WO2013129891A1 - Heterojunction structure and method for manufacturing same - Google Patents

Heterojunction structure and method for manufacturing same Download PDF

Info

Publication number
WO2013129891A1
WO2013129891A1 PCT/KR2013/001684 KR2013001684W WO2013129891A1 WO 2013129891 A1 WO2013129891 A1 WO 2013129891A1 KR 2013001684 W KR2013001684 W KR 2013001684W WO 2013129891 A1 WO2013129891 A1 WO 2013129891A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
heterojunction structure
aluminum
filler
ceramic
Prior art date
Application number
PCT/KR2013/001684
Other languages
French (fr)
Korean (ko)
Inventor
신승용
선주현
이장훈
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120086714A external-priority patent/KR101411956B1/en
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Publication of WO2013129891A1 publication Critical patent/WO2013129891A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/006Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/124Metallic interlayers based on copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/363Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/38Fiber or whisker reinforced
    • C04B2237/385Carbon or carbon composite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/66Forming laminates or joined articles showing high dimensional accuracy, e.g. indicated by the warpage

Definitions

  • the present invention relates to a heterojunction structure and a method of manufacturing the same, and more particularly, to a heterojunction structure of a low thermal expansion composite comprising a ceramic and carbon and a method of manufacturing the same.
  • ceramic materials unlike metal materials, have corrosion resistance, insulation properties, and dielectric properties.
  • aluminum nitride is ceramic and has excellent thermal conductivity properties equivalent to or greater than that of aluminum metal. Due to these characteristics, the ceramic material can be used for, for example, an insulating substrate on which circuits for LED and power semiconductor packages are formed.
  • such ceramic materials can be used to control the temperature of these substrates, for example, while passing through the wafer and glass substrates in chemical vapor deposition (CVD), physical vapor deposition (PVD), and plasma etching processes for manufacturing semiconductor and display devices. Complex flow paths of heating devices or cooling media are used in susceptors.
  • aluminum coated with an oxide coating layer may be used by an anodizing and thermal spraying process of the ceramic material.
  • the oxide film layer is destroyed in a rapid temperature cycle to realize a wide temperature range or a high process speed, and its use is very limited.
  • a metal substrate and a heterogeneous material such as a ceramic material may be used to join and assemble a ceramic substrate material having an electrostatic chuck function on an aluminum body in which a complicated flow path is embedded.
  • a component of a type bonded to the polymer adhesive at room temperature is used.
  • the use of such an adhesive due to the low thermal conductivity of the adhesive, not only does not effectively control the temperature rise of the substrate, but also has a problem of impairing the large-area deposition and the temperature uniformity of the etching substrate. Problems include the low heat resistance of the joints and the contamination of the process chamber due to the polymer adhesive in an elevated temperature atmosphere caused by the collision.
  • a heating plate made of aluminum nitride (AlN) containing a metal heating element coil such as molybdenum or tungsten having a thermal expansion coefficient close to ceramic is used as a high temperature heating part used in a chemical vapor deposition process.
  • AlN aluminum nitride
  • a metal heating element coil such as molybdenum or tungsten having a thermal expansion coefficient close to ceramic
  • the present invention has been made to solve the above problems, to provide a heterojunction structure that can withstand high temperature and wide temperature cycle environment, for this purpose, it is possible to precise cutting processing, such as metal, thermal conductivity In order to minimize the thermal stress of the dissimilar junction, most of all, the application of a new low thermal expansion material close to the thermal expansion coefficient of the ceramic and the joint assembly method that can form and maintain a good interface with the ceramic even in a wide and rapid temperature cycle. To provide.
  • This problem of the present invention has been presented by way of example, and therefore, the present invention is not limited to this problem.
  • a heterojunction structure according to one aspect of the present invention is provided.
  • the heterojunction structure has a first portion comprising ceramic and a second portion comprising carbon and brazing bonded to the first portion.
  • the second portion may include a hybrid composite including carbon.
  • the hybrid composite may include a body portion including carbon and a canning portion including aluminum and surrounding the outer surface of the body portion.
  • the hybrid composite includes a plurality of carbon layers spaced apart from each other, a sintered composite layer of aluminum and carbon and aluminum interposed between the plurality of carbon layers and the plurality of carbon layers Canning unit surrounding the outer surface of the sintered composite layer may be provided.
  • the hybrid composite includes a plurality of carbon layers disposed to be spaced apart from each other, aluminum and a thermally conductive layer and aluminum interposed between the plurality of carbon layers and the plurality of carbon layers and the Canning portion surrounding the outer surface of the thermal conductive layer may be provided.
  • the thermal expansion coefficient ⁇ 2 of the hybrid composite may satisfy the relationship between the thermal expansion coefficient ⁇ 1 and ( ⁇ 1 x 0.9) ⁇ 2 ⁇ ( ⁇ 1 x 1.1) of the ceramic.
  • the second portion may be a body portion composed only of carbon.
  • the carbon may include at least one of isotropic carbon and anisotropic carbon.
  • the ceramic may include aluminum nitride (AlN), and the first part may be directly brazed to the second part.
  • AlN aluminum nitride
  • the ceramic includes alumina (Al 2 O 3 ), and the first part is brazed with the second part via a molybdenum-manganese metallization layer formed on a surface facing the second part. Can be bonded.
  • a method of manufacturing a heterojunction structure includes preparing a first part including a ceramic, forming a second part including carbon, and brazing the first part and the second part.
  • the forming of the second portion including carbon may include forming a first structure including carbon and a canning portion including aluminum to surround an outer surface of the first structure. It may comprise the step of forming.
  • the first structure may include a body portion including carbon.
  • the first structure may include a plurality of carbon layers disposed spaced apart from each other and a sintered composite layer of aluminum and carbon interposed between the plurality of carbon layers.
  • the first structure may include a plurality of carbon layers and aluminum disposed to be spaced apart from each other, and may include a thermal conductive layer interposed between the plurality of carbon layers.
  • forming a metallization layer surrounding the outer surface of the first structure may be further provided.
  • the forming of the metallizing layer may include disposing a metal foil on the outer surface of the first structure via a first filler and performing a first heat treatment of the first structure, the first filler, and the metal foil. It may be provided with a step.
  • the forming of the canning part may include disposing an aluminum plate on an outer surface of the first structure via a second filler and the first structure, the second filler, and the aluminum. And a second heat treatment of the plate material. Furthermore, the step of brazing bonding may include a third heat treatment of the first part, the second part and the third filler via a third filler between the first part and the second part. .
  • the second filler and the third filler may be made of the same material, and the second heat treatment and the third heat treatment may be simultaneously performed under the same heat treatment conditions.
  • FIG. 1 is a cross-sectional view illustrating a heterojunction structure according to an embodiment of the present invention.
  • FIG. 2 is a photograph showing the appearance of a heterojunction structure after brazing of an aluminum nitride / carbon material.
  • FIG. 3A is a photograph showing the appearance of a heterojunction structure after brazing of an aluminum nitride (AlN) / carbon material (ET-10) according to an embodiment of the present invention
  • FIG. 3B is an aluminum nitride according to a comparative example of the present invention ( Photograph showing appearance of heterojunction structure after brazing of AlN) / Al6061 series alloy.
  • 4A and 4B are planar and cross-sectional texture photographs of a sintered composite of aluminum powder and 50 vol% carbon fiber, respectively.
  • FIG. 5 is a cross-sectional view illustrating a heterojunction structure according to another embodiment of the present invention.
  • FIG. 6 is a cross-sectional view illustrating a heterojunction structure according to still another embodiment of the present invention.
  • FIG. 7 is a cross-sectional view illustrating a heterojunction structure according to still another embodiment of the present invention.
  • 8A to 8F illustrate a method of forming a heterojunction structure according to still another embodiment of the present invention.
  • 9A and 9B illustrate a modified method of forming a heterojunction structure according to another embodiment of the present invention.
  • Part 1 composed of ceramic
  • top or bottom mentioned in the description of this embodiment may be used to describe the relative relationship of certain elements to other elements, as illustrated in the figures. That is, relative terms may be understood to include other directions of the structure separately from the direction depicted in the figures. For example, if the top and bottom of the structure in the figures are upside down, elements depicted as being on the top of other elements may be on the bottom of the other elements. Thus, by way of example, the term “top” may include both “top” and “bottom” directions, relative to a particular direction in the figures.
  • the component when referring to a component "on” or “connected” to another component, the component is located directly on the other component. Alternatively, the present invention may be directly connected to the other components. Furthermore, one or more intervening components may be present therebetween. However, when referring to a component “directly” to another component, “directly connected” to another component, or “direct contact” to another component, unless otherwise stated, This means that there are no components intervening in.
  • the x-axis, y-axis and z-axis are not limited to three axes on the Cartesian coordinate system, but may be interpreted in a broad sense including the same.
  • the x-axis, y-axis, and z-axis may be orthogonal to each other, but may refer to different directions that are not orthogonal to each other.
  • a heterojunction structure according to an embodiment of the present invention includes a first part 410 including ceramic and a second part 201 including carbon. Since the first part 410 and the second part 201 are brazed, the brazing joint 310 is interposed between the first part 410 and the second part 201.
  • the brazing joint 310 may be understood as a heterojunction in which at least a portion of the filler and the bonding base material used for the brazing joint are melt-diffused. Although explicitly shown in the drawings, the brazing joint 310 may include the first part ( 410 and / or second portion 201 may not be clearly distinguished.
  • the first part 410 may include a ceramic material, and may include, for example, aluminum nitride (AlN) or alumina (Al 2 O 3 ).
  • the second portion 201 may be a body portion 112 composed of only carbon.
  • the second portion 201 may be configured to include isotropic carbon or anisotropic carbon.
  • the second portion 201 may be composed of a sintered composite of aluminum and carbon.
  • the first part 410 includes aluminum nitride (AlN)
  • the first part 410 and the second part 201 may be directly brazed, but the first part 410 may be alumina (AlN). 2 O 3 )
  • the first portion 410 may be brazed to the second portion 201 via a molybdenum-manganese metallization layer formed on a surface opposite the second portion 201. Can be.
  • Table 1 shows the coefficient of thermal expansion and thermal conductivity of carbon materials, sintered composite materials and ceramic materials that can be applied to the present invention.
  • a heterojunction structure in which a carbon material having a coefficient of thermal expansion equal to or less than that of an aluminum nitride (AlN) ceramic is directly bonded to an aluminum nitride (AlN) ceramic using an active filler metal.
  • AlN aluminum nitride
  • Ag-Cu-Ti-based and Au-Ni-Ti-based filler metals may be used as the active filler metal.
  • Ti-Zr-based active filler metals containing a large amount of active metals such as titanium (Ti) and zirconium (Zr) may be used.
  • FIG. 2 is a photograph showing the appearance of a heterojunction structure of aluminum nitride (AlN) / carbon material (ET-10) bonded by brazing.
