图。
图 5 是根据本发明的另一种用于射线扫描成像的设备的一个实施例的结构示意 图。
图 6 是根据本发明的一种对射线检测数值进行处理的方法的一个实施例的流程 图。 具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到: 除非另外具 体说明, 否则在这些实施例中阐述的部件和步骤的相对布置、 数字表达式和数值不限 制本发明的范围。 同时, 应当明白, 为了便于描述, 附图中所示出的各个部分的尺寸并不是按照实 际的比例关系绘制的。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明 及其应用或使用的任何限制。
对于相关领域普通技术人员巳知的技术、方法和设备可能不作详细讨论, 但在适 当情况下, 所述技术、 方法和设备应当被视为授权说明书的一部分。
在这里示出和讨论的所有示例中, 任何具体值应被解释为仅仅是示例性的, 而不 是作为限制。 因此, 示例性实施例的其它示例可以具有不同的值。
应注意到: 相似的标号和字母在下面的附图中表示类似项, 因此, 一旦某一项在 一个附图中被定义, 则在随后的附图中不需要对其进行进一步讨论。
图 2示出了根据本发明的用于射线扫描成像的设备的一个实施例的结构示意图。 射线扫描成像设备可包括射线探测装置和多个射线发生器 21。
当检查对象进入扫描区域时, 多个射线发生器 21 可以依次向检查对象发出射线 束, 从而对检查对象的一个断层进行扫描。
所有射线束穿过检查对象后由射线探测装置进行采集。
射线探测装置可以是任意形状, 例如可以是多段式半封闭结构或者圆弧结构。在 本实施例中, 以多个射线探测器线性阵列所构成的多段式半封闭连接结构为例进行说 明。
多个射线发生器 21 可沿特定形状分布, 以便于检查对象从该特定形状所构成的 空间中通过。 例如, 多个射线发生器 21 可以沿矩形边框、 多边形边框或其他几何形 状的边框设置, 检查对象从上述边框所构成的内部空间通过。 在本实施例中, 多个射 线发生器 21沿圆弧均匀分布。 该圆弧的圆心角至少为 π +2 γ, 其中 2 γ 为扇形束完 整扇角的大小。
在本实施例中, 多个射线探测器线性阵列以分段式结构连接。 具体地, 射线探测 器线性阵列 22、 射线探测器线性阵列 23和射线探测器线性阵列 24位于同一平面并 通过端部依次连接, 并且射线探测器线性阵列 22和射线探测器线性阵列 24不相连, 以构成倒门框式的半封闭框架。其中, 每个射线探测器线性阵列可包括多个沿直线排 列的射线探测单元。
检查对象可由输送装置 25承载经过扫描区域。 在一个扫描周期内, 多个射线发 生器 21依次向检查对象发出射线束, 以完成对一个断层的扫描。射线发生器 21所发 出的射线束穿过检查对象后, 由射线探测器线性阵列进行采集。通过对所采集的射线 数值进行处理, 可以得到检查对象的重建图像。
多个射线发生器 21所在平面与多个射线探测器线性阵列所在平面应当为两个不 同平面。
优选地, 该两平面可以彼此平行, 且均与检查对象的运动方向相垂直。 这样, 可 以避免不同探测单元的交叉串扰和照射盲区。
在此, 首先简单介绍一下, 利用扇形射线束进行精确重建所必须满足的数据完备 性条件。 该数据完备性条件包括: 第一、 角度的完备性条件, 即针对检查对象的射线 辐照角度至少为 其中 2 γ 为扇形束完整扇角的大小。 第二、 保证在所有的 扫描角度下, 射线探测器所采集的射线数值不存在截断。 也就是说, 在所有扫描角度 下, 由各射线发生器所产生的射线束均可被射线探测器有效探测到。
在本实施例中, 每个射线发生器 21所发出的射线束可以为扇形束, 其扇角可以 为 2 γ。 当然, 射线束也可以是其他形状, 而不局限于扇形束。 例如, 可根据需要, 每个射线发生器 21设有一个或多个射线发射口, 每个射线发射口可发射直线形射线 束。 这样, 每个射线发生器 21的多个射线发射口可发射一组平行的射线束。
射线发生器 21可以选用 X射线发生器, 也可以选择其他种类的射线发生器。 优 选地, 在本实施例中, 选择碳纳米管 X射线发生器作为射线发射源。 与传统的 X光机 相比, 该碳纳米管 X射线发生器的优点在于, 不必利用高温就能产生射线, 可以快速 开启和关闭, 且体积更小。利用该碳纳米管 X射线发生器对检查对象进行多角度照射 时, 能够有效提高射线成像速度。 有关碳纳米管 X射线发生器的详细内容可参见如下 文献- G. Z. Yue, Q. Qiu, B. Gao, et al. Generati on of cont inuous and pulsed diagn ost ic imaging x-ray radiat ion us ing a carbon-nano tube-based f ield-emi ss io n cathode. Appl. Phys. Lett. 81, 355 (2002); doi : 10. 1063/1. 1492305 , 在此不再进行 详细描述。
由于本实施例中的多个射线发生器 21所构成的圆弧的圆心角为 JI +2 Y , 相当于 射线发生器 21对检查对象进行了角度范围为 π +2 γ 的扫描。 也就是说, 本发明的多 个射线发生器 21的结构设置满足了数据完备性条件中的角度完备要求。
关于数据完备性条件中的第二个要求, 由于多个射线发生器 21 构成了一个环形 半封闭结构, 而射线探测器线性阵列 22、 射线探测器线性阵列 23和射线探测器线性 阵列 24则构成一个与之相对应的框状半封闭结构, 每个射线发生器所产生的全部射 线束均可由射线探测器线性阵列有效探测到。 因此, 这种结构设置能够满足数据完备 性条件中的第二个要求。
射线探测单元可以是伪双能探测单元。 当然, 射线探测单元也可采用其他类别的 探测单元, 例如单能探测单元、 多能探测单元或者真双能探测单元。
所采用的伪双能探测单元包括两层晶体和位于两晶体之间的滤波片。该滤波片可 以是铜滤波片。第一层晶体获得低能射线数值, 第二层晶体获得整形后的高能射线数 值。 这种伪双能探测单元具有物美价廉的特点, 易于推广应用。
需要说明的是, 射线探测器线性阵列的数目不限于图 2中所示的三个。 例如, 可 以利用四个或更多数目的射线探测器线性阵列采集射线数值。 在这种情况下, 相邻两 个射线探测器线性阵列所成角度应当大于 /2。
还可以根据检查对象的体积、 形状等因素调整探测器线性阵列的数目、 角度和长 度, 但所设置的射线探测器线性阵列必须首先满足数据完备性条件。
本发明的多个射线探测器线性阵列由于采用多段式半封闭框架结构,不仅能够完 整采集射线投影数值, 而且相比于圆弧形探测器阵列性价比更高。 具体来说, 对于相 同数目的探测单元, 本发明的多个射线探测器线性阵列所构成的内部空间更大, 允许 体积更大的检查对象通过; 而当所构成的内部空间相当时, 本发明的这种结构布置所 采用的探测单元更少, 能够降低设备成本。
另外,也可采用其他形状的射线探测装置替代图 2中所示的多段式半封闭连接结 构。 例如, 可以选用射线探测圆弧阵列。 该射线探测圆弧阵列可包括沿圆弧均匀分布 的多个射线探测单元。
