WO2015196857A1 - 探测器装置、双能ct系统和使用该系统的检测方法 - Google Patents

探测器装置、双能ct系统和使用该系统的检测方法 Download PDF

Info

Publication number
WO2015196857A1
WO2015196857A1 PCT/CN2015/077370 CN2015077370W WO2015196857A1 WO 2015196857 A1 WO2015196857 A1 WO 2015196857A1 CN 2015077370 W CN2015077370 W CN 2015077370W WO 2015196857 A1 WO2015196857 A1 WO 2015196857A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
dual
energy response
detection
crystal unit
Prior art date
Application number
PCT/CN2015/077370
Other languages
English (en)
French (fr)
Inventor
陈志强
张丽
金鑫
黄清萍
沈乐
孙运达
Original Assignee
清华大学
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学, 同方威视技术股份有限公司 filed Critical 清华大学
Priority to MYPI2016703544A priority Critical patent/MY185716A/en
Priority to AU2015281626A priority patent/AU2015281626B2/en
Priority to SG11201608668UA priority patent/SG11201608668UA/en
Priority to KR1020167028448A priority patent/KR102238156B1/ko
Priority to MX2016012852A priority patent/MX364225B/es
Publication of WO2015196857A1 publication Critical patent/WO2015196857A1/zh
Priority to IL247983A priority patent/IL247983B/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • G01V5/224Multiple energy techniques using one type of radiation, e.g. X-rays of different energies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • G01V5/226Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays using tomography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/36Measuring spectral distribution of X-rays or of nuclear radiation spectrometry
    • G01T1/362Measuring spectral distribution of X-rays or of nuclear radiation spectrometry with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • G01T7/08Means for conveying samples received
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4266Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a plurality of detector units
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal

