WO2015096784A1 - Ct系统及其方法 - Google Patents

Ct系统及其方法 Download PDF

Info

Publication number
WO2015096784A1
WO2015096784A1 PCT/CN2014/094994 CN2014094994W WO2015096784A1 WO 2015096784 A1 WO2015096784 A1 WO 2015096784A1 CN 2014094994 W CN2014094994 W CN 2014094994W WO 2015096784 A1 WO2015096784 A1 WO 2015096784A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning
scan
digital signal
stage
level
Prior art date
Application number
PCT/CN2014/094994
Other languages
English (en)
French (fr)
Inventor
张丽
陈志强
黄清萍
金鑫
孙运达
沈乐
赵骥
Original Assignee
清华大学
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学, 同方威视技术股份有限公司 filed Critical 清华大学
Priority to JP2016543121A priority Critical patent/JP6305544B2/ja
Priority to MYPI2016702319A priority patent/MY187042A/en
Priority to BR112016014808-8A priority patent/BR112016014808B1/pt
Priority to SG11201605156WA priority patent/SG11201605156WA/en
Priority to CA2935086A priority patent/CA2935086C/en
Priority to AU2014373004A priority patent/AU2014373004B2/en
Publication of WO2015096784A1 publication Critical patent/WO2015096784A1/zh
Priority to IL246344A priority patent/IL246344B/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • G01V5/226Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays using tomography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • G01T7/08Means for conveying samples received
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/005Specific pre-processing for tomographic reconstruction, e.g. calibration, source positioning, rebinning, scatter correction, retrospective gating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2211/00Image generation
    • G06T2211/40Computed tomography