本发明的用于射线扫描成像的设备还可包括成像单元。该成像单元可以对射线探 测器线性阵列所采集的射线检测数值进行处理, 以获得检查对象的断层图像。
当然,射线探测器线性阵列所采集的射线检测数值也可经由数据传输系统发送至 主控制及数据处理终端, 并由主控制及数据处理终端进行数值处理。
在对数据处理进行详细描述之前,首先介绍一下利用扇形射线束进行重建的方法 对射线探测单元的结构要求。
标准的扇束加权滤波反投影型 (FBP ) 重建方法只适用于两种探测单元的排布: 一种为等角结构, 即多个探测单元呈圆弧状排布, 每个探测单元所对应的射线之间的 夹角相等; 另一种为等距结构, 即多个探测单元呈直线状排布, 每个探测器单元之间 的距离相同,并且射线发生器所发出的射线束的中轴线与多个探测单元所形成的直线 相垂直。 当采用直线形射线束组时, 可采用与上述重建方法相类似的方法进行重建, 在此再赘述。
在本实施例中, 由于多个射线发生器的环形构造以及多个射线探测器线性阵列的 多段式半封闭框形结构,使得部分射线发生器所对应的多个射线探测单元不符合前述 重建方法所要求的等距结构的要求。具体来说, 部分射线发生器所对应的多个射线探 测单元未形成与该射线发生器所发出的射线束的中轴线相垂直的直线。 下面结合图 3 和图 4对这一问题进行详细解释。
图 3示出了本实施例中射线发生器与射线探测器线性阵列的位置关系示意图。 如图 3所示,射线发生器 A所对应的多个射线探测单元均位于射线探测器线性阵 列 24上, 并且多个射线探测单元所在的直线与射线发生器 A所发出的射线束的中轴 线相垂直, 且每个探测器单元之间的距离相同。 也就是说, 对于射线发生器 A, 这些 探测器单元属于标准扇束 FBP重建方法所要求的等距结构。
与之类似的还包括射线发生器 B和 C所对应的多个探测器单元。而其余的射线发 生器所对应的多个探测器单元均不属于标准扇束 FBP重建方法所要求的等距结构。
为了更好地说明这一问题, 我们将多个射线发生器所在的圆弧分成五个区域。其 中, 区域 1中的射线发生器所发射的射线束只由右侧的线阵探测器 24负责采集; 区 域 2 中的射线发生器所发射的射线束由右侧的探测器 24和底部的探测器 23负责采 集; 区域 3中的射线发生器所发射的射线束只由底部的探测器 23负责采集; 区域 4 中的射线发生器所发射的射线束由左侧的探测器 22和底部的探测器 23负责采集;区 域 5中的射线发生器所发射的射线束只由左侧的探测器 22负责采集。
现以区域 1中的射线发生器和相应的射线探测器为例,对所采集的射线数值为非 等距射线采集数值进行说明。
图 4A为区域 1中的射线发生器、 射线探测器和虚拟射线探测器的位置关系示意 图。
如图 4A所示,实际的探测器阵列 24与射线发生器 A所发出的射线束的中轴线相 垂直, 但是与射线发生器 D所发出的射线束的中轴线不垂直。 因此, 对于射线发生器 D , 探测器阵列 24所获得的射线采集数值不是等距射线采集数值。 其中, 在本实施例 中, β为投影数据所对应的采样角度, 2 γ为扇形射线束的最大扇角。 为了解决这一问题,成像单元可以针对射线发生器 D设置与射线发生器 D相应的 等距型虚拟探测器线性阵列 24'。
等距型虚拟探测器线性阵列 24'可包括多个沿直线排列且等距分布的虚拟探测单 元。等距型虚拟探测器线性阵列 24'与射线发生器 D所发出的射线束的中轴线相垂直。
然后, 成像单元根据射线发生器 D与射线探测单元 24的连线, 确定与虚拟探测 单元 nl相对应的射线探测单元 ml, 并基于射线探测单元 ml 的射线检测数值, 获得 虚拟探测单元 nl的射线检测数值。等距型虚拟探测器线性阵列 24'上其他虚拟探测单 元也可利用该方法获得。
图 4B为区域 2中的射线发生器 E、 射线探测器阵列和虚拟射线探测器的位置关 系示意图。
在图 4B中,区域 2中的射线发生器 E所发射的射线束由右侧的探测器 24和底部 的探测器 23共同负责采集, 因此所采集的射线数值不是等距型射线采集数值。
与图 4A类似, 为了获得等距型射线采集数值, 成像单元设置虚拟探测器线性阵 列 23'和虚拟探测器线性阵列 24', 并将两虚拟探测器线性阵列沿直线组合排列。
然后,成像单元根据射线发生器 E与射线探测单元 23和射线探测单元 24的连线, 确定虚拟探测单元 n2与射线探测单元 m2相对应, 虚拟探测单元 η3与射线探测单元 m3相对应。 可基于射线探测单元 m2和 m3的射线检测数值, 获得虚拟探测单元 η2和 η3的射线检测数值。
对于区域 3-5中的射线发生器所对应的射线探测器线性阵列,也可采用类似方法 获得相应的虚拟探测器线性阵列, 在此不再赘述。
需要说明的是, 采用上述方法所获得的等距型虚拟探测器线性阵列中, 多个虚拟 射线探测单元可能不等距, 或者一个实际的射线探测单元对应多个虚拟探测单元。对 于这种情况, 可以在获得最终图像后, 进行后期处理; 或者采用合适的方法, 对所获 得的多个虚拟探测单元的位置进行适当调整, 以满足每个虚拟射线探测单元之间距离 相等的要求。
每个射线发生器与相应的等距型虚拟探测器阵列的距离也应当相等。例如, 可将 该距离设定为射线发生器 Α与射线探测器线性阵列 24之间的距离。
这样, 全部等距型虚拟探测器线性阵列以及射线发生器 A、 B和 C所对应的探测 器线性阵列的射线检测数值就构成了等距扇束投影数值。 类似地, 在采用由圆弧状射线探测器阵列构成的射线探测装置情况下, 若射线束 为扇形束, 则该装置所获得的射线检测数值构成等距扇束投影数值; 若射线束为由多 个彼此平行的直线形射线束构成的射线束组,则该装置所获得的射线检测数值构成平 行束投影数值。 在此不再进行赘述。
对于射线探测单元为伪双能探测单元,成像单元可以对等距扇束投影数值进行双 能分解处理, 以获得不同基材料的双能分解系数。 之后, 利用滤波反投影算法对不同 基材料的双能分解系数进行双能重建, 从而获得检查对象的图像。
该设备还可包括数据库。 该数据库可以存储可疑物品的原子序数和电子密度。 成 像单元将在双能重建中所获得的检查对象的原子序数和电子密度分布与数据库中的数 据进行比对, 以判断检查对象是否为可疑物品。
本发明的设备不必设置滑环装置, 就能够完成对检查对象的扫描成像。 在一个扫 描周期内, 多个射线发生器依次向检查对象发出射线束, 多个射线探测器线性阵列负 责采集射线投影数值, 从而完成对一个断层的扫描。 在整个探测过程, 设备无需转动 即可快速得到完备的射线投影数值, 有效减少了检查所用时间。
此外, 由于本发明的设备无须设置滑环装置, 设备的整体体积更小, 设备成本更 低, 并且避免了转动过程所导致的成像不清晰等现象, 使得所获得的检查对象的图像 质量更高。
另外, 本发明的技术方案采用伪双能探测器线性阵列配合短扫描 CT扫描及重建, 有效降低行李物品遮挡对于安全检查的影响。
图 5示出了根据本发明的另一种用于射线扫描成像的设备的结构示意图。
该设备包括多个射线发生器 31和射线探测装置 32。