Definitions

  • the present invention relates to the field of dual energy CT detection, and more particularly to a detector apparatus for a dual energy CT system, a dual energy CT system including the same, and a method of detecting using the dual energy CT system.
  • CT computed tomography
  • XCT computed tomography
  • CT computed tomography
  • a typical CT device includes an X-ray source, a calibration device, a rotating slip ring, a detection component, a dedicated computer system for data calculation, a power supply and control system, and the like.
  • the detection component typically employs two detection crystal units having different energy responses, namely, a detection crystal unit having a first energy response (eg, a low energy detection crystal unit) and a second energy response.
  • a crystal unit is detected (eg, a high energy detection crystal unit).
  • the number of the detecting crystal unit having the first energy response and the detecting crystal unit having the second energy response are generally equal, respectively disposed on both sides of the printed circuit board and aligned across the board when viewed from the incident direction of the ray ( That is, overlap) settings, one-to-one correspondence.
  • the data module When performing the detection, the data module is used to collect the data signal from the detecting component, and the data having the first energy response and the second energy response is decomposed by the dual energy decomposition technique, and the X-ray scanning of the different energy of the object is reconstructed. Attenuation coefficient images, electron density images, and atomic number images, which can identify material components and detect contraband such as drugs and explosives.
  • the object of the present invention is to solve at least one of the above problems and deficiencies existing in the prior art.
  • the optimization of the detection cost ensures the high spatial resolution of CT image reconstruction while satisfying the accuracy of the scanned substance.
  • the detector device can be applied to check for suspicious items in baggage items.
  • a detector apparatus for a dual energy CT system comprising a scanning channel, wherein a scanned item (eg, a baggage item) enters and exits through the scanning channel in a conveying direction
  • the dual energy CT system ; an X-ray source disposed on one side of the scanning channel; and a detection arm holder disposed on an opposite side of the scanning channel for mounting the detector device
  • the detector device includes a plurality of Detector assemblies, each detector assembly comprising: at least one detection crystal unit having a first energy response (eg, a low energy detection crystal unit) arranged in a first direction, each having a first energy response detecting crystal
  • the unit includes at least one detection crystal having a first energy response disposed in a second direction, wherein the first direction is parallel to the transport direction, the second direction is perpendicular to the first direction; and at least one of the rows arranged along the first direction has a a second energy responsive detection crystal unit (eg, a high energy
  • the detection crystal unit having the first energy response and the detection crystal unit having the second energy response are at least partially staggered in the first direction (ie, arranged in a non-aligned manner)
  • the conventional detecting crystal unit having the second energy response and the detecting crystal unit having the first energy response are aligned, in the single-energy processing mode, the number of detecting crystal units that can be used for detecting X-rays is increase.
  • a portion of the X-ray beam emitted from the X-ray source is interleaved through a staggered detection crystal unit having a first energy response or a detection crystal unit having a second energy response, a portion of which is aligned and arranged
  • the first energy-responsive/detection crystal unit block having the second energy response is acquired, and then all acquired data signals are used for CT image reconstruction of the scanned object, thereby improving spatial resolution while having a second energy response
  • the number of detecting crystal units has not been increased, so that it is possible to ensure that the cost does not increase.
  • the number of probe crystal units having a first energy response is equal to the number of probe crystal units having a second energy response.
  • the two energy responsive detector crystals typically differ greatly in manufacturing cost, when the cost of the detection crystal having the first energy response is much lower than the cost of the detection crystal having the second energy response,
  • the number of probe crystal units having a first energy response may be greater than the number of probe crystal units having a second energy response. It is therefore possible to increase the spatial resolution of CT image reconstruction by increasing the number of detection crystal units having a first energy response without significantly increasing the cost.
  • the at least one detecting crystal unit having the first energy response and the at least one detecting crystal unit having the second energy response are completely staggered in the first direction (ie, the two detecting crystal units are in the first direction) Not aligned at all).
  • Such an arrangement is equivalent to, in a single-energy processing mode, all of the first energy response having a first energy response by staggering without changing the total number of detected crystal units (ie, without increasing the total cost)
  • the second energy responsive detection crystal unit further increases the number of detection crystal units participating in the X-ray detection in the single energy processing mode.
  • the plurality of detector assemblies are arranged on a circular arc-shaped support member centered on the center of the scanning channel or on an approximately circular arc-shaped support member composed of a plurality of straight segments at the center of the scanning channel.
  • the detector assembly of the detector device for a dual-energy CT system of the present invention may adopt a Chinese patent application as claimed in application No. 201210350516.X (invention name: a baggage article CT security system and its detector device) The arrangement disclosed in the article.
  • the plurality of detector assemblies are arranged on a circular arc-shaped support member centered on the X-ray source or on an approximately circular arc-shaped support member composed of a plurality of straight segments.
  • the plurality of detector assemblies may be arranged in a spiral direction on the circular arc or approximately circular arc-shaped support member, so as to detect a detection route of the scanned article when the scanned article passes through the scanning plane. It is a spiral shape.
  • the incident surface of the detecting crystal unit having the first energy response and/or the detecting crystal unit having the second energy response is provided with a filtering layer for adjusting the energy of detecting the crystal unit response.
  • the detector device further includes a mounting plate, and the detecting crystal units having the first energy response are arranged on the side of the mounting board at intervals in the first direction, and the detecting crystal having the second energy response The units are spaced apart on the other side of the mounting plate in a first direction.
  • the at least one detection crystal unit having a first energy response and the at least one detection crystal unit having a second energy response are mounted on the same or different sides of different mounting plates.
  • the X-ray source is a single source or a distributed source.
  • a detector apparatus for a dual energy CT system comprising a plurality of detector assemblies, each detector assembly comprising: at least spaced apart in a first direction Two detecting crystal units having a first energy response, each of the detecting crystal units having a first energy response comprising at least one detecting crystal having a first energy response arranged in a second direction, wherein the first direction is parallel to the scanned object a direction of transport, the second direction being perpendicular to the first direction; and at least one of the detecting crystal units having a second energy response spaced along the first direction, each of the detecting crystal units having the second energy response comprising the second direction Arranging at least one detection crystal having a second energy response, wherein the second energy is higher than the first energy; the number of detection crystal units having the second energy response is less than the detection crystal unit having the first energy response And the number of the at least two detecting crystal units having the first energy response when viewed in the incident direction of the X-ray Crystal unit and the respective
  • the cost of a probe crystal having a first energy response is much lower than the cost of a probe crystal having a second energy response (for example, a high energy probe crystal)
  • the number of detector crystal units of the first energy response increases the definition of the three-dimensional image, and the requirement for the number of detector crystal units is much smaller than the requirement of the number of crystals of the detector due to the accuracy of the substance recognition, so a small amount can be set.
  • a detection crystal unit having a second energy response is used. In this way, the optimization of the detection cost is achieved, and the spatial resolution of the high CT image reconstruction can be ensured while satisfying the accuracy of the substance recognition.
  • a dual energy CT system comprising: a scanning channel, wherein a scanned item (eg, a baggage item) enters and exits the dual energy CT system through the scanning channel in a conveying direction; An X-ray source on one side of the scanning channel; and a detecting arm frame disposed on an opposite side of the scanning channel, the detector arm mounted with a detector device as described above.
  • a scanning channel wherein a scanned item (eg, a baggage item) enters and exits the dual energy CT system through the scanning channel in a conveying direction
  • An X-ray source on one side of the scanning channel
  • a detecting arm frame disposed on an opposite side of the scanning channel, the detector arm mounted with a detector device as described above.
  • the dual-energy CT system further includes: an acquisition module for acquiring data signals from the plurality of detection components; and a control module that controls radiation emission of the X-ray source and the data signal acquisition operation
  • the control module and the acquisition module are installed in the same detection arm.
  • the dual-energy CT system of the present invention further includes a data processing module configured to execute the first data processing process and the second data processing process, wherein the first data processing
  • the single-energy processing mode is used to reconstruct all the data signals collected for reconstructing the CT image of the scanned object
  • the dual data processing mode is used in the second data processing process to decompose the collected data signals into the at least one a data signal of the detecting crystal unit having the first energy response and a data signal from the at least one detecting crystal unit having the second energy response, and reconstructing using the decomposed data signal to obtain X of different energy of the scanned object Attenuation coefficient images, electron density images, and atomic number images under ray scanning.
  • the data processing module is configured to: interleave the detection crystal unit having the second energy response and the detection crystal unit having the first energy response in performing the second data processing
  • the aligned dual-energy projection data is obtained, and then the attenuation coefficient image, the electron density image and the atomic number image reconstruction under the X-ray scan of the different energy of the scanned object are performed.
  • a method of performing CT detection using a dual energy CT system comprising the steps of: transporting a scanned item (e.g., a baggage item) through a scanning channel; and driving the detecting arm to rotate, Simultaneously controlling the X-ray source to emit an X-ray beam; acquiring data signals from the plurality of detector components; performing a first data signal processing process and a second data processing process, wherein the single data processing mode is employed in the first data processing process All the collected data signals are used to reconstruct a CT image of the scanned object, and in the second data processing process, the dual data processing mode is used to decompose the collected data signal into the detection from the at least one first energy response a data signal of the crystal unit and a data signal from the at least one detecting crystal unit having the second energy response, and reconstructing using the decomposed data signal to obtain an attenuation coefficient image under different X-ray scans of the scanned object , electron density images and
  • the interpolating algorithm is used to arrange the arrangement of the detecting crystal unit having the second energy response and the detecting crystal unit having the first energy response.
  • the aligned dual-energy projection data is then reconstructed from an attenuation coefficient image, an electron density image, and an atomic number image under X-ray scanning of different energies of the scanned object.
  • FIG. 1 is a schematic diagram of a dual-energy CT system in accordance with an embodiment of the present invention.
  • Figure 2 is a perspective schematic view of the main components of a dual energy CT system.
  • 3a-e are diagrams showing a first energy response in a detector assembly of a detector device in accordance with the present invention
  • FIG. 4 is a schematic structural view of a detector device shown in a top view.
  • the dual energy CT system in accordance with an embodiment of the present invention is shown.
  • the system can be used to check for suspicious items in baggage items.
  • the dual energy CT system includes a scanning channel 2 or 6 in which a scanned item (not shown) such as a baggage item enters the dual energy CT system through the inlet scanning channel 2 in a conveying direction indicated by an arrow A in the figure.
  • An X-ray source 8 disposed between the inlet scanning channel 2 and the exit scanning channel 6; a detecting arm frame 5 disposed on an opposite side of the X-ray source 8, the detector device 20 being mounted on the detecting arm frame 5
  • the detector device 20 includes a plurality of detector assemblies 21.
  • a slip ring system 3 is also included around the scanning channel, wherein the X-ray source 8 and the detection boom 5 are mounted on the slip ring system 3 and rotate about the center of the scanning channel.
  • the detecting arm frame 5 can be mounted on the rotatable detecting arm mounting plate 12 of the slip ring system 3, and the detecting arm mounting plate 12 is mounted in the slip ring supporting frame 13, It is driven by a slip ring drive motor 14.
  • the detector device 20, the CT X-ray source 8 and the CT first collimator 9, and the second collimator 10 are mounted on the probe boom 5.
