WO2013131315A1 - 一种交流变直流电路 - Google Patents

一种交流变直流电路 Download PDF

Info

Publication number
WO2013131315A1
WO2013131315A1 PCT/CN2012/074878 CN2012074878W WO2013131315A1 WO 2013131315 A1 WO2013131315 A1 WO 2013131315A1 CN 2012074878 W CN2012074878 W CN 2012074878W WO 2013131315 A1 WO2013131315 A1 WO 2013131315A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
output
current
voltage
constant current
Prior art date
Application number
PCT/CN2012/074878
Other languages
English (en)
French (fr)
Inventor
王保均
尹向阳
Original Assignee
广州金升阳科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州金升阳科技有限公司 filed Critical 广州金升阳科技有限公司
Priority to US14/357,215 priority Critical patent/US9438133B2/en
Priority to DE112012005986.7T priority patent/DE112012005986T5/de
Priority to JP2014550611A priority patent/JP5810229B2/ja
Publication of WO2013131315A1 publication Critical patent/WO2013131315A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/2176Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only comprising a passive stage to generate a rectified sinusoidal voltage and a controlled switching element in series between such stage and the output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4266Arrangements for improving power factor of AC input using passive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode

Definitions

  • the present invention relates to an AC to DC circuit, and more particularly to an AC to DC circuit for use in a low power AC/DC power supply.
  • the alternating current that changes according to the sinusoidal law with time shown in Fig. 1 is called the alternating sinusoidal voltage.
  • the time required to change once is called the period of the alternating voltage, which is represented by T.
  • the 220V mentioned in the industry refers to the effective value. Its peak value is ⁇ times the effective value, which is:
  • the magnitude and direction of the DC voltage (or current) does not change over time. If the curve is used to represent the voltage, it is a straight line parallel to the horizontal time axis, but we generally change the direction, but the magnitude of the voltage (or current) changes with time is also called DC voltage (or current).
  • the rectifier circuit is generally divided into a half-wave rectification, a full-wave rectification, a bridge rectification, and a voltage doubler rectification circuit.
  • the rectification circuit is divided into a single-phase and multi-phase (such as three-phase), generally refers to a single-phase rectification circuit, and the fact In the above, the single-phase rectification circuit is simply combined with known techniques, and can be applied to the multi-phase rectified current.
  • Figure 2-1 shows the half-wave rectification circuit. If the capacitor CL is not connected, its output waveform is as shown in Figure 2-2, which is pulsed DC. After the capacitor CL is connected, its output waveform is shown in Figure 2-3. As shown by the solid line, for smoother pulsating DC power, after the circuit is steady state, the rectifier diode D1 in Figure 2-1 is only turned on in the time t1 to t2 in Figure 2-3, charging the capacitor CL, and the capacitor CL at other times.
  • Figure 3-1 shows the full-wave rectification circuit, which can't be directly used for mains rectification. Generally, two sets of voltages with the same voltage and opposite phase (center tap type) can be obtained through the transformer before they can be used. If the capacitance CL is not The output waveform is as shown in Figure 3-2, which is pulsating DC; after the capacitor CL is connected, its output waveform is shown by the solid line in Figure 3-3, which is a smoother pulsating DC.
  • the rectifier diode D1a in Figure 3-1 is only turned on in the period from t1 to t2 in Figure 3-3; and the rectifier diode Dlb is turned on only in the period t3 to t4 in Figure 3-3, and the diode is turned on.
  • the capacitor CL discharges the load RL at other times. If the DC voltage is smooth, the capacitor CL is large, and the capacitor CL is increased, which causes the conduction time of tl to t2 and t3 to t4 to be short.
  • the charging current is extremely large, and the circuit consumes the current of the AC input voltage only at this time, and the grid voltage waveform distortion is caused by the transformer B1.
  • Figure 24.3 on page 35 of Stable Power also fully demonstrates this principle.
  • the distorted waveform is no longer a sine wave, and can be Fourier transformed into many high-order harmonics of the fundamental wave. The higher harmonics are the sources of interference in the power supply.
  • Figure 4-1, Figure 4-2, and Figure 4-3 show the bridge rectifier circuit. These three methods are commonly used, and their connection relationship is consistent.
  • Figure 4-2 shows the simple drawing method. If the capacitor CL is not connected, its output waveform is the same as that shown in Figure 3-2, which is pulsating DC; after the capacitor CL is connected, its output waveform is as shown by the solid line in Figure 3-3, which is a smoother pulsating DC. After the steady state of the circuit, the rectifier diode Dla and the rectifier diode Die in Fig. 4-1 to Fig. 4-2 are only turned on in the time t1 to t2 in Fig. 3-3; and the rectifier diode Dlb and the rectifier diode Did are only in Fig.
  • the withstand voltage of the capacitor is greater than twice the input voltage, that is, 1.414 times the input voltage.
  • the mains voltage is unstable, and the voltage is often increased.
  • the withstand voltage of the filter capacitor is required to be greater than its peak value of 373V.
  • 400V withstand voltage or 450V withstand voltage should be taken.
  • the prior art rectifier circuit in order to obtain a smooth DC voltage, must use a filter capacitor, the circuit only absorbs current from the mains when the AC is close to the peak, a large number of civilian electrical appliances, industrial equipment In this case, the sinusoidal voltage in the power grid is severely distorted.
  • the voltage waveform shown in Figure 5-1 is the industrial power waveform collected at 8:17 am on February 24, 2012 in the Eastern District Industrial Park of Guangzhou Huangpu Development Zone;
  • the voltage waveform shown in -2 is the industrial power waveform collected at the same place at 8:39 am on February 24, 2012. At this time, most of the factories have been working.
  • the rectifier circuit is used. Filter capacitor acquisition, as can be seen from Figure 5-2, as each factory starts to use electricity, the power consumption increases, and the waveform is significantly further distorted.
  • the top of Figure 5-2 becomes significantly flatter, which is in line with the above theory. The analysis is consistent.
  • the power factor correction circuit is abbreviated as PFC circuit, which is an abbreviation of Power Factor Correction.
  • PFC circuit After using the rectifier circuit, it absorbs interference from the mains with a small "filter capacitor”. Spikes, such as O.luF to 0.47uF, the waveform after rectification is consistent with Figure 3-2. Then use the switching power supply of BOOST topology to raise the voltage to about 400V DC, and then supply power to other circuits to achieve high power factor. Causes grid voltage waveform distortion.
  • the thyristor is used between the rectifier circuit and the AC.
  • the waveform obtained is shown in Figure 6-2.
  • the current common trigger technology will produce a positive half-cycle trigger point and a negative half-cycle trigger point asymmetry, as shown in Figure 6-2.
  • the 100 shaded area and the 101 shaded area are different.
  • the disadvantage is that it cannot carry a large capacitive load, and it is suitable for a resistive load or an inductive load, and can only work in the falling portion of the half wave.
  • the technical problem to be solved by the present invention is to provide an AC to DC circuit.
  • the AC to DC circuit no longer absorbs current from the AC when the AC is close to the sinusoidal peak, but is sinusoidal from the AC.
  • the part below the peak is rectified and operates in the rising and falling areas of the sine wave, respectively, and can carry a capacitive load.
  • the present invention relates to an alternating current variable DC circuit including a rectifier circuit and a voltage check Measuring circuit, constant current source, output circuit;
  • the constant current source supplies current (inflow or outflow) to the voltage detecting circuit and the control port of the output circuit, and the current flowing in the constant current source is the constant current source to the a current supplied by the voltage detecting circuit and a sum of the current supplied by the constant current source to the output circuit;
  • the voltage detecting circuit increases with the instantaneous value of the output voltage of the rectifier circuit, and the current that the voltage detecting output terminal of the voltage detecting circuit absorbs is larger, and the current supplied by the constant current source to the voltage detecting circuit is The more the voltage detecting circuit is absorbed, the current supplied by the constant current source to the control port of the output circuit is correspondingly reduced;
  • the output circuit amplifies the current supplied by the constant current source to the output circuit control port and outputs the current.
  • the output end of the output circuit is further connected with a voltage detecting circuit, thereby achieving relatively precise output voltage regulation.
  • the invention also provides the application of the above AC to DC circuit in an AC/DC low power source.
  • the working principle of the invention is that the rectifier circuit rectifies the mains into a pulsating direct current, and the waveform of the pulsating direct current is shown in Fig. 2-2 or Fig. 3-2, and the voltage detecting circuit increases with the instantaneous value of the output voltage of the rectifying circuit, and the voltage of the voltage detecting circuit
  • the larger the absorption current at the detection output the more the current of the constant current source is absorbed.
  • the smaller the current from the constant current source to the control port of the output circuit the larger the output current of the output circuit is to amplify the current of its control port. That is achieved:
  • the instantaneous value of the output voltage of the rectifier circuit is smaller than the preset voltage value, the current of the voltage detection output is smaller than the current of the constant current source, the current of the control port of the output circuit flows, and the output circuit outputs the voltage instantaneous value after rectification;
  • the instantaneous value of the output voltage of the rectifier circuit is the same as the preset voltage value.
  • the current of the voltage detection output is the same as the current of the constant current source. There is no current flowing through the control port of the output circuit, and no output is output.
  • the instantaneous value of the output voltage of the rectifier circuit It is larger than the preset voltage value, and the current of the voltage detection output is larger than that of the constant current source. Since the current of the constant current source is no longer increased, the current of the voltage detection output can only be equal to the current of the constant current source, and the output circuit
  • the control port has no current flowing, and the output circuit has no output;
  • the preset voltage value is preset to be smaller than the peak value of the alternating current, and the present invention realizes that the current is no longer absorbed from the alternating current when the alternating current is close to the sinusoidal peak, but is rectified from the alternating current sinusoidal peak portion, and can be respectively operated in a sine wave. Rising and falling areas.
  • the current of the control port of the output circuit changes from large to small, and is amplified by the output circuit. There is also a process from large to small, so that since there is no abrupt signal, there is no interference to the mains.
  • the current of the control port of the output circuit When operating at the falling edge of the half-wave voltage, when the instantaneous value of the output voltage of the rectifier circuit is close to the preset voltage value, the current of the control port of the output circuit has a change from zero to small, and then gradually increases. After the internal amplification of the circuit, there is also a process from zero to small, and then gradually increase, so that there is no interference signal, no interference to the mains.
  • the maximum output current of the output circuit is limited to the preset current value. Then, when the first startup is started, the generated inrush current is below the preset current value, thereby effectively controlling the inrush current for the first startup.
  • the circuit of the present invention supplies power to the load (including the subsequent circuit) only under the peak of the alternating current
  • the rectifier circuit, the voltage detecting circuit, the constant current source, and the output circuit can be composed of a resistor and a transistor, there can be no capacitance or inductance.
  • Highly integrated, AC-DC circuits can be realized at a lower cost, and high-voltage capacitors such as high-voltage electrolytic capacitors can be discarded in the circuit, and there is no inrush current when power is turned on for the first time, and a plurality of circuit units of the present invention are connected in parallel. It is controlled by one switch, and no inrush current (surge current) is generated. Since there is no large-volume high-voltage non-polarity capacitor or high-voltage electrolytic capacitor, it is easy to achieve miniaturization by using various circuits of the present invention.
  • Figure 1 is an AC waveform diagram that changes sinusoidally with time
  • Figure 2-1 is a circuit diagram of a half-wave rectifier circuit
  • Figure 2-2 shows the waveform of the output voltage when the half-wave rectification circuit is not connected to the filter capacitor.
  • Figure 2-3 shows the waveform of the output voltage when the filter capacitor is connected to the half-wave rectifier circuit
  • Figure 3-1 is a circuit diagram of a full-wave rectifier circuit
  • Figure 3-2 shows the output voltage waveform when the full-wave (or bridge) rectifier circuit is not connected to the filter capacitor.
  • Figure 3-3 shows the output voltage waveform when the full-wave (or bridge) rectifier circuit is connected to the filter capacitor.
  • Figure 4-1 is a circuit diagram of the bridge rectifier circuit;
  • Figure 4-2 is a circuit diagram of a simple drawing method of a bridge rectifier circuit
  • Figure 4-3 shows another drawing of the bridge rectifier circuit
  • Figure 5-1 shows the voltage waveform of the grid of an industrial area before going to work
  • Figure 5-2 shows the voltage waveform of the grid of an industrial area after going to work
  • Figure 6-1 is a waveform diagram of the thyristor technology after rectification
  • Figure 6-2 shows the waveform of the bidirectional thyristor technology before rectification
  • Figure 7-1 is a circuit block diagram of a first embodiment of the present invention.
  • Figure 7-3 is a measured waveform diagram of the first embodiment at an input voltage of 110V/50HZ;
  • Figure 7-4 is a measured waveform diagram of the first embodiment at an input voltage of 71V/50HZ;
  • Figure 7-5 shows the measured waveform of the filter capacitor at the input voltage of 110V/50HZ in the first embodiment
  • Figure 8 shows another voltage detection circuit
  • Figure 9 is a circuit diagram of a second embodiment of the present invention.
  • FIG. 10 shows another constant current source