多个射线发生器 31沿圆弧均匀分布。 所形成的圆弧 312的圆心角至少为厦。 在 一个扫描周期内, 多个射线发生器 31可以同时向检查对象发出射线束。 射线束穿过检 查对象后由射线探测装置 32进行检测。
每个射线发生器 31可设有多个射线发射单元。 在本实施例中, 每个射线发生器设 有 5个射线发射单元 311。 5个射线发射单元 311可以同时发出彼此平行的直线形射线 束,以形成一个射线束组。由图看见,多个射线束组的交迭区域即为扫描区域 313( Field of View , FOV) 。
相应地, 探测装置 32包括多个射线探测单元 321。 多个射线探测单元 321沿圆弧 322均匀分布。 圆弧 322与圆弧 312的半径相等, 圆心角均为平角。 射线发生器 31上 的射线发射单元 311与射线探测装置 32上的射线接收单元 312 —一对应。 这样, 全部 射线发射单元 311 所发射的射线束在到达射线探测装置处不重叠。 其当检查对象经过 扫描区域 313 时, 即可检查对象进行断面扫描。 该装置所获得的射线检测数值构成平 行束投影数值。
射线探测装置 32与射线发生器 31所在平面应当为两个平面。 优选地, 两平面彼 此平行, 并且均与检查对象的运动方向相垂直。
然后, 成像单元对射线探测装置 32所采集的射线检测数值, 进行处理, 以获得检 查对象的图像。
由于本实施例中, 全部射线发射单元 311 与相应的射线探测单元 321 之间的距离 相等, 对所获得的射线检测数值不必进行重排, 可以直接对该平行束投影数值进行双 能分解处理, 以获得不同基材料的双能分解系数, 并利用滤波反投影算法对不同基材 料的双能分解系数进行双能重建, 从而获得检查对象的图像。
此外, 成像单元还可在双能重建中获得检查对象的原子序数和电子密度, 并将该 数据与存储在数据库中的可疑物品的原子序数和电子密度进行比对, 以判断检查对象 是否为可疑物品。
有关重建方法可以与上一实施例中的方法相同, 在此不再赘述。
需要说明的是, 本发明的设备不限于图中所示的结构, 只要能够保证全部射线发 射单元所发射的射线束在到达射线探测装置处不重叠即可, 也就是说, 应当避免发生 一个射线探测单元 321 同时采集到两个或更多个射线发射单元 311所发射的射线束即 可。 例如, 圆弧 322的圆心角可以大于多个射线发生器所形成的圆弧 312 的圆心角。 圆弧 322的半径可以大于圆弧 321 的半径。 射线探测单元 321 的数目可以多于射线发 射单元的数目。
此外, 射线探测装置 32的圆弧形状也可以由其他结构替代, 例如, 采用前述实施 例中的三段连接结构或者多段连接结构。 只要使得全部射线发射单元 311 所发射的射 线束在到达射线探测装置 32时不重叠即可。 相应地, 需要首先获得与实际的探测单元 所对应的虚拟探测单元, 并基于实际探测单元的检测数值获得虚拟探测单元的检测数 值。 之后利用虚拟探测单元的射线探测数值进行重建, 以获得检查对象的图像。
由于该设备的多个发射单元 311 能够同时向检查对象发射射线束, 使得检查时间 有效缩短, 大大缩减了检查对象的通关时间。
图 6 示出了根据本发明的一种对射线检测数值进行处理的方法的一个实施例的流 程图。
在步骤 S11中, 对检查对象进行射线扫描并获得射线检测数值。
可以利用前述任意一种用于射线扫描成像的设备进行扫描和检测。 具体地, 可利 用多个射线发生器依次向检查对象发出射线束, 对一个断层的扫描。并利用射线探测 装置采集射线束, 获得射线检测数值。
在步骤 S12, 对射线检测数值进行重排, 以获得等距扇束投影数值。
优选地, 在该步骤之前, 可以地射线检查数值进行预处理和校正。 这包括去空气 值和本地取负对数运算、 均匀性校正、 探测器坏道判断和去除等操作。
下面以多个射线探测器线性阵列所构成的射线探测装置和扇形射线束为例进行 说明。对于其他构造的射线探测装置以及其他形状的射线束可以参照该方法进行适当 调整。
针对这种情况, 可以为每个这种射线发生器设置等距型虚拟探测器线性阵列。等 距型虚拟探测器线性阵列可包括多个沿直线排列且等距分布的虚拟探测单元。
每个射线发生器应当与相应的等距型虚拟探测器阵列的距离相等。
然后, 根据射线发生器与射线探测单元的连线, 确定与虚拟探测单元相对应的射 线探测单元, 并基于该射线探测单元的射线检测数值, 获得该虚拟探测单元的射线检 测数值。
全部等距型虚拟探测器线性阵列以及射线发生器 A、 B和 C所对应的探测器线性 阵列的射线检测数值就构成了等距扇束投影数值。
在本实施例中, 对射线检测数值进行处理的方法还可包括:
步骤 S13, 对等距扇束投影数值进行双能分解处理, 以获得不同基材料的双能分 解系数。
可以采用基材料分解方法对对等距扇束投影数值进行双能分解,分解到不同基材 料下的双能分解系数 A1和 A2
步骤 S14,利用滤波反投影算法对所述不同基材料的双能分解系数进行双能重建, 从而获得检查对象的图像。
具体地, 可以对双能分解系数 41和 分别按照短扫描加权重建的方法进行 CT重 从而获得重建后的双能重建系数 al和 a2 £
所用到的加权系数可以为:
Figure imgf000016_0001
其中, 为投影数据所对应的采样角度, 2γ为扇形射线束的最大扇角。 当然, 所 选用的加权系数不限于上述方式, 也可以采用其他方法获得加权系数。
优选地, 本方法还可包括:
步骤 S15, 判断检查对象是否为可疑物品。
在该步骤中, 可将双能重建系数 ^和 ¾代入如下两项公式进行求解, 以获得检 查对象的原子序数和电子密度。
Figure imgf000016_0002
P.e=alPel+¾Pe2 (2), 其中, 和 分别为两种基材料的原子序数值, ¾1和 ^分别为两种基材料的 电子密度值。
然后,将检查对象的原子序数和电子密度的分布值与可疑物品的原子序数和电子 密度分布数据进行比对, 以判断检查对象是否为可疑物品。 可疑物品的原子序数和电 子密度分布可以存储于数据库中或者存储在其他装置中。
当判定检查对象中存在可疑物品时, 执行步骤 S16。 在步骤 S16中, 可以显示可 疑物品的种类, 并标记出该可疑物品所处区域, 由工作人员进行开包检查。
当判定检查对象中不存在可疑物品时, 执行步骤 S17。 在步骤 S17中, 令检查对 象通过并扫描下一层, 待检查对象全部通过时, 可显示该检查对象的三维重建图像。
利用这种方法, 可以对诸如易燃物、 易爆物或者毒品等危险可疑物品进行快速准 确的识别。
至此, 巳经详细描述了根据本发明的用于射线扫描成像的设备和方法。 为了避免遮 蔽本发明的构思, 没有描述本领域所公知的一些细节。 本领域技术人员根据上面的描述, 完全可以明白如何实施这里公开的技术方案。
虽然巳经通过示例对本发明的一些特定实施例进行了详细说明, 但是本领域的技 术人员应该理解, 以上示例仅是为了进行说明, 而不是为了限制本发明的范围。 本领 域的技术人员应该理解, 可在不脱离本发明的范围和精神的情况下, 对以上实施例进 行修改。 本发明的范围由所附权利要求来限定。