  • AlN aluminum nitride
  • ET-10 carbon material
  • the size of the aluminum nitride (AlN) ceramic substrate was 125mm x 62mm x 0.2mmt and the carbon material was 125mm x 62mm x 10mmt graphite material (ET-10).
  • the thermal expansion coefficient of aluminum nitride (AlN) is 4.5 x 10 -6 / K
  • the thermal expansion coefficient of ET-10 which is a kind of carbon material, is 3.8 x 10 -6 / K. It is possible to implement a stable heterojunction structure.
  • a heterojunction structure was formed in which a base material of aluminum nitride (AlN) and an Al6061 series alloy were joined by brazing.
  • FIG. 3A is a photograph showing the appearance of a heterojunction structure after brazing of an aluminum nitride (AlN) / carbon material (ET-10) according to an embodiment of the present invention
  • FIG. 3B is an aluminum nitride according to a comparative example of the present invention ( Photograph showing appearance of heterojunction structure after brazing of AlN) / Al6061 series alloy.
  • Ti-43.5Zr-6.5Ni-8.1Cu alloy was used as a filler, and a high vacuum graphite furnace having a vacuum degree of 1 x 10 -5 Torr or less was used for 900 minutes for 30 minutes. The temperature of °C was maintained.
  • the second portion 201 may be composed of a sintered composite of aluminum and carbon.
  • Carbon is a reinforcing material of the sintered composite material, and for example, carbon fiber may be applied, and chopped carbon fiber (milled carbon fiber) having a length of 100 microns or less may be used.
  • chopped carbon fiber milled carbon fiber
  • the blending ratio of aluminum powder and carbon may be up to 20 to 60 vol%, but the range is preferably 30 to 50 vol% in consideration of the coefficient of thermal expansion and sintering.
  • the aluminum powder and the carbon fiber may be mixed by dry and wet methods, and then sintered and bulked by a general sintering method such as, for example, a hot press method, energizing pressure sintering method, or HIP method.
  • a favorable sintered compact can be obtained through vacuum sintering at 500-650 degreeC and pressing force which are below the melting
  • 4A and 4B show the top and cross-section views of the structure photographs of the sintered composite of aluminum powder and 50 vol% carbon fiber, respectively.
  • a heterojunction structure according to another embodiment of the present invention includes a first part 410 including ceramic and a second part 202 including carbon. Since the first part 410 and the second part 202 are brazed, a brazing joint 310 is interposed between the first part 410 and the second part 202.
  • the brazing joint 310 may be understood as a heterojunction in which at least some of the filler and the bonding base material used for the brazing joint are melt-diffused.
  • the first part 410 is actually implemented in the structure. And / or not distinct from the second portion 202.
  • the first part 410 may include a ceramic material, and may include, for example, aluminum nitride (AlN) or alumina (Al 2 O 3 ).
  • the second portion 202 is a hybrid composite including carbon and includes a body portion 112 including carbon and a canning portion 144 including aluminum and surrounding the outer surface of the body portion 112.
  • Body portion 112 is configured to include carbon, for example, may be configured to include isotropic carbon or anisotropic carbon, shown in Table 1.
  • the body portion 112 may be composed of a sintered composite of aluminum and carbon.
  • the first part 410 includes aluminum nitride (AlN)
  • the first part 410 and the second part 202 may be directly brazed, but the first part 410 is made of alumina (AlN). 2 O 3 ), the first portion 410 may be brazed to the second portion 202 via a molybdenum-manganese metallization layer formed on a surface opposite the second portion 202. Can be.
  • the canning part 144 may be implemented by performing a canning process to surround the top, bottom, and side surfaces of the body part 112, and may include, for example, aluminum.
  • the canning unit 144 may be implemented by arranging an aluminum plate including an Al6061 series alloy on the outer surface of the body portion 112 through a filler including an Al4047 series alloy, and then heat treating the aluminum plate. .
  • a metallizing process of forming a metal layer on the body portion 112 may be performed first.
  • the coefficient of thermal expansion ⁇ 2 of the hybrid composite body 202 including the body 112 and the canning unit 144 is the coefficient of thermal expansion ⁇ Al and the volume fraction t Al of the canning unit 144 as shown in Equation 1 below.
  • Is equal to the sum of the product of the coefficient of thermal expansion ( ⁇ g ) and the volume fraction (t g ) of the body portion 112.
  • the volume fraction of each component corresponds to the ratio of the total thickness of each component to the total thickness of the hybrid composite 202, where the thickness direction is a direction along the line A-A 'in the figure (y direction). it means.
  • ⁇ 2 ⁇ Al t Al + ⁇ g t g
  • Table 2 shows the thermal expansion coefficient of the hybrid composite 202 according to various embodiments consisting of the body portion 112 and the canning unit 144.
  • the thermal expansion coefficient of the hybrid composite body 202 can be designed suitably. have.
  • the thermal expansion coefficient ⁇ 2 of the hybrid composite 202 implemented in the heterojunction structure according to the embodiments of the present invention may be controlled within a predetermined level range with the thermal expansion coefficient ⁇ 1 of the ceramic 410, for example, The relationship of Equation 2 may be satisfied.
  • the thermal expansion of the hybrid composite constituting the second part 202 implemented in cases 1 to 2 of Table 2 is described.
  • the coefficient (4.428 or 4.42) satisfies Equation 2 above.
  • the ceramic constituting the first part 410 is alumina having a coefficient of thermal expansion of about 7.8
  • the thermal expansion coefficient of the hybrid composite constituting the second part 202 implemented in cases 3 to 5 of Table 2 is Equation 2 is satisfied.
  • the heterojunction structure according to another embodiment of the present invention includes a first part 410 including ceramic and a second part 203 including carbon. Since the first part 410 and the second part 203 are brazed, the brazing joint 310 is interposed between the first part 410 and the second part 203.
  • the brazing joint 310 may be understood as a heterojunction in which at least a portion of the filler and the bonding base material used for the brazing joint are melt-diffused.
  • the first part 410 is used. And / or the second portion 203 may not be clearly distinguished.
  • the first part 410 may include a ceramic material, and may include, for example, aluminum nitride (AlN) or alumina (Al 2 O 3 ).
  • the second part 203 is a hybrid composite including carbon, and the sintered composite layer 114 of aluminum and carbon interposed between the plurality of carbon layers 113 and the plurality of carbon layers 113 disposed to be spaced apart from each other. ). Further, the second portion 203 includes aluminum and includes a plurality of carbon layers 113 and a canning portion 144 surrounding the outer surface of the sintered composite layer 114. Since the sintered composite layer 114 has already been described above with reference to FIGS. 4A and 4B, description thereof will be omitted. Meanwhile, the carbon constituting the plurality of carbon layers 113 and the sintered composite layer 114 may include, for example, isotropic carbon or anisotropic carbon disclosed in Table 1.
  • the first part 410 includes aluminum nitride (AlN)
  • the first part 410 and the second part 203 may be directly brazed, but the first part 410 is made of alumina (AlN). 2 O 3 ), the first portion 410 may be brazed to the second portion 203 via a molybdenum-manganese metallization layer formed on a surface opposite the second portion 203. Can be.
  • the canning unit 144 may be implemented by performing a canning process to surround the top, bottom, and side surfaces of the plurality of carbon layers 113 and the sintered composite layer 114 except for the mutual contact surface. It can be configured to include.
  • the canning unit 144 may be formed on an outer surface of the plurality of carbon layers 113 and the sintered composite layer 114 by interposing a filler including an Al4047 series alloy, and forming an aluminum plate including an Al6061 series alloy. After placement, it may be formed by heat treatment. Meanwhile, before performing a canning process on the laminate structure composed of the plurality of carbon layers 113 and the sintered composite layer 114, a metallizing process of selectively forming a metal layer on the laminate structure may be performed first. It may be.
  • the thermal expansion coefficient ⁇ 2 of the hybrid composite 203 composed of the plurality of carbon layers 113, the sintered composite layer 114, and the canning unit 144 is the thermal expansion coefficient of the canning unit 144 as shown in Equation 3 below.
  • the coefficient of thermal expansion of ( ⁇ Al) and the volume fraction of a product of a (t Al) to the product of the coefficient of thermal expansion ( ⁇ g) and the volume fraction (t g) of the plurality of carbon layers 113 and the sintered composite layer (114) ( ⁇ cf ) and the product of the volume fraction (t cf ).
  • the volume fraction of each component corresponds to the ratio of the total thickness of each component to the total thickness of the hybrid composite 203, where the thickness direction is a direction along the line A-A 'in the figure (y direction). it means.
  • ⁇ 2 ⁇ Al t Al + ⁇ g t g + ⁇ cf t cf
  • Table 3 shows the coefficient of thermal expansion of the hybrid composite 203 according to various embodiments consisting of a plurality of carbon layers 113, the sintered composite layer 114 and the canning unit 144.
  • Types of carbon materials that control the volume fraction of the plurality of carbon layers 113, the sintered composite layer 114, and the canning unit 144, and constitute the plurality of carbon layers 113 and the sintered composite layer 114.
  • the thermal expansion coefficient ⁇ 2 of the hybrid composite 203 implemented in the heterojunction structure according to the embodiments of the present invention may be controlled within a predetermined level range with the thermal expansion coefficient ⁇ 1 of the ceramic 410, for example, The relationship of Equation 2 may be satisfied.
  • the thermal expansion of the hybrid composite constituting the second part 203 implemented in cases 1 to 2 of Table 3 is described.
  • the coefficient 4.654 or 4.177 satisfies Equation 2 above.
  • the heterojunction structure according to another embodiment of the present invention includes a first part 410 including ceramic and a second part 204 including carbon. Since the first portion 410 and the second portion 204 are brazed, a brazing junction 310 is interposed between the first portion 410 and the second portion 204.
  • the brazing joint 310 may be understood as a heterojunction in which at least some of the filler and the bonding base material used for the brazing joint are melt-diffused.
  • the first part 410 is actually implemented in the structure. And / or not distinct from the second portion 204.
  • the first part 410 may include a ceramic material, and may include, for example, aluminum nitride (AlN) or alumina (Al 2 O 3 ).
  • the second part 204 is a hybrid composite including carbon, and includes a plurality of carbon layers 113 and aluminum disposed apart from each other, and a thermal conductive layer 146 interposed between the plurality of carbon layers 113. It is provided. Since the thermal conductive layer 146 includes, for example, aluminum having a relatively high thermal conductivity, the thermal conductivity of the second portion 204 may be increased. Further, the second portion 204 includes, for example, aluminum and includes a plurality of carbon layers 113 and a canning portion 144 surrounding the outer surface of the thermal conductive layer 146.
  • Carbon constituting the plurality of carbon layers 113 may include, for example, isotropic carbon or anisotropic carbon, which is disclosed in Table 1 below. Also, in the modified embodiment, the plurality of carbon layers 113 may be made of a sintered composite of aluminum and carbon.