  • the system only includes a detection arm frame 5, the detection arm frame is a closed boom frame, and a data acquisition/control module 34 is installed inside, and all the CT data acquisition systems can adopt a set of data acquisition modules. And the control module, and further, all of the collected data can be processed by a set of algorithms, thereby increasing the speed at which the CT device performs scanning operations and increasing the speed of data transmission and processing.
  • a probe crystal unit 22 having a first energy response and a probe crystal unit having a second energy response are shown in the detector assembly 21 of the detector device 20 in accordance with the present invention.
  • the detecting crystal unit having the first energy response is a low energy detecting crystal unit composed of at least one low energy detecting crystal
  • the detecting crystal unit having the second energy response is a high energy detecting crystal composed of at least one high energy detecting crystal. unit.
  • each detector assembly 21 comprises: at least one detection crystal unit 22 having a first energy response arranged in a first direction (as indicated by arrow B in the figure), each having a first energy response
  • the detecting crystal unit 22 includes at least one arranged in the second direction Detecting crystals 22a, 22b, 22c, ... having a first energy response, wherein a second direction (as indicated by arrow C in the figure) is perpendicular to the first direction; and at least one of the plurality of rows arranged along the first direction has a Two energy-responsive detecting crystal units 23, each detecting crystal unit 23 having a second energy response comprising at least one detecting crystal 23a...
  • the at least one detecting crystal unit 22 having the first energy response and the at least one detecting crystal unit 23 having the second energy response are at least partially staggered in the first direction when viewed in the incident direction of the X-ray.
  • a probe crystal unit having a first energy response and a probe crystal unit having a second energy response are staggered in a first direction, the two being misaligned.
  • the detection crystal unit 22 having the first energy response and the detection crystal unit 23 having the second energy response are at least partially staggered, compared to the conventional sum with the second energy response having the first
  • the number of detection crystal units that can be used to detect X-rays is increased.
  • a portion of the X-ray beam emitted from the X-ray source is collected through a staggered detection crystal unit 22 having a first energy response or a detection crystal unit 23 having a second energy response, a portion of which is aligned with a first energy response/ A block of probing crystal cells having a second energy response is acquired, after which all acquired data signals are used for CT image reconstruction of the scanned object, thereby improving spatial resolution while at the same time being due to the detecting crystal unit 23 having the second energy response
  • the quantity has not been increased, so it can be guaranteed that the cost will not increase.
  • the number of probe crystal units 22 having a first energy response may be equal to the number of probe crystal units 23 having a second energy response, such as shown in Figure 3(a).
  • the number of detection crystal units 22 having the first energy response may also be greater than the number of detection crystal units 23 having the second energy response, as shown, for example, in Figures 3(b)-(d). Since the cost of the detection crystal having the first energy response is much lower than the cost of the detection crystal having the second energy response, the spatial resolution of the CT image reconstruction can be improved by increasing the number of detection crystal units having the first energy response. Without significantly increasing costs.
  • the detecting crystal unit 22 having the first energy response and the detecting crystal unit 23 having the second energy response may also be completely staggered in the first direction, that is, completely misaligned, as shown in FIG. 3(a)-( d) shown.
  • Such an arrangement is equivalent to, in a single-energy processing mode, all of the first energy response having a first energy response by staggering without changing the total number of detected crystal units (ie, without increasing the total cost)
  • the second energy responsive detection crystal unit further increases the number of detection crystal units participating in the X-ray detection in the single energy processing mode, thereby further improving the spatial resolution of the CT image reconstruction.
  • Figure 3 (e) shows the first energy in the detector assembly 21 of the detector device 20 in accordance with the present invention. Still another exemplary arrangement of the responsive probing crystal unit 22 and the probing crystal unit 23 having a second energy response, wherein each detector assembly 21 comprises: at least two of the first energy spaced apart along the first direction The responsive probing crystal unit 22, each of the probing crystal units 22 having a first energy response comprising at least one probing crystal 22a, 22b, 22c...
  • the detecting crystal units 23 having a first energy response arranged in a second direction, wherein the first direction is parallel In a transport direction of the baggage item, the second direction is perpendicular to the first direction; and at least one of the detecting crystal units 23 having the second energy response arranged in the first direction, each of the detecting crystal units 23 having the second energy response Included in the second direction, at least one of the detection crystals 23a...
  • the number of the detection crystal units 23 having the second energy response is less than the number An energy responsive detection of the number of crystal units 22, and the at least two detection crystals having a first energy response when viewed in the incident direction of the X-rays
  • a portion of the detection crystal unit in unit 22 corresponds to and is aligned with each of the at least one of the detection crystal units 23 having the second energy response.
  • the three-dimensional image sharpness is improved by increasing the number of detector crystal units 22 having the first energy response; on the other hand, the requirement for the number of detector crystal units is much smaller than the three-dimensional image due to the substance recognition accuracy.
  • the definition of the number of crystals is so sharp that a small amount of the detecting crystal unit 23 having the second energy response is set without recognition of the substance. In this way, the optimization of the detection cost is achieved, and the spatial resolution of the high CT image reconstruction can be ensured while satisfying the accuracy of the substance recognition.
  • the detector device further includes a mounting plate 24 in which the detecting crystal units having the first energy response are spaced apart in the first direction. On one side of the mounting plate 24, the detecting crystal units having the second energy response are spaced apart from each other on the other side of the mounting board 24 in the first direction.
  • the at least one detection crystal unit having a first energy response and the at least one detection crystal unit having a second energy response are mounted on the same or different sides of different mounting plates.
  • the mounting board 24 may be a printed circuit board, and the circuitry corresponding to the detecting crystal unit is disposed on the printed circuit board.
  • the incident surface of the detecting crystal unit in the detector assembly as shown in Figures 3(a)-(e) may be provided with a filtering layer (not shown), such as a copper layer, for use as Adjust the energy response of the probing crystal unit.
  • the X-ray source is a single source or a distributed source.
  • the plurality of detector assemblies of the present invention can be arranged in the arrangement disclosed in the other Chinese patent application to reduce the size of the CT security system and improve the scanning efficiency.
  • the plurality of detector assemblies 21 may be arranged on a circular arc-shaped support member centered on the center of the scanning channel or composed of a plurality of straight lines. Approximating on a circular arc-shaped support.
  • the plurality of detector assemblies can also be arranged in a conventional manner on a circular arc-shaped support member centered on an X-ray source or on an approximately circular arc-shaped support member composed of a plurality of straight lines.
  • the plurality of detector assemblies may be arranged in a spiral direction on the circular arc or approximately circular arc shaped support such that when the scanned article passes the scanning plane, the scanned object is detected.
  • the detection route is a spiral shape, wherein the spiral line is defined as: when the scanned object passes through the scanning plane, the scanned object is a stationary reference frame, and a certain fixed point (such as a light source, etc.) passes through the ring when the sliding ring rotates. Space path.
  • one detector assembly in a plurality of detector assemblies for example, from left to right/right to left, is oriented in an outward direction/toward direction of the paper plane than an adjacent one of the detector assemblies. Move a distance setting in turn.
  • the dual energy CT system of the present invention further includes a data processing module (not identified in the figure), which may be integrated on the dual energy CT system or may be separately provided.
  • the data processing module is configured to perform a first data processing process and a second data processing process, wherein a single-energy processing mode is employed in the first data processing process, without distinguishing between the detecting crystal unit 23 having the second energy response, a detection crystal unit 22 having a first energy response, or a data signal having a second energy response/detection crystal unit block having a first energy response, using all of the collected data signals for reconstructing a scanned item such as a baggage item a CT image to detect prohibited items such as knives, weapons, etc.; a dual energy processing mode is employed in the second data processing process, and the acquired data signal is decomposed into two from the at least one using a dual energy decomposition technique The data signal of the energy-responsive detecting crystal unit 22 and the data signal from the at least one detecting crystal unit 23 having the second energy response are reconstructed using the de
  • the inventors propose that the data processing module is configured to interleave the detection crystal unit 23 having the second energy response and the detection crystal unit 22 having the first energy response during execution of the second data processing.
  • an interpolation algorithm is used to obtain aligned double-energy projection data, and then an electron density image and an atomic number image reconstruction of the article are performed.
  • FIG. 4 is a block diagram showing the structure of a dual energy CT system in accordance with the present invention.
  • Dual energy CT system The system further includes: a first collimator 9 comprising a collimator grid 39 for decomposing the beam of rays from the X-ray source 8 and controlling the intensity of the output X-beam energy of each grid;
  • the second collimator 10 has a grid 37 for shielding the X-rays incident on the detector assembly, so that the X-rays reaching the receiving surface of the detector crystal are derived from the receiving surface of the detector crystal instead of detecting The crystal receives the scattering at the edge of the face. As shown in FIG.
  • the first collimator grid 39 includes at least two partitions for splitting the beam of rays emitted by the X-ray source 8 into two or more fan beams. Further, as shown in FIG. 4, in the direction of the scanning channel 2 or 6, the decomposed fan beam is in one-to-one correspondence with the receiving faces of the plurality of detector crystal units 22 and 23, thereby The collected data of the plurality of columns of detectors can be simultaneously acquired in the direction of the scanning channel.
  • the plurality of detector assemblies 21 may be comprised of a plurality of detector crystal units that are mounted to the detector mounting box 35 by a detector crystal mounting bracket that requires sealing to reduce light, dust, and ambient humidity. Interference with the performance of the crystal.
  • the detector mounting box 35 is further mounted to the CT detector boom by a connecting bracket 42.
  • a dust-proof visor 38 is mounted on the X-ray source target in front of the receiving surface of the detector crystal, preferably, the thickness thereof is not more than 3 mm.
  • the material of the dust visor is a lightweight material, including but not limited to polytetrafluoroethylene, plastic, bakelite, and aluminum foil.
  • the first collimator grid 39 is a point-like fitting curve associated with the ray energy distribution, wherein the grid slits are narrower and the grid seams at the edges are wider to allow arrival.
  • the energy intensity at the receiving surface of the crystals of different detectors is basically the same.
  • the first collimator grid 39 is provided with a plurality of slits, the number of slits being at least two, such as three slits as shown in FIG.
  • a scanned item such as a baggage item enters the dual-energy CT system through the inlet scanning channel 2, triggers an entrance light barrier, and the system control module issues an acquisition command, and the CT scanning arm frame 5 is driven by the slip ring driving motor 14.
  • the X-ray source 8 of the CT portion emits an X-ray beam, and the energy beam is separated into a plurality of columns of fan-shaped X-ray beams by a first collimator 9 as a front energy calibration device, the CT detector Component 21 begins acquiring X-ray data and reconstructing the data via a data processing module.
  • the data processing module performs a first data signal processing process and a second data processing process, wherein in the first data processing process, all the collected data signals are used to reconstruct a CT image of the baggage item by using a single energy processing mode, The structure and shape image of the baggage item, thereby detecting prohibited items such as tools, weapons, etc., and adopting a dual energy processing mode in the second data processing process, using, for example, a known dual energy decomposition technique to decompose the collected data signal into And a data signal from the at least one detection crystal unit 22 having a first energy response and a data signal from the at least one detection crystal unit 23 having a second energy response, and reconstructing using the decomposed data signal to obtain an item Attenuation coefficient image, electron density image and atomic number image of X-ray scan of different energies for Substance identification to detect contraband such as drugs and explosives.
  • an interpolation algorithm is obtained for the case where the detecting crystal unit 23 having the second energy response and the detecting crystal unit 22 having the first energy response are staggered. Arrange the aligned dual-energy projection data, and then reconstruct the electron density image and atomic number image of the item.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Toxicology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measurement Of Radiation (AREA)