Definitions

  • Embodiments of the present disclosure relate to the field of radiation imaging security detection, and more particularly to a multi-source static CT baggage article security inspection system and method thereof.
  • CT technology plays an important role in safety inspection because it can eliminate the effects of object overlap.
  • the conventional CT uses the slip ring device to obtain the projection data at different angles by the rotation of the X-ray machine and the detector, and obtains the tomographic image by the reconstruction method, thereby obtaining the internal information of the detected baggage item.
  • the current baggage inspection equipment can reconstruct the atomic number and electron density of the substance to be detected, thereby realizing the identification of the substance type and playing a good role in the detection of explosives and dangerous goods. effect.
  • the existing security CT technology still faces some shortcomings.
  • the first is the scanning speed problem.
  • the faster inspection speed helps to relieve the pressure caused by passenger flow and cargo flow.
  • the fast scanning usually requires a higher speed slip ring. Due to the processing accuracy and reliability, the high speed slip ring is very expensive. Expensive, high maintenance costs, and difficult to promote.
  • the automatic identification and alarm function of CT technology is difficult to achieve 100% accuracy.
  • the contraband inspection still needs manual assistance judgment, or even open package inspection. Usually, it takes a few minutes or even a dozen to open the package inspection. Minutes, which greatly increased the manpower and time costs, seriously restricting the efficiency of security inspection.
  • a CT system and method thereof are proposed for one or more problems in the prior art.
  • a CT system comprising: a transport mechanism configured to carry The object to be inspected is linearly moved; the first scanning stage includes a first source of radiation, a first detector, and a first data acquisition device configured to scan the object to be inspected to generate a first digital signal; a second scanning stage, Providing a predetermined distance from the first scanning stage along a direction of movement of the object to be inspected, comprising a second source, a second detector, and a second data collection device; and processing means configured to be based on the first number Transmitting a CT image of the first image quality of the object to be inspected and analyzing the CT image; and controlling means configured to adjust a scan parameter of the second scan level based on an analysis result of the processing device, such that The second scanning stage outputs a second digital signal, the processing device configured to reconstruct a CT image of the second image quality of the object under inspection based at least on the second digital signal, wherein the second image quality is higher than The first image quality.
  • the scanning parameter of the second scanning level is adjusted correspondingly based on the analysis result of the processing device, so that the second scanning level outputs the second number signal.
  • the CT system further comprises a third scanning stage, the third scanning stage comprising a third ray source, a third detector and a third data acquisition device, the control device being configured to be based on the first resolution a CT image of the rate correspondingly adjusting a scan parameter of the third scan stage such that the third scan stage outputs a third digital signal, the processing device configured to reconstruct the object under test based at least on the third digital signal A third image quality CT image, wherein the third image quality is higher than the first image quality.
  • the scanning parameter of the third scanning stage is adjusted correspondingly based on the analysis result of the processing device, so that the third scanning stage outputs the third number signal.
  • the first scan level, the second scan level, and the third scan stage employ a sparse view scan mode.
  • the first scan level, the second scan level, and the third scan stage employ a limited angle scan mode.
  • the first ray source, the second ray source and the third ray source each comprise a plurality of source points disposed on a plurality of scanning planes perpendicular to a moving direction of the object to be inspected, each scanning In the plane, the source points are distributed as one or more straight lines or arcs that are continuous or discontinuous.
  • the source point of the second scanning stage is preset to use a higher voltage to increase the ray energy.
  • the second The source point of the scan stage is preset to use more light sources to increase spatial resolution.
  • the number of source points of the second scanning stage is adjusted to a preset number of activated light sources.
  • the beam energy spectrum of the source point of the second scanning stage is adjusted when the analysis of the processing means indicates a more accurate material identification.
  • the flow intensity of the source points in the first scan level, the second scan level, and the third scan level may be adjusted according to a preset number of light sources in a plane where the source point is located.
  • the flow intensity is increased to shorten the exit time of each source point to ensure that the scanning is completed within a prescribed time, or when the number of activated source points is small, a larger flow intensity is used to improve the scanning data.
  • Signal to noise ratio when the number of source points is large, the flow intensity is increased to shorten the exit time of each source point to ensure that the scanning is completed within a prescribed time, or when the number of activated source points is small, a larger flow intensity is used to improve the scanning data. Signal to noise ratio.
  • a method for a CT system including a first scan level and a first distance setting along a direction of movement of the object to be inspected from the first scan level a second scanning stage, the method comprising the steps of: scanning an object to be inspected by a first scanning level during motion of the object to be inspected to generate a first digital signal; reconstructing the object to be inspected based on the first digital signal An image CT image, and analyzing the CT image; adjusting scan parameters of the second scan level based on an analysis result of the processing device such that the second scan stage outputs a second digital signal; and at least Reconstructing a CT image of the second image quality of the object under inspection based on the second digital signal, wherein the second image quality is higher than the first image quality.
  • the scanning mode based on the multi-scan plane and the adaptive scanning parameter is realized in the single scanning process, and the high-precision scanning is realized, and the better the imaging quality and the recognition accuracy are accelerated.
  • the scanning process is realized.
  • FIG. 1 is a schematic structural diagram of a CT system according to an embodiment of the present disclosure
  • FIG. 2 shows a flow chart of a method of a CT system in accordance with an embodiment of the present disclosure
  • 3A, 3B, and 3C are schematic diagrams of a sparse viewing angle scanning mode employed in each scanning stage in a CT system according to an embodiment of the present disclosure
  • 4A, 4B, and 4C are schematic diagrams of a limited angle scanning mode employed in various scanning stages in a CT system, in accordance with an embodiment of the present disclosure.
  • embodiments of the present disclosure propose a multi-X-ray source static CT system.
  • the first scanning stage scans the object to be inspected to generate a first digital signal.
  • a CT image of the first image quality of the object to be inspected is reconstructed based on the first digital signal, and the CT image is analyzed.
  • the scan parameters of the second scan level disposed along the moving direction of the object to be inspected at a predetermined distance from the first scan level are adjusted correspondingly, so that the second scan stage outputs the second digital signal.
  • a CT image of the second image quality of the object under inspection is reconstructed based at least on the second digital signal, wherein the second image quality is higher than the first image quality.
  • Such a scheme avoids the use of a high-speed slip ring through a distributed X-ray source, and reduces the manufacturing and maintenance costs of the device while increasing the speed, while the scanning mode of the multi-scan plane and the adaptive scanning parameter can be performed on the conventional slip ring CT.
  • the high-precision secondary scanning performed is effectively integrated in a single scanning process, which saves time and saves manpower while obtaining better imaging quality and improving recognition accuracy.
  • This patent has a positive effect on improving the CT scanning speed of security inspection and improving the accuracy of identification of contraband. It has practical application significance for stations, airports and customs.
  • FIG. 1 is a schematic structural diagram of a CT system according to an embodiment of the present disclosure.
  • the multi-source static CT baggage item security inspection system of the embodiment shown in FIG. 1 includes a plurality of scanning stages (eg, a first scanning level A, a second scanning level B, a third scanning level C, ...), and a transport mechanism 110 Control device 140 and processing device 130.
  • Each of the scanning stages is disposed at a predetermined distance along the moving direction of the object to be inspected, and each includes a radiation source, a detector, and a collecting device.
  • the source of radiation herein specifically includes a plurality of distributed X-ray source points.
  • the transport mechanism 110 carries a linear motion of the object under inspection 120.
  • the first scanning stage A includes a first source of radiation, a first detector, and a first data acquisition device that scans the object under inspection to generate a first digital signal.
  • the second scanning stage B is disposed at a predetermined distance from the first scanning stage along the moving direction of the object to be inspected, and includes a second source, a second detector, and a second data collecting device.
  • the processing device 130 is coupled to each of the scan stages, reconstructs a CT image of the first image quality of the object under inspection based on the first digital signal, and analyzes the CT image.
