WO2013131285A1 - Pva像素电极 - Google Patents

Pva像素电极 Download PDF

Info

Publication number
WO2013131285A1
WO2013131285A1 PCT/CN2012/072220 CN2012072220W WO2013131285A1 WO 2013131285 A1 WO2013131285 A1 WO 2013131285A1 CN 2012072220 W CN2012072220 W CN 2012072220W WO 2013131285 A1 WO2013131285 A1 WO 2013131285A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
pixel
pva
outside
ito
Prior art date
Application number
PCT/CN2012/072220
Other languages
English (en)
French (fr)
Inventor
姚晓慧
许哲豪
薛景峰
董成才
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/512,577 priority Critical patent/US9122102B2/en
Publication of WO2013131285A1 publication Critical patent/WO2013131285A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells

Definitions

  • the present invention relates to the field of liquid crystal display, and more particularly to a PVA pixel electrode which can improve the transmittance and display quality of a pixel.
  • PVA Plasma Vertical Alignment, image vertical adjustment technology
  • VA Very Alignment, a mode in display that uses an electric field formed by a pattern on the side of a TFT (Thin Film Transistor) and a CF (color filter) to control the orientation of the liquid crystal.
  • TFT Thin Film Transistor
  • CF color filter
  • FIG. 1A is a schematic structural view of a first electrode 10 on the TFT side of a PVA pixel electrode of the prior art
  • FIG. 1B is a PVA pixel electrode of the prior art.
  • the display quality of the pixel is a schematic structural view of a first electrode
  • the present invention is directed to the defect that the PVA pixel of the PVA pixel electrode of the prior art generates a fringe field effect on the liquid crystal to affect the display quality of the pixel and reduce the aperture ratio of the pixel, and provides an edge boundary by modifying the TFT side and/or the CF side.
  • ITO Indium-Tin Oxide, indium tin oxide
  • PVA pixel electrode with gap-eliminating fringe field effect to achieve the effect of improving pixel transmittance and display quality.
  • a main object of the present invention is to provide a PVA pixel electrode comprising: a first electrode on a side of the TFT; and a second electrode on the CF side corresponding to the first electrode, by applying to the first electrode and the The electric field on the second electrode controls the orientation of the liquid crystal disposed between the first electrode and the second electrode, the first electrode and the second electrode respectively having a certain inclination angle with the edge of the pixel, wherein An ITO gap of unequal length is disposed on the first electrode at an edge boundary of the first electrode and the second electrode such that a pitch between the first electrode and a corresponding second electrode is within a pixel to a pixel Decrease in the outer direction.
  • a main object of the present invention is to provide a PVA pixel electrode comprising: a first electrode on a side of the TFT; and a second electrode on the CF side corresponding to the first electrode, by being applied to the first electrode and An electric field on the second electrode controls a direction of liquid crystal disposed between the first electrode and the second electrode, the first electrode and the second electrode respectively having a certain inclination angle with an edge of the pixel, wherein Providing an unequal length of ITO gap to the second electrode at an edge boundary of the first electrode and the second electrode such that a spacing between the first electrode and a corresponding second electrode is within a pixel Decrement in the direction outside the pixel.
  • a main object of the present invention is to provide a PVA pixel electrode comprising: a first electrode on a side of the TFT; and a second electrode on the CF side corresponding to the first electrode, by being applied to the first electrode and An electric field on the second electrode controls a direction of liquid crystal disposed between the first electrode and the second electrode, the first electrode and the second electrode respectively having a certain inclination angle with an edge of the pixel, wherein Providing an unequal length of ITO gap between the first electrode and the second electrode at an edge boundary of the first electrode and the second electrode such that the first electrode and the corresponding second electrode are between The pitch is decremented within the pixel to the direction outside the pixel.
  • the spacing between the first electrode and the corresponding second electrode is S
  • the difference between adjacent spacings S is ⁇ S
  • the ⁇ S is within the pixel to the pixel. The direction in the outside is increased first and then decreased.
  • the ⁇ S is the same in the pixel to the direction outside the pixel.
  • the difference in length between adjacent ITO gaps provided by the first electrode is 1 um to 10 um.
  • the difference in length between adjacent ITO gaps provided by the second electrode is 1 um to 10 um.
  • the PVA pixel electrode of the present invention has the problem of affecting the display quality of the pixel and reducing the aperture ratio of the pixel, and the PVA pixel electrode of the present invention is modified by modifying the edge of the TFT side and/or the CF side.
  • the ITO gap at the junction eliminates the fringe field effect to achieve an effect of improving pixel transmittance and display quality.
  • 1A is a schematic structural view of a first electrode on a TFT side of a PVA pixel electrode of the prior art
  • 1B is a schematic diagram showing the reverse structure of a second electrode on the CF side of a PVA pixel electrode of the prior art
  • FIG. 2A is a schematic structural view of a first electrode and a second electrode of a first preferred embodiment of a PVA pixel electrode of the present invention
  • FIG. 2B is a schematic structural view of a first electrode on a TFT side of a first preferred embodiment of a PVA pixel electrode of the present invention
  • 2C is a schematic diagram showing the reverse structure of a second electrode on the CF side of the first preferred embodiment of the PVA pixel electrode of the present invention
  • Figure 2D is an enlarged view of a portion A1 of Figure 2A;
  • 3A is a schematic structural view of a first electrode and a second electrode of a second preferred embodiment of the PVA pixel electrode of the present invention