Abstract

一种探测器装置(20),包括多个探测器组件(21),每个组件包括:沿第一方向间隔排布的至少一个具有第一能量响应的探测晶体单元(22),每个这种探测晶体单元(22)包括沿第二方向布置的至少一个具有第一能量响应的探测晶体(22a、22b、22c…),第二方向垂直于第一方向;沿第一方向间隔排布的至少一个具有第二能量响应的探测晶体单元(23),每个这种探测晶体单元(23)包括沿第二方向布置的至少一个具有第二能量响应的探测晶体(23a…),第二能量高于第一能量;沿X射线入射方向观察时具有第一能量响应的探测晶体单元(22)和具有第二能量响应的探测晶体单元(23)沿第一方向至少部分地交错排布。还提供一种具有该探测器装置(20)的双能CT系统及用该系统进行CT检测的方法。

Description

探测器装置、双能CT系统和使用该系统的检测方法
本申请要求于2014年6月25日递交的、申请号为201410291326.4、发明名称为“探测器装置、双能CT系统和使用该系统的检测方法”的中国专利申请的优先权,其全部内容通过引用并入本申请中。
技术领域
本发明涉及双能CT检测领域,尤其涉及用于双能CT系统的探测器装置、包括该探测器装置的双能CT系统以及使用所述双能CT系统进行检测的方法。
背景技术
目前,基于X射线辐射成像的计算机断层扫描技术(简称“CT”技术)被广泛应用于安全检查,尤其用于检查行李物品中的可疑物品。在基于X射线辐射成像的CT技术中,通过CT数据重建可以得到断层内的被扫描物质的特征分布数据,通过对特征数据进行分析,可实现对行李中常见的嫌疑物质进行识别。一般的CT设备包含X射线源、校准装置、旋转滑环、探测部件、进行数据计算的专用计算机系统、供电及控制系统等。
在传统的双能CT结构中,探测部件通常采用两种具有不同能量响应的探测晶体单元,即,具有第一能量响应的探测晶体单元(例如,低能探测晶体单元)和具有第二能量响应的探测晶体单元(例如,高能探测晶体单元)。所述具有第一能量响应的探测晶体单元和具有第二能量响应的探测晶体单元的数量通常相等,分别设置在印刷电路板的两侧并且当从射线的入射方向观察时隔着电路板对齐(即,重叠)设置、一一对应。在进行检测时,使用采集模块采集来自探测部件的数据信号,并且采用双能分解技术将具有第一能量响应的和具有第二能量响应的数据进行分解,重建物品的不同能量的X射线扫描下的衰减系数图像、电子密度图像和原子序数图像,从而能够识别物质成分,将诸如毒品、炸药等违禁物检测出来。
对于双能CT安检而言,三维图像清晰度和物质识别准确率是其成像关键指标,但是这两个指标对于探测器模块的要求并不一致。一方面,要实现更高的三维图像清晰度,只需要提高具有第一和第二能量响应的探测器晶体其中一种的数量,然而 要提高物质识别准确率,则需要同时提高两种探测晶体的数量;另一方面,三维图像清晰度对晶体数量的要求远远大于物质识别准确率对探测器晶体数量的要求。
考虑到探测器晶体价格昂贵,由此,存在一种需求,希望能够优化探测器整体成本,在满足物质识别准确率的基础上,又能确保高的CT图像重建的空间分辨率。
发明内容
鉴于此,本发明的目的旨在解决现有技术中存在的上述问题和缺陷中的至少一个方面。
本发明的目的之一在于提供一种新颖的用于双能CT系统的探测器装置,采用具有第一能量响应的探测晶体单元与具有第二能量响应的探测晶体单元交错设置的布置方式,实现探测成本的最优化,在满足被扫描物质识别准确率的同时,又能确保高的CT图像重建的空间分辨率。该探测器装置可以应用于检查行李物品中的可疑物品。
根据本发明的一方面,提供一种用于双能CT系统的探测器装置,所述双能CT系统包括扫描通道,其中被扫描物品(例如,行李物品)沿传送方向通过所述扫描通道进出所述双能CT系统;设置在扫描通道一侧的X射线源;以及设置在所述扫描通道相对一侧的用于安装所述探测器装置的探测臂架,其中所述探测器装置包括多个探测器组件,每个探测器组件包括:沿第一方向间隔排布的至少一个具有第一能量响应的探测晶体单元(例如,低能探测晶体单元),每个具有第一能量响应的探测晶体单元包括沿第二方向布置的至少一个具有第一能量响应的探测晶体,其中第一方向平行于传送方向,第二方向垂直于第一方向;以及沿第一方向间隔排布的至少一个具有第二能量响应的探测晶体单元(例如,高能探测晶体单元),每个具有第二能量响应的探测晶体单元包括沿第二方向布置的至少一个具有第二能量响应的探测晶体,其中第二能量高于第一能量;其中沿X射线的入射方向观察时所述至少一个具有第一能量响应的探测晶体单元和所述至少一个具有第二能量响应的探测晶体单元沿第一方向至少部分地交错排布。
通过本发明的探测器装置,由于具有第一能量响应的探测晶体单元和具有第二能量响应的探测晶体单元沿第一方向至少部分地交错排布(即,不对齐地排布),相比于传统的具有第二能量响应的探测晶体单元和具有第一能量响应的探测晶体单元对齐排布的方式来说,在单能处理模式中,能够用于探测X射线的探测晶体单元的数量被增多。从X射线源发出的X射线束一部分经过交错布置的具有第一能量响应的探测晶体单元或具有第二能量响应的探测晶体单元被采集,一部分经过对齐布置的具有 第一能量响应的/具有第二能量响应的探测晶体单元块被采集,之后将所有采集的数据信号用于被扫描物品的CT图像重建,从而能提高空间分辨率,同时由于具有第二能量响应的探测晶体单元的数量并没有被增加,因此能够保证成本不会增大。
在一具体实施方式中,所述具有第一能量响应的探测晶体单元的数量等于所述具有第二能量响应的探测晶体单元的数量。
进一步地,由于所述两种能量响应的探测器晶体在制造成本上通常差异非常大,当具有第一能量响应的探测晶体的成本远远低于具有第二能量响应的探测晶体的成本时,所述具有第一能量响应的探测晶体单元的数量可以多于所述具有第二能量响应的探测晶体单元的数量。因此可以通过增加具有第一能量响应的探测晶体单元的数量来提高CT图像重建的空间分辨率,而不会使成本显著增大。
进一步地,所述至少一个具有第一能量响应的探测晶体单元与所述至少一个具有第二能量响应的探测晶体单元沿第一方向完全交错排布(即,两种探测晶体单元沿第一方向完全不对齐)。这样的排布方式相当于,在单能处理模式中,在不改变总的探测晶体单元的数量的情况(即,不增加总的成本),通过交错布置所有的具有第一能量响应的和具有第二能量响应的探测晶体单元,进一步增大在单能处理模式中参与X射线检测的探测晶体单元的数量。
在一实施方式中,所述多个探测器组件排布在以扫描通道中心为圆心的圆弧形支撑件上或者以扫描通道中心为圆心的由多段直线段构成的近似圆弧形支撑件上。具体地,本发明的用于双能CT系统的探测器装置的探测器组件可以采用如申请号为201210350516.X(发明名称:一种行李物品CT安检系统及其探测器装置)的中国专利申请中所公开的排布方式。
可选地,所述多个探测器组件排布在以X射线源为圆心的圆弧形支撑件上或由多段直线段构成的近似圆弧形支撑件上。
可选地,所述多个探测器组件在所述圆弧形或近似圆弧形支撑件上可以沿螺旋线方向排布,使得当被扫描物品经过扫描平面时,探测被扫描物品的探测路线为螺旋线形。
在一优选实施方式中,所述具有第一能量响应的探测晶体单元和/或所述具有第二能量响应的探测晶体单元的入射面上设置有滤过层,用于调节探测晶体单元的能量响应。
在一优选实施方式中,所述探测器装置还包括安装板,具有第一能量响应的探测晶体单元沿第一方向间隔排布在所述安装板的一侧,具有第二能量响应的探测晶体 单元沿第一方向间隔排布在所述安装板的另一侧。
在还一优选实施方式中,所述至少一个具有第一能量响应的探测晶体单元和所述至少一个具有第二能量响应的探测晶体单元安装在不同安装板的相同或不同侧面上。
优选地,所述X射线源是单一光源或分布式光源。
根据本发明的另一方面,提供一种用于双能CT系统的探测器装置,所述探测器装置包括多个探测器组件,每个探测器组件包括:沿第一方向间隔排布的至少两个具有第一能量响应的探测晶体单元,每个具有第一能量响应的探测晶体单元包括沿第二方向布置的至少一个具有第一能量响应的探测晶体,其中第一方向平行于被扫描物体的传送方向,第二方向垂直于第一方向;以及沿第一方向间隔排布的至少一个具有第二能量响应的探测晶体单元,每个具有第二能量响应的探测晶体单元包括沿第二方向布置的至少一个具有第二能量响应的探测晶体,其中第二能量高于第一能量;所述具有第二能量响应的探测晶体单元的数量少于所述具有第一能量响应的探测晶体单元的数量,并且沿X射线的入射方向观察时所述至少两个具有第一能量响应的探测晶体单元中的一部分探测晶体单元与所述至少一个具有第二能量响应的探测晶体单元中的各个探测晶体单元相对应并且对齐排布。