  • the first part 410 includes aluminum nitride (AlN)
  • the first part 410 and the second part 204 may be directly brazed, but the first part 410 is made of alumina (AlN). 2 O 3 ), the first portion 410 may be brazed to the second portion 204 via a molybdenum-manganese metallization layer formed on a surface opposite the second portion 204. Can be.
  • the canning unit 144 may be implemented by performing a canning process to surround the top, bottom, and side surfaces of the plurality of carbon layers 113 and the thermal conductive layer 146 except for the mutual contact surface, and may include aluminum.
  • the canning unit 144 may be formed on the outer surface of the plurality of carbon layers 113 and the thermal conductive layer 146 by interposing a filler including an Al4047 series alloy, and forming an aluminum plate including an Al6061 series alloy. After placement, it may be formed by heat treatment. Meanwhile, before performing a canning process on the laminate structure composed of the plurality of carbon layers 113 and the heat conductive layer 146, optionally, a metallizing process of forming a metal layer on the laminate structure may be performed first. have.
  • the thermal expansion coefficient ⁇ 2 of the hybrid composite 204 composed of the plurality of carbon layers 113, the thermal conductive layer 146, and the canning unit 144 may be represented by the canning unit 144 and the thermal conductive layer ( It is equal to the sum of the product of the coefficient of thermal expansion ⁇ Al and the volume fraction t Al of 146 and the product of the coefficient of thermal expansion ⁇ g and the volume fraction t g of the carbon layers 113.
  • the volume fraction of each component corresponds to the ratio of the total thickness of each component to the total thickness of the hybrid composite, and the direction of the thickness refers to the direction (y direction) along the line A-A 'in the figure.
  • ⁇ 2 ⁇ Al t Al + ⁇ g t g
  • Table 4 shows the coefficient of thermal expansion of the hybrid composite 204 according to various embodiments consisting of a plurality of carbon layers 113, the thermal conductive layer 146 and the canning unit 144.
  • the thermal expansion coefficient ⁇ 2 of the hybrid composite 204 implemented in the heterojunction structure according to the embodiments of the present invention may be controlled within a predetermined level range with the thermal expansion coefficient ⁇ 1 of the ceramic 410, for example, The relationship of Equation 2 may be satisfied.
  • the coefficient of thermal expansion of the hybrid composite constituting the second portion 204 when the ceramic constituting the first portion 410 is alumina having a coefficient of thermal expansion of 7.8, the coefficient of thermal expansion of the hybrid composite constituting the second portion 204, implemented in cases 1 to 3 of Table 4, 7.69, 7.72, or 7.84 satisfies Equation 2 above.
  • the structure 201 including the carbon shown in FIG. 1 and the hybrid composites 202, 203, and 204 shown in FIGS. 5 to 7 have excellent machinability to complex shapes,
  • the thermal expansion coefficient is close to alumina ceramics (7.8 x 10 -6 / k) and aluminum nitride ceramics (4.5 x 10 -6 / k) to reduce the thermal stress of the heterojunction structure. That is, according to the embodiments of the present invention, the carbon material and its hybrid composite material may be applied instead of the conventional aluminum material or copper material that is joined to the ceramic, and a heterojunction structure having a good bonding interface may be realized by brazing. Therefore, it is possible to provide a structure that can be used with durability even in a wide and rapid temperature cycle.
  • 8A to 8F illustrate a method of manufacturing a heterojunction structure according to another embodiment of the present invention, and exemplarily illustrate a method of manufacturing the heterojunction structure shown in FIG. 5.
  • a structure including a body part 112 including carbon is prepared. Description of the structure consisting of the body portion 112 including the carbon is the same as that described above with reference to Figure 5 will be omitted here.
  • the structure consisting of the body portion 112 containing carbon as shown in Figure 6, a plurality of carbon layers 113 and a plurality of carbon layers disposed spaced apart from each other It can be replaced by a laminated structure composed of a sintered composite layer 114 of aluminum and carbon interposed between the (113).
  • the structure composed of the body portion 112 including carbon as shown in Figure 7, a plurality of carbon layers 113 and a plurality of carbon disposed to be spaced apart from each other It may be replaced by a laminated structure composed of a thermally conductive layer 146 interposed between the layers 113.
  • a stainless foil 124 is provided on an outer surface (upper surface, lower surface and side surfaces except for mutual contact surfaces) of the structure 112 via a first filler 122.
  • the first filler 122 and the stainless foil 124 were first heat treated, for example, at a temperature of 1050 ° C. for 30 minutes to form an outer surface of the structure 112.
  • the surrounding metalizing layer 126 may be formed.
  • the first filler 122 may include, for example, BNi 2 .
  • the aluminum plate 142 is disposed on the structure 112 on which the metallization layer 126 is formed on the outer surface via the second filler 141.
  • the aluminum plate 142 may be understood as a case containing aluminum.
  • the structure 112, the second filler 141, and the aluminum plate 142 are subjected to a second heat treatment, for example, at a temperature of 600 ° C. for 30 minutes, thereby forming the canning portion 144 on the structure 112.
  • a second portion 202 comprising carbon is implemented.
  • the second filler 141 may include, for example, an Al4047 series alloy that is an aluminum alloy containing 12% of silicon.
  • the aluminum plate 142 may include, for example, an Al6061 series alloy.
  • a first part 410 including ceramic is prepared, and the first part 410 and the second part 202 are brazed.
  • the brazing joint is, for example, 30 minutes at a temperature of 600 ° C. after interposing a third filler 312 between the first portion 410 and the second portion 202, which includes, for example, an Al4047 series alloy. It can be performed by a third heat treatment.
  • the brazing bonding portion 310 is interposed between the first portion 410 and the second portion 201.
  • the brazing joint 310 may be understood as a heterojunction in which at least a portion of the filler and the joining base material used for the brazing joint are melt-diffused.
  • the brazing joint 310 may include the first part 410 and And / or may not be distinct from the second portion 202.
  • the second heat treatment performed to form the canning unit 144 and the third heat treatment performed for brazing bonding may be heat treatments performed simultaneously under the same heat treatment conditions. This is because the second filler 141 required for the second heat treatment and the third filler 312 required for the third heat treatment may be made of the same Al4047-based alloy, and may have the same heat treatment temperature and time. Do. Therefore, according to the method of manufacturing a heterojunction structure according to an embodiment of the present invention, the second heat treatment performed for forming the canning unit 144 and the third heat treatment performed for brazing bonding are not performed separately, respectively. Since it can be performed at the same time at the same time, the thermal burden applied to the heterojunction structure is lowered, and furthermore, the effect of lowering the production cost can be expected.
  • the first part 410 when the first part 410 includes aluminum nitride (AlN), the first part 410 and the second part 202 may be directly brazed.
  • 9A and 9B when the first portion 410 includes alumina (Al 2 O 3 ), the first portion 410 is formed of molybdenum on a surface opposite to the second portion 202. It may be brazed to the second portion 202 through the manganese metallization layer 320.
  • the canning unit 144, the thermal conductive layer 146, the ceramic material constituting the first portion 410, the first filler 122, the second filler 141, the third filler 312, the metallizing layer Components 126 and 320, the metal plate 142 and the metal foil 124, and the like mentioned above are illustrative, and it is apparent that the technical spirit of the present invention is not limited thereto.

Abstract

The present invention relates to a heterojunction structure and a method for manufacturing same, and more particularly to a heterojunction structure having precision cutting processability and superior thermal conductivity to minimize thermal stress at a heterojunction region, and a method for manufacturing same. To this end, the heterojunction structure includes: a first part including ceramic; and a second part including carbon and being junctioned to the first part by brazing.

Description

이종접합 구조체 및 그 제조방법Heterojunction structure and manufacturing method
본 발명은 이종접합 구조체 및 그 제조방법에 관한 것으로서, 더 상세하게는 세라믹과 탄소를 포함하는 저열팽창 복합재의 이종접합 구조체 및 그 제조방법에 관한 것이다. The present invention relates to a heterojunction structure and a method of manufacturing the same, and more particularly, to a heterojunction structure of a low thermal expansion composite comprising a ceramic and carbon and a method of manufacturing the same.
기본적으로 세라믹재는 금속재와 달리 내식성, 절연성 및 유전특성을 갖고 있고, 특히 질화알루미늄은 세라믹이면서도 알루미늄 금속과 동등하거나 그 이상의 우수한 열전도 특성을 갖고 있다. 이러한 특성으로 인해 세라믹재는, 예를 들어, LED, 전력반도체 패키지용 회로가 형성되는 절연기판에 사용될 수 있다. 또한, 이러한 세라믹재는, 예를 들어, 반도체 및 디스플레이 소자를 제조하기 위한 화학적 기상 증착(CVD), 물리적 기상 증착(PVD), 플라즈마 식각 공정에서 웨이퍼 및 글래스 기판을 거치시키면서 이들 기판의 온도 제어를 위한 가열장치 또는 냉각매체의 복잡한 유로가 내장된 서셉터(susceptor)에 사용되고 있다. 이러한 부품들에 적용할 수 있는 재질로서, 세라믹재 이외에도, 아노다이징 및 세라믹재의 용사공정에 의해, 산화물 피막층이 입혀진 알루미늄이 사용될 수 있다. 그러나 근본적으로 산화물과 알루미늄재 사이의 열팽창계수의 차이로 인해 넓은 온도범위 또는 빠른 공정속도를 구현하기 위한 급격한 온도 싸이클에서는 산화물 피막층의 파괴가 일어나서 그 사용이 매우 제한적이다.Fundamentally, ceramic materials, unlike metal materials, have corrosion resistance, insulation properties, and dielectric properties. In particular, aluminum nitride is ceramic and has excellent thermal conductivity properties equivalent to or greater than that of aluminum metal. Due to these characteristics, the ceramic material can be used for, for example, an insulating substrate on which circuits for LED and power semiconductor packages are formed. In addition, such ceramic materials can be used to control the temperature of these substrates, for example, while passing through the wafer and glass substrates in chemical vapor deposition (CVD), physical vapor deposition (PVD), and plasma etching processes for manufacturing semiconductor and display devices. Complex flow paths of heating devices or cooling media are used in susceptors. As a material applicable to these parts, in addition to the ceramic material, aluminum coated with an oxide coating layer may be used by an anodizing and thermal spraying process of the ceramic material. However, due to the difference in the coefficient of thermal expansion between the oxide and the aluminum material, the oxide film layer is destroyed in a rapid temperature cycle to realize a wide temperature range or a high process speed, and its use is very limited.