Claims

权 利 要 求
1. 一种用于射线扫描成像的设备, 其特征在于, 该设备包括- 多个射线发生器, 所述多个射线发生器沿圆弧均匀分布, 在一个扫描周期内, 所 述多个射线发生器依次向检查对象发出射线束, 以完成对一个断层的扫描;
射线探测装置, 所述射线探测装置用于采集所述多个射线发生器所发出的射线束 的射线投影数值。
2. 如权利要求 1所述的设备, 其特征在于, 所述多个射线发生器所构成的圆弧的 圆心角至少为 π + 2 γ, 其中, 2 γ 为所述射线发生器所发出的扇形射线束的扇角。
3. 如权利要求 1所述的设备, 其特征在于, 每个所述射线发生器包括至少一个射 线发射单元。
4. 如权利要求 3所述的设备, 其特征在于, 所述射线束为扇形射线束或者为由多 个彼此平行的直线形射线束构成的射线束组。
5. 如权利要求 1所述的设备, 其特征在于, 所述射线探测装置为圆弧状的射线探 测器阵列, 在该射线探测器阵列中, 所述多个射线探测单元沿圆弧均匀分布。
6. 如权利要求 1所述的设备, 其特征在于, 所述射线探测装置包括多个射线探测 器线性阵列, 每个所述射线探测器线性阵列由多个沿直线排列的射线探测单元构成, 所述多个射线探测器线性阵列位于同一平面并通过端部依次连接, 并且两端的两个射 线探测器线性阵列不相连, 以构成半封闭框架。
7.如权利要求 6所述的设备, 其特征在于,
当所述射线探测器线性阵列的数目大于 3 时, 所述多个射线探测器线性阵列按照 如下方式设置:
相邻两个射线探测器线性阵列所成角度大于 /2, 并且所述多个射线探测器线性 阵列能够检测全部射线发生器所发出的射线束。
8.如权利要求 6所述的设备, 其特征在于,
当所述射线探测器线性阵列的数目为 3时, 所述 3个射线探测器线性阵列按照如 下方式设置:
位于两侧的射线探测器线性阵列均与中间的射线探测器线性阵列相垂直, 并且所 述 3个射线探测器线性阵列能够检测全部射线发生器所发出的射线束。
9. 如权利要求 6所述的设备, 其特征在于, 所述多个射线探测器线性阵列所在平 面与所述多个射线发生器所在平面相平行, 且该两平面与检查对象的运动方向相垂直。
10. 如权利要求 5或 6所述的设备, 其特征在于, 所述设备还包括成像单元, 该 成像单元对所述射线探测装置所采集的射线检测数值进行处理, 以获得检查对象的图 像。
11. 如权利要求 10所述的设备, 其特征在于,
对于由多个射线探测器线性阵列构成的射线探测装置, 至少一个射线发生器所对 应的多个射线探测单元未形成与该射线发生器所发出的射线束的中轴线相垂直的直 线;
所述成像单元针对所述至少一个射线发生器中的每一个, 设置等距型虚拟探测器 线性阵列, 所述等距型虚拟探测器线性阵列包括多个沿直线排列且等距分布的虚拟探 测单元, 每个射线发生器与相应的等距型虚拟探测器阵列的距离相等,
所述成像单元根据所述射线发生器与所述射线探测单元的连线, 确定与所述虚拟 探测单元相对应的射线探测单元, 并基于该射线探测单元的射线检测数值, 获得该虚 拟探测单元的射线检测数值,
全部等距型虚拟探测器线性阵列的射线检测数值构成等距扇束投影数值; 对于由圆弧状射线探测器阵列构成的射线探测装置, 该装置所获得的射线检测数 值构成等距扇束投影数值或者平行束投影数值。
12. 如权利要求 11所述的设备, 其特征在于,
所述射线探测单元为伪双能探测单元;
所述成像单元对所述等距扇束投影数值或者平行束投影数值进行双能分解处理, 以获得不同基材料的双能分解系数, 并利用滤波反投影算法对所述不同基材料的双能 分解系数进行双能重建, 从而获得检查对象的图像。
13. 如权利要求 12所述的设备, 其特征在于, 所述设备还包括数据库, 所述数据 库用于存储可疑物品的原子序数和电子密度;
所述成像单元将在所述双能重建中所获得的检查对象的原子序数和电子密度分布 与所述数据库中的数据进行比对, 以判断检查对象是否为可疑物品。
14. 一种用于射线扫描成像的设备, 其特征在于, 该设备包括:
多个射线发生器, 所述多个射线发生器沿圆弧均匀分布, 在一个扫描周期内, 所 述多个射线发生器同时向检查对象发出射线束, 以完成对一个断层的扫描;
射线探测装置, 用于采集所述多个射线发生器所发出的射线束的射线投影数值。
15.如权利要求 14所述的设备, 其特征在于, 所述多个射线发生器所构成的圆弧 的圆心角至少为 。
16. 如权利要求 14所述的设备, 其特征在于, 每个所述射线发生器包括多个射线 发射单元, 该多个射线发射单元所发射的射线束为彼此平行的直线束;
所述射线探测装置包括多个射线探测单元, 全部所述射线发射单元所对应的射线 探测单元不重叠。
17. 如权利要求 16所述的设备, 其特征在于, 所述多个射线探测单元沿圆弧均匀 分布, 所述射线发射单元与所述射线探测单元一一对应, 全部所述射线探测单元所获 得的射线检测数值构成平行束投影数值。
18. 如权利要求 17所述的设备, 其特征在于, 所述多个射线探测单元所在平面与 所述多个射线发生器所在平面相平行, 且该两平面与检查对象的运动方向相垂直。
19. 如权利要求 14所述的设备, 其特征在于, 所述设备还包括成像单元, 该成像 单元对所述射线探测装置所采集的射线检测数值进行处理, 以获得检查对象的图像。
20. 如权利要求 19所述的设备, 其特征在于,
所述射线探测单元为伪双能探测单元;
所述成像单元对所述平行束投影数值进行双能分解处理, 以获得不同基材料的双 能分解系数, 并利用滤波反投影算法对所述不同基材料的双能分解系数进行双能重建, 从而获得检查对象的图像。
21. 如权利要求 20所述的设备, 其特征在于, 所述设备还包括数据库, 所述数据 库用于存储可疑物品的原子序数和电子密度;
所述成像单元将在所述双能重建中所获得的检查对象的原子序数和电子密度分布 与所述数据库中的数据进行比对, 以判断检查对象是否为可疑物品。
22. 一种用于射线扫描成像的方法, 其特征在于, 所述方法包括:
利用如权利要求 1所述的设备对检查对象进行射线扫描并获得射线检测数值, 对于由多个射线探测器线性阵列构成的射线探测装置, 针对至少一个射线发生器 所对应的多个射线探测单元未形成与该射线发生器所发出的射线束的中轴线相垂直的 直线, 为所述至少一个射线发生器中的每一个设置等距型虚拟探测器线性阵列, 所述 等距型虚拟探测器线性阵列包括多个沿直线排列且等距分布的虚拟探测单元, 每个射 线发生器与相应的等距型虚拟探测器阵列的距离相等, 并根据射线发生器与射线探测 单元的连线, 确定与所述虚拟探测单元相对应的射线探测单元, 并基于该射线探测单 元的射线检测数值, 获得该虚拟探测单元的射线检测数值, 全部等距型虚拟探测器线 性阵列的射线检测数值构成等距扇束投影数值,
对于由多个沿圆弧分布的射线探测单元构成的射线探测装置, 该装置所获得的射 线检测数值构成等距扇束投影数值或者平行束投影数值; 或者
利用如权利要求 14所述的设备对检查对象进行射线扫描并获得射线检测数值, 对于由多个沿圆弧分布的射线探测单元构成的射线探测装置, 该装置所获得的射 线检测数值构成平行束投影数值。
23. 如权利要求 22所述的方法, 其特征在于, 所述方法还包括:
对所述等距扇束投影数值或者平行束投影数值进行双能分解处理, 以获得不同基 材料的双能分解系数;
利用滤波反投影算法对所述不同基材料的双能分解系数进行双能重建, 从而获得 检查对象的图像。
24. 如权利要求 23所述的方法, 其特征在于, 所述方法还包括:
获得所述检查对象的原子序数和电子密度分布, 并将所述检查对象的原子序数和 电子密度分布与所述数据库所存储的可疑物品的原子序数和电子密度分布进行比对, 以判断检查对象是否为可疑物品。
PCT/CN2012/088079 2012-03-09 2012-12-31 用于射线扫描成像的设备和方法 WO2013131402A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014502986A JP5676049B2 (ja) 2012-03-09 2012-12-31 放射線走査結像用設備及び方法
KR1020147027486A KR101654271B1 (ko) 2012-03-09 2012-12-31 방사선 스캔영상화를 위한 장치 및 방법
RU2014138823/28A RU2571170C1 (ru) 2012-03-09 2012-12-31 Устройство и способ лучевой сканирующей визуализации
EP12870875.7A EP2713156B1 (en) 2012-03-09 2012-12-31 Device and method for ray scanning and imaging
US14/129,655 US9448325B2 (en) 2012-03-09 2012-12-31 Apparatus and method for ray scanning imaging