  • 3B is a schematic structural view of a first electrode on a TFT side of a second preferred embodiment of the PVA pixel electrode of the present invention.
  • 3C is a schematic diagram showing the reverse structure of the second electrode on the CF side of the second preferred embodiment of the PVA pixel electrode of the present invention.
  • Figure 3D is an enlarged view of a portion A2 of Figure 3A;
  • FIG. 4A is a schematic structural view of a first electrode and a second electrode of a third preferred embodiment of the PVA pixel electrode of the present invention.
  • FIG. 4B is a schematic structural view of a first electrode on a TFT side of a third preferred embodiment of the PVA pixel electrode of the present invention.
  • 4C is a schematic diagram showing the reverse structure of the second electrode on the CF side of the third preferred embodiment of the PVA pixel electrode of the present invention.
  • Figure 4D is an enlarged view of a portion A3 of Figure 4A;
  • 5A is a simulation diagram of output of a PVA pixel electrode of the prior art
  • 5B is a diagram showing an output simulation of a first preferred embodiment of a PVA pixel electrode of the present invention.
  • 5C is a diagram showing an output simulation of a second preferred embodiment of the PVA pixel electrode of the present invention.
  • FIGS. 2A, 2B, 2C, and 2D As a first preferred embodiment of the PVA pixel electrode of the present invention, as shown in FIGS. 2A, 2B, 2C, and 2D, wherein FIG. 2A is a first electrode of the first preferred embodiment of the PVA pixel electrode of the present invention, and 2B is a schematic structural view of a first electrode on the TFT side of the first preferred embodiment of the PVA pixel electrode of the present invention; and FIG. 2C is a first preferred embodiment of the PVA pixel electrode of the present invention. A reversed schematic view of the second electrode on the CF side; and FIG. 2D is an enlarged view of the A1 portion of FIG. 2A.
  • the PVA pixel electrode includes a first electrode 10 on the TFT side, and a second electrode 20 on the CF side, which is controlled by an electric field applied to the first electrode 10 and the second electrode 20.
  • the orientation of the liquid crystal between the first electrode 10 and the second electrode 20, the first electrode 10 and the second electrode 20 are respectively inclined at an angle to the edge of the pixel, and the first electrode 10 and the corresponding second electrode 20 in FIG. 2A will be entirely
  • the electrode is divided into eight liquid crystal arrays which can produce eight domains, so that the viewing angle characteristics of the liquid crystal display can be improved by the structure of one continuous domain.
  • the PVA pixel electrode of the present invention provides an ITO gap 30 of unequal length to the first electrode 10 at the boundary of the edge of the first electrode 10 and the second electrode 20 such that the first electrode 10 and the corresponding second electrode 20 are The pitch is decremented in the direction from the pixel to the outside of the pixel.
  • the structure of the second electrode 20 on the CF side shown in FIG. 2C is the same as that of the second electrode 20 on the CF side shown in FIG. 1B.
  • the structure of the first electrode 10 on the TFT side shown in Fig. 2B is correspondingly improved, and the structure of the first electrode 10 at the corresponding positions of the marked 12 points shown in Fig. 5A can be seen from the figure.
  • Improvements have been made mainly to provide unequal lengths of ITO gaps 30 at the edge boundaries of the first electrode 10 and the second electrode 20, after the ITO gap 30 is provided, between the first electrode 10 and the corresponding second electrode 20
  • the pitch is decreased in the direction from the inside of the pixel to the outside of the pixel, wherein the difference in length of the adjacent ITO gap 30 provided by the first electrode 10 is 1 um to 10 um.
  • the distance between the first electrode 10 and the corresponding second electrode 20 is S
  • the difference between the adjacent pitches S is ⁇ S
  • ⁇ S may be constant in the direction from the pixel to the outside of the pixel, and may also vary, here ⁇ S is preferably increased first and then decreased.
  • the distance S between the first electrode 10 and the second electrode 20 is 20-18-14-8-5-2 in the direction from the pixel to the outside of the pixel.
  • -1-0 partial ITO gap 30 is not shown in FIG. 2D), such that ⁇ S is 2-4-6-3-1-1 in the direction from the pixel to the outside of the pixel.
  • FIGS. 3A, 3B, 3C, and 3D As a second preferred embodiment of the PVA pixel electrode of the present invention, as shown in FIGS. 3A, 3B, 3C, and 3D, wherein FIG. 3A is a first electrode of a second preferred embodiment of the PVA pixel electrode of the present invention
  • FIG. 3B is a schematic structural view of a first electrode on the TFT side of a second preferred embodiment of the PVA pixel electrode of the present invention
  • FIG. 3C is a second preferred embodiment of the PVA pixel electrode of the present invention
  • FIG. 3D is an enlarged view of the A2 portion of FIG. 3A.
  • the present embodiment differs from the first preferred embodiment in that the first electrode 10 and the corresponding second are made by providing the second electrode 20 with unequal lengths of the ITO gap 30 at the edge boundary of the first electrode 10 and the second electrode 20.
  • the gap between the electrodes 20 decreases in the direction from the inside of the pixel to the outside of the pixel.
  • the structural diagram of the first electrode 10 on the TFT side shown in FIG. 3B is the same as that of the first electrode 10 on the TFT side shown in FIG. 1A.
  • the structure of the second electrode 20 on the CF side shown in Fig. 3C is correspondingly improved, and the structure of the second electrode 20 at the corresponding position of the marked 12 points shown in Fig. 5A can be seen from the figure.
  • Improvements have been made mainly to provide unequal lengths of ITO gaps 30 at the edge boundaries of the first electrode 10 and the second electrode 20, after the ITO gap 30 is provided, between the first electrode 10 and the corresponding second electrode 20
  • the pitch is decreased in the direction from the inside of the pixel to the outside of the pixel, wherein the difference in length of the adjacent ITO gap 30 provided by the second electrode 20 is 1 um to 10 um.
  • the distance between the first electrode 10 and the corresponding second electrode 20 is S