일예로서, 플라즈마 식각 또는 갭필(gap fill) 공정에 사용되는 냉각 플레이트 부품으로서, 복잡한 유로가 내장된 알루미늄 몸체 위에 정전척 기능을 갖는 세라믹 기판재를 접합 조립함에 있어 금속재와 세라믹재와 같은 이종 소재간의 열팽창계수 차이에 의한 휨 현상 및 열응력크랙 발생을 고려하여, 상온 근처에서 고분자 접착제로 접합한 형태의 부품이 사용되고 있다. 그러나 이러한 접착제의 사용은, 접착제의 낮은 열전도로 인해, 기판의 온도상승을 효과적으로 제어하지 못할 뿐만 아니라 대면적 증착 및 식각기판의 온도 균일성을 해치는 문제점을 갖고 있고, 무엇보다도 플라즈마 공정 중 기판에 이온충돌에 의해 상승된 온도 분위기 하에서 접합부의 낮은 내열성과 고분자 접착물질에 의한 공정 챔버의 오염 등이 문제점으로 지적되고 있다. For example, as a cooling plate component used in a plasma etching or gap fill process, a metal substrate and a heterogeneous material such as a ceramic material may be used to join and assemble a ceramic substrate material having an electrostatic chuck function on an aluminum body in which a complicated flow path is embedded. In consideration of the warpage phenomenon and thermal stress crack generation due to the difference in coefficient of thermal expansion, a component of a type bonded to the polymer adhesive at room temperature is used. However, the use of such an adhesive, due to the low thermal conductivity of the adhesive, not only does not effectively control the temperature rise of the substrate, but also has a problem of impairing the large-area deposition and the temperature uniformity of the etching substrate. Problems include the low heat resistance of the joints and the contamination of the process chamber due to the polymer adhesive in an elevated temperature atmosphere caused by the collision.
다른 예로서, 화학적 기상 증착 공정에서 사용되는 고온 가열 부품으로서, 세라믹과 열팽창계수가 근접한 몰리브덴이나 텅스텐 등의 금속발열체 코일이 내장된 질화알루미늄(AlN)의 히팅 플레이트를 사용하고 있으나, 고비용의 질화알루미늄 세라믹의 사용으로 인해 부품의 제조원가가 상승되게 된다. As another example, as a high temperature heating part used in a chemical vapor deposition process, a heating plate made of aluminum nitride (AlN) containing a metal heating element coil such as molybdenum or tungsten having a thermal expansion coefficient close to ceramic is used. The use of ceramics increases the manufacturing cost of components.
이에, 본 발명은 전술한 문제점을 해결하기 위하여 안출된 것으로서, 고온 및 넓은 온도 싸이클 환경 하에서도 견딜 수 있는 이종접합 구조체를 제공하고, 이를 위해서, 금속과 같이 정밀절삭 가공이 가능하고, 열전도도가 우수하며 무엇보다도 이종접합부의 열응력의 최소화를 구현하기 위해, 세라믹의 열팽창계수와 근접한 새로운 저열팽창 소재의 적용과 이를 통해 넓고 급격한 온도 싸이클에서도 세라믹과의 양호한 계면을 형성하고 유지할 수 있는 접합조립 방법을 제공한다. 이러한 본 발명의 과제는 예시적으로 제시되었고, 따라서 본 발명이 이러한 과제에 제한되는 것은 아니다. Accordingly, the present invention has been made to solve the above problems, to provide a heterojunction structure that can withstand high temperature and wide temperature cycle environment, for this purpose, it is possible to precise cutting processing, such as metal, thermal conductivity In order to minimize the thermal stress of the dissimilar junction, most of all, the application of a new low thermal expansion material close to the thermal expansion coefficient of the ceramic and the joint assembly method that can form and maintain a good interface with the ceramic even in a wide and rapid temperature cycle. To provide. This problem of the present invention has been presented by way of example, and therefore, the present invention is not limited to this problem.
본 발명의 일 관점에 따른 이종접합 구조체가 제공된다. 상기 이종접합 구조는 세라믹을 포함하는 제 1 부 및 탄소를 포함하며 상기 제 1 부와 브레이징 접합된 제 2 부를 구비한다. A heterojunction structure according to one aspect of the present invention is provided. The heterojunction structure has a first portion comprising ceramic and a second portion comprising carbon and brazing bonded to the first portion.
상기 이종접합 구조체에서, 상기 제 2 부는 탄소를 포함하는 하이브리드복합체를 구비할 수 있다. In the heterojunction structure, the second portion may include a hybrid composite including carbon.
상기 이종접합 구조체에서, 상기 하이브리드복합체는 탄소를 포함하는 바디부 및 알루미늄을 포함하며 상기 바디부의 외부면을 둘러싸는 캐닝부를 구비할 수 있다. In the heterojunction structure, the hybrid composite may include a body portion including carbon and a canning portion including aluminum and surrounding the outer surface of the body portion.
상기 이종접합 구조체에서, 상기 하이브리드복합체는 서로 이격되어 배치되는 복수의 탄소층들, 상기 복수의 탄소층들 사이에 개재하는 알루미늄과 탄소의 소결복합층 및 알루미늄을 포함하며 상기 복수의 탄소층들과 상기 소결복합층의 외부면을 둘러싸는 캐닝부를 구비할 수 있다. In the heterojunction structure, the hybrid composite includes a plurality of carbon layers spaced apart from each other, a sintered composite layer of aluminum and carbon and aluminum interposed between the plurality of carbon layers and the plurality of carbon layers Canning unit surrounding the outer surface of the sintered composite layer may be provided.
상기 이종접합 구조체에서, 상기 하이브리드복합체는 서로 이격되어 배치되는 복수의 탄소층들, 알루미늄을 포함하며 상기 복수의 탄소층들 사이에 개재하는 열전도층 및 알루미늄을 포함하며 상기 복수의 탄소층들과 상기 열전도층의 외부면을 둘러싸는 캐닝부를 구비할 수 있다. In the heterojunction structure, the hybrid composite includes a plurality of carbon layers disposed to be spaced apart from each other, aluminum and a thermally conductive layer and aluminum interposed between the plurality of carbon layers and the plurality of carbon layers and the Canning portion surrounding the outer surface of the thermal conductive layer may be provided.
상기 이종접합 구조체에서, 상기 하이브리드복합체의 열팽창계수 α2 는 상기 세라믹의 열팽창계수 α1 와 (α1 x 0.9) < α2 < (α1 x 1.1) 의 관계를 만족할 수 있다. In the heterojunction structure, the thermal expansion coefficient α 2 of the hybrid composite may satisfy the relationship between the thermal expansion coefficient α 1 and (α 1 x 0.9) <α 2 <(α 1 x 1.1) of the ceramic.
상기 이종접합 구조체에서, 상기 제 2 부는 탄소로만 구성된 바디부일 수 있다. In the heterojunction structure, the second portion may be a body portion composed only of carbon.
상기 이종접합 구조체에서, 상기 탄소는 등방성탄소 및 이방성탄소 중에서 적어도 어느 하나를 포함할 수 있다. In the heterojunction structure, the carbon may include at least one of isotropic carbon and anisotropic carbon.
상기 이종접합 구조체에서, 상기 세라믹은 질화알루미늄(AlN)을 포함하며, 상기 제 1 부는 상기 제 2 부와 직접 브레이징 접합될 수 있다. In the heterojunction structure, the ceramic may include aluminum nitride (AlN), and the first part may be directly brazed to the second part.
상기 이종접합 구조체에서, 상기 세라믹은 알루미나(Al2O3)를 포함하며, 상기 제 1 부는 상기 제 2 부와 대향하는 면 상에 형성된 몰리브덴-망간 메탈라이징층을 개재하여 상기 제 2 부와 브레이징 접합될 수 있다. In the heterojunction structure, the ceramic includes alumina (Al 2 O 3 ), and the first part is brazed with the second part via a molybdenum-manganese metallization layer formed on a surface facing the second part. Can be bonded.
본 발명의 다른 관점에 따른 이종접합 구조체의 제조방법이 제공된다. 상기 이종접합 구조체의 제조방법은 세라믹을 포함하는 제 1 부를 준비하는 단계, 탄소를 포함하는 제 2 부를 형성하는 단계 및 상기 제 1 부와 상기 제 2 부를 브레이징 접합하는 단계를 구비한다. According to another aspect of the present invention, a method of manufacturing a heterojunction structure is provided. The method of manufacturing a heterojunction structure includes preparing a first part including a ceramic, forming a second part including carbon, and brazing the first part and the second part.
상기 이종접합 구조체의 제조방법에서, 상기 탄소를 포함하는 제 2 부를 형성하는 단계는 탄소를 포함하는 제 1 구조체를 형성하는 단계 및 상기 제 1 구조체의 외부면을 둘러싸도록, 알루미늄을 포함하는 캐닝부를 형성하는 단계를 구비할 수 있다. In the method of manufacturing a heterojunction structure, the forming of the second portion including carbon may include forming a first structure including carbon and a canning portion including aluminum to surround an outer surface of the first structure. It may comprise the step of forming.
상기 이종접합 구조체의 제조방법에서, 상기 제 1 구조체는 탄소를 포함하는 바디(body)부를 구비할 수 있다. In the method of manufacturing the heterojunction structure, the first structure may include a body portion including carbon.
상기 이종접합 구조체의 제조방법에서, 상기 제 1 구조체는 서로 이격되어 배치되는 복수의 탄소층들 및 상기 복수의 탄소층들 사이에 개재하는 알루미늄과 탄소의 소결복합층을 구비할 수 있다. In the method of manufacturing a heterojunction structure, the first structure may include a plurality of carbon layers disposed spaced apart from each other and a sintered composite layer of aluminum and carbon interposed between the plurality of carbon layers.
상기 이종접합 구조체의 제조방법에서, 상기 제 1 구조체는 서로 이격되어 배치되는 복수의 탄소층들 및 알루미늄을 포함하며 상기 복수의 탄소층들 사이에 개재하는 열전도층을 구비할 수 있다. In the method of manufacturing a heterojunction structure, the first structure may include a plurality of carbon layers and aluminum disposed to be spaced apart from each other, and may include a thermal conductive layer interposed between the plurality of carbon layers.
상기 이종접합 구조체의 제조방법에서, 상기 제 1 구조체를 형성하는 단계와 상기 캐닝부를 형성하는 단계 사이에, 상기 제 1 구조체의 외부면을 둘러싸는 메탈라이징층을 형성하는 단계를 더 구비할 수 있다. 나아가, 상기 메탈라이징층을 형성하는 단계는 상기 제 1 구조체의 외부면 상에 제 1 필러를 개재하여 금속 포일을 배치하는 단계 및 상기 제 1 구조체, 상기 제 1 필러 및 상기 금속 포일을 제 1 열처리하는 단계를 구비할 수 있다. In the method of manufacturing a heterojunction structure, between the step of forming the first structure and the step of forming the canning, forming a metallization layer surrounding the outer surface of the first structure may be further provided. . Further, the forming of the metallizing layer may include disposing a metal foil on the outer surface of the first structure via a first filler and performing a first heat treatment of the first structure, the first filler, and the metal foil. It may be provided with a step.