  • Figure 11 is a circuit diagram of a third embodiment of the present invention.
  • Figure 12 shows another output circuit
  • Figure 13 is a circuit diagram of a fourth embodiment of the present invention.
  • Figure 14-1 is a circuit block diagram of a fifth embodiment of the present invention.
  • FIG. 14-3 is a measured waveform diagram of the fifth embodiment at an input voltage of 110V/50HZ
  • FIG. 14-4 is a measured waveform diagram of a filter capacitor of the fifth embodiment at an input of 110V/50HZ
  • a circuit diagram of the sixth embodiment
  • Figure 16 is a circuit diagram of a seventh embodiment of the present invention.
  • Figure 17 is a circuit diagram of an eighth embodiment of the present invention.
  • FIG. 18 is a schematic diagram of an AC/DC low power non-isolated and isolated power supply circuit provided by the present invention. detailed description
  • Figure 7-1 is a circuit block diagram of the first embodiment
  • Figure 7-2 is a circuit diagram of the first embodiment.
  • Figure 7-1 is a block diagram clearly showing the connection relationship of the first technical solution, including a rectifier circuit 102, a voltage detecting circuit 103, a constant current source 104, and an output circuit 105.
  • the AC input terminal 106 of the rectifier circuit is connected to an AC input, and is rectified.
  • the voltage output detection circuit 103 has a voltage detection circuit in parallel with the output terminals 107 and 108.
  • the voltage detection circuit 103 has at least three ports, and the voltage detection input is positive 109.
  • Detect input negative 110 voltage detection output 111
  • constant current source 104 has at least two ports, inflow terminal 112 and outflow terminal 113; output circuit 105 at least three ports, input port 114 and output port 115, and control port 116;
  • the voltage detection input positive 109 is connected to the rectifier circuit 102 to output the positive 107
  • the voltage detection input negative 110 is connected to the output negative 108 of the rectifier circuit 102
  • the voltage detection output 111 is connected to the control port 116 of the output circuit 105 while being connected to the constant current source 104.
  • the outflow end 113, the inflow end 112 of the constant current source 104 is connected to the rectifier circuit 102 output positive 107, the rectifier circuit 102 output negative 108 is also connected to the input port 114 of the output circuit 105, and the output port 115 of the output circuit 105 is the present invention
  • the output of the AC-DC circuit is negative, and the output of the rectifier circuit is 107, which is the output of the AC-DC circuit of the present invention.
  • the working principle of the present invention is that the rectifier circuit 102 rectifies the commercial power into a pulsating direct current.
  • the waveform of the pulsating direct current is shown in FIG. 2-2 or FIG. 3-2, and the voltage detecting circuit 103 rises with the output voltage of the rectifier circuit 102.
  • the output current is the current 13 that amplifies its control port 116.
  • the instantaneous value of the output voltage of the rectifier circuit 102 is smaller than the preset voltage value, the absorption current 12 of the voltage detection output terminal 111 is smaller than the current II of the constant current source 104, and the current of the control port 116 of the output circuit 105 flows.
  • the output circuit outputs a rectified voltage instantaneous value
  • the output voltage instantaneous value of the rectifier circuit 102 is the same as the preset voltage value, the absorption current 12 of the voltage detection output terminal 111 is the same as the current II of the constant current source 104, and no current flows through the control port 116 of the output circuit, and the output circuit has no output;
  • the instantaneous value of the output voltage of the rectifier circuit 102 is larger than the preset voltage value, and the absorption current 12 of the voltage detection output terminal 111 is larger than the current II of the constant current source, because the current II of the constant current stream 104 is no longer increased, and the voltage detection output terminal
  • the sink current 12 can only be equal to the current II of the constant current source 104, no current flows through the control port 116 of the output circuit 105, and the output circuit 105 has no output.
  • Capacitor CL and load resistor RL are drawn to illustrate the effect of the implementation.
  • FIG. 7-2 is a specific circuit diagram of the first embodiment.
  • the following figure illustrates the effect of the first embodiment of FIG. 7-1 with a set of experimental data and a working principle.
  • the parameters of the circuit are as follows:
  • the rectifier circuit 102 is composed of a diode D20, which is 1N4007, which is a half-wave rectifier circuit;
  • the voltage detecting circuit 103 is composed of a resistor R21, a resistor R22, a resistor R23, and an NPN transistor TR21 and a NPN transistor TR22.
  • the voltage detecting circuit 103 is implemented by a mirror constant current source in this embodiment, and the resistor R21 and the resistor R23 are terminated.
  • connection point forms a voltage detection input negative 110
  • the other end of the resistor R21 is connected to the emitter of the transistor TR21
  • the base and collector of the transistor TR21 are connected, and connected to the base of the transistor TR22, the connection point is connected to the resistor R22
  • One end of the resistor R22 forms a voltage detection input positive 109
  • the other end of the resistor R23 is connected to the emitter of the transistor TR22
  • the collector of the transistor TR22 is a voltage detection output terminal 111;
  • the resistor R21 is 51 ⁇
  • the resistor R22 is 10 ⁇
  • the resistor R23 is 1 ⁇
  • the transistor TR21 and the transistor TR22 is the NN transistor of the 2N5551 type;
  • the constant current source 104 is composed of a resistor R24 and a resistor R25, and a PNP type transistor TR23 and a PNP type transistor TR24.
  • the connection relationship of this circuit is a well-known technology, and can be referred to the second edition of "The Foundation of Analog Electronic Technology” edited by Tong Shibai. The ISBN number of the book is 7-04-000868-8/ ⁇ 53, in the “Basic of Analog Electronic Technology”, 266 pages, pp. 3-21, 270, pp. 3-32, so it will not be detailed here, its constant current.
  • is the constant current of the collector of the transistor TR24 in Fig. 7-2, that is, II in Fig. 7-1
  • UBE is the base and emitter voltage drop of the transistor TR23
  • the silicon tube is generally about 0.6V. It can be substituted according to the measured value
  • R 25 is the resistance of the resistor R25.
  • the collector current of the transistor TR24 becomes large for some reason, the emitter current of the transistor TR24 is synchronously increased, and the voltage drop of the current on the resistor R25 becomes large, so that the base current of the transistor TR23 becomes large, and the transistor TR23 The base current is amplified, and the collector current becomes large, so that the base voltage of the transistor TR24 rises, and the collector current of the transistor TR24 returns to the value of the formula (1).
  • the collector current of the transistor TR24 becomes small for some reason, the emitter current of the transistor TR24 is synchronously smaller, and the voltage drop of the current on the resistor R25 becomes smaller, so that the base current of the transistor TR23 becomes smaller, and the transistor TR23 tends to become smaller.
  • the collector current of the transistor TR23 becomes smaller, causing the base voltage of the transistor TR24 to drop, so that the collector current of the transistor TR24 returns to the value of the formula (1).
  • Resistor R24 is 3.3 ⁇ , resistor R25 is 5.1 ⁇ , transistor TR23 is 2N5401, and transistor TR24 is A92 model PNP transistor; its characteristics are shown in Table 1. table
  • the operating voltage in the table refers to the lower end of the resistor R24, that is, the voltage from the end of the connection 108 to the terminal 112. As seen from the above table, the constant current characteristic is basically realized.
  • the output circuit 105 is composed of a Zener diode D21 and a NPN type transistor TR25.
  • the cathode of the Zener diode D21 is the control port 116 of the output circuit
  • the anode of the Zener diode D21 is connected to the base of the transistor TR25
  • the emission stage of the transistor TR25 is the output circuit.
  • Input port 114, the collector stage of the transistor TR25 is the output port 115 of the output circuit;
  • the Zener diode D21 is a 3.3V Zener tube
  • the NPN type transistor TR25 is a composite of the A42 type NPN transistor.
  • the capacitor CL is a 47uF/100V electrolytic capacitor
  • the load resistor RL is an adjustable resistor of 1-10 ⁇ .
  • the capacitor CL is not connected.
  • Figure 7-2 first observe the waveforms of 108 to 107 with the 2-channel of the oscilloscope, record it, and observe the output of the AC-DC circuit of the present invention by using one channel of the oscilloscope.
  • the waveform of the end that is, the waveform from the 115th to the 107th
  • the model of the oscilloscope is Tektronix's TDS3012C. If measured at the same time, since 1 channel and 2 channels are not common, one of the channels should be added to Tektronix' original isolation probe.
  • FIG. 7-3 shows the measured waveform, which is the waveform measured by adding the isolated probe.
  • the input AC is 1 10V/50Hz. It can be seen from the 2-channel waveform that the AC half-wave itself has a large distortion, limited by the conditions, and it is not perfect.
  • the sine wave is used for measurement.
  • the circuit of the present invention is turned on twice for each half wave, and the peak value of the input half wave is 152 V, but the peak value of the output voltage of the circuit of the present invention is 37.2V.
  • the input AC is reduced to about 71V/50Hz.
  • the measured waveform is shown in Figure 7-4.
  • the peak value of the input half-wave is also reduced to 100V, but the output voltage of the circuit of the present invention is still 37.2V.
  • the output voltage of the present invention is not associated with the input voltage, and the completion is determined by the parameters of the circuit itself. It realizes the regulated output under the condition of constant load.
  • the voltage detecting circuit 103 in Fig. 7-2 is replaced with the circuit shown in Fig. 8.
  • the second embodiment can be obtained by strictly following the connection relationship in the first embodiment.
  • the voltage detecting circuit of FIG. 8 is composed of a resistor R201, a resistor R202, a resistor R203, and a transistor TR201.
  • the voltage detecting input is positive 109 is one end of the resistor R202, the other end of the resistor R202 is connected to the resistor R201, and the connecting point is simultaneously connected to the base of the transistor TR201.
  • the other end of the resistor R201 is connected to the resistor R203- terminal, the connection point forms a voltage detection input minus 1 10, the other end of the resistor R203 is connected to the emitter of the transistor TR201, and the collector of the transistor TR201 is the voltage detection output terminal 1 1 1
  • This circuit is a standard known common emitter amplifier circuit.
  • the voltage applied from 109 to 10 is the input voltage, and is set to Vin.
  • the absorption current 12 of the voltage detection output terminal 11 is:
  • Ube is generally 0.5V to 0.8V, which is the base-to-emitter conduction voltage drop of triode TR201.
  • the common calculation is between 0.6V and 0.7V. From equation (2), the set of triode TR201 can be seen.
  • the electrode current is proportional to the input voltage Vin, that is, the absorption current of the voltage detecting circuit increases as the operating voltage increases, that is, the current detecting current of the voltage detecting output terminal 11 of FIG. 8 increases as the operating voltage increases. Big, its The maximum current is limited by the constant current source 104 in Figure 7-1. When the current of the constant current source 104 is completely consumed by the voltage sense output terminal 111 of Figure 8, the output circuit 105 will be completely absent in Figure 7-1. Output. That is, the rectification point of the present invention can be realized by setting in advance.
  • the schematic diagram of the second embodiment is shown in FIG. 9. Except that the voltage detecting circuit 103 is different from the first embodiment, the parameters of the other portions are the same.
  • the device parameters of the voltage detecting circuit 103 in FIG. 9 are: the resistor R201 is 270 ⁇ , and the resistor R202 is 9.1 ⁇ , resistor R203 is 5.1 ⁇ , and transistor TR201 model is S9014.
  • the measured results can be achieved in the input AC at 110V/50HZ and below.
  • the output characteristics are almost identical to those in Figure 7-3, Figure 7-4, and Figure 7-5.
  • the measured values of Chi in the above three figures are 37.9. V, 37.9V, and 26.5V.
  • the constant current source 104 in FIG. 7-2 is replaced with another constant current source circuit of the circuit shown in FIG. 10, and the third embodiment is obtained by strictly following the connection relationship in the first embodiment.
  • FIG. The schematic of the third embodiment is shown.
  • the constant current source 104 of FIG. 10 is composed of a resistor R204, a resistor R205, a diode D201, a diode D202, and a transistor TR204.
  • the anode of the diode D201 is connected to the resistor R205, and the connection point forms the inflow terminal 112 of the constant current source 104, and the cathode of the diode D201.
  • the cathode of the diode D201 is connected to the resistor R204, the connection point is simultaneously connected to the base of the transistor TR204, the emitter of the transistor TR204 is connected to the other end of the resistor R205, and the collector of the transistor TR204 is the constant current source 104.
  • the outflow end 113; the other end of the resistor R204 is connected to the output negative 108 of the rectifier circuit 102.
  • this circuit is a well-known constant current source circuit whose constant current II is:
  • Ube is generally 0.5V to 0.8V, which is the base-to-emitter voltage drop of transistor TR204.
  • the common calculation is between 0.6V and 0.7V.
  • U D2Q1 and U D2Q2 are diode D201 and diode D202 respectively.
  • R205 is the resistance of the resistor R205. Since U D2Q1 and U D2Q2 and Ube are approximately equal, the simple algorithm is to divide the forward voltage drop of the diode in the circuit by the resistance of resistor R205.
  • the schematic diagram of the third embodiment is shown in FIG. 11. Except that the constant current source 104 is different from the first embodiment, the parameters of other parts are the same.
  • the device parameters of the voltage constant current source 104 in FIG. 11 are: the resistance R205 is 5.1 ⁇ , and the resistance is R204 It is a 3.9 ⁇ , triode TR24 is a ⁇ 92 model ⁇ transistor.
  • the constant current source around lOOuA is also realized.
  • the measured results can be achieved in the input AC at 110V/50HZ and below.
  • the output characteristics are almost identical to those in Figure 7-3, Figure 7-4, and Figure 7-5.
  • the measured values of Chi in the above three figures are 37.6. V, 37.6V, Wohe 26.4V.
  • Output circuit 105 has at least three ports, an input port 114 and an output port 115, and a control port
  • the output circuit 105 of FIG. 7-2 is replaced with another output circuit of the circuit shown in FIG. 12, and the fourth embodiment is obtained by strictly following the connection relationship in the first embodiment.
  • FIG. 13 shows The fourth embodiment is a schematic diagram.