  • the difference between the adjacent pitches S is ⁇ S
  • ⁇ S may be constant in the direction from the pixel to the outside of the pixel, and may also vary, here ⁇ S is preferably increased first and then decreased.
  • the distance S between the first electrode 10 and the second electrode 20 is 20-18-14-8-5-2 in the direction from the pixel to the outside of the pixel.
  • -1-0 partial ITO gap 30 is not shown in FIG. 3D), such that ⁇ S is 2-4-6-3-1-1 in the direction from the inside of the pixel to the outside of the pixel.
  • FIGS. 4A, 4B, 4C, and 4D As a third preferred embodiment of the PVA pixel electrode of the present invention, as shown in FIGS. 4A, 4B, 4C, and 4D, wherein FIG. 4A is a first electrode of a third preferred embodiment of the PVA pixel electrode of the present invention, and FIG. 4B is a schematic structural view of a first electrode on the TFT side of a third preferred embodiment of the PVA pixel electrode of the present invention; FIG. 4C is a third preferred embodiment of the PVA pixel electrode of the present invention. A reversed schematic view of the second electrode on the CF side; and FIG. 4D is an enlarged view of the A3 portion of FIG. 4A.
  • the present embodiment differs from the first preferred embodiment in that the first electrode 10 is disposed by arranging ITO gaps 30 of unequal lengths to the first electrode 10 and the second electrode 20 at the edge boundary of the first electrode 10 and the second electrode 20.
  • the gap between the corresponding second electrode 20 is decremented in the direction from the pixel to the outside of the pixel.
  • the first electrode 10 and the second electrode 20 are simultaneously improved, and the structure of the first electrode 10 on the TFT side shown in FIG. 4B is correspondingly improved, and the second side on the CF side shown in FIG. 4C is provided.
  • a corresponding improvement is also made to the structure of the electrode 20, from which it can be seen that the structure of the first electrode 10 and/or the second electrode 20 at the corresponding positions of the marked 12 points shown in Fig. 5A is improved.
  • the structures of the first electrode 10 and the second electrode 20 are both improved at the same time, and ITO gaps of unequal length are disposed at the edge boundary of the first electrode 10 and the second electrode 20. 30.
  • the spacing between the first electrode 10 and the corresponding second electrode 20 decreases in the direction from the pixel to the outside of the pixel, wherein the adjacent ITO gap is set by the first electrode 10 and the second electrode 20.
  • the length difference of 30 is 1 um to 10 um.
  • the distance between the first electrode 10 and the corresponding second electrode 20 is S
  • the difference between the adjacent pitches S is ⁇ S
  • ⁇ S may be constant in the direction from the pixel to the outside of the pixel, and may also vary, here ⁇ S is preferably increased first and then decreased.
  • the distance S between the first electrode 10 and the second electrode 20 is 20-18-14-8-5-2 in the direction from the pixel to the outside of the pixel.
  • -1-0 partial ITO gap 30 is not shown in FIG. 4D), such that ⁇ S is 2-4-6-3-1-1 in the direction from the pixel to the outside of the pixel.
  • Providing an ITO gap 30 on the first electrode 10 and/or the second electrode 20 at the edge boundary of the first electrode 10 and the second electrode 20 reduces the spacing between the first electrode 10 and the second electrode 20 at the edge of the pixel S, so that the fringe field effect can be weakened, and the ITO gap 30 at the edge boundary is extended by unequal length, and the distribution of the fringe field is changed, so that the liquid crystal at the edge boundary is aligned with the internal liquid crystal orientation, eliminating the rotational displacement. Adverse effects.
  • the difference in length between adjacent ITO gaps 30 provided by the first electrode 10 and/or the second electrode 20 is not excessive, and the spacing S between the first electrode 10 and the corresponding second electrode 20 decreases from the inside to the outside, in particular
  • the difference between the adjacent spacings S is ⁇ S first increased and then decreased, so that the electric field between the first electrode 10 and the second electrode 20 also undergoes a smooth transition while weakening the fringe field effect, without being set.
  • the ITO gap 30 causes a sudden change in the electric field between the partial electrodes, thereby affecting the display effect.
  • the ITO gap 30 may be disposed on the first electrode 10, may be disposed on the second electrode 20, or may be disposed on the first electrode 10 and the second electrode 20 at the same time, so that the first electrode 10 and the corresponding second electrode are used. It is within the scope of the present invention to provide the ITO gap 30 in such a manner that the spacing between the 20s is decreasing from the inside to the outside. The position at which the ITO gap 30 is disposed does not limit the scope of protection of the present invention. Further, since the potential of the first electrode 10 on the TFT side is fluctuating, and the potential of the second electrode 20 on the CF side is fixed, it is preferable to dispose the ITO gap 30 at the second electrode 20 over the first electrode. 10 on.
  • FIG. 5A is a simulation diagram of output of a PVA pixel electrode of the prior art
  • FIG. 5B is an output simulation diagram of a first preferred embodiment of the PVA pixel electrode of the present invention
  • FIG. 5C is a diagram of a PVA pixel electrode of the present invention.
  • the effect of eliminating the rotational displacement of the first preferred embodiment of the present invention is as shown in Fig. 5B
  • the effect of eliminating the rotational displacement of the second preferred embodiment is as shown in Fig. 5C
  • the marked portion of Fig. 5B is marked with the mark of Fig. 5A.
  • the dark lines are reduced, and the penetration rate is improved by 8.07%.
  • the mark marked in FIG. 5C is compared with the mark shown in FIG. 5A, the dark lines are reduced, and the transmittance is improved by 9.89%.
  • the third preferred embodiment of the present invention A similar effect can be achieved by the example.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Geometry (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Abstract