正如以上所述的,由于具有第一能量响应的探测晶体(例如,低能探测晶体)的成本远远低于具有第二能量响应的探测晶体(例如,高能探测晶体)的成本,可以通过提高具有第一能量响应的探测器晶体单元的数量来提高三维图像清晰度,同时由于物质识别准确率对探测器晶体单元数量的要求远远小于三维图像清晰度对晶体数量的要求,因此可以设置少量的具有第二能量响应的探测晶体单元。以此实现探测成本的最优化,在满足物质识别准确率的同时,又能确保高的CT图像重建的空间分辨率。
根据本发明的另一方面,提供了一种双能CT系统,包括:扫描通道,其中被扫描物品(例如,行李物品)沿传送方向通过所述扫描通道进出所述双能CT系统;设置在扫描通道一侧的X射线源;以及设置在所述扫描通道相对一侧的探测臂架,所述探测臂架上安装有如前所述的探测器装置。
在一实施方式中,所述双能CT系统还包括:用于采集来自所述多个探测组件的数据信号的采集模块;以及控制X射线源的辐射发射以及所述数据信号采集操作的控制模块,其中所述控制模块和所述采集模块安装在同一探测臂架内。
在一实施方式中,本发明的双能CT系统还包括数据处理模块,所述数据处理模块被配置用于执行第一数据处理过程和第二数据处理过程,其中在第一数据处理过 程中采用单能处理模式将所采集的所有数据信号用于重建被扫描物品的CT图像,在第二数据处理过程中采用双能处理模式,将所采集的数据信号分解为来自所述至少一个具有第一能量响应的探测晶体单元的数据信号和来自所述至少一个具有第二能量响应的探测晶体单元的数据信号,并使用分解后的数据信号进行重建,得到被扫描物品的不同能量的X射线扫描下的衰减系数图像、电子密度图像和原子序数图像。
在一具体实施方式中,所述数据处理模块被配置为:在执行所述第二数据处理过程中,对于具有第二能量响应的探测晶体单元和具有第一能量响应的探测晶体单元交错排布的情况,采用插值算法得到排布对齐的双能投影数据,然后进行被扫描物品的不同能量的X射线扫描下的衰减系数图像、电子密度图像和原子序数图像的重建。通过这样的配置,能够解决具有第二能量响应的和具有第一能量响应的探测晶体单元不对齐而无法实现双能分解的问题。
根据本发明的还一方面,提供一种使用如前所述的双能CT系统进行CT检测的方法,包括步骤:通过扫描通道输送被扫描物品(例如行李物品);驱动探测臂架进行旋转,同时控制X射线源发射X射线束;采集来自所述多个探测器组件的数据信号;执行第一数据信号处理过程和第二数据处理过程,其中在第一数据处理过程中采用单能处理模式将所采集的所有数据信号用于重建被扫描物品的CT图像,在第二数据处理过程中采用双能处理模式,将所采集的数据信号分解为来自所述至少一个具有第一能量响应的探测晶体单元的数据信号和来自所述至少一个具有第二能量响应的探测晶体单元的数据信号,并使用分解后的数据信号进行重建,得到被扫描物品的不同能量的X射线扫描下的衰减系数图像、电子密度图像和原子序数图像。
在一优选实施方式中,在执行所述第二数据处理过程中,对于具有第二能量响应的探测晶体单元和具有第一能量响应的探测晶体单元交错排布的情况,采用插值算法得到排布对齐的双能投影数据,然后进行被扫描物品的不同能量的X射线扫描下的衰减系数图像、电子密度图像和原子序数图像的重建。
附图说明
下面参照附图对根据本发明实施方式的双能CT系统及其相应的探测器组件进行说明,其中:
图1是采用根据本发明的一种具体实施方式中的双能CT系统整机示意图。
图2是双能CT系统的主要组成部件的透视示意图。
图3a-e是显示根据本发明的探测器装置的探测器组件中的具有第一能量响应的 探测晶体单元和具有第二能量响应的探测晶体单元的示例性排布方式。
图4是俯视图显示的探测器装置结构示意图。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。在说明书中,相同或相似的附图标号指示相同或相似的部件。下述参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解释,而不应当理解为对本发明的一种限制。
参见附图1,其显示出了根据本发明的一种具体实施方式的双能CT系统。该系统可以用于检查行李物品中的可疑物品。该双能CT系统包括:扫描通道2或6,其中例如行李物品等被扫描物品(未示出)沿图中箭头A所示的传送方向通过所述入口扫描通道2进入所述双能CT系统;设置在入口扫描通道2和出口扫描通道6之间的X射线源8;设置在所述X射线源8相对一侧的探测臂架5,探测器装置20安装在探测臂架5上,所述探测器装置20包括多个探测器组件21。在一种优选方式中,还包括围绕所述扫描通道的滑环系统3,其中所述X射线源8和探测臂架5安装在所述滑环系统3上,并围绕扫描通道的中心旋转。
如图2所示,在上述CT系统中,可以将探测臂架5安装在滑环系统3的可旋转探测臂架安装板12上,探测臂架安装板12安装在滑环支撑架13中,并由滑环驱动电机14驱动。同时,将探测器装置20、CT X射线源8和CT第一准直器9、第二准直器10安装在探测臂架5上。在上述具体实施例中,系统中只包含一个探测臂架5,探测臂架为一封闭臂架盒,内部安装有数据采集/控制模块34,全部的CT数据采集系统可以采用一套数据采集模块和控制模块,并且进一步地,所有采集到的数据可通过一套算法来处理,从而提高了CT设备执行扫描操作的速度,提高数据传输和处理的速度。
如图3(a)-(d)所示,示出根据本发明的探测器装置20的探测器组件21中的具有第一能量响应的探测晶体单元22和具有第二能量响应的探测晶体单元23的示例性排布方式。在一实施例中,具有第一能量响应的探测晶体单元是由至少一个低能探测晶体组成的低能探测晶体单元,具有第二能量响应的探测晶体单元是由至少一个高能探测晶体组成的高能探测晶体单元。根据本发明,每个探测器组件21包括:沿第一方向(如图中箭头B所示)间隔排布的至少一个具有第一能量响应的探测晶体单元22,每个具有第一能量响应的探测晶体单元22包括沿第二方向布置的至少一 个具有第一能量响应的探测晶体22a、22b、22c...,其中第二方向(如图中箭头C所示)垂直于第一方向;以及沿第一方向间隔排布的至少一个具有第二能量响应的探测晶体单元23,每个具有第二能量响应的探测晶体单元23包括沿第二方向布置的至少一个具有第二能量响应的探测晶体23a…,其中第二能量高于第一能量;其中沿X射线的入射方向观察时所述至少一个具有第一能量响应的探测晶体单元22和所述至少一个具有第二能量响应的探测晶体单元23沿第一方向至少部分地交错排布。例如,一个具有第一能量响应的探测晶体单元与一个具有第二能量响应的探测晶体单元沿第一方向交错排布,两者不对齐。
通过这样探测器装置,由于具有第一能量响应的探测晶体单元22和具有第二能量响应的探测晶体单元23至少部分地交错排布,相比于传统的具有第二能量响应的和具有第一能量响应的探测晶体单元对齐排布的方式来说,在单能处理模式中,能够用于探测X射线的探测晶体单元的数量被增多。从X射线源发出的X射线束一部分经过交错布置的具有第一能量响应的探测晶体单元22或具有第二能量响应的探测晶体单元23被采集,一部分经过对齐布置的具有第一能量响应的/具有第二能量响应的探测晶体单元块被采集,之后将所有采集的数据信号用于被扫描物品的CT图像重建,从而能提高空间分辨率,同时由于具有第二能量响应的探测晶体单元23的数量并没有被增加,因此能够保证成本不会增大。
在具体实施方式中,所述具有第一能量响应的探测晶体单元22的数量可以等于所述具有第二能量响应的探测晶体单元23的数量,例如如图3(a)所示。所述具有第一能量响应的探测晶体单元22的数量也可以多于所述具有第二能量响应的探测晶体单元23的数量,例如如图3(b)-(d)所示。由于具有第一能量响应的探测晶体的成本远远低于具有第二能量响应的探测晶体的成本,因此可以通过增加具有第一能量响应的探测晶体单元的数量来提高CT图像重建的空间分辨率,而不会使成本显著增大。
所述具有第一能量响应的探测晶体单元22与所述具有第二能量响应的探测晶体单元23也可以沿第一方向完全交错排布,即,完全不对齐,如图3(a)-(d)所示。这样的排布方式相当于,在单能处理模式中,在不改变总的探测晶体单元的数量的情况(即,不增加总的成本),通过交错布置所有的具有第一能量响应的和具有第二能量响应的探测晶体单元,进一步增大在单能处理模式中参与X射线检测的探测晶体单元的数量,从而进一步提高CT图像重建的空间分辨率。