상기 이종접합 구조체의 제조방법에서, 상기 캐닝부를 형성하는 단계는 상기 제 1 구조체의 외부면 상에 제 2 필러를 개재하여 알루미늄 판재를 배치하는 단계 및 상기 제 1 구조체, 상기 제 2 필러 및 상기 알루미늄 판재를 제 2 열처리하는 단계를 구비할 수 있다. 나아가, 상기 브레이징 접합하는 단계는 상기 제 1 부와 상기 제 2 부 사이에 제 3 필러를 개재하여 상기 제 1 부, 상기 제 2 부 및 상기 제 3 필러를 제 3 열처리하는 단계를 구비할 수 있다. 여기에서, 상기 제 2 필러와 상기 제 3 필러는 동일한 물질로 구성되며, 상기 제 2 열처리하는 단계와 상기 제 3 열처리하는 단계는 동일한 열처리조건으로 동시에 수행될 수 있다. In the method of manufacturing a heterojunction structure, the forming of the canning part may include disposing an aluminum plate on an outer surface of the first structure via a second filler and the first structure, the second filler, and the aluminum. And a second heat treatment of the plate material. Furthermore, the step of brazing bonding may include a third heat treatment of the first part, the second part and the third filler via a third filler between the first part and the second part. . Here, the second filler and the third filler may be made of the same material, and the second heat treatment and the third heat treatment may be simultaneously performed under the same heat treatment conditions.
상기한 바와 같이 이루어진 본 발명의 일 실시예에 따르면, 파티클의 발생을 억제하고, 제조비용을 절감하면서, 열전달 성능이 우수한 이종접합 구조체 및 그 제조방법을 구현할 수 있다. According to one embodiment of the present invention made as described above, it is possible to implement a heterojunction structure and a method of manufacturing the same excellent in heat transfer performance while suppressing the generation of particles, reducing the manufacturing cost.
도 1은 본 발명의 일 실시예에 의한 이종접합 구조체를 도해하는 단면도이다. 1 is a cross-sectional view illustrating a heterojunction structure according to an embodiment of the present invention.
도 2는 질화알루미늄/탄소재의 브레이징 후 이종접합 구조체의 외관을 나타낸 사진이다. 2 is a photograph showing the appearance of a heterojunction structure after brazing of an aluminum nitride / carbon material.
도 3a는 본 발명의 일 실시예에 따른 질화알루미늄(AlN)/탄소재(ET-10)의 브레이징 후 이종접합 구조체의 외관을 나타낸 사진이고, 도 3b는 본 발명의 비교예에 따른 질화알루미늄(AlN)/Al6061 계열 합금의 브레이징 후 이종접합 구조체의 외관을 나타낸 사진이다. 3A is a photograph showing the appearance of a heterojunction structure after brazing of an aluminum nitride (AlN) / carbon material (ET-10) according to an embodiment of the present invention, and FIG. 3B is an aluminum nitride according to a comparative example of the present invention ( Photograph showing appearance of heterojunction structure after brazing of AlN) / Al6061 series alloy.
도 4a 및 도 4b는 각각 알루미늄 분말과 50 vol%의 탄소섬유의 소결복합재에 대한 평면 및 단면의 조직 사진들이다. 4A and 4B are planar and cross-sectional texture photographs of a sintered composite of aluminum powder and 50 vol% carbon fiber, respectively.
도 5는 본 발명의 다른 실시예에 의한 이종접합 구조체를 도해하는 단면도이다. 5 is a cross-sectional view illustrating a heterojunction structure according to another embodiment of the present invention.
도 6은 본 발명의 또 다른 실시예에 의한 이종접합 구조체를 도해하는 단면도이다. 6 is a cross-sectional view illustrating a heterojunction structure according to still another embodiment of the present invention.
도 7은 본 발명의 또 다른 실시예에 의한 이종접합 구조체를 도해하는 단면도이다. 7 is a cross-sectional view illustrating a heterojunction structure according to still another embodiment of the present invention.
도 8a 내지 도 8f는 본 발명의 또 다른 실시예에 의한 이종접합 구조체를 형성하는 방법을 도해하는 도면들이다. 8A to 8F illustrate a method of forming a heterojunction structure according to still another embodiment of the present invention.
도 9a 및 도 9b는 본 발명의 또 다른 실시예에 의한 이종접합 구조체를 형성하는 변형된 방법을 도해하는 도면들이다. 9A and 9B illustrate a modified method of forming a heterojunction structure according to another embodiment of the present invention.
<부호의 설명><Description of the code>
112 : 탄소를 포함하는 바디부112: body portion containing carbon
113 : 복수의 탄소층들113: a plurality of carbon layers
114 : 알루미늄과 탄소의 소결복합층114: sintered composite layer of aluminum and carbon
126 : 메탈라이징층126: metallizing layer
144 : 캐닝부144: canning unit
146 : 열전도층146: thermal conductive layer
201, 202, 203, 204 : 탄소를 포함하여 구성되는 제 2 부201, 202, 203, 204: second part consisting of carbon
310 : 브레이징 접합부310: brazing joint
410 : 세라믹을 포함하여 구성되는 제 1 부410: Part 1 composed of ceramic
이하, 첨부한 도면을 참조하여 본 발명에 따른 바람직한 실시예를 설명함으로써 본 발명을 상세하게 설명한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 도면에서 구성 요소들은 설명의 편의를 위하여 그 크기가 과장 또는 축소될 수 있다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the present embodiments are intended to complete the disclosure of the present invention and to those skilled in the art to fully understand the scope of the invention. It is provided to inform you. In the drawings, the components may be exaggerated or reduced in size for convenience of description.
본 실시예를 설명하는 과정에서 언급하는 "상의" 또는 "하의"와 같은 용어들은, 도면에서 도해되는 것처럼, 다른 요소들에 대한 어떤 요소들의 상대적인 관계를 기술하기 위해 사용될 수 있다. 즉, 상대적 용어들은 도면에서 묘사되는 방향과 별도로 구조체의 다른 방향들을 포함하는 것으로 이해될 수도 있다. 예를 들어, 도면들에서 구조체의 상하가 뒤집어 진다면, 다른 요소들의 상면 상에 존재하는 것으로 묘사되는 요소들은 상기 다른 요소들의 하면 상에 존재할 수 있다. 그러므로 예로써 든, "상의"라는 용어는, 도면의 특정한 방향을 기준으로, "상의" 및 "하의" 방향 모두를 포함할 수 있다. Terms such as "top" or "bottom" mentioned in the description of this embodiment may be used to describe the relative relationship of certain elements to other elements, as illustrated in the figures. That is, relative terms may be understood to include other directions of the structure separately from the direction depicted in the figures. For example, if the top and bottom of the structure in the figures are upside down, elements depicted as being on the top of other elements may be on the bottom of the other elements. Thus, by way of example, the term "top" may include both "top" and "bottom" directions, relative to a particular direction in the figures.
또한, 본 실시예를 설명하는 과정에서, 어떠한 구성요소가 다른 구성요소 "상에" 위치하거나, 다른 구성요소에 "연결"된다고 언급할 때는, 상기 구성요소는 상기 다른 구성요소의 직접 상에 위치하거나, 상기 다른 구성요소에 직접 연결되는 것을 의미할 수도 있으나, 나아가, 하나 또는 둘 이상의 개재하는 구성요소들이 그 사이에 존재할 수 있음을 의미할 수도 있다. 하지만, 어떠한 구성요소가 다른 구성요소의 "직접 상에" 위치하거나, 다른 구성요소에 "직접 연결"된다거나, 또는 다른 구성요소에"직접 접촉"한다고 언급할 때는, 별도의 언급이 없다면 그 사이에 개재하는 구성요소들이 존재하지 않음을 의미한다. Further, in the course of describing the present embodiment, when referring to a component "on" or "connected" to another component, the component is located directly on the other component. Alternatively, the present invention may be directly connected to the other components. Furthermore, one or more intervening components may be present therebetween. However, when referring to a component "directly" to another component, "directly connected" to another component, or "direct contact" to another component, unless otherwise stated, This means that there are no components intervening in.
이하의 실시예에서, x축, y축 및 z축은 직교 좌표계 상의 세 축으로 한정되지 않고, 이를 포함하는 넓은 의미로 해석될 수 있다. 예를 들어, x축, y축 및 z축은 서로 직교할 수도 있지만, 서로 직교하지 않는 서로 다른 방향을 지칭할 수도 있다.In the following embodiments, the x-axis, y-axis and z-axis are not limited to three axes on the Cartesian coordinate system, but may be interpreted in a broad sense including the same. For example, the x-axis, y-axis, and z-axis may be orthogonal to each other, but may refer to different directions that are not orthogonal to each other.
본 발명은 출원인에 의하여 2012년 2월 29일자로 한국특허청에 출원한 출원번호 제10-2012-0021442호에 대하여 우선권을 주장하며, 상기 특허출원의 내용은 전체로서 본 명세서에 인용되어 통합된다. The present invention claims priority to Korean Patent Application No. 10-2012-0021442 filed on February 29, 2012 by the applicant, the contents of which are incorporated herein by reference in their entirety.
도 1은 본 발명의 일 실시예에 의한 이종접합 구조체를 도해하는 단면도이다. 도 1을 참조하면, 본 발명의 일 실시예에 의한 이종접합 구조체는 세라믹을 포함하는 제 1 부(410) 및 탄소를 포함하는 제 2 부(201)를 포함한다. 제 1 부(410)와 제 2 부(201)는 브레이징 접합되므로, 브레이징 접합부(310)가 제 1 부(410)와 제 2 부(201) 사이에 개재된다. 브레이징 접합부(310)는 브레이징 접합에 사용되는 필러(filler)와 접합모재 중 적어도 일부가 용융확산되는 이종접합부로 이해될 수 있으며, 도면에서는 명시적으로 도시하였으나, 실제로 구현된 구조체에서는 제 1 부(410) 및/또는 제 2 부(201)와 명확하게 구분되지 않을 수 있다. 1 is a cross-sectional view illustrating a heterojunction structure according to an embodiment of the present invention. Referring to FIG. 1, a heterojunction structure according to an embodiment of the present invention includes a first part 410 including ceramic and a second part 201 including carbon. Since the first part 410 and the second part 201 are brazed, the brazing joint 310 is interposed between the first part 410 and the second part 201. The brazing joint 310 may be understood as a heterojunction in which at least a portion of the filler and the bonding base material used for the brazing joint are melt-diffused. Although explicitly shown in the drawings, the brazing joint 310 may include the first part ( 410 and / or second portion 201 may not be clearly distinguished.