一种图像垂直调整技术(PVA)像素电极,包括第一电极(10)以及第二电极(20),第一电极(10)和第二电极(20)分别与像素的边缘呈一定倾角,通过设置不等长的氧化铟锡(ITO)间隙(30)使得第一电极(10)和相应的第二电极(20)之间的间距在像素内到像素外的方向上递减。修改薄膜场效应管(TFT)侧和/或彩色滤光片(CF)侧的边缘交界处的ITO间隙(30)消除边缘场效应以达到提高像素的穿透率和显示质量的效果。

Description

PVA像素电极 技术领域
本发明涉及液晶显示领域,特别是涉及一种可提高像素的穿透率和显示质量的PVA像素电极。
背景技术
PVA(Patterned Vertical Alignment,图像垂直调整技术)作为液晶VA(Vertical Alignment,垂直调整技术)显示中的一种模式,其利用TFT(Thin film transistor,薄膜场效应管)和CF(彩色滤光片,color filter))侧的图案形成的电场来控制液晶的指向,可以省去PI(polyimide)层的摩擦取向工艺。
传统上采用的PVA像素结构,如图1A和图1B所示,图1A为现有技术的PVA像素电极的位于TFT侧的第一电极10的结构示意图,图1B为现有技术的PVA像素电极的位于CF侧的第二电极20的反向结构示意图。由于这种形状的PVA像素电极的边缘与内部结构的差异,导致PVA像素边缘电场分布异于内部,在液晶上产生边缘场效应,使得在TFT和CF侧电极的边缘交接处产生旋转位移(disclination),影响像素的显示质量和降低像素的开口率,如图5A所示,图中做了标记的地方由于边缘场效应,液晶产生了旋转位移,使得像素出现暗纹,穿透率降低,影响像素的显示质量。
故,有必要提供一种PVA像素电极,以解决现有技术所存在的问题。
技术问题
本发明针对现有技术的PVA像素电极的PVA像素在液晶上产生边缘场效应影响像素的显示质量和降低像素的开口率的缺陷,提供一种通过修改TFT侧和/或CF侧的边缘交界处的ITO(Indium-Tin Oxide,氧化铟锡)间隙消除边缘场效应以达到提高像素的穿透率和显示质量的效果的PVA像素电极。
技术解决方案
本发明的主要目的在于提供一种PVA像素电极,包括:位于TFT侧的第一电极;以及位于CF侧的与所述第一电极相应的第二电极,通过施加在所述第一电极和所述第二电极上的电场控制设置在所述第一电极和所述第二电极之间的液晶的指向,所述第一电极和所述第二电极分别与像素的边缘呈一定倾角,其中通过在所述第一电极和所述第二电极的边缘交界处对所述第一电极设置不等长的ITO间隙使得所述第一电极和相应的第二电极之间的间距在像素内到像素外的方向上递减。
本发明的主要目的还在于提供一种PVA像素电极,包括:位于TFT侧的第一电极;以及位于CF侧的与所述第一电极相应的第二电极,通过施加在所述第一电极和所述第二电极上的电场控制设置在所述第一电极和所述第二电极之间的液晶的指向,所述第一电极和所述第二电极分别与像素的边缘呈一定倾角,其中通过在所述第一电极和所述第二电极的边缘交界处对所述第二电极设置不等长的ITO间隙使得所述第一电极和相应的第二电极之间的间距在像素内到像素外的方向上递减。
本发明的主要目的还在于提供一种PVA像素电极,包括:位于TFT侧的第一电极;以及位于CF侧的与所述第一电极相应的第二电极,通过施加在所述第一电极和所述第二电极上的电场控制设置在所述第一电极和所述第二电极之间的液晶的指向,所述第一电极和所述第二电极分别与像素的边缘呈一定倾角,其中通过在所述第一电极和所述第二电极的边缘交界处对所述第一电极和所述第二电极设置不等长的ITO间隙使得所述第一电极和相应的第二电极之间的间距在像素内到像素外的方向上递减。
在本发明的一实施例中,设所述第一电极和相应的第二电极之间的间距为S,相邻间距S之间的差值为⊿S,所述⊿S在像素内到像素外的方向上先增后减。
在本发明的一实施例中,所述⊿S在像素内到像素外的方向上相同。
在本发明的一实施例中,所述第一电极设置的相邻ITO间隙的长度差为1um至10um。
在本发明的一实施例中,所述第二电极设置的相邻ITO间隙的长度差为1um至10um。
有益效果
相较于现有的PVA像素电极具有PVA像素在液晶上产生边缘场效应影响像素的显示质量和降低像素的开口率的问题,本发明的PVA像素电极通过修改TFT侧和/或CF侧的边缘交界处的ITO间隙消除边缘场效应以达到提高像素的穿透率和显示质量的效果。
附图说明
图1A为现有技术的PVA像素电极的位于TFT侧的第一电极的结构示意图;
图1B为现有技术的PVA像素电极的位于CF侧的第二电极的反向结构示意图;