图3(e)示出根据本发明的探测器装置20的探测器组件21中的具有第一能量 响应的探测晶体单元22和具有第二能量响应的探测晶体单元23的还一示例性排布方式,其中每个探测器组件21包括:沿第一方向间隔排布的至少两个具有第一能量响应的探测晶体单元22,每个具有第一能量响应的探测晶体单元22包括沿第二方向布置的至少一个具有第一能量响应的探测晶体22a、22b、22c...,其中第一方向平行于行李物品的传送方向,第二方向垂直于第一方向;以及沿第一方向间隔排布的至少一个具有第二能量响应的探测晶体单元23,每个具有第二能量响应的探测晶体单元23包括沿第二方向布置的至少一个具有第二能量响应的探测晶体23a…,其中第二能量高于第一能量;所述具有第二能量响应的探测晶体单元23的数量少于所述具有第一能量响应的探测晶体单元22的数量,并且沿X射线的入射方向观察时所述至少两个具有第一能量响应的探测晶体单元22中的一部分探测晶体单元与所述至少一个具有第二能量响应的探测晶体单元23中的各个探测晶体单元相对应并且对齐排布。
由此,一方面,通过提高具有第一能量响应的探测器晶体单元22的数量来提高三维图像清晰度;另一方面,由于物质识别准确率对探测器晶体单元数量的要求远远小于三维图像清晰度对晶体数量的要求,因此设置少量的具有第二能量响应的探测晶体单元23,而不会对物质的识别。以此实现探测成本的最优化,在满足物质识别准确率的同时,又能确保高的CT图像重建的空间分辨率。
如图3(a)-(e)示例性所示,在一实施例中,所述探测器装置还包括安装板24,具有第一能量响应的探测晶体单元沿第一方向间隔排布在所述安装板24的一侧,具有第二能量响应的探测晶体单元沿第一方向间隔排布在所述安装板24的另一侧。可选地,所述至少一个具有第一能量响应的探测晶体单元和所述至少一个具有第二能量响应的探测晶体单元安装在不同安装板的相同或不同侧面上。在一实施例中,安装板24可以是印刷电路板,探测晶体单元所对应的电路设置在印刷电路板上。
在一优选实施例中,如图3(a)-(e)中所示的探测器组件中的探测晶体单元的入射面可以设置有滤过层(未示出),例如铜层,用作调节探测晶体单元的能量响应。在一实施例中,所述X射线源是单一光源或分布式光源。
在本申请的申请人所拥有的申请号为201210350516.X(发明名称:一种行李物品CT安检系统及其探测器装置)的另一中国专利申请中公开了一种改进的探测器组件的排布方式,本发明的多个探测器组件可以采用所述另一中国专利申请所公开的排布方式排布,以减小CT安检系统的尺寸,提高扫描效率。具体地,所述多个探测器组件21可以排布在以扫描通道中心为圆心的圆弧形支撑件上或由多段直线构成的 近似圆弧形支撑件上。当然,所述多个探测器组件也可以采用传统的方式排布在以X射线源为圆心的圆弧形支撑件上或由多段直线构成的近似圆弧形支撑件上。
在一实施方式中,所述多个探测器组件在所述圆弧形或近似圆弧形支撑件上可以沿螺旋线方向排布,使得当被扫描物品经过扫描平面时,探测被扫描物品的探测路线为螺旋线形,其中所述螺旋线定义为:当被扫描物品经过扫描平面时,以被扫描物品为静止参考系,滑环旋转时环上某一固定点(如光源等)所经过的空间路径。具体地,参考图2,多个探测器组件中例如从左至右/右至左的顺序一个探测器组件比相邻的一个探测器组件例如向纸平面外的方向/向纸平面内的方向依次移动一段距离设置。
在一实施方式中,本发明的双能CT系统还包括数据处理模块(未标识在图中),该数据处理模块可以集成在所述双能CT系统上,也可以单独地设置。所述数据处理模块被配置用于执行第一数据处理过程和第二数据处理过程,其中在第一数据处理过程中采用单能处理模式,不区分来自具有第二能量响应的探测晶体单元23、具有第一能量响应的探测晶体单元22、还是具有第二能量响应的/具有第一能量响应的探测晶体单元块的数据信号,将所采集的所有数据信号用于重建例如行李物品等被扫描物品的CT图像,从而将诸如刀具、武器等违禁物品检测出来;在第二数据处理过程中采用双能处理模式,使用双能分解技术将所采集的数据信号分解为来自所述至少一个具有第一能量响应的探测晶体单元22的数据信号和来自所述至少一个具有第二能量响应的探测晶体单元23的数据信号,并使用分解后的数据信号进行重建,得到物品的不同能量的X射线扫描下的衰减系数图像、电子密度图像和原子序数图像,从而进行物质的识别,将诸如毒品、炸药等违禁物检测出来。
正如本领域普通技术人员能够认识到的,在具有第一能量响应的探测晶体单元22与具有第二能量响应的探测晶体单元23完全交错排布或部分交错排布的情况中,由于具有第二能量响应的探测晶体单元和具有第一能量响应的探测晶体单元不对齐,无法直接实现双能分解。为此,发明人提出,将所述数据处理模块配置为:在执行所述第二数据处理过程中,对于具有第二能量响应的探测晶体单元23和具有第一能量响应的探测晶体单元22交错排布的情况,采用插值算法得到排布对齐的双能投影数据,然后进行物品的电子密度图像和原子序数图像的重建。通过这样的配置,能够解决具有第二能量响应的和具有第一能量响应的探测晶体单元不对齐而无法实现双能分解的问题。
图4是俯视图显示的根据本发明的双能CT系统结构示意图。所述双能CT系 统还包括:第一准直器9,其包含的准直器栅格39用于对来自X射线源8的射线束进行分解,并且控制每个栅格的输出X束流能量强度;以及第二准直器10,其上的栅格37用于对将入射到探测器组件上的X射线进行屏蔽,保证到达探测器晶体接收面的X射线来源于探测器晶体的接收面,而不是探测器晶体接收面边缘的散射。如图4所示,所述第一准直器栅格39包含至少两个隔断,用于将X射线源8发出的射线束分解为两个以上的扇形射线束。进一步地,如图4所示,沿所述扫描通道2或6的方向上,所述分解的扇形射线束与多个所述探测器晶体单元22和23的接收面一一对应,从而在沿所述扫描通道方向上可同时采集多列探测器的采集数据。前述多个探测器组件21可以由多个探测器晶体单元组成,其通过探测器晶体安装支架安装到探测器安装盒35中,探测器安装盒需要进行密封以减少光线、灰尘以及环境湿度对探测器晶体性能的干扰。探测器安装盒35进一步通过连接支架42安装到CT探测器臂架上。在保证密封、遮光的前提下,为减少射线主束方向上的遮挡,探测器晶体接收面前方正对X射线源靶点处安装有防尘遮光板38,优选地,其厚度不超过3mm,防尘遮光板的材料为轻型材料,包含但不限于聚四氟乙烯、塑料、胶木、铝箔。在上述优选实施例中,第一准直器栅格39为一条与射线能量分布相关的点状拟合曲线,其中部的栅格缝较窄,边缘处的栅格缝较宽,以使到达不同探测器晶体接收面处的能量强度基本一致。在具体的实例中,所述第一准直器栅格39设置有多条狭缝,所述狭缝数量至少为两条,例如图4中示出的为3条狭缝。
接下来对根据本发明的双能CT系统的具体操作进行简要说明。例如行李物品等被扫描物品(未示出)经过入口扫描通道2进入双能CT系统,触发入口光障,系统控制模块发出采集指令,在滑环驱动电机14的驱动下,CT扫描臂架5随着滑环3进行旋转,CT部分的X射线源8发射X射线束,通过作为前能量校准装置的第一准直器9,将能量束分隔为多列的扇形X射线束,CT探测器组件21开始采集X射线数据,经过数据处理模块对数据进行重建。具体地,数据处理模块执行第一数据信号处理过程和第二数据处理过程,其中在第一数据处理过程中采用单能处理模式将所采集的所有数据信号用于重建行李物品的CT图像,得到行李物品的结构和外形图像,从而检测处诸如刀具、武器等违禁物品,而在第二数据处理过程中采用双能处理模式,采用例如已知的双能分解技术将所采集的数据信号分解为来自所述至少一个具有第一能量响应的探测晶体单元22的数据信号和来自所述至少一个具有第二能量响应的探测晶体单元23的数据信号,并使用分解后的数据信号进行重建,得到物品的不同能量的X射线扫描下的衰减系数图像、电子密度图像和原子序数图像,用于进行 物质识别,从而检测处诸如毒品、炸药等违禁物。在一优选实施方式中,在执行所述第二数据处理过程中,对于具有第二能量响应的探测晶体单元23和具有第一能量响应的探测晶体单元22交错排布的情况,采用插值算法得到排布对齐的双能投影数据,然后进行物品的电子密度图像和原子序数图像的重建。
虽然本发明总体构思的一些实施例已被显示和说明,本领域普通技术人员将理解,在不违背本总体发明构思的原则和精神的情况下,可对这些实施例做出改变,本发明的范围以权利要求和它们的等同物限定。