  • the output circuit 105 of FIG. 12 is composed of a Zener diode D21, an NPN transistor TR25, and a PNP transistor TR26.
  • the cathode of the Zener diode D21 is the control port 116 of the output circuit, and the anode of the Zener diode D21 is connected to the base of the transistor TR25.
  • the emitter stage of the transistor TR25 is the input port 114 of the output circuit
  • the collector stage of the transistor TR25 is connected to the base of the transistor TR26
  • the emitter of the transistor TR26 is the input port 117 of the output circuit.
  • the output circuit 105 has at least three ports.
  • the input port 117 is the newly added port 4.
  • the collector of the transistor TR26 is the output port 115 of the output circuit.
  • the base of the transistor TR26 is injected, amplified by the transistor TR26, and output through the collector of the transistor TR26, except that the output port 115 of the output circuit 105 evolves into the alternating current of the embodiment.
  • the output of the DC circuit is positive, and the output of the rectifier circuit minus 108 is the output of the AC-DC circuit of the present invention.
  • the schematic diagram of the fourth embodiment is shown in Fig. 13. Except that the output circuit 105 is different from the first embodiment, the working principle is different except that the output circuit 105 is different, and the details are not described herein again.
  • the rectification circuit of the first to fourth embodiments is replaced with bridge rectification, and the object of the invention is achieved.
  • Fig. 14-1 is a circuit block diagram of the fifth embodiment
  • Fig. 14-2 is a circuit diagram of the fifth embodiment.
  • the block diagram clearly shows the connection relationship of the above technical solution 2, including the rectifier circuit 102, the voltage detecting circuit 103, the constant current source 104, and the output circuit 105.
  • the AC input terminal 106 of the rectifier circuit is connected to the AC input, and the rectifier circuit is There are two AC input terminals 106, which are theoretically interchangeable, and there is no distinction here.
  • the output terminals 107 and 108 of the rectifier circuit 102 are connected in parallel with the voltage detection circuit.
  • the voltage detection circuit 103 has at least three ports, and the voltage detection input is positive 109.
  • Detect input negative 110 voltage detection output 111
  • constant current source 104 has at least two ports, inflow terminal 112 and outflow terminal 113; output circuit 105 at least three ports, input port 114 and output port 115, and control port 116;
  • the voltage detection input positive 109 is connected to the rectifier circuit 102 to output the positive 107
  • the voltage detection input negative 110 is connected to the output negative 108 of the rectifier circuit 102
  • the voltage detection output 111 is connected to the control port 116 of the output circuit 105 while being connected to the constant current source 104.
  • the outflow end 113 of the constant current source 104 is connected to the rectifier circuit 102 to output a negative 108, and the rectifier circuit 102 outputs a positive 10 7 is also connected to the input port 114 of the output circuit 105.
  • the output port 115 of the output circuit 105 is the output of the AC-DC circuit of the present invention, and the output 108 of the rectifier circuit 102 is the output of the AC-DC circuit of the present invention. .
  • Capacitor CL and load resistor RL are drawn to illustrate the effect of the implementation.
  • FIG. 14-2 is a specific circuit diagram of the fifth embodiment.
  • the following figure illustrates the effect of the first embodiment of FIG. 14-1 with a set of experimental data and a working principle.
  • the parameters of the circuit are as follows:
  • the rectifier circuit 102 is a bridge rectifier circuit composed of four diodes, which are respectively a diode D22, a diode D23, a diode D24, a diode D25, a cathode of the diode D22 and a cathode of the diode D23, forming a rectifier 107 output positive 107, a diode D24
  • the anode is connected to the anode of the diode D25 to form a negative output 108 of the rectifier circuit 102.
  • the anode of the diode D22 is connected to the cathode of the diode D25 to form an alternating current input terminal 106.
  • the anode of the diode D23 is connected to the cathode of the diode D24 to form another alternating current input terminal. 106.
  • the voltage detecting circuit 103 is composed of a resistor R21, a resistor R22, a resistor R23, and a PNP type transistor TR21 and a PNP type transistor TR22.
  • the voltage detecting circuit 103 is realized by a mirror constant current source in this embodiment, and the resistor R21 and the resistor R23 are end-phase.
  • connection point forms a voltage detection input positive 109
  • the other end of the resistor R21 is connected to the emitter of the transistor TR21
  • the base and collector of the transistor TR21 are connected, and connected to the base of the transistor TR22, the connection point is connected to the resistor R22
  • One end of the resistor R22 forms a voltage detection input negative 110
  • the other end of the resistor R23 is connected to the emitter of the transistor TR22
  • the collector of the transistor TR22 is a voltage detection output terminal 111
  • the constant current source 104 is composed of a resistor R24 and a resistor R25, and an NPN type transistor TR23 and an NPN type transistor TR24.
  • connection relationship of this circuit is a well-known technique, and the end of the resistor R24 not connected to the base of the transistor TR24 is connected to the output of the rectifier circuit 102. 107, the collector of the transistor TR24 is the inflow terminal 112 of the constant current source 104, and the connection point of the emitter of the transistor TR23 and the resistor R25 is the outflow end 113 of the constant current source 104, and the working principle is the same as the constant current in the first embodiment. Source, only the polarity of the triode is different, so I won't go into details here.
  • the output circuit 105 is composed of a Zener diode D21, a PNP type transistor TR25a, and a PNP type transistor TR25b.
  • the anode of the Zener diode D21 is the control port 116 of the output circuit
  • the cathode of the Zener diode D21 is connected to the base of the transistor TR25a
  • the transistor of the transistor TR25a is connected to the base of the transistor TR25b.
  • the emitter of the transistor TR25b is the input port 114 of the output circuit.
  • the collector of the transistor TR25a and the collector of the transistor TR25b are connected together to form an output port 115 of the output circuit.
  • the working principle of the present invention is that the rectifying circuit 102 rectifies the mains into a pulsating direct current.
  • the waveform of the pulsating direct current is shown in Fig. 2-2 or Fig. 3-2, and the voltage detecting circuit 103 rises with the output voltage of the rectifying circuit 102.
  • the output current is the current 13 that amplifies its control port 116.
  • the instantaneous value of the output voltage of the rectifier circuit 102 is smaller than the preset voltage value, the absorption current 12 of the voltage detection output terminal 111 is smaller than the current II of the constant current source 104, and the current of the control port 116 of the output circuit 105 flows.
  • the output circuit outputs a rectified voltage instantaneous value
  • the output voltage instantaneous value of the rectifier circuit 102 is the same as the preset voltage value, the absorption current 12 of the voltage detection output terminal 111 is the same as the current II of the constant current source 104, and no current flows through the control port 116 of the output circuit, and the output circuit has no output;
  • the instantaneous value of the output voltage of the rectifier circuit 102 is larger than the preset voltage value, and the absorption current 12 of the voltage detection output terminal 111 is larger than the current II of the constant current source, because the current II of the constant current stream 104 is no longer increased, and the voltage detection output terminal
  • the sink current 12 can only be equal to the current II of the constant current source 104, no current flows through the control port 116 of the output circuit 105, and the output circuit 105 has no output.
  • the capacitance CL is 47uF/100V electrolytic capacitor
  • the load resistance RL is an adjustable resistance of 1-10 ⁇ .
  • diode D22, diode D23, diode D24, and diode D25 are both 1N4007, Zener diode D21 is 5.
  • resistor R21 is 51 ⁇
  • resistor R22 is 20 ⁇
  • resistor R23 is 1 ⁇
  • resistor R24 is 3.3 ⁇
  • resistor R25 is 5.6 ⁇
  • transistor TR21, transistor TR22 is 2N5401 type PNP transistor
  • transistor TR23, transistor TR24 is 2N5551 type NPN transistor
  • transistor TR25a and TR25b models are A92.
  • the capacitor CL is not connected.
  • Figure 14-2 observe the waveforms of 108 to 107 with the 2 channels of the oscilloscope, and observe the waveform of the output of the AC-DC circuit of the present invention with 1 channel of the oscilloscope.
  • the waveform from 115 to 108 is connected to the oscilloscope's input ground 108.
  • the model number of the oscilloscope is Tektronix's TDS3012C.
  • the label of the channel is on the left side of the figure, the number "1" of the 1 channel is in the small white box, and the number "2" of the 2 channel is in the small black box.
  • Figure 14-3 shows the measured waveform.
  • the input AC is 110V/50Hz. It can be seen from the 2-channel waveform that the AC half-wave itself has a large distortion. Limited to the conditions, no perfect sine wave is found for measurement.
  • the circuit of the present invention is turned on twice for each half wave, and the peak value of the input half wave is 157 V, but the peak value of the output voltage of the circuit of the present invention is 83.0 V.
  • the input AC is reduced to about 71V/50Hz, and the peak value of the input half-wave is also reduced to 100V.
  • the output voltage of the circuit of the present invention is still 83.0V, which is in accordance with the working principle. That is, the output voltage of the present invention is not associated with the input voltage, and the completion is determined by the parameters of the circuit itself. It realizes the regulated output under the condition of constant load.
  • the present invention verifies that the invention can be achieved both in principle and experimentally.
  • different output voltages and maximum rectified currents can be obtained by adjusting the parameters of the various devices.
  • the other rectifying circuit 102, the voltage detecting circuit 103, the constant current source 104, and the output circuit 105 are respectively replaced by any combination, and the object of the invention can be achieved.
  • Fig. 15 shows that the voltage detecting circuit 103 of Fig. 15 is replaced with 103 in Fig. 14-2, and the voltage detecting circuit 103 of Fig. 15 is composed of a resistor R21, a resistor R22, a resistor R23, a diode D26, and a PNP type transistor TR22.
  • the resistor R21 and the resistor R23 are connected to each other, the connection point forms a voltage detection input positive 109, the other end of the resistor R21 is connected to the anode of the diode D26, and the cathode of the diode D26 is connected to the base of the transistor TR22, and the connection point is connected to the resistor R22.
  • One end, the other end of the resistor R22 is formed
  • the working principle of the sixth embodiment can achieve the object of the invention as in the fifth embodiment described above.
  • Figure 16 shows that the constant current source 104 of Figure 16 is used to replace 104 in Figure 14-2.
  • the constant current source 104 of Figure 16 is composed of a resistor R24 and a resistor R25, and an NPN transistor TR24 and a Zener diode D27.
  • the connection relationship of the circuit is a well-known technology.
  • the anode of the Zener diode D27 is connected to the resistor R24 and is connected to the base of the transistor TR24.
  • the end of the resistor R24 not connected to the base of the transistor TR24 is connected to the output of the rectifier circuit 102.
  • the transistor TR24 The collector is the inflow terminal 112 of the constant current source 104, and the junction of the cathode of the Zener diode D27 and the resistor R25 is the outflow end 113 of the constant current source 104, and a constant current source is also realized.
  • the working principle of the seventh embodiment can achieve the object of the invention as in the fifth embodiment described above.
  • Fig. 17 shows an eighth embodiment.
  • a voltage detecting circuit 118 is added.
  • the voltage detecting circuit 118 has at least three ports, a voltage detecting input 119, and a voltage detecting input.
  • the voltage detecting circuit 118 and the voltage detecting circuit 103 have the same function, and the voltage detecting circuit 118 119, 120, 121 respectively correspond to the three ports 109, 110, 111 of the voltage detecting circuit 103.
  • the voltage detecting circuit 118 is composed of a resistor R26, a resistor R27, a Zener diode D28, and an NPN transistor TR27.
  • the cathode of the Zener diode D28 is a voltage detecting input positive 119, and the anode connecting resistor R26 of the Zener diode D28 is terminated.
  • the other end is connected to the resistor R27 terminal, and is connected to the base of the transistor TR27.
  • the other end of the resistor R27 is connected to the emitter of the transistor TR27, and forms a voltage detection input negative 120.
  • the collector of the transistor TR27 is the voltage detection output terminal 121.
  • the voltage detection input 119 of the voltage detecting circuit 118 is connected to the output port 115 of the output circuit 105, and the voltage detecting input negative 120 of the voltage detecting circuit 118 is connected to the output negative of the AC-DC circuit of the present invention, that is, 108, voltage detection.
  • the voltage check output terminal 121 of the circuit 118 is connected in the constant current circuit to ensure that when the output port 115 outputs an overvoltage, the transistor TR27 is turned on, and the constant current source is turned off, so that the control port 116 of the output circuit does not work because there is no current.
  • the eighth embodiment can not only achieve the object of the invention, but also realize a more precise output voltage regulation.
  • the terminal is terminated at the output end of the filter network, so that a smaller ripple voltage can be realized. Output.
  • the voltage detecting circuit 1 18 is placed in the voltage detecting circuit 103 of the above embodiment, and attention is paid to the diode and the transistor polarity to achieve the object of the corresponding embodiment.
  • the "load resistor RL" in the circuit of the above embodiment is replaced with a non-isolated, isolated DC/DC circuit, such as a self-excited push-pull converter, an RCC (Ringing Choke Converter) converter, and a flyback converter circuit ( Flyback Converter) enables AC/DC low power isolated power supplies, including regulated and unregulated outputs.
  • Figure 18 shows the application circuit topology, where 122 is the DC/DC converter (switching power supply).
  • the AC/DC low power isolated power supply of the present invention is not used because of the high voltage non-polarity capacitor or high voltage electrolytic capacitor. It is also possible to achieve miniaturization, and there is no inrush current at the time of starting up.
  • 122 in Fig. 18 is a PFC circuit, this circuit can also work.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