图2A为本发明的PVA像素电极的第一优选实施例的第一电极和第二电极的结构示意图;
图2B为本发明的PVA像素电极的第一优选实施例的位于TFT侧的第一电极的结构示意图;
图2C为本发明的PVA像素电极的第一优选实施例的位于CF侧的第二电极的反向结构示意图;
图2D为图2A的A1部分的放大图;
图3A为本发明的PVA像素电极的第二优选实施例的第一电极和第二电极的结构示意图;
图3B为本发明的PVA像素电极的第二优选实施例的位于TFT侧的第一电极的结构示意图;
图3C为本发明的PVA像素电极的第二优选实施例的位于CF侧的第二电极的反向结构示意图;
图3D为图3A的A2部分的放大图;
图4A为本发明的PVA像素电极的第三优选实施例的第一电极和第二电极的结构示意图;
图4B为本发明的PVA像素电极的第三优选实施例的位于TFT侧的第一电极的结构示意图;
图4C为本发明的PVA像素电极的第三优选实施例的位于CF侧的第二电极的反向结构示意图;
图4D为图4A的A3部分的放大图;
图5A为现有技术的PVA像素电极的输出模拟仿真图;
图5B为本发明的PVA像素电极的第一优选实施例的输出模拟仿真图;
图5C为本发明的PVA像素电极的第二优选实施例的输出模拟仿真图。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
在图中,结构相似的单元是以相同标号表示。
作为本发明的PVA像素电极的第一优选实施例,如图2A、图2B、图2C以及图2D所示,其中图2A为本发明的PVA像素电极的第一优选实施例的第一电极和第二电极的结构示意图,图2B为本发明的PVA像素电极的第一优选实施例的位于TFT侧的第一电极的结构示意图;图2C为本发明的PVA像素电极的第一优选实施例的位于CF侧的第二电极的反向结构示意图;图2D为图2A的A1部分的放大图。所述PVA像素电极包括第一电极10和第二电极20,第一电极10位于TFT侧,第二电极20位于CF侧,通过施加在第一电极10和第二电极上20的电场控制设置在第一电极10和第二电极20之间的液晶的指向,第一电极10和第二电极20分别与像素边缘呈一定倾角,图2A中的第一电极10和相应的第二电极20将整个电极分为八块可产生八个畴的液晶排列,从而可通过一个连续畴的结构改善液晶显示器的视角特性。其中本发明的PVA像素电极通过在第一电极10和第二电极20的边缘交界处对第一电极10设置不等长的ITO间隙30使得第一电极10和相应的第二电极20之间的间距在像素内到像素外的方向上递减。
由于本实施例只对第一电极10做了改进,因而图2C所示的位于CF侧的第二电极20的结构示意图与图1B所示的CF侧的第二电极20的结构示意图相同,而图2B所示的位于TFT侧的第一电极10的结构做出了相应的改进,从图中可以看出图5A所示的做了标记的12个点的相应位置的第一电极10的结构都进行了改进,主要是在第一电极10和第二电极20的边缘交界处设置不等长的ITO间隙30,设置ITO间隙30后,第一电极10和相应的第二电极20之间的间距在像素内到像素外的方向上递减,其中第一电极10设置的相邻ITO间隙30的长度差为1um至10um。
这里设第一电极10和相应第二电极20的间距为S,相邻间距S之间的差值为⊿S,⊿S在像素内到像素外的方向上可不变,也可变化,这里⊿S优选采用先增后减,如图2D所示,第一电极10和第二电极20之间的距离S在像素内到像素外的方向上依次为20-18-14-8-5-2-1-0(部分ITO间隙30在图2D中未示出),这样⊿S在像素内到像素外的方向上依次为2-4-6-3-1-1。
作为本发明的PVA像素电极的第二优选实施例,如图3A、图3B、图3C以及图3D所示,其中图3A为本发明的PVA像素电极的第二优选实施例的第一电极和第二电极的结构示意图,图3B为本发明的PVA像素电极的第二优选实施例的位于TFT侧的第一电极的结构示意图;图3C为本发明的PVA像素电极的第二优选实施例的位于CF侧的第二电极的反向结构示意图;图3D为图3A的A2部分的放大图。本实施例与第一优选实施例的区别在于通过在第一电极10和第二电极20的边缘交界处对第二电极20设置不等长的ITO间隙30使得第一电极10和相应的第二电极20之间的间隙在像素内到像素外的方向上递减。