제 1 부(410)는 세라믹재를 포함하여 구성되며, 예를 들어, 질화알루미늄(AlN) 또는 알루미나(Al2O3)를 포함하여 구성될 수 있다. 제 2 부(201)는 탄소로만 구성된 바디부(112)일 수 있다. 예를 들어, 제 2 부(201)는 등방성탄소 또는 이방성탄소를 포함하여 구성될 수 있다. 한편, 변형된 실시예에서, 제 2 부(201)는 알루미늄과 탄소의 소결복합재로 구성될 수도 있다. 제 1 부(410)가 질화알루미늄(AlN)을 포함하여 구성되는 경우, 제 1 부(410)와 제 2 부(201)는 직접 브레이징 접합될 수 있으나, 제 1 부(410)가 알루미나(Al2O3)를 포함하여 구성되는 경우, 제 1 부(410)는 제 2 부(201)와 대향하는 면 상에 형성된 몰리브덴-망간 메탈라이징층을 개재하여 제 2 부(201)와 브레이징 접합될 수 있다. The first part 410 may include a ceramic material, and may include, for example, aluminum nitride (AlN) or alumina (Al 2 O 3 ). The second portion 201 may be a body portion 112 composed of only carbon. For example, the second portion 201 may be configured to include isotropic carbon or anisotropic carbon. On the other hand, in the modified embodiment, the second portion 201 may be composed of a sintered composite of aluminum and carbon. When the first part 410 includes aluminum nitride (AlN), the first part 410 and the second part 201 may be directly brazed, but the first part 410 may be alumina (AlN). 2 O 3 ), the first portion 410 may be brazed to the second portion 201 via a molybdenum-manganese metallization layer formed on a surface opposite the second portion 201. Can be.
제 1 부(410)와 제 2 부(201)의 열팽창계수 차이의 정도는 이종접합 구조체의 열응력에 영향에 미치는 중요한 인자로서, 제 1 부(410)를 구성하는 세라믹재와 제 2 부(201)를 구성하는 탄소재의 열팽창계수의 차이를 최소화하는 것이 바람직할 수 있다. 표 1은 본 발명에 적용될 수 있는 탄소재, 소결복합재 및 세라믹재 등에 대한 열팽창계수 및 열전도도를 나타낸 것이다. The difference between the coefficients of thermal expansion between the first part 410 and the second part 201 is an important factor affecting the thermal stress of the heterojunction structure, and the ceramic material and the second part ( It may be desirable to minimize the difference in the coefficient of thermal expansion of the carbon material constituting 201). Table 1 shows the coefficient of thermal expansion and thermal conductivity of carbon materials, sintered composite materials and ceramic materials that can be applied to the present invention.
[표 1]TABLE 1
Figure PCTKR2013001684-appb-I000001
Figure PCTKR2013001684-appb-I000001
본 발명에서는, 예시적으로, 질화알루미늄(AlN) 세라믹의 열팽창계수와 동등하거나 그 이하인 열팽창계수를 가지는 탄소재를, 활성필러금속을 이용하여, 질화알루미늄(AlN) 세라믹과 직접 접합하는 이종접합 구조체 및 그 제조방법을 제시한다. 활성필러금속으로는 Ag-Cu-Ti계 및 Au-Ni-Ti계 필러금속을 사용할 수 있다. 또한 활성금속인 티타늄(Ti) 및 지르코늄(Zr)이 다량 함유되어 있는 Ti-Zr 기지의 활성필러금속을 사용할 수 있다. In the present invention, for example, a heterojunction structure in which a carbon material having a coefficient of thermal expansion equal to or less than that of an aluminum nitride (AlN) ceramic is directly bonded to an aluminum nitride (AlN) ceramic using an active filler metal. And the manufacturing method is presented. Ag-Cu-Ti-based and Au-Ni-Ti-based filler metals may be used as the active filler metal. In addition, Ti-Zr-based active filler metals containing a large amount of active metals such as titanium (Ti) and zirconium (Zr) may be used.
도 2는 브레이징에 의하여 접합된 질화알루미늄(AlN)/탄소재(ET-10)의 이종접합 구조체의 외관을 나타낸 사진이다. 도 2를 참조하면, 본 실시예에서의 접합조건은 855℃의 액상선 온도를 가지는 Ti-43.5Zr-6.5Ni-8.1Cu(중량%)의 활성필러금속을 사용하였으며, 1 x 10-5 Torr 이하의 진공도를 갖는 고진공 그라파이트 퍼니스를 이용하여 30분간 900℃의 온도를 유지하였다. 이때 질화알루미늄(AlN) 세라믹 기판의 크기는 125mm x 62mm x 0.2mmt 이었으며 탄소재는 125mm x 62mm x 10mmt 그라파이트 소재(ET-10)를 사용하였다. 질화알루미늄(AlN)의 열팽창계수는 4.5 x 10-6/K 이고, 탄소재의 일종인 ET-10의 열팽창계수는 3.8 x 10-6/K 인데, 상기 접합조건으로 양호한 접합 계면과 열응력적으로 안정한 이종접합 구조체를 구현할 수 있다. 이와 비교하기 위하여, 질화알루미늄(AlN)과 Al6061 계열 합금의 모재를 브레이징에 의하여 접합한 이종접합 구조체를 형성하였다. 2 is a photograph showing the appearance of a heterojunction structure of aluminum nitride (AlN) / carbon material (ET-10) bonded by brazing. Referring to FIG. 2, in the present embodiment, the bonding condition of Ti-43.5Zr-6.5Ni-8.1Cu (% by weight) of an active filler metal having a liquidus temperature of 855 ° C. was used, and 1 × 10 −5 Torr The temperature of 900 degreeC was maintained for 30 minutes using the high vacuum graphite furnace which has the following vacuum degree. At this time, the size of the aluminum nitride (AlN) ceramic substrate was 125mm x 62mm x 0.2mmt and the carbon material was 125mm x 62mm x 10mmt graphite material (ET-10). The thermal expansion coefficient of aluminum nitride (AlN) is 4.5 x 10 -6 / K, and the thermal expansion coefficient of ET-10, which is a kind of carbon material, is 3.8 x 10 -6 / K. It is possible to implement a stable heterojunction structure. In comparison, a heterojunction structure was formed in which a base material of aluminum nitride (AlN) and an Al6061 series alloy were joined by brazing.
도 3a는 본 발명의 일 실시예에 따른 질화알루미늄(AlN)/탄소재(ET-10)의 브레이징 후 이종접합 구조체의 외관을 나타낸 사진이고, 도 3b는 본 발명의 비교예에 따른 질화알루미늄(AlN)/Al6061 계열 합금의 브레이징 후 이종접합 구조체의 외관을 나타낸 사진이다. 도 3a에 도시된 이종접합 구조체의 접합조건으로는 Ti-43.5Zr-6.5Ni-8.1Cu 합금을 필러로 사용하였으며, 1 x 10-5 Torr 이하의 진공도를 갖는 고진공 그라파이트 퍼니스를 이용하여 30분간 900℃의 온도를 유지하였다. 이에 반하여, 도 3b에 도시된 이종접합 구조체의 접합조건으로는 Al-12Si 합금을 필러로 사용하였으며, 1 x 10-5 Torr 이하의 진공도를 갖는 고진공 그라파이트 퍼니스를 이용하여 30분간 600℃의 온도를 유지하였다. 본 발명의 일 실시예에 따른 이종접합 구조체(도 3a)는 종래 기술에 따른 이종접합 구조체(도 3b)에 비하여 브레이징 온도가 높음에도 불구하고 열응력에 의한 구조체의 변형이 거의 없는 것을 확인할 수 있었다. 3A is a photograph showing the appearance of a heterojunction structure after brazing of an aluminum nitride (AlN) / carbon material (ET-10) according to an embodiment of the present invention, and FIG. 3B is an aluminum nitride according to a comparative example of the present invention ( Photograph showing appearance of heterojunction structure after brazing of AlN) / Al6061 series alloy. As a bonding condition of the heterojunction structure shown in FIG. 3a, Ti-43.5Zr-6.5Ni-8.1Cu alloy was used as a filler, and a high vacuum graphite furnace having a vacuum degree of 1 x 10 -5 Torr or less was used for 900 minutes for 30 minutes. The temperature of ℃ was maintained. On the contrary, Al-12Si alloy was used as a filler for the heterojunction structure shown in FIG. 3B, and the temperature was 600 ° C. for 30 minutes using a high vacuum graphite furnace having a vacuum degree of 1 × 10 −5 Torr or less. Maintained. The heterojunction structure (FIG. 3A) according to an embodiment of the present invention was confirmed that there is little deformation of the structure due to thermal stress despite the high brazing temperature compared to the heterojunction structure (FIG. 3B) according to the prior art. .
한편, 앞에서 설명한 것처럼, 본 발명의 변형된 실시예에서, 제 2 부(201)는 알루미늄과 탄소의 소결복합재로 구성될 수도 있다. 탄소는 소결복합재의 강화재이며, 예를 들어, 탄소섬유를 적용할 수 있는데, 길이가 100미크론 이하의 단섬유(chopped carbon fiber, milled carbon fiber)를 사용할 수 있다. 한편, 탄소섬유 이외에도 저열팽창 및 고열전도성 특성을 갖는 그라파이트 탄소(graphite carbon) 또는 탄소 분말 등의 대체적용도 가능하다.On the other hand, as described above, in a modified embodiment of the present invention, the second portion 201 may be composed of a sintered composite of aluminum and carbon. Carbon is a reinforcing material of the sintered composite material, and for example, carbon fiber may be applied, and chopped carbon fiber (milled carbon fiber) having a length of 100 microns or less may be used. On the other hand, in addition to the carbon fiber, it is also possible to substitute graphite carbon or carbon powder having low thermal expansion and high thermal conductivity.
알루미늄 분말과 탄소의 배합비율은 20 내지 60 vol%까지 가능하나 열팽창계수 및 소결성을 고려하여 30 내지 50 vol% 범위가 바람직하다. 알루미늄 분말과 탄소섬유를 건식 및 습식법에 의해 혼합한 후, 예를 들어, Hot press법, 통전가압소결법 또는 HIP법과 같은, 일반적인 소결법에 의하여 소결하여 벌크화 할 수 있다. 알루미늄 분말의 융점 이하인 500 내지 650℃, 가압력은 20 내지 100MPa 조건에서 진공소결을 통하여 양호한 소결체를 얻을 수 있다. 도 4a 및 도 4b는 각각 알루미늄 분말과 50 vol%의 탄소섬유의 소결복합재에 대한 평면(top view) 및 단면(cross-section view)의 조직 사진들을 나타낸 것이다. The blending ratio of aluminum powder and carbon may be up to 20 to 60 vol%, but the range is preferably 30 to 50 vol% in consideration of the coefficient of thermal expansion and sintering. The aluminum powder and the carbon fiber may be mixed by dry and wet methods, and then sintered and bulked by a general sintering method such as, for example, a hot press method, energizing pressure sintering method, or HIP method. A favorable sintered compact can be obtained through vacuum sintering at 500-650 degreeC and pressing force which are below the melting | fusing point of aluminum powder at 20-100 MPa conditions. 4A and 4B show the top and cross-section views of the structure photographs of the sintered composite of aluminum powder and 50 vol% carbon fiber, respectively.