  • the control device 140 is connected to the respective scanning stages and the processing device 130, and correspondingly adjusts the scanning parameters of the second scanning level based on the analysis result of the processing device 130, so that the second scanning stage outputs a second digital signal, the processing Apparatus 130 reconstructs a CT image of a second image quality of the object under inspection based at least on the second digital signal (eg, a second digital signal or a second digital signal and a first digital signal), wherein the second image quality Higher than the first image quality.
  • the second digital signal eg, a second digital signal or a second digital signal and a first digital signal
  • the scanning parameter of the second scanning level is adjusted correspondingly based on the analysis result of the processing device, so that the second scanning level outputs the first Two digital signals. For example, in a case where the target box needs to reconstruct 100 slices (mound), after the 8th slice is scanned by the first scanning level, a processing device such as a computer reconstructs the slice, and the slice is analyzed and estimated. The scanning parameters required for scanning the slice of the second and subsequent scan levels of the scanned object. When the eighth slice portion of the object passes through the second scanning stage, the second scanning stage adjusts the parameters according to the analysis result just before, and performs scanning. When different slice portions of the object pass the second scan level, the scan parameters will be adjusted accordingly.
  • the third scanning stage C includes a third ray source, a third detector, and a third data acquisition device, and the control device 140 adjusts the scanning of the third scanning level correspondingly based on the CT image of the first resolution.
  • a parameter that causes the third scan stage to output a third digital signal the processing device being based at least on the third digital signal (eg, a third digital signal, or a third digital signal and first and second digital signals) At least one of: reconstructing a CT image of a third image quality of the object under inspection, wherein the third image quality is higher than the first image quality.
  • the third scanning stage scans the corresponding portion of the object, the scanning parameters of the third scanning stage are adjusted accordingly based on the analysis result of the processing device, so that the third scanning stage outputs the third digital signal.
  • each multi-point distributed X-ray module has one or more source points, the energy of the source point can be set, and the order of source point activation can be set.
  • the source points are distributed over multiple scan planes (the scan plane is perpendicular to the channel advancement direction). In each plane, the source point distribution can be continuous or discontinuous one or more straight lines or arcs. Since the source point energy can be set, different scanning modes can be realized in which different source points have different energy spectra, or source points in different planes are different.
  • the source points can be grouped, such as the source points of each module as a group, or the source points of each plane as a group, the order of the source point electronic targets in the same group can be adjusted, and the order can be bundled, Alternating bundles, source points in different groups can be activated simultaneously for scanning to speed up scanning.
  • Each scan stage includes a complete area array X-ray detector and readout circuitry, acquisition trigger signal circuitry, and data transmission circuitry. Since the light sources are distributed in multiple planes, there is a corresponding detector array for each plane.
  • the detector array is arranged in a circular or curved shape, and the plane of the detector center column can be coplanar with the light source (when the source point is concentrated in a certain interval on the circumference, the remaining circumference of the circumference can arrange the detector), and
  • the plane of the light source is parallel (when the source point is dispersedly arranged on the circumference, there is no space left in the circumference), in order to reduce the oblique effect caused by the source and the source point not in the same plane, the light source and the detector should be kept between the two planes. The distance is as small as possible.
  • the detector array can be single or multiple rows, and the detector type can be a single energy, dual energy or energy spectrum detector.
  • the conveying mechanism 110 includes a stage or a transmission belt, and the control device 140 controls the frame of the X-ray machine and the detector.
  • the spiral scanning can be realized by controlling the beam-distributing mode of the distributed light source and the linear translational motion of the object or a combination of the two. A scan of a track or a circumferential scan track or other special track.
  • the control device 140 is responsible for completing the control of the CT system operation process, including mechanical rotation, electrical control, safety interlock control, in particular, controlling the beam energy and beaming sequence of the light source, and controlling the data reading and data reconstruction of the detector.
  • step S210 the object to be inspected is scanned by the first scanning stage during the movement of the object to be inspected to generate a first digital signal.
  • the bag is scanned by the light source and detector of the first plane A of the device, and the number of scans is scanned.
  • Corresponding CT reconstruction is performed according to the incoming processing device 130.
  • the system records the time and position of the area scanned by the bag through the first plane, and the time when the fault passes through the subsequent plane can be obtained according to the belt speed and the code.
  • step S220 a CT image of the first image quality of the object to be inspected is reconstructed based on the first digital signal, and the CT image is analyzed.
  • the processing device 130 determines the overall characteristics of the area scanned by the luggage based on the CT reconstruction result, including whether the high-density material is more (such as metal), whether the fragment (small items) is more, and whether there is a suspicious object.
  • step S230 the scan parameters of the second scan stage are adjusted based on the analysis result of the processing device, such that the second scan stage outputs a second digital signal.
  • the control device 140 pre-sets the scanning parameters of the subsequent planes according to the analysis result (light source voltage, current, number of activated light sources, etc.). For example, when higher penetration is required to see the metal object and its adjacent areas, the source point of the subsequent plane is preset to use a higher voltage to increase the ray energy; when more small objects need to be seen, the subsequent plane The source point is preset to use more light sources to increase spatial resolution and the like.
  • the flow intensity of each source point can also be adjusted according to the number of activated light sources preset by the plane of the source point to ensure that the scanning is completed within a specified time. For example, when the number of source points is large, the flow intensity is increased to shorten each source point.
  • the beaming time, and when the number of activated source points is small, using a larger flow intensity can improve the signal-to-noise ratio of the scanned data and improve the noise level of the reconstructed image.
  • step S240 a CT image of the second image quality of the object under inspection is reconstructed based on at least the second digital signal, wherein the second image quality is higher than the first image quality.
  • control device 140 controls the scanning plane to scan according to the scanning parameters preset for the area to obtain scan data.
  • the scan parameters of the second scan stage are adjusted accordingly based on the analysis result of the processing device such that the second scan stage outputs the second digital signal.
  • the system integrates all the scanned data, reconstructs the object by using the single energy or energy spectrum CT reconstruction algorithm, obtains the final 3D CT reconstruction result, and identifies the contraband. Call the police.
  • the distributed light source and the detector are distributed over three spaced rings, wherein the A plane is the first scan plane and the B and C planes are the second and third scan planes, as shown in FIG. On each plane
  • the source may be a sparse arrangement, as shown in Figures 3A, 3B, and 3C, or may be densely arranged within a limited angle, as shown in Figures 4A, 4B, and 4C.
  • the solution of the above embodiment uses the multi-source X-ray generating device to irradiate the baggage articles from different angles, thereby eliminating the rotating device in the traditional baggage CT system, reducing the system cost, improving the detection precision, and further multi-plane scanning mode. Increased scanning speed.
  • adjusting the energy of the light source according to the pre-processing result and combining the multi-energy ray inspection technology can have a good recognition effect on dangerous suspicious objects such as flammable materials, explosives and drugs. To meet the security inspection needs in different situations.
  • This embodiment takes advantage of the characteristics of distributed light sources and develops new control methods. By dispersing the light sources in a plurality of scanning planes, it is possible to adjust the energy spectrum, flow intensity and number of the light source according to the characteristics of the object.
  • belt coding can be used to trigger the X-ray beam to ensure different planar detectors.
  • the data collected is the same plane of the object. It is also possible to determine the time difference between the objects passing through the planes according to the fixed position between several detector planes, thereby extracting corresponding data.
  • the data of all angles is first reconstructed by a conventional single-energy CT reconstruction algorithm, and the result retains an accurate geometric structure, and then the geometric information is used.
  • the scanned data is reconstructed separately according to the source beam energy, and the reconstruction results of different X-ray energies are obtained.
  • signal bearing media include, but are not limited to, recordable media such as floppy disks, hard drives, compact disks (CDs), digital versatile disks (DVDs), digital tapes, computer memories, and the like; and transmission-type media such as digital and / or analog communication media (eg, fiber optic cable, waveguide, wired communication link, wireless communication link, etc.).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Geophysics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pulmonology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