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210059992.6A CN103308535B (zh) 2012-03-09 2012-03-09 用于射线扫描成像的设备和方法
CN201210059992.6 2012-03-09

Publications (1)

Publication Number Publication Date
WO2013131402A1 true WO2013131402A1 (zh) 2013-09-12

Family

ID=49115924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/088079 WO2013131402A1 (zh) 2012-03-09 2012-12-31 用于射线扫描成像的设备和方法

Country Status (8)

Country Link
US (1) US9448325B2 (zh)
EP (1) EP2713156B1 (zh)
JP (2) JP5676049B2 (zh)
KR (1) KR101654271B1 (zh)
CN (1) CN103308535B (zh)
HK (1) HK1188630A1 (zh)
RU (1) RU2571170C1 (zh)
WO (1) WO2013131402A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112168196A (zh) * 2019-07-02 2021-01-05 通用电气精准医疗有限责任公司 用于高分辨率能谱计算机断层摄影成像的系统和方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10165992B2 (en) * 2010-10-18 2019-01-01 Carestream Health, Inc. X-ray imaging systems and devices
CN103674979B (zh) * 2012-09-19 2016-12-21 同方威视技术股份有限公司 一种行李物品ct安检系统及其探测器装置
CN104749648A (zh) 2013-12-27 2015-07-01 清华大学 多能谱静态ct设备
CN104007118B (zh) * 2014-04-29 2016-09-07 雄华机械(苏州)有限公司 一种限制缸体旋转自由的圆筒形外观检查设备
CN105445291B (zh) * 2014-05-28 2018-08-03 环境保护部核与辐射安全中心 文物病害检测方法以及图像重建方法
US20160356915A1 (en) * 2015-04-27 2016-12-08 Christopher K. Green Four plane x-ray inspection system
DE102015226489A1 (de) * 2015-12-22 2017-06-22 Siemens Healthcare Gmbh Röntgensystem und Verfahren zur Bildrekonstruktion
WO2017129459A1 (en) * 2016-01-29 2017-08-03 Koninklijke Philips N.V. Cone beam computed tomography projection values providing system and method
WO2017192597A1 (en) * 2016-05-03 2017-11-09 Rapiscan Systems, Inc. Radiation signal processing system
CN105807329B (zh) * 2016-05-30 2019-05-17 公安部第一研究所 一种用于识别包裹中危险液体的x射线检测装置与方法
WO2018115025A1 (en) * 2016-12-21 2018-06-28 Koninklijke Philips N.V. Redundancy weighting for short scan off-center detector x-ray tomography
CN108240997B (zh) * 2016-12-26 2020-09-04 同方威视技术股份有限公司 检查设备和对集装箱进行检查的方法
CN107677693B (zh) 2017-09-26 2020-06-09 同方威视技术股份有限公司 用于物品安全检查的扫描成像系统及其成像方法
CN107807404B (zh) * 2017-10-25 2024-01-26 同方威视技术股份有限公司 探测装置以及扫描成像设备
US20190346379A1 (en) * 2018-05-10 2019-11-14 Voti Inc. X-ray screening system and method
US11885752B2 (en) 2021-06-30 2024-01-30 Rapiscan Holdings, Inc. Calibration method and device therefor
CN115096922A (zh) * 2021-07-07 2022-09-23 清华大学 射线扫描设备
GB2612326A (en) * 2021-10-27 2023-05-03 Smiths Detection France S A S Static or quasi-static multi-view or 3D inspection of cargo

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4150293A (en) * 1976-04-01 1979-04-17 Siemens Aktiengesellschaft Tomographic apparatus for producing transverse layer images
US20050175151A1 (en) * 2004-02-05 2005-08-11 Ge Medical Systems Global Technology Company, Llc Emitter array configurations for a stationary ct system
US20070009081A1 (en) * 2000-10-06 2007-01-11 The University Of North Carolina At Chapel Hill Computed tomography system for imaging of human and small animal
CN101951837A (zh) * 2008-02-22 2011-01-19 皇家飞利浦电子股份有限公司 用于采用分布式源进行x射线成像的高分辨率准静态设置
CN102551783A (zh) * 2012-02-16 2012-07-11 邓敏 手术用双模态实时成像装置、系统及其方法
CN202562861U (zh) * 2012-03-09 2012-11-28 同方威视技术股份有限公司 用于射线扫描成像的设备