一种交流变直流电路,包括整流电路、电压检测电路、恒流源、输出电路;整流电路把交流电整流为脉动直流电;恒流源向电压检测电路的电压检测输出端和输出电路的控制端口提供电流,恒流源中流过的电流为恒流源向电压检测电路提供的电流和恒流源向输出电路提供的电流之和;电压检测电路随着整流电路输出电压瞬时值上升,电压检测电路的电压检测输出端吸收电流越大,恒流源的电流被吸收得越多,恒流源给输出电路的控制端口的电流越小;输出电路放大其控制端口的电流后输出,输出电流向交流变直流电路的后续负载供电;本发明能够对于交流输入电压从交流电正弦峰值以下部分整流,且分别工作在正弦波上升及下降区域,并可以带容性负载。

Description

一种交流变直流电路
技术领域
本发明涉及交流变直流电路, 特别涉及应用于小功率 AC/DC电源中的交流变 直流电路。
背景技术
交流变直流电路很多, 用整流电路即可实现。 工业与民用供电一般采用交流 供电, 以民用为例, 我国为 220VAC/50Hz, 美洲采用 120VA或 110VAC, 60Hz 的交流电, 而英国采用 240VAC/50Hz, 其它国家和地区也是各不相同, 总体说来, 频率为两种: 50Hz或 60Hz, 工作电压为 110V左右以及 220V左右, 其特点是, 电压 (或电流)的幅度的方向随时间作周期性变化, 如图 1所示。
图 1示出的随时间按正弦规律变化的交流电, 称为交变正弦电压, 变化一次 所需要的时间称为交变电压的周期, 用 T表示, 业界所说的 220V, 是指有效值, 其峰值为^倍有效值, 即为:
Figure imgf000003_0001
直流电压 (或电流)的大小和方向不随时间变化。 如用曲线表示电压, 则是和水 平时间轴平行的一条直线, 但我们一般把方向不变, 但电压 (或电流)的大小随时间 有所变化的也称为直流电压 (或电流)。
工业与民用都需要把交流变成直流, 首先要使电流单方向流动、 即单向导电, 然后再将幅度稳定下来, 即滤波。 把交流电源变换成单方向电源的过程称为整流。
现有技术中, 整流电路一般分为半波整流、 全波整流、 桥式整流、 倍压整流 电路, 整流电路分为单相与多相 (如三相), 一般指单相整流电路, 事实上, 单相整 流电路用公知技术简单组合, 即可应于多相整流电流上。
图 2-1示出的就是半波整流电路, 若电容 CL不接入, 其输出波形为图 2-2所 示, 为脉动直流电; 电容 CL接入后, 其输出波形为图 2-3中实线所示, 为较为平 滑的脉动直流电, 电路稳态以后, 图 2-1中整流二极管 D1只在图 2-3中 tl至 t2 时间内导通, 对电容 CL充电, 其它时间由电容 CL对负载 RL放电, 若想直流电 压平滑, 电容 CL就要很大, 而电容 CL加大, 会导致 tl至 t2的导通时间很短, 充电电流极大, 电路也只在这个时间消耗交流输入电压的电流, 引发电网电压波 形畸变。 这部分的原理也可参考人民邮电出版社出版的 《稳定电源》 1984年第一 版, 统一书号为: 15045·总 2790—无 6260, 该书的第 33页图 2·4.1也充分展示了 这一原理。
图 3-1示出的就是全波整流电路,一般无法直接用于市电整流, 一般要经过变 压器得到两组电压相同、 相位相反的电压 (中心抽头式), 才可以使用, 若电容 CL 不接入, 其输出波形为图 3-2所示, 为脉动直流电; 电容 CL接入后, 其输出波形 为图 3-3中实线所示, 为较为平滑的脉动直流电。 电路稳态以后, 图 3-1中整流二 极管 Dla只在图 3-3中 tl至 t2时间内导通; 而整流二极管 Dlb只在图 3-3中 t3 至 t4时间内导通, 二极管导通时对电容 CL充电, 其它时间由电容 CL对负载 RL 放电, 若想直流电压平滑, 电容 CL就要很大, 而电容 CL加大, 会导致 tl至 t2 以及 t3至 t4的导通时间很短, 充电电流极大, 电路也只在这个时间消耗交流输入 电压的电流,经变压器 B 1引发电网电压波形畸变。《稳定电源》的第 35页图 24.3 也充分展示了这一原理。 畸变后的波形不再是正弦波, 可以傅立叶变换为基波的 很多高次谐波, 高次谐波就是电源中的干扰来源。
图 4-1、 图 4-2、 图 4-3示出的就是桥式整流电路, 这三种画法都常用, 它们 的连接关系是一致的, 图 4-2为简易画法。若电容 CL不接入,其输出波形和图 3-2 所示相同, 为脉动直流电; 电容 CL接入后, 其输出波形为图 3-3中实线所示, 为 较为平滑的脉动直流电。 电路稳态以后, 图 4-1至图 4-2中整流二极管 Dla和整流 二极管 Die只在图 3-3中 tl至 t2时间内导通; 而整流二极管 Dlb和整流二极管 Did只在图 3-3中 t3至 t4时间内导通, 二极管导通时对电容 CL充电, 其它时间 由电容 CL对负载 RL放电, 若想直流电压平滑, 电容 CL就要很大, 而电容 CL 加大, 会导致 tl至 t2以及 t3至 t4的导通时间很短, 充电电流极大, 电路也只在 这个时间消耗输入电压的电流, 引发电网电压波形畸变。 《稳定电源》 的第 35页 图 24.3也充分展示了这一原理, 第 34页第三段已说明: "对于电容滤波全波整流 情况, 根据图 24.3, 读者可自行分析。 这分析也适用于桥式整流。 "
上述的半波整流、全波整流、桥式整流中,电容的耐压都要大于输入电压的^ 倍, 即输入电压的 1.414倍, 对于 220V交流输入, 考虑市电电压不稳定, 电压经 常上升至 264V左右, 要求滤波电容的耐压都要大于其峰值 373V, 考虑留有余量, 一般要取到 400V的耐压或 450V的耐压。
综上所述, 现有技术的整流电路, 想获得平滑的直流电压, 都要使用滤波电 容, 电路只在交流电接近峰值时从市电中吸收电流, 大量的民用电器、 工业设备 都如此, 电网中正弦波电压严重畸变, 图 5-1示出的电压波形, 就是广州黄埔开发 区东区工业园在 2012年 2月 24日早上 8: 17分采集的工业用电波形; 图 5-2示出 的电压波形, 就是同地点在 2012年 2月 24日早上 8: 39分采集的工业用电波形, 此时大部份工厂已上班; 为了方便看到波形, 使用了整流电路无滤波电容采集, 从图 5-2可以看到,随着各工厂上班开始用电,用电量增加,波形明显进一步畸变, 图 5-2中的顶部明显变得更平坦, 这和上述的理论分析是一致的。
尽管目前已有采用功率因数校正电路解决这一问题, 功率因数校正电路简称 为 PFC电路, 是 Power Factor Correction的縮写, 采用整流电路后, 用很小的"滤 波电容 "吸收来自市电中的干扰尖峰,如 O.luF至 0.47uF,整流以后的波形和图 3-2 一致, 再利用 BOOST拓扑的开关电源把电压升到 400V左右直流, 再给其它电路 供电, 以实现高功率因数, 实现不引发电网电压波形畸变。
使用可控硅技术可以实现不在交流电接近峰顶时从市电中吸收电流, 在整流 电路后边使用可控硅, 得到的波形如图 6-1所示, 100阴影为可控硅斩波后输出的 的示意图, 其缺点是不能带大容性负载, 且只能工作在半波的下降部分。 不能带 大容性负载的原理, 可以参见 《稳定电源》 的第 38页的"三、 倒 L型滤波 "至 40 页"四、 π型滤波"之间的文字。
在整流电路和交流电之间使用可控硅,得到的波形如图 6-2所示, 目前常见的 触发技术会产生正半周的触发点和负半周的触发点不对称, 表现为图 6-2中, 100 阴影面积和 101阴影面积不等, 其缺点是不能带大容性负载, 适合带阻性负载或 感性负载, 且只能工作在半波的下降部分。
在小功率应用场合, PFC电路的成本较高, 仍不能普及。 小功率场合, 交流 变直流电路中, 常用的整流电路在交流电接近峰值时从市电中吸收电流, 引发电 网电压波形畸变仍然存在。 发明内容
有鉴如此, 本发明要解决的技术问题是, 提供一种交流变直流电路, 对于交 流输入的电压, 交流变直流电路不再从交流电接近正弦峰值时从交流电中吸收电 流, 而是从交流电正弦峰值以下部分整流, 且分别工作在正弦波上升及下降区域, 并可以带容性负载。
为解决上述技术问题, 本发明一种交流变直流电路, 包括整流电路、 电压检 测电路、 恒流源、 输出电路;
所述的恒流源向所述的电压检测电路和所述的输出电路的控制端口提供电流 (流入或流出),所述的恒流源中流过的电流为所述的恒流源向所述的电压检测电路 提供的电流和所述的恒流源向所述的输出电路提供的电流之和;
所述的电压检测电路随着整流电路输出电压瞬时值上升, 所述的电压检测电 路的电压检测输出端吸收电流越大, 所述的恒流源向所述的电压检测电路提供的 电流被所述的电压检测电路吸收得越多, 所述的恒流源向所述的输出电路的控制 端口提供的电流相应减小;
所述的输出电路把所述的恒流源向所述的输出电路控制端口提供的电流放大 后输出。
更优地, 所述的输出电路的输出端还连接有一电压检测电路, 从而实现较为 精密的输出稳压。
本发明还提供上述交流变直流电路在 AC/DC小功率电源中的应用。
本发明的工作原理是, 整流电路把市电整流为脉动直流电, 脉动直流电的波 形见图 2-2或图 3-2, 电压检测电路随着整流电路输出电压瞬时值上升, 电压检测 电路的电压检测输出端吸收电流越大, 恒流源的电流被吸收得越多, 恒流源给输 出电路的控制端口的电流越小, 输出电路的输出电流就是放大其控制端口的电流。 即实现了:
在整流电路输出电压瞬时值比预设电压值小, 电压检测输出端的吸收电流比 恒流源的电流小, 输出电路的控制端口有电流流过, 输出电路输出整流后电压瞬 时值;
在整流电路输出电压瞬时值和预设电压值相同, 电压检测输出端的吸收电流 和恒流源的电流相同, 输出电路的控制端口没有电流流过, 输出电路无输出; 在整流电路输出电压瞬时值比预设电压值大, 电压检测输出端的吸收电流比 恒流源的电流大, 因恒流源的电流不再增大, 电压检测输出端吸收电流只能和恒 流源的电流相等, 输出电路的控制端口没有电流流过, 输出电路无输出;