一种CT系统及其方法,该系统包括:传送机构;第一扫描级(A),对被检查物体进行扫描,产生第一数字信号;第二扫描级(B),沿着被检查物体的运动方向与第一扫描级(A)间隔预定距离设置;处理装置(130),基于第一数字信号重建被检查物体的第一像质的CT图像,并且对CT图像进行分析;控制装置(140),基于处理装置(130)的分析结果调节所述第二扫描级的扫描参数,使得第二扫描级输出第二数字信号,处理装置(130)至少基于第二数字信号重建被检查物体的第二像质的CT图像,其中第二像质高于第一像质。该系统充分利用了分布式光源取代传统滑环技术所带来的优势。

Description

CT系统及其方法 技术领域
本公开的实施例涉及辐射成像安全检测领域,尤其涉及多源静态CT行李物品安全检查系统及其方法。
背景技术
CT技术由于能够消除物体重叠的影响,在安全检查中发挥了重要作用。传统的CT采用滑环装置通过X光机和探测器的旋转来获取不同角度上的投影数据,通过重建方法来获取断层图像,从而获得被检测行李物品的内部信息。配合双能或多能成像技术,目前的行李物品检查设备可以对被检物质的原子序数和电子密度进行重建,从而实现物质种类的识别,在爆炸物、危险品等检测中起到了很好的效果。
尽管如此,现有的安检CT技术依然面临一些不足。首先是扫描速度问题,较快的检查速度有助于缓解客流、货流带来的压力,而快速扫描通常需要更高转速的滑环,由于加工精度和可靠性等问题,高速滑环造价非常昂贵,维护成本高,难以推广。其次是误报和漏报问题,CT技术的自动识别和报警功能难以实现100%准确,违禁品检查依然需要人工辅助判断,甚至开包检查,通常一次开包检查需要耗时几分钟甚至十几分钟,这大大增加了人力和时间成本,严重制约了安检效率的提高。而为了减轻这一问题,目前市场上有使用二次扫描技术的设备,通过对可疑箱包进行二次高精度扫描来提高CT图像质量,减少开箱检查次数,然而这种二次扫描的方式也存在占用更多扫描时间、中断安检流程等问题。
近些年,碳纳米管X光管技术进入了实用领域。与传统光源不同,它无须利用高温来产生射线,而是根据碳纳米管尖端放电原理产生阴极射线,打靶产生X光。其优点是可以快速开启和关闭,且体积更小。把这种X光源排布成环状,进行不同角度下对物体的照射,就可以制成无需旋转的“静态CT”,大大提高了射线成像的速度,同时由于省去了滑环的结构,节省了大量的成本。所以对于安全检查等领域具有十分重要的意义。
公开内容
针对现有技术中的一个或多个问题,提出了一种CT系统及其方法。
在本公开的一个方面,提出了一种CT系统,包括:传送机构,配置为承载 被检查物体直线运动;第一扫描级,包括第一射线源、第一探测器和第一数据采集装置,配置为对所述被检查物体进行扫描,产生第一数字信号;第二扫描级,沿着所述被检查物体的运动方向与所述第一扫描级间隔预定距离设置,包括第二射线源、第二探测器和第二数据采集装置;处理装置,配置为基于所述第一数字信号重建所述被检查物体的第一像质的CT图像,并且对所述CT图像进行分析;控制装置,配置为基于所述处理装置的分析结果调节所述第二扫描级的扫描参数,使得所述第二扫描级输出第二数字信号,所述处理装置配置为至少基于所述第二数字信号重建所述被检查物体的第二像质的CT图像,其中所述第二像质高于第一像质。
优选地,在第二扫描级扫描到该物体的相应部分时,基于所述处理装置的分析结果相应调节所述第二扫描级的扫描参数,使得所述第二扫描级输出所述第二数字信号。
优选地,所述的CT系统还包括第三扫描级,所述第三扫描级包括第三射线源、第三探测器和第三数据采集装置,所述控制装置配置为基于所述第一分辨率的CT图像相应调节所述第三扫描级的扫描参数,使得所述第三扫描级输出第三数字信号,所述处理装置配置为至少基于所述第三数字信号重建所述被检查物体的第三像质的CT图像,其中所述第三像质高于第一像质。
优选地,在第三扫描级扫描到该物体的相应部分时,基于所述处理装置的分析结果相应调节所述第三扫描级的扫描参数,使得所述第三扫描级输出所述第三数字信号。
优选地,所述第一扫描级、所述第二扫描级和所述第三扫描级采用稀疏视角扫描模式。
优选地,第一扫描级、所述第二扫描级和所述第三扫描级采用有限角度扫描模式。
优选地,所述第一射线源、所述第二射线源和所述第三射线源均包括多个源点,设置在与被检查物体的运动方向垂直的多个扫描平面上,每个扫描平面中,源点分布为连续或不连续的一段或多段直线或弧线。
优选地,当所述处理装置的分析结果表明需要更高的穿透性以看清金属物体及其临近区域时,将第二扫描级的源点预设成使用更高电压以提高射线能量。
优选地,当所述处理装置的分析结果表明需要看清更多细小物体时,将第二 扫描级的源点预设成使用更多光源数目以提高空间分辨率。
优选地,当所述处理装置的分析结果表明要在规定时间内完成扫描时,将第二扫描级的源点数目调节为预设的激活光源数目。
优选地,当处理装置的分析结果表明要更准的材料识别时,调节第二扫描级的源点的出束能谱。
优选地,所述第一扫描级、所述第二扫描级和所述第三扫描级中的源点的流强可以根据源点所在平面预设光源数目来调整。
优选地,当源点数目较多时提高流强以缩短每个源点的出束时间以保证在规定时间内完成扫描,或当激活源点数目较少时使用较大流强来提高扫描数据的信噪比。
在本公开的另一方面,提出了一种用于CT系统的方法,所述CT系统包括第一扫描级和沿着被检查物体的运动方向与所述第一扫描级间隔预定距离设置的第二扫描级,所述方法包括步骤:在被检查物体运动过程中通过第一扫描级对被检查物体进行扫描,产生第一数字信号;基于所述第一数字信号重建所述被检查物体的第一像质的CT图像,并且对所述CT图像进行分析;基于所述处理装置的分析结果调节所述第二扫描级的扫描参数,使得所述第二扫描级输出第二数字信号;以及至少基于所述第二数字信号重建所述被检查物体的第二像质的CT图像,其中所述第二像质高于第一像质。
利用上述实施例的方案,在单次扫描流程中实现了基于多扫描平面、自适应扫描参数的扫描方式,实现了高精度扫描,在获得更好的成像质量、提高识别准确率的同时,加快了扫描过程。
附图说明
为了更好的理解本公开,将根据以下附图对本公开的实施例进行描述:
图1为根据本公开实施例的CT系统的结构示意图;
图2示出了根据本公开实施例的CT系统的方法的流程图;