Family Cites Families (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU972346A1 (ru) * 1980-04-21 1982-11-07 Научно-Исследовательский Институт Интроскопии Вычислительный томограф
US4709382A (en) * 1984-11-21 1987-11-24 Picker International, Inc. Imaging with focused curved radiation detectors
US4792900A (en) * 1986-11-26 1988-12-20 Picker International, Inc. Adaptive filter for dual energy radiographic imaging
SU1712915A1 (ru) * 1990-05-07 1992-02-15 Научно-исследовательский институт интроскопии Томского политехнического института им.С.М.Кирова Вычислительный томограф
JP3449561B2 (ja) * 1993-04-19 2003-09-22 東芝医用システムエンジニアリング株式会社 X線ct装置
WO1997018462A1 (en) * 1995-11-13 1997-05-22 The United States Of America As Represented By The Apparatus and method for automatic recognition of concealed objects using multiple energy computed tomography
US6018562A (en) * 1995-11-13 2000-01-25 The United States Of America As Represented By The Secretary Of The Army Apparatus and method for automatic recognition of concealed objects using multiple energy computed tomography
US5802134A (en) * 1997-04-09 1998-09-01 Analogic Corporation Nutating slice CT image reconstruction apparatus and method
US6041132A (en) * 1997-07-29 2000-03-21 General Electric Company Computed tomography inspection of composite ply structure
US6236709B1 (en) * 1998-05-04 2001-05-22 Ensco, Inc. Continuous high speed tomographic imaging system and method
US6301326B2 (en) * 1998-11-02 2001-10-09 Perkinelmer Detection Systems, Inc. Sheet detection system
US6449334B1 (en) * 2000-09-29 2002-09-10 Lunar Corporation Industrial inspection method and apparatus using dual energy x-ray attenuation
US20040213378A1 (en) 2003-04-24 2004-10-28 The University Of North Carolina At Chapel Hill Computed tomography system for imaging of human and small animal
DE10062214B4 (de) * 2000-12-13 2013-01-24 Smiths Heimann Gmbh Vorrichtungen zur Durchleuchtung von Objekten
DE50100675D1 (de) * 2001-03-14 2003-10-30 Yxlon Int X Ray Gmbh Anordnung zum Messen des Impulsübertragungsspektrums von in einem Untersuchungsbereich für Behältnisse elastisch gestreuten Röntgenquanten
US6580778B2 (en) * 2001-05-23 2003-06-17 Heimann Systems Gmbh Inspection device
US6597760B2 (en) * 2001-05-23 2003-07-22 Heimann Systems Gmbh Inspection device
DE10143131B4 (de) * 2001-09-03 2006-03-09 Siemens Ag Verfahren zur Ermittlung von Dichte- und Ordnungszahlverteilungen bei radiographischen Untersuchungsverfahren
DE10149254B4 (de) * 2001-10-05 2006-04-20 Smiths Heimann Gmbh Verfahren und Vorrichtung zur Detektion eines bestimmten Materials in einem Objekt mittels elektromagnetischer Strahlen
JP3911415B2 (ja) 2001-12-26 2007-05-09 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー X線ct装置
US6904118B2 (en) * 2002-07-23 2005-06-07 General Electric Company Method and apparatus for generating a density map using dual-energy CT
US7103137B2 (en) 2002-07-24 2006-09-05 Varian Medical Systems Technology, Inc. Radiation scanning of objects for contraband
AU2003262726A1 (en) * 2002-08-21 2004-03-11 Breakaway Imaging, Llc Apparatus and method for reconstruction of volumetric images in a divergent scanning computed tomography system
KR20050083718A (ko) * 2002-10-02 2005-08-26 리빌 이미징 테크놀로지스, 인코포레이티드 폴디드 어레이형 ct 수화물 스캐너
US8243876B2 (en) * 2003-04-25 2012-08-14 Rapiscan Systems, Inc. X-ray scanners
US7949101B2 (en) * 2005-12-16 2011-05-24 Rapiscan Systems, Inc. X-ray scanners and X-ray sources therefor
US8223919B2 (en) * 2003-04-25 2012-07-17 Rapiscan Systems, Inc. X-ray tomographic inspection systems for the identification of specific target items
GB0309387D0 (en) * 2003-04-25 2003-06-04 Cxr Ltd X-Ray scanning
GB0309379D0 (en) * 2003-04-25 2003-06-04 Cxr Ltd X-ray scanning
GB0309385D0 (en) * 2003-04-25 2003-06-04 Cxr Ltd X-ray monitoring
GB0309383D0 (en) * 2003-04-25 2003-06-04 Cxr Ltd X-ray tube electron sources
FR2859299B1 (fr) * 2003-08-28 2006-02-17 Ge Med Sys Global Tech Co Llc Procede de reconstruction tomographique par rectification
US7039154B1 (en) * 2003-10-02 2006-05-02 Reveal Imaging Technologies, Inc. Folded array CT baggage scanner
CN100437096C (zh) * 2003-10-16 2008-11-26 清华大学 一种用于集装箱检查系统的双辐射源框架结构
US6987833B2 (en) * 2003-10-16 2006-01-17 General Electric Company Methods and apparatus for identification and imaging of specific materials
US7280631B2 (en) * 2003-11-26 2007-10-09 General Electric Company Stationary computed tomography system and method
US7333587B2 (en) * 2004-02-27 2008-02-19 General Electric Company Method and system for imaging using multiple offset X-ray emission points
JP4599073B2 (ja) * 2004-03-22 2010-12-15 株式会社東芝 X線断層撮影装置