预设电压值预先设置得比交流电的峰值小, 那么本发明就实现了不再从交流 电接近正弦峰值时从交流电中吸收电流, 而是从交流电正弦峰值以下部分整流, 且可以分别工作在正弦波上升及下降区域。 当工作于半波的电压上升沿时, 整流电路输出电压瞬时值由小接近预设电压 值时, 输出电路的控制端口的电流存在一个由大到小的变化过程, 经输出电路内 部放大后输出, 也存在一个由大到小的过程, 这样, 由于不存在突变信号, 对市 电就不造成干扰。
当工作于半波的电压下降沿时, 整流电路输出电压瞬时值由大接近预设电压 值时, 输出电路的控制端口的电流存在一个由零到小, 再逐步增大的变化过程, 经输出电路内部放大后输出, 也存在一个由零到小, 再逐步增大过程, 这样, 由 于不存在突变信号, 对市电就不造成干扰。
把输出电路的最大输出电流限制在预设电流值, 那么, 本发明在首次开机时, 产生的冲击电流就在预设电流值及以下, 从而有效地控制了首次开机的冲击电流。
也正因为存在一个渐变的过程, 所以可以带容性负载。
有益效果
由于本发明电路只在交流电的峰值以下时向负载 (包括后续电路)供电, 由于整 流电路、 电压检测电路、 恒流源、 输出电路可以由电阻和晶体管组成, 可以不存 在任何电容、 电感, 可以实现高度集成化, 用较低成本实现交流变直流电路, 且 电路中可以摒弃高压电容如高压电解电容, 且在首次开机上电、 开机时没有冲击 电流, 多个本发明电路单元大量并联后, 由一个开关控制, 也不产生冲击电流 (浪 涌电流), 由于不存在体积大的高压无极性电容或高压电解电容, 使用本发明的各 种电路容易实现小型化。 附图说明
图 1为随时间按正弦规律变化的交流电波形图;
图 2-1 为半波整流电路的电路图;
图 2-2 为半波整流电路不接滤波电容时的输出电压波形图;
图 2-3 为半波整流电路接上滤波电容时的输出电压波形图;
图 3-1 为全波整流电路的电路图;
图 3-2 为全波 (或桥式)整流电路不接滤波电容时的输出电压波形图; 图 3-3 为全波 (或桥式)整流电路接上滤波电容时的输出电压波形图; 图 4-1 为桥式整流电路的电路图;
图 4-2 为桥式整流电路简易画法的电路图; 图 4-3 为桥式整流电路的另一种画法;
图 5-1 为某工业区电网在上班前的电压波形图;
图 5-2 为某工业区电网在上班后的电压波形图;
图 6-1为整流后使用可控硅技术的波形图;
图 6-2为整流之前使用双向可控硅技术的波形图;
图 7-1 为本发明第一实施例的电路框图;
图 7-2为第一实施例的具体电路理图;
图 7-3 为第一实施例在输入电压 110V/50HZ下的实测波形图;
图 7-4 为第一实施例在输入电压 71V/50HZ下的实测波形图;
图 7-5 为第一实施例在输入电压 110V/50HZ下、有滤波电容的实测波形图; 图 8 为另一种电压检测电路;
图 9 为本发明第二实施例的电路图;
图 10 为另一种恒流源;
图 11为本发明第三实施例的电路图;
图 12 为另一种输出电路;
图 13为本发明第四实施例的电路图;
图 14-1 为本发明第五实施例的电路框图;
图 14-2为第五实施例的具体电路理图;
图 14-3 为第五实施例在输入电压 110V/50HZ下的实测波形图; 图 14-4 为第五实施例在输入 110V/50HZ下、 有滤波电容的实测波形图; 图 15为本发明第六实施例的电路图;
图 16为本发明第七实施例的电路图;
图 17 为本发明第八实施例的电路图;
图 18为本发明提供的 AC/DC小功率非隔离、 隔离电源电路拓扑。 具体实施方式
第一实施例
图 7-1为第一实施例的电路框图, 图 7-2为第一实施例的电路理图。 图 7-1框 图清晰地展现了上述技术方案一的连接关系, 包括整流电路 102、 电压检测电路 103、 恒流源 104、 输出电路 105 ; 整流电路的交流输入端 106接交流输入, 整流 电路的交流输入端 106有两个, 理论上可以互换, 这里也同样不作区分; 整流电 路输出端 107和 108并联电压检测电路, 电压检测电路 103至少有三个端口, 电 压检测输入正 109、 电压检测输入负 110、 电压检测输出端 111 ; 恒流源 104至少 有二个端口, 流入端 112和流出端 113; 输出电路 105至少三个端口, 输入端口 114和输出端口 115, 以及控制端口 116; 电压检测输入正 109连接整流电路 102 输出正 107, 电压检测输入负 110连接整流电路 102的输出负 108, 电压检测输出 端 111连接至输出电路 105的控制端口 116,同时连接到恒流源 104的流出端 113, 恒流源 104的流入端 112连接至整流电路 102输出正 107, 整流电路 102输出负 108还连接到输出电路 105的输入端口 114, 输出电路 105的输出端口 115即是本 发明的交流变直流电路的输出负, 整流电路输出正 107即为本发明的交流变直流 电路的输出正。
本发明的工作原理是, 整流电路 102把市电整流为脉动直流电, 脉动直流电 的波形见图 2-2或图 3-2, 电压检测电路 103随着整流电路 102输出电压瞬时值电 压上升,电压检测电路 103的电压检测输出端 111的吸收电流 12越大,恒流源 104 的电流 II被吸收得越多,恒流源 104给输出电路 105的控制端口 116的电流 B越 小, 输出电路 105的输出电流就是放大其控制端口 116的电流 13。 即实现了: 在整流电路 102输出电压瞬时值比预设电压值小, 电压检测输出端 111的吸 收电流 12比恒流源 104的电流 II小, 输出电路 105的控制端口 116有电流流过, 输出电路输出整流后电压瞬时值;
在整流电路 102输出电压瞬时值和预设电压值相同, 电压检测输出端 111的 吸收电流 12和恒流源 104的电流 II相同,输出电路的控制端口 116没有电流流过, 输出电路无输出;
在整流电路 102输出电压瞬时值比预设电压值大, 电压检测输出端 111的吸 收电流 12比恒流源的电流 II大, 因恒流流 104的电流 II不再增大, 电压检测输 出端 111吸收电流 12只能和恒流源 104的电流 II相等,输出电路 105的控制端口 116没有电流流过, 输出电路 105无输出。
电容 CL和负载电阻 RL是为了说明实施效果而画上的。
图 7-2为第一实施例的具体电路图,下边以一组实验数据并结合工作原理说明 第一实施例图 7-1的效果, 电路的参数如下:
整流电路 102为一只二极管 D20组成, 为 1N4007, 这是一个半波整流电路; 电压检测电路 103由电阻 R21、电阻 R22、电阻 R23,以及 NPN型三极管 TR21、 NPN型三极管 TR22组成, 电压检测电路 103在本实施例中用镜像恒流源实现, 电阻 R21和电阻 R23—端相连接, 连接点形成电压检测输入负 110, 电阻 R21的 另一端和三极管 TR21的发射极相连, 三极管 TR21的基极、 集电极相连接, 且与 三极管 TR22的基极相连, 该连接点连接电阻 R22的一端, 电阻 R22的另一端形 成电压检测输入正 109; 电阻 R23的另一端和三极管 TR22的发射极相连接, 三极 管 TR22的集电极为电压检测输出端 111 ;
电阻 R21为 51ΚΩ, 电阻 R22为 10ΜΩ, 电阻 R23为 1ΚΩ, 三极管 TR21、 三 极管 TR22为 2N5551型号的 NPN三极管;
恒流源 104由电阻 R24和电阻 R25以及 PNP型三极管 TR23和 PNP型三 极管 TR24组成,这个电路的连接关系为公知技术,可参见由童诗白主编的《模 拟电子技术基础》第二版, 该书的 ISBN号为 7-04-000868-8/ΤΝ·53, 在《模拟 电子技术基础》 中 266页图 Ρ3-21、 270页图 Ρ3-32, 所以在这里不再详述, 其恒流电流约为: l0 = 公式 (1)
Figure imgf000010_0001
式中 Ιο为图 7-2中三极管 TR24的集电极的恒流电流, 即图 7-1中的 II, UBE 为三极管 TR23的基极、 发射极压降, 硅管一般取 0.6V左右, 也可以根据实测值代 入, R25为电阻 R25的阻值。
当某种原因使得三极管 TR24的集电极电流变大时, 三极管 TR24的发射极电 流会同步变大, 该电流在电阻 R25上的压降变大, 使得三极管 TR23的基极电流 变大, 三极管 TR23放大了该基极电流, 其集电极电流变大, 使得三极管 TR24的 基极电压上升, 从而三极管 TR24的集电极电流回复到公式 (1)的数值。
当某种原因使得三极管 TR24的集电极电流变小时, 三极管 TR24的发射极电 流会同步变小, 该电流在电阻 R25上的压降变小, 使得三极管 TR23的基极电流 变小, 三极管 TR23趋于截止, 三极管 TR23集电极电流变小, 使得三极管 TR24 的基极电压下降, 从而三极管 TR24的集电极电流回复到公式 (1)的数值。
电阻 R24为 3.3ΜΩ, 电阻 R25为 5.1ΚΩ, 三极管 TR23为 2N5401, 三极管 TR24为 A92型号的 PNP三极管; 其特性实测如表一所示。 表
Figure imgf000011_0001
表中工作电压指电阻 R24的下端, 即连接 108的那端到 112端的电压, 从上 表看出, 基本实现恒流特性。
输出电路 105由稳压二极管 D21、 NPN型三极管 TR25组成,稳压二极管 D21 的阴极为输出电路的控制端口 116,稳压二极管 D21的阳极连接三极管 TR25的基 极, 三极管 TR25的发射级就是输出电路的输入端口 114, 三极管 TR25的集电极 级就是输出电路的输出端口 115;
稳压二极管 D21为 3.3V稳压管、 NPN型三极管 TR25为 A42型号的 NPN三 极管两只复合而成。
电路的工作原理和发明内容中技术方案中的工作原理相同, 这里不再赘述。 为了测量方便, 电容 CL为 47uF/100V电解电容, 负载电阻 RL为 1-10ΚΩ的 可调电阻。