Claims (25)

  1. 一种用于双能CT系统的探测器装置,所述双能CT系统包括扫描通道,其中被扫描物品沿传送方向通过所述扫描通道进出所述双能CT系统;设置在扫描通道一侧的X射线源;以及设置在所述扫描通道相对一侧的用于安装所述探测器装置的探测臂架,其中所述探测器装置包括多个探测器组件,每个探测器组件包括:
    沿第一方向间隔排布的至少一个具有第一能量响应的探测晶体单元,每个具有第一能量响应的探测晶体单元包括沿第二方向布置的至少一个具有第一能量响应的探测晶体,其中第一方向平行于传送方向,第二方向垂直于第一方向;以及
    沿第一方向间隔排布的至少一个具有第二能量响应的探测晶体单元,每个具有第二能量响应的探测晶体单元包括沿第二方向布置的至少一个具有第二能量响应的探测晶体,其中第二能量高于第一能量;
    其中沿X射线的入射方向观察时所述至少一个具有第一能量响应的探测晶体单元和所述至少一个具有第二能量响应的探测晶体单元沿第一方向至少部分地交错排布。
  2. 根据权利要求1所述的用于双能CT系统的探测器装置,其中,所述具有第一能量响应的探测晶体单元的数量等于所述具有第二能量响应的探测晶体单元的数量。
  3. 根据权利要求1所述的用于双能CT系统的探测器装置,其中,所述具有第一能量响应的探测晶体单元的数量多于所述具有第二能量响应的探测晶体单元的数量。
  4. 根据权利要求2或3所述的用于双能CT系统的探测器装置,其中,沿X射线的入射方向观察时所述至少一个具有第一能量响应的探测晶体单元与所述至少一个具有第二能量响应的探测晶体单元沿第一方向完全交错排布。
  5. 根据权利要求1所述的用于双能CT系统的探测器装置,其中,所述多个探测器组件排布在以扫描通道中心为圆心的圆弧形支撑件或由多段直线段构成的近似圆弧形支撑件上。
  6. 根据权利要求1所述的用于双能CT系统的探测器装置,其中,所述多个探测器组件排布在以X射线源为圆心的圆弧形支撑件或由多段直线段构成的近似圆弧形支撑件上。
  7. 根据权利要求5或6所述的用于双能CT系统的探测器装置,其中,所述多个探测器组件在所述圆弧形或近似圆弧形支撑件上沿螺旋线方向排布,使得当被扫描物品经过扫描平面时,探测被扫描物品的探测路线为螺旋线形。
  8. 根据权利要求1所述的用于双能CT系统的探测器装置,其中,所述具有第一能量响应的探测晶体单元和/或所述具有第二能量响应的探测晶体单元的入射面上设置有滤过层,用于调节探测晶体单元的能量响应。
  9. 根据权利要求1所述的用于双能CT系统的探测器装置,还包括安装板,具有第一能量响应的探测晶体单元沿第一方向间隔排布在所述安装板的一侧,具有第二能量响应的探测晶体单元沿第一方向间隔排布在所述安装板的另一侧。
  10. 根据权利要求1所述的用于双能CT系统的探测器装置,其中,所述至少一个具有第一能量响应的探测晶体单元和所述至少一个具有第二能量响应的探测晶体单元安装在不同安装板的相同或不同侧面上。
  11. 根据权利要求1所述的用于双能CT系统的探测器装置,所述X射线源是单一光源或分布式光源。
  12. 一种用于双能CT系统的探测器装置,所述双能CT系统包括扫描通道,其中被扫描物品沿传送方向通过所述扫描通道进出所述双能CT系统;设置在扫描通道一侧的X射线源;以及设置在所述扫描通道相对一侧的用于安装所述探测器装置的探测臂架,其中所述探测器装置包括多个探测器组件,每个探测器组件包括:
    沿第一方向间隔排布的至少两个具有第一能量响应的探测晶体单元,每个具有第一能量响应的探测晶体单元包括沿第二方向布置的至少一个具有第一能量响应的探测晶体,其中第一方向平行于传送方向,第二方向垂直于第一方向;以及
    沿第一方向间隔排布的至少一个具有第二能量响应的探测晶体单元,每个具有第二能量响应的探测晶体单元包括沿第二方向布置的至少一个具有第二能量响应的探测晶体,其中第二能量高于第一能量;
    所述具有第二能量响应的探测晶体单元的数量少于所述具有第一能量响应的探测晶体单元的数量,并且沿X射线的入射方向观察时所述至少两个具有第一能量响应的探测晶体单元中的一部分探测晶体单元与所述至少一个具有第二能量响应的探测晶体单元中的各个探测晶体单元相对应并且对齐排布。
  13. 根据权利要求12所述的用于双能CT系统的探测器装置,其中,所述多个探测器组件排布在以扫描通道中心为圆心的圆弧形支撑件或由多段直线段构成的近似圆弧形支撑件上。
  14. 根据权利要求12所述的用于双能CT系统的探测器装置,其中,所述多个探测器组件排布在以X射线源为圆心的圆弧形支撑件或由多段直线段构成的近似圆弧形支撑件上。
  15. 根据权利要求13或14所述的用于双能CT系统的探测器装置,其中,所述多个探测器组件在所述圆弧形或近似圆弧形支撑件上沿螺旋线方向排布,使得当被扫描物品经过扫描平面时,探测被扫描物品的探测路线为螺旋线形。
  16. 根据权利要求12所述的用于双能CT系统的探测器装置,其中,所述具有第一能量响应的探测晶体单元和/或所述具有第二能量响应的探测晶体单元的入射面上设置有滤过层,用于调节探测晶体单元的能量响应。
  17. 根据权利要求12所述的用于双能CT系统的探测器装置,还包括安装板,具有第一能量响应的探测晶体单元沿第一方向间隔排布在所述安装板的一侧,具有第二能量响应的探测晶体单元沿第一方向间隔排布在所述安装板的另一侧。
  18. 根据权利要求12所述的用于双能CT系统的探测器装置,其中,所述至少一个具有第一能量响应的探测晶体单元和所述至少一个具有第二能量响应的探测晶体单元安装在不同安装板的相同或不同侧面上。
  19. 根据权利要求12所述的用于双能CT系统的探测器装置,所述X射线源是单一光源或分布式光源。
  20. 一种双能CT系统,包括:
    扫描通道,其中被扫描物品沿传送方向通过所述扫描通道进出所述双能CT系统;
    设置在扫描通道一侧的X射线源;以及
    设置在所述扫描通道相对一侧的探测臂架,所述探测臂架上安装有如权利要求1-13中任一项所述的探测器装置。
  21. 根据权利要求20所述的双能CT系统,还包括:
    用于采集来自所述多个探测组件的数据信号的采集模块;以及控制X射线源的辐射发射以及所述数据信号采集操作的控制模块,
    其中所述控制模块和所述采集模块安装在同一探测臂架内。
  22. 根据权利要求21所述的双能CT系统,还包括数据处理模块,所述数据处理模块被配置用于执行第一数据处理过程和第二数据处理过程,其中在第一数据处理过程中采用单能处理模式将所采集的所有数据信号用于重建被扫描物品的CT图像,在第二数据处理过程中采用双能处理模式,将所采集的数据信号分解为来自所述具有 第一能量响应的探测晶体单元的数据信号和来自所述具有第二能量响应的探测晶体单元的数据信号,并使用分解后的数据信号进行重建,得到被扫描物品的不同能量的X射线扫描下的衰减系数图像、电子密度图像和原子序数图像。
  23. 根据权利要求22所述的双能CT系统,其中,所述数据处理模块被配置为:在执行所述第二数据处理过程中,对于具有第二能量响应的探测晶体单元和具有第一能量响应的探测晶体单元交错排布的情况,采用插值算法得到排布对齐的双能投影数据,然后进行被扫描物品的不同能量的X射线扫描下的衰减系数图像、电子密度图像和原子序数图像的重建。
  24. 一种使用如权利要求20-23中任一项所述的双能CT系统进行CT检测的方法,包括步骤:
    通过扫描通道输送被扫描物品;
    驱动探测臂架进行旋转,同时控制X射线源发射X射线束;
    采集来自所述多个探测器组件的数据信号;
    执行第一数据信号处理过程和第二数据处理过程,其中在第一数据处理过程中采用单能处理模式将所采集的所有数据信号用于重建被扫描物品的CT图像,在第二数据处理过程中采用双能处理模式,将所采集的数据信号分解为来自所述具有第一能量响应的探测晶体单元的数据信号和来自所述具有第二能量响应单元的探测晶体的数据信号,并使用分解后的数据信号进行重建,得到被扫描物品的不同能量的X射线扫描下的衰减系数图像、电子密度图像和原子序数图像。
  25. 根据权利要求24所述的CT检测方法,其中,在执行所述第二数据处理过程中,对于具有第二能量响应的探测晶体单元和具有第一能量响应的探测晶体单元交错排布的情况,采用插值算法得到排布对齐的双能投影数据,然后进行被扫描物品的电子密度图像和原子序数图像的重建。
PCT/CN2015/077370 2014-06-25 2015-04-24 探测器装置、双能ct系统和使用该系统的检测方法 WO2015196857A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MYPI2016703544A MY185716A (en) 2014-06-25 2015-04-24 Detector device, dual energy ct system and detection method using the system
AU2015281626A AU2015281626B2 (en) 2014-06-25 2015-04-24 Detector device, dual energy CT system and detection method using same
SG11201608668UA SG11201608668UA (en) 2014-06-25 2015-04-24 Detector device, dual energy ct system and detection method using the system
KR1020167028448A KR102238156B1 (ko) 2014-06-25 2015-04-24 탐측기 장치, 듀얼 에너지 ct 시스템 및 그 시스템을 이용하는 검출 방법
MX2016012852A MX364225B (es) 2014-06-25 2015-04-24 Dispositivo detector, sistema de energia dual y metodo de deteccion que usa el sistema.
IL247983A IL247983B (en) 2014-06-25 2016-09-22 A detector device, a dual-energy computed tomography system, and a detection method using the system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410291326.4A CN105242322A (zh) 2014-06-25 2014-06-25 探测器装置、双能ct系统和使用该系统的检测方法
CN201410291326.4 2014-06-25

Publications (1)

Publication Number Publication Date
WO2015196857A1 true WO2015196857A1 (zh) 2015-12-30

Family

ID=53489866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077370 WO2015196857A1 (zh) 2014-06-25 2015-04-24 探测器装置、双能ct系统和使用该系统的检测方法

Country Status (15)