由于本实施例只对第二电极20做了改进,因而图3B所示的位于TFT侧的第一电极10的结构示意图与图1A所示的TFT侧的第一电极10的结构示意图相同,而图3C所示的位于CF侧的第二电极20的结构做出了相应的改进,从图中可以看出图5A所示的做了标记的12个点的相应位置的第二电极20的结构都进行了改进,主要是在第一电极10和第二电极20的边缘交界处设置不等长的ITO间隙30,设置ITO间隙30后,第一电极10和相应的第二电极20之间的间距在像素内到像素外的方向上递减,其中第二电极20设置的相邻ITO间隙30的长度差为1um至10um。
这里设第一电极10和相应第二电极20的间距为S,相邻间距S之间的差值为⊿S,⊿S在像素内到像素外的方向上可不变,也可变化,这里⊿S优选采用先增后减,如图3D所示,第一电极10和第二电极20之间的距离S在像素内到像素外的方向上依次为20-18-14-8-5-2-1-0(部分ITO间隙30在图3D中未示出),这样⊿S在像素内到像素外的方向上依次为2-4-6-3-1-1。
作为本发明的PVA像素电极的第三优选实施例,如图4A、图4B、图4C以及图4D所示,其中图4A为本发明的PVA像素电极的第三优选实施例的第一电极和第二电极的结构示意图,图4B为本发明的PVA像素电极的第三优选实施例的位于TFT侧的第一电极的结构示意图;图4C为本发明的PVA像素电极的第三优选实施例的位于CF侧的第二电极的反向结构示意图;图4D为图4A的A3部分的放大图。本实施例与第一优选实施例的区别在于通过在第一电极10和第二电极20的边缘交界处对第一电极10和第二电极20设置不等长的ITO间隙30使得第一电极10和相应的第二电极20之间的间隙在像素内到像素外的方向上递减。
本实施例对第一电极10和第二电极20同时进行了改进,图4B所示的位于TFT侧的第一电极10的结构做出的相应改进,图4C所示的位于CF侧的第二电极20的结构也做出的相应改进,从图中可以看出图5A所示的做了标记的12个点的相应位置的第一电极10和/或第二电极20的结构都进行了改进,特别是图4A的A3部分,此处同时对第一电极10和第二电极20的结构均进行了改进,在第一电极10和第二电极20的边缘交界处设置不等长的ITO间隙30,设置ITO间隙30后,第一电极10和相应的第二电极20之间的间距在像素内到像素外的方向上递减,其中第一电极10和第二电极20设置的相邻ITO间隙30的长度差为1um至10um。
这里设第一电极10和相应第二电极20的间距为S,相邻间距S之间的差值为⊿S,⊿S在像素内到像素外的方向上可不变,也可变化,这里⊿S优选采用先增后减,如图4D所示,第一电极10和第二电极20之间的距离S在像素内到像素外的方向上依次为20-18-14-8-5-2-1-0(部分ITO间隙30在图4D中未示出),这样⊿S在像素内到像素外的方向上依次为2-4-6-3-1-1。
在第一电极10和第二电极20的边缘交界处的第一电极10和/或第二电极20上设置ITO间隙30减小了像素边缘的第一电极10和第二电极20之间的间距S,从而可以削弱边缘场效应,而对边缘交界处的ITO间隙30做不等长的延伸,改变了边缘场的分布,使得边缘交界处的液晶与内部的液晶取向一致,消除了旋转位移的不利效果。第一电极10和/或第二电极20设置的相邻ITO间隙30的长度差不宜过大,且第一电极10和相应的第二电极20之间的间距S从内到外递减,特别是相邻间距S之间的差值为⊿S先增后减,使得在削弱边缘场效应的同时,第一电极10和第二电极20之间的电场也进行了平滑的过渡,不会由于设置的ITO间隙30导致部分电极之间的电场突变,从而影响显示效果。ITO间隙30可以设置在第一电极10上,可以设置在第二电极20上,也可以同时设置在第一电极10和第二电极20上,所以只要采用第一电极10和相应的第二电极20之间的间距从内到外递减的方式设置ITO间隙30都在本发明的保护范围内,ITO间隙30设置的位置并不限制本发明的保护范围。此外由于位于TFT侧的第一电极10的电位是变动的,而位于CF侧的第二电极20的电位是固定的,因此将ITO间隙30设置在第二电极20要优于设置在第一电极10上。
图5A所示为现有技术的PVA像素电极的输出模拟仿真图;图5B为本发明的PVA像素电极的第一优选实施例的输出模拟仿真图;图5C为本发明的PVA像素电极的第二优选实施例的输出模拟仿真图。本发明的第一优选实施例消除旋转位移的效果如图5B所示,第二优选实施例消除旋转位移的效果如图5C所示,图5B所做标记之处与图5A所做标记之处对比,暗纹减轻,穿透率提高了8.07%,图5C所做标记之处与图5A所做标记之处对比,暗纹减轻,穿透率提高了9.89%,本发明的第三优选实施例也可以达到相似的效果。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。
本发明的实施方式
工业实用性
序列表自由内容