电路总装完成后, 先不接电容 CL, 如图 7-2所示, 先用示波器的 2通道观察 108到 107的波形, 记录下来, 再用示波器的 1通道观察本发明的交流变直流电路 输出端的波形, 即 115端至 107端的波形, 示波器的型号为泰克 (Tektronix)公司的 TDS3012C。 若同时测量, 由于 1通道和 2通道不共地, 其中一个通道要加入泰克 公司原配的隔离探头。 通道的标号在图中左侧, 1通道的数字 "1"在白色小框内, 2 通道的数字" 2"在黑色小框内。 图 7-3为实测波形,就是加入隔离探头实测的波形,输入的交流为 1 10V/50Hz, 从 2通道波形可以看出, 交流电半波本身失真较大, 限于条件所限, 没有找到较 为完美的正弦波用于测量。 从通道 1的波形可以看出, 每个半波, 本发明的电路 导通两次, 输入半波的峰值为 152V, 但本发明电路输出电压峰值为 37.2V。
把输入交流降为 71V/50Hz左右, 实测波形为图 7-4所示, 输入半波的峰值为 也下降到 100V, 但本发明电路输出电压峰值仍为 37.2V。
即本发明的输出电压与输入电压没有关联, 完成由电路自身参数决定。 实现 了在负载不变情况下, 稳压输出。
接入电容 CL, 即加入滤波电容,负载电阻 RL为 1ΚΩ, 实测输出波形如图 7-5 所示, 图 7-5中上边的曲线为负载电阻两端的波形, 得到较为平滑的直流电, 可以 看出, 每个半波充电两次, 注: 现有技术, 是每个半波充电一次。
事实上, 对于本技术领域的人, 把各器件的参数调整一下, 就可以得到不同 的输出电压和最大整流电流。
可见, 本发明无论从原理上, 还是从实验上, 都验证了可以实现发明目的。 第二实施例
把图 7-2中的电压检测电路 103更换为图 8所示电路,更换时严格按第一实施 例中的连接关系, 就可以得到第二实施例。
图 8的电压检测电路由电阻 R201、 电阻 R202、 电阻 R203以及三极管 TR201 组成, 电压检测输入正 109为电阻 R202的一端, 电阻 R202另一端与电阻 R201 连接, 连接点同时连接至三极管 TR201的基极, 电阻 R201另一端与电阻 R203— 端连接, 连接点形成电压检测输入负 1 10, 电阻 R203另一端与三极管 TR201的发 射极连接, 三极管 TR201的集电极为电压检测输出端 1 1 1, 事实上, 这个电路为 标准的公知的共发射极放大电路, 109到 1 10所加的电压为输入电压, 设为 Vin, 那么电压检测输出端 1 1 1的吸收电流 12为:
v. R201
Vin x Ube ,、 h 12 - Ic - R201 + R202 公式 (2)
~ R203
其中, Ube—般为 0.5V至 0.8V, 为三极管 TR201的基极至发射极导通压降, 常见计算取 0.6V至 0.7V之间, 从公式 (2)可以看出, 三极管 TR201的集电极电流 是正比于输入电压 Vin的, 即电压检测电路的吸收电流是随着工作电压升高而增 加的, 即图 8的电压检测输出端 1 1 1吸收电流是随着工作电压升高而增大的, 其 最大电流被图 7-1中的恒流源 104所限制,当恒流源 104的电流完全被图 8电压检 测输出端 111吸收电流所消耗,那么图 7-1中,输出电路 105将完全没有输出。即, 本发明的整流点可以通过预先设置实现。
第二实施例的原理图见图 9, 除电压检测电路 103和第一实施例不同, 其它部 份的参数相同, 图 9中电压检测电路 103的器件参数为: 电阻 R201为 270ΚΩ、 电 阻 R202为 9.1ΜΩ、 电阻 R203为 5.1ΚΩ, 三极管 TR201型号为 S9014。
实测在输入交流在 110V/50HZ及以下, 都可以实现发明目的, 其输出特性和 图 7—3、图 7-4、图 7-5几乎完全一致,以上三图中 Chi的测量值分别为 37.9V、37.9V、 禾口 26.5V。
电路的工作原理和发明内容中技术方案中的工作原理相同, 这里不再赘述。 事实上, 对于本技术领域的人, 把各器件的参数调整一下, 就可以得到不同 的输出电压和最大整流电流。
第三实施例
把图 7-2中的恒流源 104更换为图 10所示电路另一种恒流源电路, 更换时严 格按第一实施例中的连接关系, 就可以得到第三实施例, 图 11示出的为第三实施 例原理图。 图 10的恒流源 104由电阻 R204、 电阻 R205、 二极管 D201、 二极管 D202、 以及三极管 TR204组成, 二极管 D201的阳极和电阻 R205连接, 连接点形 成恒流源 104的流入端 112, 二极管 D201的阴极和二极管 D202的阳极连接, 二 极管 D201的阴极和电阻 R204连接, 连接点同时连接至三极管 TR204的基极, 三 极管 TR204的发射极和电阻 R205的另一端连接, 三极管 TR204的集电极为恒流 源 104的流出端 113 ; 电阻 R204的另一端接整流电路 102的输出负 108。
事实上, 这个电路为公知的恒流源电路, 其恒流电流 II为:
H ^ Ie = UD + 公式 (3)
R205
其中, Ube—般为 0.5V至 0.8V, 为三极管 TR204基极至发射极导通压降, 常 见计算取 0.6V至 0.7V之间, UD2Q1和 UD2Q2分别为二极管 D201和二极管 D202在电路 中的正向导通压降, R205为电阻 R205的阻值。 因为 UD2Q1和 UD2Q2和 Ube大约相等, 简易算法就是用二极管在电路中的正向导通压降除以电阻 R205的阻值。
第三实施例的原理图见图 11, 除恒流源 104和第一实施例不同, 其它部份的 参数相同,图 11中电压恒流源 104的器件参数为:电阻 R205为 5.1ΚΩ、电阻 R204 为 3.9ΜΩ、三极管 TR24为 Α92型号的 ΡΝΡ三极管。 同样实现了 lOOuA左右的恒 流源。
实测在输入交流在 110V/50HZ及以下, 都可以实现发明目的, 其输出特性和 图 7—3、图 7-4、图 7-5几乎完全一致,以上三图中 Chi的测量值分别为 37.6V、37.6V、 禾卩 26.4V。
电路的工作原理和发明内容中技术方案中的工作原理相同, 这里不再赘述。 事实上, 对于本技术领域的人, 把各器件的参数调整一下, 就可以得到不同 的输出电压和最大整流电流。
第四实施例
输出电路 105至少三个端口, 输入端口 114和输出端口 115, 以及控制端口
116;
把图 7-2中的输出电路 105更换为图 12所示电路另一种输出电路, 更换时严 格按第一实施例中的连接关系, 就可以得到第四实施例, 图 13示出的为第四实施 例原理图。 图 12的输出电路 105由稳压二极管 D21、 以及 NPN型三极管 TR25、 PNP型三极管 TR26组成,稳压二极管 D21的阴极为输出电路的控制端口 116,稳 压二极管 D21的阳极连接三极管 TR25的基极,三极管 TR25的发射级就是输出电 路的输入端口 114,三极管 TR25的集电极级连接三极管 TR26的基极,三极管 TR26 的发射极为输出电路的输入端口 117, 前文提到: 输出电路 105至少三个端口, 输 入端口 117为新增加的第 4端口。三极管 TR26的集电极就是输出电路的输出端口 115。
当三极管 TR25的集电极出现电流时, 注入三极管 TR26的基极, 经三极管 TR26放大后经三极管 TR26的集电极输出, 所不同的是, 输出电路 105的输出端 口 115演变为本实施例的交流变直流电路的输出正, 整流电路输出负 108即为本 发明的交流变直流电路的输出负。
第四实施例的原理图见图 13, 除输出电路 105和第一实施例不同, 工作原理 除输出电路 105这部分不同, 其它相同, 这里不再赘述。
同样, 对于本技术领域的人, 把各器件的参数调整一下, 就可以得到不同的 输出电压和最大整流电流。
把第一至第四实施例的整流电路换成桥式整流, 一样实现发明目的。
第五实施例 图 14-1为第五实施例的电路框图, 图 14-2为第五实施例的电路图。 图 14-1 框图清晰地展现了上述技术方案二的连接关系, 包括整流电路 102、 电压检测电路 103、 恒流源 104、 输出电路 105 ; 整流电路的交流输入端 106接交流输入, 整流 电路的交流输入端 106有两个, 理论上可以互换, 这里也同样不作区分; 整流电 路 102的输出端 107和 108并联电压检测电路, 电压检测电路 103至少有三个端 口, 电压检测输入正 109、 电压检测输入负 110、 电压检测输出端 111 ; 恒流源 104 至少有二个端口, 流入端 112和流出端 113 ; 输出电路 105至少三个端口, 输入端 口 114和输出端口 115,以及控制端口 116;电压检测输入正 109连接整流电路 102 输出正 107, 电压检测输入负 110连接整流电路 102的输出负 108, 电压检测输出 端 111连接至输出电路 105的控制端口 116,同时连接到恒流源 104的流入端 112, 恒流源 104的流出端 113连接至整流电路 102输出负 108, 整流电路 102输出正 107还连接到输出电路 105的输入端口 114, 输出电路 105的输出端口 115即是本 发明的交流变直流电路的输出正, 整流电路 102输出负 108即为本发明的交流变 直流电路的输出负。
电容 CL和负载电阻 RL是为了说明实施效果而画上的。
图 14-2为第五实施例的具体电路理图, 下边以一组实验数据并结合工作原理 说明第五实施例图 14-1的效果, 电路的参数如下:
整流电路 102为四只二极管组成的桥式整流电路, 分别为二极管 D22、 二极 管 D23、二极管 D24、二极管 D25, 二极管 D22的阴极和二极管 D23的阴极连接, 形成整流电路 102输出正 107, 二极管 D24的阳极和二极管 D25的阳极连接, 形 成整流电路 102输出负 108, 二极管 D22的阳极和二极管 D25的阴极连接, 形成 交流输入端 106, 二极管 D23的阳极和二极管 D24的阴极连接, 形成另一个交流 输入端 106。