Country Link
US (1) US9885801B2 (zh)
EP (1) EP2960686B1 (zh)
JP (1) JP6255369B2 (zh)
KR (1) KR102238156B1 (zh)
CN (1) CN105242322A (zh)
AU (1) AU2015281626B2 (zh)
ES (1) ES2743536T3 (zh)
HK (1) HK1218163A1 (zh)
IL (1) IL247983B (zh)
MX (1) MX364225B (zh)
MY (1) MY185716A (zh)
PL (1) PL2960686T3 (zh)
RU (1) RU2599276C1 (zh)
SG (1) SG11201608668UA (zh)
WO (1) WO2015196857A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103674979B (zh) * 2012-09-19 2016-12-21 同方威视技术股份有限公司 一种行李物品ct安检系统及其探测器装置
US10288762B2 (en) * 2016-06-21 2019-05-14 Morpho Detection, Llc Systems and methods for detecting luggage in an imaging system
CN107080551B (zh) * 2017-05-25 2023-08-22 苏州瑞派宁科技有限公司 一种三维异质pet系统
RU2665717C1 (ru) * 2017-07-17 2018-09-04 Федеральное государственное казенное учреждение "12 Центральный научно-исследовательский институт" Министерства обороны Российской Федерации Способ рентгеновской компьютерной томографии аварийных взрывоопасных объектов
US10168439B1 (en) * 2017-09-13 2019-01-01 Siemens Medical Solutions Usa, Inc. Data correcting using photopeak monitoring during imaging
CN108037542A (zh) 2017-12-27 2018-05-15 清华大学 车辆检测系统
GB2572366B (en) * 2018-03-27 2021-08-18 Elekta ltd Imager
CN109471185B (zh) 2018-12-17 2024-09-27 同方威视技术股份有限公司 Ct系统和用于ct系统的探测装置
DE102018133525A1 (de) 2018-12-21 2020-06-25 Smiths Heimann Gmbh Dual-Energie-Detektor sowie Verfahren zur Verbesserung damit erzeugter Bilder
CN109946747A (zh) * 2019-03-25 2019-06-28 北京航星机器制造有限公司 一种基于新型探测装置的双能ct探测系统
DE102019111463A1 (de) * 2019-05-03 2020-11-05 Wipotec Gmbh Röntgenstrahlungsdetektorvorrichtung und Vorrichtung zur Röntgeninspektion von Produkten, insbesondere von Lebensmitteln
CN111157555B (zh) * 2019-12-20 2020-12-04 北京航星机器制造有限公司 一种高能稀疏的ct探测器、ct检测系统及检测方法
CN111157556B (zh) * 2019-12-20 2020-12-25 北京航星机器制造有限公司 一种低能稀疏的ct探测器、ct检测系统及检测方法
CN111366982A (zh) * 2020-03-10 2020-07-03 上海英曼尼安全装备有限公司 一种双能ct系统的探测器装置、双能ct系统及图像重建方法
CN112858167B (zh) * 2021-01-07 2024-01-02 上海奕瑞光电子科技股份有限公司 多排双能线阵探测器扫描方法、系统、介质及装置
CN116183639A (zh) * 2021-11-26 2023-05-30 同方威视技术股份有限公司 面阵探测器、探测方法及相应的集装箱/车辆检查系统
CN114916950B (zh) * 2022-07-21 2022-11-01 中国科学院深圳先进技术研究院 基于多层平板探测器的高空间分辨能谱ct图像重建方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5841833A (en) * 1991-02-13 1998-11-24 Lunar Corporation Dual-energy x-ray detector providing spatial and temporal interpolation
CN101410727A (zh) * 2006-03-29 2009-04-15 皇家飞利浦电子股份有限公司 高效的双能x射线衰减测量
CN101900695A (zh) * 2009-05-27 2010-12-01 清华大学 伪双能欠采样物质识别系统和方法
US20120236987A1 (en) * 2011-03-18 2012-09-20 David Ruimi Multiple energy ct scanner
CN202948145U (zh) * 2012-09-26 2013-05-22 同方威视技术股份有限公司 Ct系统和用于ct系统的探测装置
CN103675931A (zh) * 2012-09-26 2014-03-26 同方威视技术股份有限公司 Ct系统和用于ct系统的探测装置
CN103674979A (zh) * 2012-09-19 2014-03-26 同方威视技术股份有限公司 一种行李物品ct安检系统及其探测器装置
CN103705267A (zh) * 2012-09-28 2014-04-09 西门子公司 用于计算机x射线断层扫描的x射线探测器系统和ct仪

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04230899A (ja) * 1990-05-31 1992-08-19 Hitachi Metals Ltd 周期磁場発生装置
NL1016916C2 (nl) * 2000-12-15 2002-07-02 Univ Delft Tech Werkwijze en inrichting voor het analyseren en het scheiden van materiaalstromen.
GB0903198D0 (en) 2009-02-25 2009-04-08 Cxr Ltd X-Ray scanners
US6987833B2 (en) * 2003-10-16 2006-01-17 General Electric Company Methods and apparatus for identification and imaging of specific materials
CN101166997A (zh) * 2005-04-26 2008-04-23 皇家飞利浦电子股份有限公司 光谱ct的检测器阵列
US7212604B2 (en) * 2005-06-29 2007-05-01 General Electric Company Multi-layer direct conversion computed tomography detector module
CN1995993B (zh) * 2005-12-31 2010-07-14 清华大学 一种利用多种能量辐射扫描物质的方法及其装置
RU2437118C2 (ru) * 2006-08-09 2011-12-20 Конинклейке Филипс Электроникс, Н.В. Устройство и способ для спектральной компьютерной томографии
JP2008241376A (ja) * 2007-03-27 2008-10-09 Hitachi Ltd X線ct画像再構成方法
CN101435783B (zh) * 2007-11-15 2011-01-26 同方威视技术股份有限公司 物质识别方法和设备
US7885372B2 (en) * 2007-12-07 2011-02-08 Morpho Detection, Inc. System and method for energy sensitive computed tomography
JP2010190830A (ja) 2009-02-20 2010-09-02 Hamamatsu Photonics Kk 放射線検出装置
RU2581721C2 (ru) * 2010-12-13 2016-04-20 Конинклейке Филипс Электроникс Н.В. Детектор излучения с фотодетекторами
WO2012110898A2 (en) * 2011-02-18 2012-08-23 Smiths Heimann Gmbh System and method for multi-scanner x-ray inspection
DE102011053971A1 (de) * 2011-09-27 2013-03-28 Wipotec Wiege- Und Positioniersysteme Gmbh Verfahren und Vorrichtung zum Erfassen der Struktur von bewegten Stückgütern, insbesondere zur Erfassung von Störpartikeln in flüssigen oder pastösen Produkten
WO2015071471A1 (en) * 2013-11-15 2015-05-21 Koninklijke Philips N.V. Double-sided organic photodetector on flexible substrate
GB2542539A (en) * 2014-06-09 2017-03-22 The Univ Of Lincoln Assembly, apparatus, system and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5841833A (en) * 1991-02-13 1998-11-24 Lunar Corporation Dual-energy x-ray detector providing spatial and temporal interpolation
CN101410727A (zh) * 2006-03-29 2009-04-15 皇家飞利浦电子股份有限公司 高效的双能x射线衰减测量
CN101900695A (zh) * 2009-05-27 2010-12-01 清华大学 伪双能欠采样物质识别系统和方法
US20120236987A1 (en) * 2011-03-18 2012-09-20 David Ruimi Multiple energy ct scanner
CN103674979A (zh) * 2012-09-19 2014-03-26 同方威视技术股份有限公司 一种行李物品ct安检系统及其探测器装置
CN202948145U (zh) * 2012-09-26 2013-05-22 同方威视技术股份有限公司 Ct系统和用于ct系统的探测装置
CN103675931A (zh) * 2012-09-26 2014-03-26 同方威视技术股份有限公司 Ct系统和用于ct系统的探测装置
CN103705267A (zh) * 2012-09-28 2014-04-09 西门子公司 用于计算机x射线断层扫描的x射线探测器系统和ct仪

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, YUANYUAN ET AL.: "Experimental Study of DECT Reconstruction Algorithm from Incomplete Higher Energy Data", CHINESE JOURNAL OF STEREOLOGY AND IMAGE ANALYSIS, vol. 18, no. 3, 31 March 2013 (2013-03-31), pages 184 - 194, XP055247106, ISSN: 1007-1482 *

Also Published As

Publication number Publication date
US9885801B2 (en) 2018-02-06
MX2016012852A (es) 2017-05-12
IL247983A0 (en) 2016-11-30
MX364225B (es) 2019-04-16
IL247983B (en) 2021-05-31
MY185716A (en) 2021-05-31
KR102238156B1 (ko) 2021-04-12
EP2960686A1 (en) 2015-12-30
ES2743536T3 (es) 2020-02-19
JP6255369B2 (ja) 2017-12-27
RU2599276C1 (ru) 2016-10-10
HK1218163A1 (zh) 2017-02-03
AU2015281626A1 (en) 2016-10-20
KR20170072170A (ko) 2017-06-26
CN105242322A (zh) 2016-01-13
US20150378047A1 (en) 2015-12-31
EP2960686B1 (en) 2019-05-29
SG11201608668UA (en) 2017-01-27
JP2016029367A (ja) 2016-03-03
PL2960686T3 (pl) 2019-10-31
AU2015281626B2 (en) 2017-10-26

Similar Documents

Publication Publication Date Title
WO2015196857A1 (zh) 探测器装置、双能ct系统和使用该系统的检测方法
CN104483711B (zh) 基于分布式光源的辐射成像系统
US9865066B2 (en) Computed tomography system for cargo and transported containers
RU2444723C2 (ru) Устройство и способ досмотра объектов
CN103674979B (zh) 一种行李物品ct安检系统及其探测器装置
US6473487B1 (en) Method and apparatus for physical characteristics discrimination of objects using a limited view three dimensional reconstruction
US7706502B2 (en) Cargo container inspection system and apparatus
US8488736B2 (en) Stacked flat panel x-ray detector assembly and method of making same
US7039154B1 (en) Folded array CT baggage scanner
EP2713156B1 (en) Device and method for ray scanning and imaging
EP2889644B1 (en) Multi-spectral static ct apparatuses
EP2749873B1 (en) Ct system and detection device for ct system
US8483352B2 (en) Stacked x-ray detector assembly and method of making same
US20080298546A1 (en) Cargo container inspection method
CN109471185B (zh) Ct系统和用于ct系统的探测装置
JP2020535415A (ja) 物品安全検査のためのスキャンによるイメージングシステム及びそのイメージング方法
CN111133338A (zh) 具有单片闪烁体的多层探测器
US7352841B2 (en) Folded array CT baggage scanner
CN211978725U (zh) 一种安全检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15811900

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 247983

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/012852

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20167028448

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015281626

Country of ref document: AU

Date of ref document: 20150424

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15811900

Country of ref document: EP

Kind code of ref document: A1