도 5는 본 발명의 다른 실시예에 의한 이종접합 구조체를 도해하는 단면도이다. 도 5를 참조하면, 본 발명의 다른 실시예에 의한 이종접합 구조체는 세라믹을 포함하는 제 1 부(410) 및 탄소를 포함하는 제 2 부(202)를 포함한다. 제 1 부(410)와 제 2 부(202)는 브레이징 접합되므로, 브레이징 접합부(310)가 제 1 부(410)와 제 2 부(202) 사이에 개재된다. 브레이징 접합부(310)는 브레이징 접합에 사용되는 필러와 접합모재 중 적어도 일부가 용융확산되는 이종접합부로 이해될 수 있으며, 도 5에서는 명시적으로 도시하였으나, 실제로 구현된 구조체에서는 제 1 부(410) 및/또는 제 2 부(202)와 명확하게 구분되지 않을 수 있다. 5 is a cross-sectional view illustrating a heterojunction structure according to another embodiment of the present invention. Referring to FIG. 5, a heterojunction structure according to another embodiment of the present invention includes a first part 410 including ceramic and a second part 202 including carbon. Since the first part 410 and the second part 202 are brazed, a brazing joint 310 is interposed between the first part 410 and the second part 202. The brazing joint 310 may be understood as a heterojunction in which at least some of the filler and the bonding base material used for the brazing joint are melt-diffused. Although explicitly shown in FIG. 5, the first part 410 is actually implemented in the structure. And / or not distinct from the second portion 202.
제 1 부(410)는 세라믹재를 포함하여 구성되며, 예를 들어, 질화알루미늄(AlN) 또는 알루미나(Al2O3)를 포함하여 구성될 수 있다. 제 2 부(202)는 탄소를 포함하는 하이브리드복합체로서, 탄소를 포함하는 바디부(112) 및 알루미늄을 포함하며 바디부(112)의 외부면을 둘러싸는 캐닝부(144)를 구비한다. 바디부(112)는 탄소를 포함하여 구성되며, 예를 들어, 표 1에 개시된, 등방성탄소 또는 이방성탄소를 포함하여 구성될 수 있다. 한편, 변형된 실시예에서, 바디부(112)는 알루미늄과 탄소의 소결복합재로 구성될 수도 있다. 제 1 부(410)가 질화알루미늄(AlN)을 포함하여 구성되는 경우, 제 1 부(410)와 제 2 부(202)는 직접 브레이징 접합될 수 있으나, 제 1 부(410)가 알루미나(Al2O3)를 포함하여 구성되는 경우, 제 1 부(410)는 제 2 부(202)와 대향하는 면 상에 형성된 몰리브덴-망간 메탈라이징층을 개재하여 제 2 부(202)와 브레이징 접합될 수 있다. The first part 410 may include a ceramic material, and may include, for example, aluminum nitride (AlN) or alumina (Al 2 O 3 ). The second portion 202 is a hybrid composite including carbon and includes a body portion 112 including carbon and a canning portion 144 including aluminum and surrounding the outer surface of the body portion 112. Body portion 112 is configured to include carbon, for example, may be configured to include isotropic carbon or anisotropic carbon, shown in Table 1. On the other hand, in the modified embodiment, the body portion 112 may be composed of a sintered composite of aluminum and carbon. When the first part 410 includes aluminum nitride (AlN), the first part 410 and the second part 202 may be directly brazed, but the first part 410 is made of alumina (AlN). 2 O 3 ), the first portion 410 may be brazed to the second portion 202 via a molybdenum-manganese metallization layer formed on a surface opposite the second portion 202. Can be.
캐닝부(144)는 바디부(112)의 상면, 하면 및 측면들을 둘러싸도록 캐닝(canning) 공정을 수행하여 구현될 수 있으며, 예를 들어, 알루미늄을 포함하여 구성될 수 있다. 일예로, 캐닝부(144)는 바디부(112)의 외부면 상에, Al4047 계열 합금을 포함하는 필러를 개재하여, Al6061 계열 합금을 포함하는 알루미늄 판재를 배치한 후에, 열처리함으로써 구현될 수 있다. 한편, 바디부(112) 상에 캐닝 공정을 수행하기 이전에, 선택적으로, 바디부(112) 상에 금속층을 형성하는 메탈라이징 공정을 먼저 수행할 수도 있다. The canning part 144 may be implemented by performing a canning process to surround the top, bottom, and side surfaces of the body part 112, and may include, for example, aluminum. For example, the canning unit 144 may be implemented by arranging an aluminum plate including an Al6061 series alloy on the outer surface of the body portion 112 through a filler including an Al4047 series alloy, and then heat treating the aluminum plate. . Meanwhile, before performing the canning process on the body portion 112, optionally, a metallizing process of forming a metal layer on the body portion 112 may be performed first.
바디부(112)와 캐닝부(144)로 구성되는 하이브리드복합체(202)의 열팽창계수 α2 는 하기의 수학식 1과 같이 캐닝부(144)의 열팽창계수(αAl)와 부피분율(tAl)의 곱과 바디부(112)의 열팽창계수(αg)와 부피분율(tg)의 곱의 합과 같다. 여기에서 각 구성요소의 부피분율은 하이브리드복합체(202)의 전체 두께에 대한 각 구성요소의 총 두께의 비에 해당하는데, 두께의 방향은 도면에서 A-A'선을 따른 방향(y방향)을 의미한다. The coefficient of thermal expansion α 2 of the hybrid composite body 202 including the body 112 and the canning unit 144 is the coefficient of thermal expansion α Al and the volume fraction t Al of the canning unit 144 as shown in Equation 1 below. ) Is equal to the sum of the product of the coefficient of thermal expansion (α g ) and the volume fraction (t g ) of the body portion 112. Here, the volume fraction of each component corresponds to the ratio of the total thickness of each component to the total thickness of the hybrid composite 202, where the thickness direction is a direction along the line A-A 'in the figure (y direction). it means.
[수학식 1][Equation 1]
α2 = αAl tAl + αg tg α 2 = α Al t Al + α g t g
표 2는 바디부(112)와 캐닝부(144)로 구성되는 다양한 실시예들에 따른 하이브리드복합체(202)의 열팽창계수를 나타낸다. 캐닝부(144)와 바디부(112)의 부피분율을 조절하고, 바디부(112)를 구성하는 탄소재의 종류를 적절하게 선택함으로써, 하이브리드복합체(202)의 열팽창계수를 적절하게 설계할 수 있다. Table 2 shows the thermal expansion coefficient of the hybrid composite 202 according to various embodiments consisting of the body portion 112 and the canning unit 144. By adjusting the volume fraction of the canning part 144 and the body part 112, and selecting the kind of carbon material which comprises the body part 112 suitably, the thermal expansion coefficient of the hybrid composite body 202 can be designed suitably. have.
[표 2]TABLE 2
Figure PCTKR2013001684-appb-I000002
Figure PCTKR2013001684-appb-I000002
본 발명의 상기 실시예들에 의한 이종접합 구조체에서 구현된 하이브리드복합체(202)의 열팽창계수 α2 는 세라믹(410)의 열팽창계수 α1 와 일정 수준 범위 이내로 제어될 수 있으며, 예를 들어, 하기의 수학식 2의 관계를 만족할 수 있다. The thermal expansion coefficient α 2 of the hybrid composite 202 implemented in the heterojunction structure according to the embodiments of the present invention may be controlled within a predetermined level range with the thermal expansion coefficient α 1 of the ceramic 410, for example, The relationship of Equation 2 may be satisfied.
[수학식 2][Equation 2]
1 x 0.9) < α2 < (α1 x 1.1)1 x 0.9) <α 2 <(α 1 x 1.1)
구체적으로 살펴보면, 제 1 부(410)를 구성하는 세라믹이 열팽창계수가 약 4.5 인 질화알루미늄인 경우, 표 2의 케이스 1 내지 2에서 구현된, 제 2 부(202)를 구성하는 하이브리드복합체의 열팽창계수(4.428 또는 4.42)는 상기 수학식 2를 만족한다. 또한, 제 1 부(410)를 구성하는 세라믹이 열팽창계수가 약 7.8 인 알루미나인 경우, 표 2의 케이스 3 내지 5에서 구현된, 제 2 부(202)를 구성하는 하이브리드복합체의 열팽창계수는 상기 수학식 2를 만족한다. 제 1 부(410)를 구성하는 세라믹재의 열팽창계수와 제 2 부(202)를 구성하는 하이브리드복합체(202)의 열팽창계수의 상대적인 차이가 작을수록, 이종접합 구조체에 발생하는 열응력이 낮아져 구조적으로 안정될 수 있다.Specifically, in the case where the ceramic constituting the first part 410 is aluminum nitride having a thermal expansion coefficient of about 4.5, the thermal expansion of the hybrid composite constituting the second part 202 implemented in cases 1 to 2 of Table 2 is described. The coefficient (4.428 or 4.42) satisfies Equation 2 above. In addition, when the ceramic constituting the first part 410 is alumina having a coefficient of thermal expansion of about 7.8, the thermal expansion coefficient of the hybrid composite constituting the second part 202 implemented in cases 3 to 5 of Table 2 is Equation 2 is satisfied. The smaller the relative difference between the coefficient of thermal expansion of the ceramic material constituting the first portion 410 and the coefficient of thermal expansion of the hybrid composite 202 constituting the second portion 202, the lower the thermal stress generated in the heterojunction structure. Can be stabilized.
도 6은 본 발명의 또 다른 실시예에 의한 이종접합 구조체를 도해하는 단면도이다. 도 6을 참조하면, 본 발명의 또 다른 실시예에 의한 이종접합 구조체는 세라믹을 포함하는 제 1 부(410) 및 탄소를 포함하는 제 2 부(203)를 포함한다. 제 1 부(410)와 제 2 부(203)는 브레이징 접합되므로, 브레이징 접합부(310)가 제 1 부(410)와 제 2 부(203) 사이에 개재된다. 브레이징 접합부(310)는 브레이징 접합에 사용되는 필러와 접합모재 중 적어도 일부가 용융확산되는 이종접합부로 이해될 수 있으며, 도 6에서는 명시적으로 도시하였으나, 실제로 구현된 구조체에서는 제 1 부(410) 및/또는 제 2 부(203)와 명확하게 구분되지 않을 수 있다. 6 is a cross-sectional view illustrating a heterojunction structure according to still another embodiment of the present invention. Referring to FIG. 6, the heterojunction structure according to another embodiment of the present invention includes a first part 410 including ceramic and a second part 203 including carbon. Since the first part 410 and the second part 203 are brazed, the brazing joint 310 is interposed between the first part 410 and the second part 203. The brazing joint 310 may be understood as a heterojunction in which at least a portion of the filler and the bonding base material used for the brazing joint are melt-diffused. Although explicitly shown in FIG. 6, in the structure actually implemented, the first part 410 is used. And / or the second portion 203 may not be clearly distinguished.