图3A、图3B、和图3C为根据本公开一实施例的CT系统中各个扫描级中采用的稀疏视角扫描方式的示意图;
图4A、图4B、和图4C为根据本公开一实施例的CT系统中各个扫描级中采用的有限角度扫描方式的示意图。
附图没有对实施例的所有部件或结构进行显示。贯穿所有附图相同的附图标 记表示相同或相似的部件或特征。
具体实施方式
下面将详细描述本公开的具体实施例,应当注意,这里描述的实施例只用于举例说明,并不用于限制本公开。在以下描述中,为了提供对本公开的透彻理解,阐述了大量特定细节。然而,对于本领域普通技术人员显而易见的是:不必采用这些特定细节来实行本公开。在其他实例中,为了避免混淆本公开,未具体描述公知的电路、材料或方法。
在整个说明书中,对“一个实施例”、“实施例”、“一个示例”或“示例”的提及意味着:结合该实施例或示例描述的特定特征、结构或特性被包含在本公开至少一个实施例中。因此,在整个说明书的各个地方出现的短语“在一个实施例中”、“在实施例中”、“一个示例”或“示例”不一定都指同一实施例或示例。此外,可以以任何适当的组合和/或子组合将特定的特征、结构或特性组合在一个或多个实施例或示例中。此外,本领域普通技术人员应当理解,在此提供的附图都是为了说明的目的,并且附图不一定是按比例绘制的。应当理解,当称元件“耦接到”或“连接到”另一元件时,它可以是直接耦接或耦接到另一元件或者可以存在中间元件。相反,当称元件“直接耦接到”或“直接连接到”另一元件时,不存在中间元件。相同的附图标记指示相同的元件。这里使用的术语“和/或”包括一个或多个相关列出的项目的任何和所有组合。
针对现有技术中的问题,本公开的实施例提出一种多X射线源静态CT系统。在传送机构承载被检查物体直线运动过程中,第一扫描级对所述被检查物体进行扫描,产生第一数字信号。然后,基于所述第一数字信号重建所述被检查物体的第一像质的CT图像,并且对所述CT图像进行分析。接下来基于分析结果相应调节沿着所述被检查物体的运动方向与所述第一扫描级间隔预定距离设置的第二扫描级的扫描参数,使得所述第二扫描级输出第二数字信号。然后,至少基于所述第二数字信号重建所述被检查物体的第二像质的CT图像,其中所述第二像质高于第一像质。这样的方案通过分布式X射线源来避免高速滑环的使用,在提升速度的同时,降低设备制造和维护成本,而多扫描平面、自适应扫描参数的扫描方式则能够将传统滑环CT上进行的高精度二次扫描有效地整合在单次扫描流程中,在获得更好的成像质量、提高识别准确率的同时,节约时间、节省人力。 该专利对于提高安检CT扫描速度、提高违禁品识别准确率都有着积极作用,对车站、机场、海关都有着实际应用的意义。
图1为根据本公开实施例的CT系统的结构示意图。如图1所示实施例的多源静态CT行李物品安全检查系统包括多个扫描级(例如,第一扫描级A、第二扫描级B、第三扫描级C、……)、传送机构110、控制装置140和处理装置130。各个扫描级沿着被检查物体的运动方向上按照预定的距离间隔设置,并且均包括射线源、探测器和采集装置。这里的射线源具体包括多个分布式X射线源点。
在图示的实施例中,传送机构110承载被检查物体120直线运动。第一扫描级A包括第一射线源、第一探测器和第一数据采集装置,对所述被检查物体进行扫描,产生第一数字信号。第二扫描级B沿着所述被检查物体的运动方向与所述第一扫描级间隔预定距离设置,包括第二射线源、第二探测器和第二数据采集装置。处理装置130与各个扫描级连接,基于所述第一数字信号重建所述被检查物体的第一像质的CT图像,并且对所述CT图像进行分析。控制装置140与各个扫描级和处理装置130连接,基于所述处理装置130的分析结果相应调节所述第二扫描级的扫描参数,使得所述第二扫描级输出第二数字信号,所述处理装置130至少基于所述第二数字信号(例如,第二数字信号或第二数字信号和第一数字信号)重建所述被检查物体的第二像质的CT图像,其中所述第二像质高于第一像质。
根据一些实施例,在第二扫描级扫描到该物体的相应部分时,基于所述处理装置的分析结果相应调节所述第二扫描级的扫描参数,使得所述第二扫描级输出所述第二数字信号。例如,在目标箱包需要重建100个切片(断层)的情况下,第一扫描级扫描完第8个切片以后,诸如计算机之类的处理装置对该切片进行重建,并对该切片进行分析,估计第二和后续扫描级扫描物体这个切片的扫描所需采用的扫描参数。当物体的第8个切片部分通过第二个扫描级时,第二扫描级根据刚才的分析结果调节参数,进行扫描。当物体的不同切片部分通过第二扫描级时,扫描参数将对应地加以调节。
类似地,第三扫描级C包括第三射线源、第三探测器和第三数据采集装置,所述控制装置140基于所述第一分辨率的CT图像相应调节所述第三扫描级的扫描参数,使得所述第三扫描级输出第三数字信号,所述处理装置至少基于所述第三数字信号(例如,第三数字信号、或者第三数字信号和第一与第二数字信号的 至少之一)重建所述被检查物体的第三像质的CT图像,其中所述第三像质高于第一像质。类似地,在第三扫描级扫描到该物体的相应部分时,基于处理装置的分析结果相应调节第三扫描级的扫描参数,使得第三扫描级输出所述第三数字信号。
例如,每个多点分布式的X光源模块上具有一个或多个源点,源点的能量可设定,源点激活的顺序可设置。在系统中,源点分布在多个扫描平面上(扫描平面垂直于通道前进方向)。每个平面中,源点分布可以为连续或不连续的一段或多段直线或弧线。由于源点能量可设,在出束过程中可以实现不同源点具有不同能谱,或位于不同平面的源点能量有区别等多种扫描方式。可以对源点进行分组设计,比如每个模块的源点作为一组,或是每个平面的源点作为一组,同一组内的源点电子打靶的顺序可调,可以实现顺序出束、交替出束,不同组内的源点可以同时激活进行扫描,以加快扫描速度。
每个扫描级都包括完整的面阵X射线探测器及读出电路、采集触发信号电路及数据传输电路。由于光源分布在多个平面内,因此对于每个平面都有对应的探测器阵列。探测器阵列以圆形或者弧形排列,探测器中心列所在平面可以和光源共面(当源点集中排布在圆周上某一区间时,圆周剩余区间可以排布探测器),也可以和光源所在平面平行(当源点分散排布在圆周上时,圆周无剩余空间),为减轻光源和源点不在同一平面带来的斜射效应,应保持光源和探测器所述两个平面之间距离尽可能小。探测器阵列可以是单排或多排,探测器类型可以是单能、双能或者能谱型探测器。