电压检测电路 103由电阻 R21、电阻 R22、电阻 R23,以及 PNP型三极管 TR21、 PNP型三极管 TR22组成, 电压检测电路 103在本实施例中用镜像恒流源实现, 电 阻 R21和电阻 R23—端相连接, 连接点形成电压检测输入正 109, 电阻 R21的另 一端和三极管 TR21的发射极相连, 三极管 TR21的基极、 集电极相连接, 且与三 极管 TR22的基极相连, 该连接点连接电阻 R22的一端, 电阻 R22的另一端形成 电压检测输入负 110; 电阻 R23的另一端和三极管 TR22的发射极相连接, 三极管 TR22的集电极为电压检测输出端 111 ; 恒流源 104由电阻 R24和电阻 R25以及 NPN型三极管 TR23和 NPN型三极 管 TR24组成, 这个电路的连接关系为公知技术, 电阻 R24不与三极管 TR24基极 相连的那一端连接至整流电路 102输出正 107,三极管 TR24的集电极为恒流源 104 的流入端 112,三极管 TR23的发射极和电阻 R25的连接点为恒流源 104的流出端 113, 其工作原理同第一实施例中的恒流源, 仅仅是三极管的极性不同, 这里不再 赘述。
输出电路 105由稳压二极管 D21、 PNP型三极管 TR25a、 PNP型三极管 TR25b 组成, 稳压二极管 D21的阳极为输出电路的控制端口 116, 稳压二极管 D21的阴 极连接三极管 TR25a的基极, 三极管 TR25a的发射极连接三极管 TR25b的基极, 三极管 TR25b的发射级就是输出电路的输入端口 114, 三极管 TR25a的集电极和 三极管 TR25b的集电极连接在一起, 形成输出电路的输出端口 115。
本发明的工作原理是, 整流电路 102把市电整流为脉动直流电, 脉动直流电 的波形见图 2-2或图 3-2, 电压检测电路 103随着整流电路 102输出电压瞬时值电 压上升, 电压检测电路 103的电压检测输出端 111吸收电流 12越大, 恒流源 104 的电流 II被吸收得越多,恒流源 104给输出电路 105的控制端口 116的电流 B越 小, 输出电路 105的输出电流就是放大其控制端口 116的电流 13。 即实现了: 在整流电路 102输出电压瞬时值比预设电压值小, 电压检测输出端 111的吸 收电流 12比恒流源 104的电流 II小, 输出电路 105的控制端口 116有电流流过, 输出电路输出整流后电压瞬时值;
在整流电路 102输出电压瞬时值和预设电压值相同, 电压检测输出端 111的 吸收电流 12和恒流源 104的电流 II相同,输出电路的控制端口 116没有电流流过, 输出电路无输出;
在整流电路 102输出电压瞬时值比预设电压值大, 电压检测输出端 111的吸 收电流 12比恒流源的电流 II大, 因恒流流 104的电流 II不再增大, 电压检测输 出端 111吸收电流 12只能和恒流源 104的电流 II相等,输出电路 105的控制端口 116没有电流流过, 输出电路 105无输出。
即可实现发明目的, 下面以一组实测数据来说明效果, 为了测量方便, 电容 CL为 47uF/100V电解电容, 负载电阻 RL为 1-10ΚΩ的可调电阻。 图 14-2中, 二 极管 D22、 二极管 D23、 二极管 D24、 二极管 D25均为 1N4007, 稳压二极管 D21 为 5. IV稳压管; 电阻 R21为 51ΚΩ, 电阻 R22为 20ΜΩ, 电阻 R23为 1ΚΩ, 电阻 R24为 3.3ΜΩ, 电阻 R25为 5.6ΚΩ, 三极管 TR21、 三极管 TR22为 2N5401型号 的 PNP三极管; 三极管 TR23、三极管 TR24为 2N5551型号的 NPN三极管; 三极 管 TR25a和 TR25b型号均为 A92。
电路总装完成后, 先不接电容 CL, 如图 14-2所示, 用示波器的 2通道观察 108到 107的波形,同时用示波器的 1通道观察本发明的交流变直流电路输出端的 波形, 即 115端至 108端的波形, 示波器的输入地接 108上, 示波器的型号为泰 克 (Tektronix)公司的 TDS3012C。 通道的标号在图中左侧, 1通道的数字 "1"在白色 小框内, 2通道的数字" 2"在黑色小框内。
图 14-3为实测波形, 输入的交流为 110V/50Hz, 从 2通道波形可以看出, 交 流电半波本身失真较大, 限于条件所限, 没有找到较为完美的正弦波用于测量。 从通道 1的波形可以看出, 每个半波, 本发明的电路导通两次, 输入半波的峰值 为 157V, 但本发明电路输出电压峰值为 83.0V。
把输入交流降为 71V/50Hz左右, 输入半波的峰值为也下降到 100V, 但本发 明电路输出电压峰值仍为 83.0V, 符合工作原理。 即本发明的输出电压与输入电压 没有关联, 完成由电路自身参数决定。 实现了在负载不变情况下, 稳压输出。
接入接电容 CL, 即加入滤波电容, 负载电阻 RL为 1ΚΩ, 实测输出波形如图 14-4所示, 图 14-4中上边的曲线为负载电阻两端的波形,得到较为平滑的直流电, 电压值约为 66.2V, 可以看出, 每个半波充电两次, 注: 现有技术, 是每个半波充 电一次。
可见, 本发明无论从原理上, 还是从实验上, 都验证了可以实现发明目的。 事实上, 对于本技术领域的人, 把各器件的参数调整一下, 就可以得到不同 的输出电压和最大整流电流。 采用第二实施例、 第三实施例、 第四实施例的方法, 用其它的整流电路 102、 电压检测电路 103、 恒流源 104、 输出电路 105分别或任 意组合替换, 一样可以实现发明目的。
第六实施例
图 15示出的, 就是用图 15中电压检测电路 103更换图 14-2中的 103, 图 15 中电压检测电路 103由电阻 R21、 电阻 R22、 电阻 R23、 二极管 D26, 以及 PNP 型三极管 TR22组成, 电阻 R21和电阻 R23—端相连接, 连接点形成电压检测输 入正 109, 电阻 R21的另一端和二极管 D26的阳极相连, 二极管 D26的阴极与三 极管 TR22的基极相连, 该连接点连接电阻 R22的一端, 电阻 R22的另一端形成 电压检测输入负 110; 电阻 R23的另一端和三极管 TR22的发射极相连接, 三极管 TR22的集电极为电压检测输出端 111 ;
第六实施例工作原理同上述的第五实施例, 一样可以实现发明目的。
第七实施例
图 16示出的, 就是用图 16中恒流源 104更换图 14-2中的 104, 图 16中恒流 源 104由电阻 R24和电阻 R25以及 NPN型三极管 TR24和稳压二极管 D27组成, 这个电路的连接关系为公知技术, 稳压二极管 D27的阳极与电阻 R24相连, 且与 三极管 TR24基极相连, 电阻 R24不与三极管 TR24基极相连的那一端连接至整流 电路 102输出正 107, 三极管 TR24的集电极为恒流源 104的流入端 112, 稳压二 极管 D27的阴极和电阻 R25的连接点为恒流源 104的流出端 113, 同样实现恒流 源。
第七实施例工作原理同上述的第五实施例, 一样可以实现发明目的。
第八实施例
图 17示出了第八实施例, 在第七实施例基础上, 如图 17所示, 增加了一个 电压检测电路 118, 电压检测电路 118至少有三个端口, 电压检测输入正 119、 电 压检测输入负 120、 电压检测输出端 121 ; 其实电压检测电路 118和电压检测电路 103功能相同, 电压检测电路 118的 119、 120、 121分别对应电压检测电路 103的 109、 110、 111三个端口。
电压检测电路 118由电阻 R26、 电阻 R27、 稳压二极管 D28, 以及 NPN型三 极管 TR27组成, 稳压二极管 D28的阴极是电压检测输入正 119, 稳压二极管 D28 的阳极连接电阻 R26—端,电阻 R26另一端连接电阻 R27—端,同时与三极管 TR27 的基极相连, 电阻 R27另一端与三极管 TR27的发射极相连接, 并形成电压检测 输入负 120, 三极管 TR27的集电极为电压检测输出端 121。
电压检测电路 118的电压检测输入正 119连接在输出电路 105的输出端口 115 上, 电压检测电路 118的电压检测输入负 120连接在本发明的交流变直流电路的 输出负, 即 108上, 电压检测电路 118的电压检查输出端 121连接在恒流电路中, 确保当输出端口 115输出过压时, 三极管 TR27导通, 关掉恒流源, 这样, 输出电 路的控制端口 116由于没有电流而不工作, 关掉输出, 这样, 确保输出端的输出 电压约为: Uout ^ UD2S + R27 + R26 x O 公式 (4) 电阻 R27的端电压被三极管 TR27的导通压降限制, 那么利用这一点, 就可以 得到公式 (4), 其中 UD28为稳压二极管 D28的稳压值。
即第八实施例不仅可以实现发明目的, 而且可以实现较为精密的输出稳压, 作为第八实施例的进一步改进, 1 19端接在滤波网络的输出端, 这样可以实现更小 的纹波电压输出。
电压检测电路 1 18放在上述实施例电压检测电路 103中, 而注意二极管、 三 极管极性, 一样可以实现相应的实施例的发明目的。
若把上述实施例电路中的"负载电阻 RL", 替换为非隔离、 隔离功能的 DC/DC 电路, 如自激推挽变换器、 RCC(Ringing Choke Converter)变换器、 反激变换器电 路 (Flyback Converter), 就可以实现 AC/DC小功率隔离电源, 包括稳压输出和非稳 压输出。 图 18就给出了这种应用电路拓扑, 其中 122即为 DC/DC变换器 (开关电 源), 同样, 由于没有使用高压无极性电容或高压电解电容, 本发明的 AC/DC小功 率隔离电源同样可以实现小型化, 且在开机时不存在冲击电流。
若图 18中的 122为一个 PFC电路, 本电路同样可以工作。
以上仅是本发明的优选实施方式, 应当指出的是, 上述优选实施方式不应视 为对本发明的限制, 本发明的保护范围应当以权利要求所限定的范围为准。 对于 本技术领域的普通技术人员来说, 在不脱离本发明的精神和范围内, 还可以做出 若干改进和润饰, 如采用公知的三极管复合管代替相应的三极管; 用 PNP型三极 管代替 NPN型三极管, 而把电源输入电压极性反过来, 使用压电陶瓷技术作为隔 离的 DC/DC变换器, 使用场效应管代替上述的三极管。 这些改进和润饰也应视为 本发明的保护范围。