ES2338899T3 (es) * 2004-04-09 2010-05-13 AMERICAN SCIENCE & ENGINEERING, INC. Eliminacion de cruces en un portico de inspeccion por retrodispersion que comprenda multiples generadores asegurando que solo un generador emita radiacion al mismo tiempo.
GB2452187B (en) * 2004-11-26 2009-05-20 Nuctech Co Ltd Computed Tomography apparatus for detecting unsafe liquids
US7233644B1 (en) 2004-11-30 2007-06-19 Ge Homeland Protection, Inc. Computed tomographic scanner using rastered x-ray tubes
JP5268633B2 (ja) * 2005-04-26 2013-08-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ スペクトルctのための検出器アレイ
CN100403987C (zh) * 2005-08-19 2008-07-23 清华大学 一种基于遗传算法的x射线ct多相流检测方法
US7778380B2 (en) * 2005-09-06 2010-08-17 Koninklijke Philips Electronics N.V. Data handling and analysis in computed tomography with multiple energy windows
GB0904236D0 (en) * 2009-03-12 2009-04-22 Cxr Ltd X-ray scanners and x-ray sources thereof
CN100435733C (zh) * 2005-12-31 2008-11-26 清华大学 X-ct扫描系统
US7864917B2 (en) * 2006-02-02 2011-01-04 Koninklijke Philips Electronics N.V. Imaging apparatus using distributed x-ray souces and method thereof
US7606348B2 (en) * 2006-02-09 2009-10-20 L-3 Communications Security and Detection Systems Inc. Tomographic imaging systems and methods
US7606349B2 (en) * 2006-02-09 2009-10-20 L-3 Communications Security and Detection Systems Inc. Selective generation of radiation at multiple energy levels
US7831012B2 (en) * 2006-02-09 2010-11-09 L-3 Communications Security and Detection Systems Inc. Radiation scanning systems and methods
US7319737B2 (en) * 2006-04-07 2008-01-15 Satpal Singh Laminographic system for 3D imaging and inspection
KR20090015929A (ko) 2006-04-21 2009-02-12 아메리칸 사이언스 앤 엔지니어링, 인크. 다수의 시준된 빔과 개별 공급원의 배열체를 이용한 수화물및 사람에 대한 x-레이 이미지화
US7499523B2 (en) * 2006-08-02 2009-03-03 General Electric Company Systems and methods for identifying a substance
WO2008021663A2 (en) * 2006-08-09 2008-02-21 Koninklijke Philips Electronics, N.V. Apparatus and method for spectral computed tomography
US7706499B2 (en) * 2006-08-30 2010-04-27 General Electric Company Acquisition and reconstruction of projection data using a stationary CT geometry
US7835486B2 (en) * 2006-08-30 2010-11-16 General Electric Company Acquisition and reconstruction of projection data using a stationary CT geometry
US7616731B2 (en) * 2006-08-30 2009-11-10 General Electric Company Acquisition and reconstruction of projection data using a stationary CT geometry
US7428292B2 (en) * 2006-11-24 2008-09-23 General Electric Company Method and system for CT imaging using multi-spot emission sources
US7869566B2 (en) * 2007-06-29 2011-01-11 Morpho Detection, Inc. Integrated multi-sensor systems for and methods of explosives detection
US7613274B2 (en) * 2007-11-16 2009-11-03 General Electric Company Method and system of energy integrating and photon counting using layered photon counting detector
US7885372B2 (en) * 2007-12-07 2011-02-08 Morpho Detection, Inc. System and method for energy sensitive computed tomography
JP2009236541A (ja) * 2008-03-26 2009-10-15 Ihi Corp X線ct装置
EP2296551B1 (en) * 2008-06-30 2016-04-20 Koninklijke Philips N.V. Spectral ct
JP4693884B2 (ja) * 2008-09-18 2011-06-01 キヤノン株式会社 マルチx線撮影装置及びその制御方法
RU2515338C2 (ru) * 2008-11-25 2014-05-10 Конинклейке Филипс Электроникс Н.В. Формирование спектральных изображений
JP2010136902A (ja) * 2008-12-12 2010-06-24 Fujifilm Corp 放射線ct撮影装置
CN102256548B (zh) * 2008-12-17 2014-03-05 皇家飞利浦电子股份有限公司 X射线检查装置及方法
US8111803B2 (en) * 2009-04-29 2012-02-07 General Electric Company Method for energy sensitive computed tomography using checkerboard filtering
GB2501022B (en) 2009-05-26 2014-02-12 Rapiscan Systems Inc X-ray tomographic inspection systems for the identification of specific target items
US8363917B2 (en) * 2009-10-14 2013-01-29 General Electric Company System and method of image artifact reduction in fast kVp switching CT
US8160206B2 (en) * 2009-12-23 2012-04-17 General Electric Company Dual-energy imaging at reduced sample rates
US8509380B2 (en) * 2010-03-19 2013-08-13 The Board Of Trustees Of The Leland Stanford Junior University Inverse geometry volume computed tomography systems
US8472583B2 (en) * 2010-09-29 2013-06-25 Varian Medical Systems, Inc. Radiation scanning of objects for contraband
WO2012050742A1 (en) * 2010-10-15 2012-04-19 American Science And Engineering, Inc. Remotely-aligned arcuate detector array for high energy x-ray imaging
KR101773960B1 (ko) * 2011-06-30 2017-09-12 한국전자통신연구원 단층합성영상 시스템
WO2013016032A2 (en) * 2011-07-26 2013-01-31 American Science And Engineering, Inc. Stowable arcuate detector array