传送机构110包括载物台或传输皮带,控制装置140控制X光机及探测器的机架,通过控制分布式光源的出束方式和物体的直线平移运动或者两者的组合,可以实现螺旋扫描轨迹或者圆周扫描轨迹或其他特殊轨迹的扫描。
控制装置140负责完成CT系统运行过程的控制,包括机械转动、电气控制、安全联锁控制,特别是负责控制光源的出束能量和出束顺序,控制探测器的数据读出与数据重建。
图2示出了根据本公开实施例的CT系统的方法的流程图。如图2所示,在步骤S210,在被检查物体运动过程中通过第一扫描级对被检查物体进行扫描,产生第一数字信号。例如,当有诸如箱包之类的被检查对象120通过传送机构110进入设备时,由设备第一个平面A的光源和探测器对箱包进行扫描,并将扫描数 据传入处理装置130进行相应的CT重建。同时系统记录下该箱包所扫描区域经过第一个平面的时刻和位置,根据皮带速度和编码可以求得该断层通过后续平面的时刻。
在步骤S220,基于所述第一数字信号重建所述被检查物体的第一像质的CT图像,并且对所述CT图像进行分析。
例如,处理装置130根据CT重建结果判断箱包所扫描区域的整体特性,包括高密度材料是否较多(如金属)、零碎件(细小物品)是否较多以及是否存在可疑物体。
在步骤S230,基于所述处理装置的分析结果调节所述第二扫描级的扫描参数,使得所述第二扫描级输出第二数字信号。
控制装置140根据分析结果对后续平面的扫描参数进行预设定(光源电压、电流、激活的光源数目等等)。例如:当需要更高的穿透性以看清金属物体及其临近区域时,后续平面的源点预设成使用更高电压以提高射线能量;当需要看清更多细小物体时,后续平面的源点预设成使用更多光源数目以提高空间分辨率等。而每个源点的流强也可以根据源点所在平面预设的激活光源数目来相应调整,以保证在规定时间内完成扫描,如当源点数目较多时提高流强以缩短每个源点的出束时间,又如当激活源点数目较少时使用较大流强则能够提高扫描数据的信噪比,改善重建图像的噪声水平。
在步骤S240,至少基于所述第二数字信号重建所述被检查物体的第二像质的CT图像,其中所述第二像质高于第一像质。
例如,当被检查对象120对应区域通过后续扫描平面时,控制装置140控制扫描平面按照针对该区域预设的扫描参数进行扫描,得到扫描数据。
在一些实施例中,在第二扫描级扫描到该物体的相应部分时,基于处理装置的分析结果相应调节第二扫描级的扫描参数,使得第二扫描级输出该第二数字信号。
这样,当被检查对象120对应区域通过全部扫描平面后,系统综合所有扫描数据,利用单能或能谱CT重建算法对物体进行重建,得到最终的三维CT重建结果,并对违禁品进行识别、报警。
在一些实施例中,分布式光源与探测器分布三个间隔的圆环上,其中A平面为第一扫描平面,B、C平面为第二、第三扫描平面,如图1所示。每个平面上 的源可以是稀疏排布,如图3A、图3B、图3C所示,也可以是在有限角度内密集排布,如图4A、图4B、和图4C所示。
上述实施例的方案使用多源X射线发生装置从不同角度对行李物品进行照射,省去了传统行李CT系统中的旋转装置,降低了系统成本,提高了检测精度,多平面的扫描方式也进一步提高了扫描速度。利用分布式光源具有灵活性的特点,根据预处理结果来调整光源的能量和结合多能谱射线检查技术,可以对危险可疑物品,如易燃物及爆炸物、毒品等有很好的识别效果,适应不同情况下的安全检查需求。
该实施方案充分利用分布式光源的特点,发展了新的控制方式。通过把光源分散布置在多个扫描平面内,使得根据物体特点调节光源能谱、流强与数目成为了可能。在物体经过第一个平面的时候,我们就可以用稀疏角度重建或有限角重建方法获得预重建结果,从而根据相应分析结论、指标来改变后两个平面光源的能谱、流强和数目,这样一方面可以获得最佳的重建结果,另一方面也可以获得不同能量下的重建结果,实现物质识别。
在一些实施例中,当光源和探测器分布在多个位置上的时候,需要解决不同平面上的数据同步的问题:可以使用皮带编码的方式来触发X光源出束,从而保证不同平面探测器采集的是物体同一个平面的数据。也可以根据几个探测器平面之间的固定位置,来确定物体依次经过这几个平面的时间差,从而提取出相应的数据。
其次,在一些实施例中,为了将不同能量不同视角的数据联合重建,先把所有角度的数据用传统的单能CT重建算法进行重建,这个结果保有准确的几何结构,再把该几何信息用作先验知识,将扫描数据按源点出束能量分组分别重建,得到不同X射线能量的重建结果。
以上的详细描述通过使用方框图、流程图和/或示例,已经阐述了CT系统及其方法的众多实施例。在这种方框图、流程图和/或示例包含一个或多个功能和/或操作的情况下,本领域技术人员应理解,这种方框图、流程图或示例中的每一功能和/或操作可以通过各种硬件、软件、固件或实质上它们的任意组合来单独和/或共同实现。在一个实施例中,本公开的实施例所述主题的若干部分可以通过专用集成电路(ASIC)、现场可编程门阵列(FPGA)、数字信号处理器(DSP)、或其他集成格式来实现。然而,本领域技术人员应认识到,这里所公开的实施例的 一些方面在整体上或部分地可以等同地实现在集成电路中,实现为在一台或多台计算机上运行的一个或多个计算机程序(例如,实现为在一台或多台计算机系统上运行的一个或多个程序),实现为在一个或多个处理器上运行的一个或多个程序(例如,实现为在一个或多个微处理器上运行的一个或多个程序),实现为固件,或者实质上实现为上述方式的任意组合,并且本领域技术人员根据本公开,将具备设计电路和/或写入软件和/或固件代码的能力。此外,本领域技术人员将认识到,本公开所述主题的机制能够作为多种形式的程序产品进行分发,并且无论实际用来执行分发的信号承载介质的具体类型如何,本公开所述主题的示例性实施例均适用。信号承载介质的示例包括但不限于:可记录型介质,如软盘、硬盘驱动器、紧致盘(CD)、数字通用盘(DVD)、数字磁带、计算机存储器等;以及传输型介质,如数字和/或模拟通信介质(例如,光纤光缆、波导、有线通信链路、无线通信链路等)。
虽然已参照几个典型实施例描述了本公开,但应当理解,所用的术语是说明和示例性、而非限制性的术语。由于本公开能够以多种形式具体实施而不脱离公开的精神或实质,所以应当理解,上述实施例不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。