Claims

权利要求
1、 一种交流变直流电路, 其特征在于:
包括整流电路、 电压检测电路、 恒流源、 输出电路;
所述的整流电路把交流电整流为脉动直流电;
所述的恒流源向所述的电压检测电路的电压检测输出端和所述的输出电路的 控制端口提供电流, 所述的恒流源中流过的电流为所述的恒流源向所述的电压检 测电路提供的电流和所述的恒流源向所述的输出电路提供的电流之和;
所述的电压检测电路随着所述的整流电路输出电压瞬时值上升, 所述的电压 检测电路的电压检测输出端吸收电流越大, 所述的恒流源的电流被吸收得越多, 所述的恒流源给所述的输出电路的控制端口的电流越小;
所述的输出电路放大其控制端口的电流后输出, 所述输出电流向所述的交流 变直流电路的后续负载供电。
2、 根据权利要求 1所述的交流变直流电路, 其特征在于: 所述的恒流源的输出电 流分别流向所述的电压检测电路和所述的输出电路。
3、 根据权利要求 1所述的交流变直流电路, 其特征在于: 所述的恒流源向电压检 测电路提供的电流和所述的恒流源向输出电路提供的电流之和流入所述的恒流 源。
4、 根据权利要求 1所述的交流变直流电路, 其特征在于: 所述的输出电路的输出 端还连接有一电压检测电路。
5、 权利要求 1~4任一所述的交流变直流电路在 AC/DC小功率电源中的应用。
PCT/CN2012/074878 2012-03-06 2012-04-28 一种交流变直流电路 WO2013131315A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/357,215 US9438133B2 (en) 2012-03-06 2012-04-28 Alternating current-to-direct current circuit
DE112012005986.7T DE112012005986T5 (de) 2012-03-06 2012-04-28 Wechselstrom/Gleichstrom-Schaltung
JP2014550611A JP5810229B2 (ja) 2012-03-06 2012-04-28 交流を直流に変換する電気回路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210056555.9A CN102594175B (zh) 2012-03-06 2012-03-06 一种交流变直流电路
CN201210056555.9 2012-03-06

Publications (1)

Publication Number Publication Date
WO2013131315A1 true WO2013131315A1 (zh) 2013-09-12

Family

ID=46482465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074878 WO2013131315A1 (zh) 2012-03-06 2012-04-28 一种交流变直流电路

Country Status (5)

Country Link
US (1) US9438133B2 (zh)
JP (1) JP5810229B2 (zh)
CN (1) CN102594175B (zh)
DE (1) DE112012005986T5 (zh)
WO (1) WO2013131315A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103424601B (zh) * 2013-08-21 2015-08-19 矽力杰半导体技术(杭州)有限公司 一种电压检测电路
US10141842B2 (en) * 2015-07-03 2018-11-27 Philips Lighting Holding B.V. Power converter and an LED lighting circuit comprising the same
CN105491728B (zh) 2016-01-21 2017-05-24 广州金升阳科技有限公司 一种直接滤波式开关电源
CN105577003B (zh) 2016-01-21 2017-12-29 广州金升阳科技有限公司 一种带有源功率因数校正的开关电源
CN105527524B (zh) 2016-01-21 2018-03-27 广州金升阳科技有限公司 一种开关电源用指示电路及其使用方法
CN107071961A (zh) * 2017-01-18 2017-08-18 中山市美耐特光电有限公司 一种可有效弱化频闪现象的高压led灯带
US11971735B2 (en) * 2019-11-01 2024-04-30 Texas Instruments Incorporated Low area frequency compensation circuit and method
CN111857224A (zh) * 2020-07-31 2020-10-30 深圳君略科技有限公司 一种多级芯片串联电路及驱动系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1039159A (zh) * 1988-06-28 1990-01-24 明昌连 选通式可隔离电源变换器
CN1149784A (zh) * 1995-11-01 1997-05-14 三星电子株式会社 电源控制及其方法
JPH10201235A (ja) * 1996-12-27 1998-07-31 Canon Inc 電源回路
JP2003235266A (ja) * 2002-02-08 2003-08-22 Origin Electric Co Ltd 3相全波整流装置
CN101286707A (zh) * 2007-04-12 2008-10-15 张亦翔 功率因数补偿型恒流驱动led节能照明灯

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4194240A (en) * 1978-05-02 1980-03-18 United States Of America Precision envelope detector and linear rectifier circuitry
JP2797461B2 (ja) * 1989-06-22 1998-09-17 オムロン株式会社 発光素子の駆動回路
DE9416084U1 (de) * 1993-10-25 1995-02-23 Papst Motoren Gmbh & Co Kg Netzgerät
JPH07255175A (ja) * 1994-03-15 1995-10-03 Matsushita Electric Ind Co Ltd 電源装置
US6154375A (en) * 1999-10-08 2000-11-28 Philips Electronics North America Corporation Soft start scheme for resonant converters having variable frequency control
JP2004187417A (ja) * 2002-12-04 2004-07-02 Maekawa Denki Kk 交流/直流変換装置
JP4093185B2 (ja) * 2004-01-09 2008-06-04 サンケン電気株式会社 スイッチング電源装置
CN100394344C (zh) * 2005-08-09 2008-06-11 刘树林 恒功率输出的高压大功率安全栅
US7227763B1 (en) * 2006-07-24 2007-06-05 Averd Co., Ltd. Power supply apparatus using half-bridge circuit
DE112008003666B4 (de) * 2008-02-20 2012-06-14 Merstech Inc. Magnetenergie-Wiederherstellschalter mit Schutzschaltung
TW200937828A (en) * 2008-02-22 2009-09-01 Macroblock Inc Electricity -extraction circuit of AC/DC converter take
US8228692B2 (en) * 2008-07-29 2012-07-24 On-Bright Electronic (Shanghai) Co., Ltd. Systems and methods for adaptive switching frequency control in switching-mode power conversion systems
CN201563070U (zh) * 2009-10-14 2010-08-25 中国水利水电第五工程局有限公司 具有可控硅过流保护的直流可调稳压电源
US8294377B2 (en) * 2010-06-25 2012-10-23 Power Integrations, Inc. Power converter with compensation circuit for adjusting output current provided to a constant load

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1039159A (zh) * 1988-06-28 1990-01-24 明昌连 选通式可隔离电源变换器
CN1149784A (zh) * 1995-11-01 1997-05-14 三星电子株式会社 电源控制及其方法
JPH10201235A (ja) * 1996-12-27 1998-07-31 Canon Inc 電源回路
JP2003235266A (ja) * 2002-02-08 2003-08-22 Origin Electric Co Ltd 3相全波整流装置
CN101286707A (zh) * 2007-04-12 2008-10-15 张亦翔 功率因数补偿型恒流驱动led节能照明灯

Also Published As

Publication number Publication date
CN102594175B (zh) 2014-06-25
JP5810229B2 (ja) 2015-11-11
US9438133B2 (en) 2016-09-06
DE112012005986T5 (de) 2015-05-28
JP2015503899A (ja) 2015-02-02
US20140376290A1 (en) 2014-12-25
CN102594175A (zh) 2012-07-18

Similar Documents

Publication Publication Date Title
WO2013131315A1 (zh) 一种交流变直流电路
US9843271B1 (en) Controllers for regulated power inverters, AC/DC, and DC/DC converters
CN102843019B (zh) 一种滤波电路
KR102111144B1 (ko) Ac/dc 변환을 포함하는 수동 역률 보정
TW201239601A (en) Power supply apparatus suitable for computer
CN109088536B (zh) 改善谐波的有源功率因数校正电路、方法及驱动系统
CN110429837A (zh) 宽范围输入输出ac-dc变换器
WO2018173364A1 (ja) ブリッジレス力率改善回路
CN103916020B (zh) 开关电源及其控制电路
CN202750021U (zh) 一种将交流电转换成直流电的转换器
CN218162942U (zh) 耐核辐射的led驱动器电路
CN104967304A (zh) 一种基于无桥cuk隔离型三相功率因数校正变换器
CN201900045U (zh) 电除尘器三相中频直流高压电源
CN105576995B (zh) 随机曲线变化式数字交流稳压电源
CN212086061U (zh) 一种功率因数校正电路及开关电路
Shao et al. Analog Based High Efficiency 2 KW Totem Pole PFC Converter Using Surface Mount SIC MOSFET's
CN204145816U (zh) 降压式高功率因数恒流驱动电路
Jia et al. A bulk-capacitance reduction method using self-driven thyristor for AC-DC converters
CN209105035U (zh) 一种dc-dc降压隔离电路
CN202334340U (zh) 一种健身器材用电源适配器
CN211266762U (zh) 一种apfc直流400v直流稳压电源电路
CN105048827A (zh) 倍压整流电路
Xu et al. Research of current hysteresis control for boost bridgeless PFC
CN204835962U (zh) 一种倍压整流电路
CN204538990U (zh) 三管式全波整流器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870572

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014550611

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14357215

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112012005986

Country of ref document: DE

Ref document number: 1120120059867

Country of ref document: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/02/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12870572

Country of ref document: EP

Kind code of ref document: A1