Claims (13)

  1. 一种PVA像素电极,包括:
    位于TFT侧的第一电极;以及
    位于CF侧的与所述第一电极相应的第二电极,通过施加在所述第一电极和所述第二电极上的电场控制设置在所述第一电极和所述第二电极之间的液晶的指向,所述第一电极和所述第二电极分别与像素的边缘呈一定倾角,其中通过在所述第一电极和所述第二电极的边缘交界处对所述第一电极设置不等长的ITO间隙使得所述第一电极和相应的第二电极之间的间距在像素内到像素外的方向上递减。
  2. 根据权利要求1所述的PVA像素电极,其中设定所述第一电极和相应的第二电极之间的间距为S,相邻间距S之间的差值为⊿S,所述⊿S在像素内到像素外的方向上先增后减。
  3. 根据权利要求1所述的PVA像素电极,其中所述⊿S在像素内到像素外的方向上相同。
  4. 根据权利要求1所述的PVA像素电极,其中所述第一电极设置的相邻ITO间隙的长度差为1um至10um。
  5. 一种PVA像素电极,包括:
    位于TFT侧的第一电极;以及
    位于CF侧的与所述第一电极相应的第二电极,通过施加在所述第一电极和所述第二电极上的电场控制设置在所述第一电极和所述第二电极之间的液晶的指向,所述第一电极和所述第二电极分别与像素的边缘呈一定倾角,其中通过在所述第一电极和所述第二电极的边缘交界处对所述第二电极设置不等长的ITO间隙使得所述第一电极和相应的第二电极之间的间距在像素内到像素外的方向上递减。
  6. 根据权利要求5所述的PVA像素电极,其中设所述第一电极和相应的第二电极之间的间距为S,相邻间距S之间的差值为⊿S,所述⊿S在像素内到像素外的方向上先增后减。
  7. 根据权利要求5所述的PVA像素电极,其中所述⊿S在像素内到像素外的方向上相同。
  8. 根据权利要求5所述的PVA像素电极,其中所述第二电极设置的相邻ITO间隙的长度差为1um至10um。
  9. 一种PVA像素电极,包括:
    位于TFT侧的第一电极;以及
    位于CF侧的与所述第一电极相应的第二电极,通过施加在所述第一电极和所述第二电极上的电场控制设置在所述第一电极和所述第二电极之间的液晶的指向,所述第一电极和所述第二电极分别与像素的边缘呈一定倾角,其中通过在所述第一电极和所述第二电极的边缘交界处对所述第一电极和所述第二电极设置不等长的ITO间隙使得所述第一电极和相应的第二电极之间的间距在像素内到像素外的方向上递减。
  10. 根据权利要求9所述的PVA像素电极,其中设所述第一电极和相应的第二电极之间的间距为S,相邻间距S之间的差值为⊿S,所述⊿S在像素内到像素外的方向上先增后减。
  11. 根据权利要求9所述的PVA像素电极,其中所述⊿S在像素内到像素外的方向上相同。
  12. 根据权利要求9所述的PVA像素电极,其中所述第一电极设置的相邻ITO间隙的长度差为1um至10um。
  13. 根据权利要求9所述的PVA像素电极,其中所述第二电极设置的相邻ITO间隙的长度差为1um至10um。
PCT/CN2012/072220 2012-03-09 2012-03-13 Pva像素电极 WO2013131285A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/512,577 US9122102B2 (en) 2012-03-09 2012-03-13 Patterned vertical alignment pixel electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210061732.2 2012-03-09
CN201210061732.2A CN102540592B (zh) 2012-03-09 2012-03-09 Pva像素电极及相应的液晶显示装置