Claims (15)

  1. 一种CT系统,包括:
    传送机构,配置为承载被检查物体直线运动;
    第一扫描级,包括第一射线源、第一探测器和第一数据采集装置,对所述被检查物体进行扫描,产生第一数字信号;
    第二扫描级,配置为沿着所述被检查物体的运动方向与所述第一扫描级间隔预定距离设置,包括第二射线源、第二探测器和第二数据采集装置;
    处理装置,配置为基于所述第一数字信号重建所述被检查物体的第一像质的CT图像,并且对所述CT图像进行分析;
    控制装置,配置为基于所述处理装置的分析结果调节所述第二扫描级的扫描参数,使得所述第二扫描级输出第二数字信号,所述处理装置至少基于所述第二数字信号重建所述被检查物体的第二像质的CT图像,其中所述第二像质高于第一像质。
  2. 如权利要求1所述的CT系统,其中,在第二扫描级扫描到该物体的相应部分时,基于所述处理装置的分析结果相应调节所述第二扫描级的扫描参数,使得所述第二扫描级输出所述第二数字信号。
  3. 如权利要求1所述的CT系统,还包括第三扫描级,所述第三扫描级包括第三射线源、第三探测器和第三数据采集装置,
    所述控制装置配置为基于所述第一分辨率的CT图像调节所述第三扫描级的扫描参数,使得所述第三扫描级输出第三数字信号,所述处理装置配置为至少基于所述第三数字信号重建所述被检查物体的第三像质的CT图像,其中所述第三像质高于第一像质。
  4. 如权利要求3所述的CT系统,其中,在第三扫描级扫描到该物体的相应部分时,基于所述处理装置的分析结果相应调节所述第三扫描级的扫描参数,使得所述第三扫描级输出所述第三数字信号。
  5. 如权利要求3所述的CT系统,其中所述第一扫描级、所述第二扫描级和所述第三扫描级采用稀疏视角扫描模式。
  6. 如权利要求3所述的CT系统,其中第一扫描级、所述第二扫描级和所述第三扫描级采用有限角度扫描模式。
  7. 如权利要求3所述的CT系统,其中,所述第一射线源、所述第二射线源和所述第三射线源均包括多个源点,设置在与被检查物体的运动方向垂直的多个扫描平面上,每个扫描平面中,源点分布为连续或不连续的一段或多段直线或弧线。
  8. 如权利要求1所述的CT系统,其中当所述处理装置的分析结果表明需要更高的穿透性以看清金属物体及其临近区域时,将第二扫描级的源点预设成使用更高电压以提高射线能量。
  9. 如权利要求1所述的CT系统,其中,当所述处理装置的分析结果表明需要看清更多细小物体时,将第二扫描级的源点预设成使用更多光源数目以提高空间分辨率。
  10. 如权利要求1所述的CT系统,其中,当所述处理装置的分析结果表明要在规定时间内完成扫描时,将第二扫描级的源点数目调节为预设的激活光源数目。
  11. 如权利要求1所述的CT系统,其中,当处理装置的分析结果表明要更准的材料识别时,调节第二扫描级的源点的出束能谱。
  12. 如权利要求3所述的CT系统,其中,所述第一扫描级、所述第二扫描级和所述第三扫描级中的源点的流强可以根据源点所在平面预设光源数目来调整。
  13. 如权利要求12所述的CT系统,其中当源点数目较多时提高流强以缩短每个源点的出束时间以保证在规定时间内完成扫描,或当激活源点数目较少时使用较大流强来提高扫描数据的信噪比。
  14. 一种用于CT系统的方法,所述CT系统包括第一扫描级和沿着被检查物体的运动方向与所述第一扫描级间隔预定距离设置的第二扫描级,所述方法包括步骤:
    在被检查物体运动过程中通过第一扫描级对被检查物体进行扫描,产生第一数字信号;
    基于所述第一数字信号重建所述被检查物体的第一像质的CT图像,并且对所述CT图像进行分析;
    基于所述处理装置的分析结果调节所述第二扫描级的扫描参数,使得所述第二扫描级输出第二数字信号;以及
    至少基于所述第二数字信号重建所述被检查物体的第二像质的CT图像,其中所述第二像质高于第一像质。
  15. 如权利要求14所述的方法,其中,在第二扫描级扫描到该物体的相应部分时,基于所述处理装置的分析结果相应调节所述第二扫描级的扫描参数,使得所述第二扫描级输出所述第二数字信号。
PCT/CN2014/094994 2013-12-26 2014-12-25 Ct系统及其方法 WO2015096784A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2016543121A JP6305544B2 (ja) 2013-12-26 2014-12-25 Ctシステム及びその方法
MYPI2016702319A MY187042A (en) 2013-12-26 2014-12-25 Ct systems and methods
BR112016014808-8A BR112016014808B1 (pt) 2013-12-26 2014-12-25 sistemas e métodos de tomografia computadorizada
SG11201605156WA SG11201605156WA (en) 2013-12-26 2014-12-25 Ct systems and methods
CA2935086A CA2935086C (en) 2013-12-26 2014-12-25 Ct systems and methods
AU2014373004A AU2014373004B2 (en) 2013-12-26 2014-12-25 CT systems and methods
IL246344A IL246344B (en) 2013-12-26 2016-06-20 Computed tomography system and method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310739803.4 2013-12-26
CN201310739803.4A CN104374783B (zh) 2013-12-26 2013-12-26 Ct系统及其方法

Publications (1)

Publication Number Publication Date
WO2015096784A1 true WO2015096784A1 (zh) 2015-07-02

Family

ID=52465144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094994 WO2015096784A1 (zh) 2013-12-26 2014-12-25 Ct系统及其方法

Country Status (13)