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4150293A (en) * 1976-04-01 1979-04-17 Siemens Aktiengesellschaft Tomographic apparatus for producing transverse layer images
US20070009081A1 (en) * 2000-10-06 2007-01-11 The University Of North Carolina At Chapel Hill Computed tomography system for imaging of human and small animal
US20050175151A1 (en) * 2004-02-05 2005-08-11 Ge Medical Systems Global Technology Company, Llc Emitter array configurations for a stationary ct system
CN101951837A (zh) * 2008-02-22 2011-01-19 皇家飞利浦电子股份有限公司 用于采用分布式源进行x射线成像的高分辨率准静态设置
CN102551783A (zh) * 2012-02-16 2012-07-11 邓敏 手术用双模态实时成像装置、系统及其方法
CN202562861U (zh) * 2012-03-09 2012-11-28 同方威视技术股份有限公司 用于射线扫描成像的设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2713156A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112168196A (zh) * 2019-07-02 2021-01-05 通用电气精准医疗有限责任公司 用于高分辨率能谱计算机断层摄影成像的系统和方法

Also Published As

Publication number Publication date
HK1188630A1 (zh) 2014-05-09
JP5894243B2 (ja) 2016-03-23
US9448325B2 (en) 2016-09-20
EP2713156B1 (en) 2020-05-06
EP2713156A1 (en) 2014-04-02
JP5676049B2 (ja) 2015-02-25
KR101654271B1 (ko) 2016-09-05
KR20140120382A (ko) 2014-10-13
CN103308535A (zh) 2013-09-18
JP2014510288A (ja) 2014-04-24
CN103308535B (zh) 2016-04-13
EP2713156A4 (en) 2015-07-29
US20140211917A1 (en) 2014-07-31
JP2015057606A (ja) 2015-03-26
RU2571170C1 (ru) 2015-12-20

Similar Documents

Publication Publication Date Title
WO2013131402A1 (zh) 用于射线扫描成像的设备和方法
JP5350222B2 (ja) 多視角荷物セキュリティ検査方法
JP5925752B2 (ja) ガントリーレスct装置
JP5075911B2 (ja) 荷物セキュリティ検査システム
US7924975B2 (en) Linear track scanning imaging system and method
WO2015096785A1 (zh) Ct系统及其方法
US7551714B2 (en) Combined X-ray CT/neutron material identification system
JP6132916B2 (ja) Ctシステム及びctシステムに用いられる検知装置
WO2007131432A1 (en) Cargo security inspection method based on the spiral scanning
WO2015196857A1 (zh) 探测器装置、双能ct系统和使用该系统的检测方法
RU2566525C2 (ru) Стационарное устройство компьютерной томографии
WO2015096784A1 (zh) Ct系统及其方法
US20140270054A1 (en) Adaptive ct scanning system
AU2023204307A1 (en) Multi-energy static security ct system and imaging method
CN105911604B (zh) 一种通道式危险液体检测装置与方法
WO2018103355A1 (zh) 螺旋ct设备和三维图像重建方法
JP2009109499A (ja) 検査システム、検査方法、ct装置及び検出装置
US7860211B1 (en) Method of producing a laminography image with a rotating object, fixed x-ray source, and fixed detector columns
US10215879B2 (en) System for detecting counterfeit goods and method of operating the same
US20200400591A1 (en) Image reconstruction method and system
Xue et al. An iterative reconstruction method for high-pitch helical luggage CT
Arunachalam et al. Tomographic imaging for border security applications

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014502986

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870875

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14129655

Country of ref document: US

Ref document number: 2012870875

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147027486

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014138823

Country of ref document: RU

Kind code of ref document: A