Publications (1)

Publication Number Publication Date
WO2013131285A1 true WO2013131285A1 (zh) 2013-09-12

Family

ID=46347824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072220 WO2013131285A1 (zh) 2012-03-09 2012-03-13 Pva像素电极

Country Status (2)

Country Link
CN (1) CN102540592B (zh)
WO (1) WO2013131285A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015066768A1 (en) 2013-11-07 2015-05-14 Ozgene Holdings Pty Ltd Compositions and methods for producing genetically modified animals

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107632470B (zh) * 2017-10-25 2021-04-02 上海天马微电子有限公司 一种显示电极、阵列基板、显示面板及显示装置
CN109407422B (zh) * 2018-11-14 2020-10-16 惠科股份有限公司 一种显示面板、制程方法和显示装置
CN110456575B (zh) * 2019-08-20 2021-07-06 成都中电熊猫显示科技有限公司 液晶显示面板

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682792A (ja) * 1992-09-01 1994-03-25 Canon Inc 強誘電性液晶素子
CN102253545A (zh) * 2011-08-03 2011-11-23 深圳市华星光电技术有限公司 Pva像素电极及相应的液晶显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101225589B1 (ko) * 2005-10-05 2013-01-24 삼성디스플레이 주식회사 액정표시장치 및 그 제조방법
TWI360010B (en) * 2007-09-20 2012-03-11 Chimei Innolux Corp Pixel array substrate and liquid crystal display
CN202486474U (zh) * 2012-03-09 2012-10-10 深圳市华星光电技术有限公司 Pva像素电极及相应的液晶显示装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682792A (ja) * 1992-09-01 1994-03-25 Canon Inc 強誘電性液晶素子
CN102253545A (zh) * 2011-08-03 2011-11-23 深圳市华星光电技术有限公司 Pva像素电极及相应的液晶显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015066768A1 (en) 2013-11-07 2015-05-14 Ozgene Holdings Pty Ltd Compositions and methods for producing genetically modified animals

Also Published As

Publication number Publication date
CN102540592A (zh) 2012-07-04
CN102540592B (zh) 2014-06-25

Similar Documents

Publication Publication Date Title
JP4625561B2 (ja) 液晶表示装置
JP5767186B2 (ja) 表示装置及び電子機器
WO2016136272A1 (ja) タッチ検出機能付き表示パネル
WO2013131285A1 (zh) Pva像素电极
WO2016176889A1 (zh) 阵列基板及液晶显示面板
WO2013159321A1 (zh) 液晶显示面板及其像素电极
WO2020019492A1 (zh) 阵列基板及其制备方法
JP2016048276A (ja) 表示装置
CN102253545A (zh) Pva像素电极及相应的液晶显示装置
WO2014032344A1 (zh) 液晶显示面板
WO2014012229A1 (zh) 像素电极结构及液晶显示装置
WO2014012292A1 (zh) 液晶显示面板及其应用的显示装置
KR20140021490A (ko) 컬러 필터 기판, 액정 패널 및 액정 디스플레이 장치
WO2016095243A1 (zh) 液晶面板及其制备方法
TWI667522B (zh) 畫素結構
WO2018103156A1 (zh) 一种液晶显示面板及液晶显示装置
WO2013185390A1 (zh) 液晶显示装置及其制造方法
TWI571685B (zh) 畫素陣列
WO2016095252A1 (zh) Ffs阵列基板及液晶显示面板
WO2016041216A1 (zh) 一种液晶显示面板
WO2013143064A1 (zh) 液晶显示面板以及其制造方法
TWI648580B (zh) 畫素結構及顯示面板
WO2016078050A1 (zh) 一种阵列基板及液晶显示面板
TWI643009B (zh) 畫素結構以及包含此畫素結構的顯示面板
WO2017031776A1 (zh) 一种液晶显示面板及装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13512577

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870643

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12870643

Country of ref document: EP

Kind code of ref document: A1