Country Link
US (1) US9746579B2 (zh)
EP (1) EP2889649B1 (zh)
JP (1) JP6305544B2 (zh)
CN (1) CN104374783B (zh)
AU (1) AU2014373004B2 (zh)
BR (1) BR112016014808B1 (zh)
CA (1) CA2935086C (zh)
ES (1) ES2749729T3 (zh)
HK (1) HK1202620A1 (zh)
IL (1) IL246344B (zh)
MY (1) MY187042A (zh)
SG (1) SG11201605156WA (zh)
WO (1) WO2015096784A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104749648A (zh) 2013-12-27 2015-07-01 清华大学 多能谱静态ct设备
WO2017011057A2 (en) * 2015-04-27 2017-01-19 GREEN, Christopher, K. Four plane x-ray inspection system
CN106526686B (zh) * 2016-12-07 2019-05-07 同方威视技术股份有限公司 螺旋ct设备和三维图像重建方法
CN107450091B (zh) * 2017-07-25 2020-01-03 苏州德锐特成像技术有限公司 一种基于面阵相机芯片的电离辐射计量方法和装置
CN109343135B (zh) * 2018-10-31 2020-10-09 北京纳米维景科技有限公司 一种多级能量型静态安检ct系统及成像方法
AU2019373486A1 (en) * 2018-10-31 2021-06-17 Nanovision Technology (Beijing) Co., Ltd. Multi-energy static security ct system and imaging method
JP7266479B2 (ja) * 2019-07-04 2023-04-28 日本信号株式会社 検査装置
CN110706790B (zh) * 2019-09-29 2023-10-31 东软医疗系统股份有限公司 数据传输方法、装置及设备
CN113238298B (zh) * 2021-07-09 2022-03-04 同方威视技术股份有限公司 检查系统及方法
CN116095932B (zh) * 2021-11-05 2024-05-24 同方威视技术股份有限公司 成像系统中光机出束控制方法、装置、ct成像系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19749783A1 (de) * 1997-11-11 1999-05-12 Manfred Dr Ing Pfeiler Vorrichtung zur Stückgut-Röntgencomputertomographie
JP2000235007A (ja) * 1999-02-15 2000-08-29 Hitachi Engineering & Services Co Ltd X線ctスキャナ装置およびx線貨物検査方法
CN101470082A (zh) * 2007-12-27 2009-07-01 同方威视技术股份有限公司 物品检测装置及其检测方法
CN101772324A (zh) * 2007-08-06 2010-07-07 株式会社日立医药 X射线ct装置
CN102379716A (zh) * 2011-08-24 2012-03-21 苏州生物医学工程技术研究所 一种静态ct扫描仪系统及其扫描方法
US8254656B2 (en) * 2009-10-13 2012-08-28 Morpho Detection, Inc. Methods and system for selective resolution improvement in computed tomography
CN203705363U (zh) * 2013-12-26 2014-07-09 清华大学 Ct系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62235633A (ja) * 1986-04-07 1987-10-15 Hitachi Medical Corp 画像出力装置
US7103137B2 (en) * 2002-07-24 2006-09-05 Varian Medical Systems Technology, Inc. Radiation scanning of objects for contraband
US7116751B2 (en) * 2003-04-02 2006-10-03 Reveal Imaging Technologies, Inc. System and method for resolving threats in automated explosives detection in baggage and other parcels
WO2005119297A2 (en) * 2004-05-27 2005-12-15 L-3 Communications Security And Detection Systems, Inc. Contraband detection systems using a large-angle cone beam ct system
CN100541187C (zh) * 2004-11-26 2009-09-16 同方威视技术股份有限公司 一种可ct断层扫描的集装箱检查系统
US7233644B1 (en) * 2004-11-30 2007-06-19 Ge Homeland Protection, Inc. Computed tomographic scanner using rastered x-ray tubes
JP4170305B2 (ja) * 2005-04-05 2008-10-22 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 放射線撮影装置
KR101034753B1 (ko) * 2006-08-11 2011-05-17 아메리칸 사이언스 앤 엔지니어링, 인크. 동시에 발생하며 근접한 투과 및 후방 산란 영상화를 이용한 엑스레이 검사
US7616731B2 (en) * 2006-08-30 2009-11-10 General Electric Company Acquisition and reconstruction of projection data using a stationary CT geometry
GB0706089D0 (en) * 2007-03-29 2007-10-31 Durham Scient Crystals Ltd X-ray imaging of materials
EP2265938A1 (de) * 2008-04-18 2010-12-29 Smiths Heimann Verfahren und vorrichtung zur detektion eines bestimmten materials in einem objekt mittels elektromagnetischer strahlen
CN201540263U (zh) * 2009-06-30 2010-08-04 同方威视技术股份有限公司 物品检查系统、dr成像装置和ct成像装置
CN102175697B (zh) * 2009-06-30 2014-05-14 同方威视技术股份有限公司 物品检查系统
US9271689B2 (en) * 2010-01-20 2016-03-01 General Electric Company Apparatus for wide coverage computed tomography and method of constructing same
US8447011B2 (en) * 2010-08-24 2013-05-21 Fujifilm Corporation Radiographic image capturing system and radiographic image capturing method
JP2013144038A (ja) * 2012-01-16 2013-07-25 Toshiba Corp X線ct装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19749783A1 (de) * 1997-11-11 1999-05-12 Manfred Dr Ing Pfeiler Vorrichtung zur Stückgut-Röntgencomputertomographie
JP2000235007A (ja) * 1999-02-15 2000-08-29 Hitachi Engineering & Services Co Ltd X線ctスキャナ装置およびx線貨物検査方法
CN101772324A (zh) * 2007-08-06 2010-07-07 株式会社日立医药 X射线ct装置
CN101470082A (zh) * 2007-12-27 2009-07-01 同方威视技术股份有限公司 物品检测装置及其检测方法
US8254656B2 (en) * 2009-10-13 2012-08-28 Morpho Detection, Inc. Methods and system for selective resolution improvement in computed tomography
CN102379716A (zh) * 2011-08-24 2012-03-21 苏州生物医学工程技术研究所 一种静态ct扫描仪系统及其扫描方法
CN203705363U (zh) * 2013-12-26 2014-07-09 清华大学 Ct系统

Also Published As

Publication number Publication date
AU2014373004B2 (en) 2017-06-22
BR112016014808B1 (pt) 2020-11-10
AU2014373004A1 (en) 2016-07-14
EP2889649B1 (en) 2019-09-18
JP2017501414A (ja) 2017-01-12
IL246344B (en) 2021-05-31
CA2935086A1 (en) 2015-07-02
US20150185355A1 (en) 2015-07-02
CN104374783A (zh) 2015-02-25
EP2889649A1 (en) 2015-07-01
US9746579B2 (en) 2017-08-29
ES2749729T3 (es) 2020-03-23
MY187042A (en) 2021-08-27
JP6305544B2 (ja) 2018-04-04
IL246344A0 (en) 2016-08-31
HK1202620A1 (zh) 2015-10-02
BR112016014808A2 (zh) 2018-07-17
CA2935086C (en) 2020-03-31
CN104374783B (zh) 2017-06-16
SG11201605156WA (en) 2016-07-28

Similar Documents

Publication Publication Date Title
WO2015096785A1 (zh) Ct系统及其方法
WO2015096784A1 (zh) Ct系统及其方法
US10371648B2 (en) Radiography systems based on distributed ray source
US9784883B2 (en) Multi-spectral static CT apparatuses
CN107356615B (zh) 一种用于双能x射线ct的方法和系统
EP2817661B1 (en) X-ray imager with sparse detector array
US10379252B2 (en) Methods and devices for estimating weight of an object to be inspected in an inspection system
US20100277312A1 (en) In-line high-throughput contraband detection system
WO2013131402A1 (zh) 用于射线扫描成像的设备和方法
US20080181357A1 (en) Combined computed tomography and nuclear resonance fluorescence cargo inspection system and method
JP2015532974A (ja) Ctシステム及びctシステムに用いられる検知装置
US10586324B2 (en) Inspection devices and methods for inspecting a container
CN203643369U (zh) Ct系统
CN203705363U (zh) Ct系统
US20230161059A1 (en) Charged particle scanners
US20090232277A1 (en) System and method for inspection of items of interest in objects
US20100011863A1 (en) Method and apparatus for computed tomography
CN117518284A (zh) 基于单一直线扫描通道的ct扫描成像系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873317

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 246344

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2935086

Country of ref document: CA

Ref document number: 2016543121

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016014808

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2014373004

Country of ref document: AU

Date of ref document: 20141225

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14873317

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112016014808

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016014808

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160622