제 1 부(410)는 세라믹재를 포함하여 구성되며, 예를 들어, 질화알루미늄(AlN) 또는 알루미나(Al2O3)를 포함하여 구성될 수 있다. 제 2 부(203)는 탄소를 포함하는 하이브리드복합체로서, 서로 이격되어 배치되는 복수의 탄소층들(113) 및 복수의 탄소층들(113) 사이에 개재하는 알루미늄과 탄소의 소결복합층(114)을 구비한다. 나아가, 제 2 부(203)는 알루미늄을 포함하며 복수의 탄소층들(113)과 소결복합층(114)의 외부면을 둘러싸는 캐닝부(144)를 구비한다. 소결복합층(114)은 도 4a 및 도 4b를 참조하여 앞에서 이미 상술하였으므로 여기에서는 설명을 생략한다. 한편, 복수의 탄소층들(113)과 소결복합층(114)을 구성하는 탄소는, 예를 들어, 표 1에 개시된, 등방성탄소 또는 이방성탄소를 포함하여 구성될 수 있다. The first part 410 may include a ceramic material, and may include, for example, aluminum nitride (AlN) or alumina (Al 2 O 3 ). The second part 203 is a hybrid composite including carbon, and the sintered composite layer 114 of aluminum and carbon interposed between the plurality of carbon layers 113 and the plurality of carbon layers 113 disposed to be spaced apart from each other. ). Further, the second portion 203 includes aluminum and includes a plurality of carbon layers 113 and a canning portion 144 surrounding the outer surface of the sintered composite layer 114. Since the sintered composite layer 114 has already been described above with reference to FIGS. 4A and 4B, description thereof will be omitted. Meanwhile, the carbon constituting the plurality of carbon layers 113 and the sintered composite layer 114 may include, for example, isotropic carbon or anisotropic carbon disclosed in Table 1.
제 1 부(410)가 질화알루미늄(AlN)을 포함하여 구성되는 경우, 제 1 부(410)와 제 2 부(203)는 직접 브레이징 접합될 수 있으나, 제 1 부(410)가 알루미나(Al2O3)를 포함하여 구성되는 경우, 제 1 부(410)는 제 2 부(203)와 대향하는 면 상에 형성된 몰리브덴-망간 메탈라이징층을 개재하여 제 2 부(203)와 브레이징 접합될 수 있다. When the first part 410 includes aluminum nitride (AlN), the first part 410 and the second part 203 may be directly brazed, but the first part 410 is made of alumina (AlN). 2 O 3 ), the first portion 410 may be brazed to the second portion 203 via a molybdenum-manganese metallization layer formed on a surface opposite the second portion 203. Can be.
캐닝부(144)는 복수의 탄소층들(113)과 소결복합층(114)에서 상호접촉면을 제외한 상면, 하면 및 측면들을 둘러싸도록 캐닝 공정을 수행하여 구현될 수 있으며, 예를 들어, 알루미늄을 포함하여 구성될 수 있다. 일예로, 캐닝부(144)는 복수의 탄소층들(113) 및 소결복합층(114)의 외부면 상에, Al4047 계열 합금을 포함하는 필러를 개재하여, Al6061 계열 합금을 포함하는 알루미늄 판재를 배치한 후에, 열처리함으로써 형성될 수 있다. 한편, 복수의 탄소층들(113) 및 소결복합층(114)으로 구성된 적층 구조체 상에 캐닝 공정을 수행하기 이전에, 선택적으로, 상기 적층 구조체 상에 금속층을 형성하는 메탈라이징 공정을 먼저 수행할 수도 있다. The canning unit 144 may be implemented by performing a canning process to surround the top, bottom, and side surfaces of the plurality of carbon layers 113 and the sintered composite layer 114 except for the mutual contact surface. It can be configured to include. For example, the canning unit 144 may be formed on an outer surface of the plurality of carbon layers 113 and the sintered composite layer 114 by interposing a filler including an Al4047 series alloy, and forming an aluminum plate including an Al6061 series alloy. After placement, it may be formed by heat treatment. Meanwhile, before performing a canning process on the laminate structure composed of the plurality of carbon layers 113 and the sintered composite layer 114, a metallizing process of selectively forming a metal layer on the laminate structure may be performed first. It may be.
복수의 탄소층들(113), 소결복합층(114) 및 캐닝부(144)로 구성되는 하이브리드복합체(203)의 열팽창계수 α2 는 하기의 수학식 3과 같이 캐닝부(144)의 열팽창계수(αAl)와 부피분율(tAl)의 곱과 복수의 탄소층들(113)의 열팽창계수(αg)와 부피분율(tg)의 곱과 소결복합층(114)의 열팽창계수(αcf)와 부피분율(tcf)의 곱의 합과 같다. 여기에서 각 구성요소의 부피분율은 하이브리드복합체(203)의 전체 두께에 대한 각 구성요소의 총 두께의 비에 해당하는데, 두께의 방향은 도면에서 A-A'선을 따른 방향(y 방향)을 의미한다. The thermal expansion coefficient α 2 of the hybrid composite 203 composed of the plurality of carbon layers 113, the sintered composite layer 114, and the canning unit 144 is the thermal expansion coefficient of the canning unit 144 as shown in Equation 3 below. the coefficient of thermal expansion of (α Al) and the volume fraction of a product of a (t Al) to the product of the coefficient of thermal expansion (α g) and the volume fraction (t g) of the plurality of carbon layers 113 and the sintered composite layer (114) (α cf ) and the product of the volume fraction (t cf ). Here, the volume fraction of each component corresponds to the ratio of the total thickness of each component to the total thickness of the hybrid composite 203, where the thickness direction is a direction along the line A-A 'in the figure (y direction). it means.
[수학식 3][Equation 3]
α2 = αAl tAl + αg tg + αcf tcf α 2 = α Al t Al + α g t g + α cf t cf
표 3은 복수의 탄소층들(113), 소결복합층(114) 및 캐닝부(144)로 구성되는 다양한 실시예들에 따른 하이브리드복합체(203)의 열팽창계수를 나타낸다. 복수의 탄소층들(113), 소결복합층(114) 및 캐닝부(144)의 부피분율을 조절하고, 복수의 탄소층들(113) 및 소결복합층(114)을 구성하는 탄소재의 종류를 적절하게 선택함으로써, 하이브리드복합체(203)의 열팽창계수를 적절하게 설계할 수 있다. Table 3 shows the coefficient of thermal expansion of the hybrid composite 203 according to various embodiments consisting of a plurality of carbon layers 113, the sintered composite layer 114 and the canning unit 144. Types of carbon materials that control the volume fraction of the plurality of carbon layers 113, the sintered composite layer 114, and the canning unit 144, and constitute the plurality of carbon layers 113 and the sintered composite layer 114. By appropriately selecting, the thermal expansion coefficient of the hybrid composite body 203 can be appropriately designed.
[표 3]TABLE 3
Figure PCTKR2013001684-appb-I000003
Figure PCTKR2013001684-appb-I000003
본 발명의 상기 실시예들에 의한 이종접합 구조체에서 구현된 하이브리드복합체(203)의 열팽창계수 α2 는 세라믹(410)의 열팽창계수 α1 와 일정 수준 범위 이내로 제어될 수 있으며, 예를 들어, 상기 수학식 2의 관계를 만족할 수 있다. The thermal expansion coefficient α 2 of the hybrid composite 203 implemented in the heterojunction structure according to the embodiments of the present invention may be controlled within a predetermined level range with the thermal expansion coefficient α 1 of the ceramic 410, for example, The relationship of Equation 2 may be satisfied.
구체적으로 살펴보면, 제 1 부(410)를 구성하는 세라믹이 열팽창계수가 약 4.5 인 질화알루미늄인 경우, 표 3의 케이스 1 내지 2에서 구현된, 제 2 부(203)를 구성하는 하이브리드복합체의 열팽창계수(4.654 또는 4.177)는 상기 수학식 2를 만족한다. 제 1 부(410)를 구성하는 세라믹재의 열팽창계수와 하이브리드복합체(203)의 열팽창계수의 상대적인 차이가 작을수록, 이종접합 구조체에 발생하는 열응력이 낮아져 구조적으로 안정될 수 있다.Specifically, when the ceramic constituting the first part 410 is aluminum nitride having a thermal expansion coefficient of about 4.5, the thermal expansion of the hybrid composite constituting the second part 203 implemented in cases 1 to 2 of Table 3 is described. The coefficient 4.654 or 4.177 satisfies Equation 2 above. The smaller the relative difference between the coefficient of thermal expansion of the ceramic material constituting the first part 410 and the coefficient of thermal expansion of the hybrid composite 203 is, the lower the thermal stress generated in the heterojunction structure can be structurally stable.
도 7은 본 발명의 또 다른 실시예에 의한 이종접합 구조체를 도해하는 단면도이다. 도 7을 참조하면, 본 발명의 또 다른 실시예에 의한 이종접합 구조체는 세라믹을 포함하는 제 1 부(410) 및 탄소를 포함하는 제 2 부(204)를 포함한다. 제 1 부(410)와 제 2 부(204)는 브레이징 접합되므로, 브레이징 접합부(310)가 제 1 부(410)와 제 2 부(204) 사이에 개재된다. 브레이징 접합부(310)는 브레이징 접합에 사용되는 필러와 접합모재 중 적어도 일부가 용융확산되는 이종접합부로 이해될 수 있으며, 도 7에서는 명시적으로 도시하였으나, 실제로 구현된 구조체에서는 제 1 부(410) 및/또는 제 2 부(204)와 명확하게 구분되지 않을 수 있다. 7 is a cross-sectional view illustrating a heterojunction structure according to still another embodiment of the present invention. Referring to FIG. 7, the heterojunction structure according to another embodiment of the present invention includes a first part 410 including ceramic and a second part 204 including carbon. Since the first portion 410 and the second portion 204 are brazed, a brazing junction 310 is interposed between the first portion 410 and the second portion 204. The brazing joint 310 may be understood as a heterojunction in which at least some of the filler and the bonding base material used for the brazing joint are melt-diffused. Although explicitly shown in FIG. 7, the first part 410 is actually implemented in the structure. And / or not distinct from the second portion 204.
제 1 부(410)는 세라믹재를 포함하여 구성되며, 예를 들어, 질화알루미늄(AlN) 또는 알루미나(Al2O3)를 포함하여 구성될 수 있다. 제 2 부(204)는 탄소를 포함하는 하이브리드복합체로서, 서로 이격되어 배치되는 복수의 탄소층들(113) 및 알루미늄을 포함하며 복수의 탄소층들(113) 사이에 개재하는 열전도층(146)을 구비한다. 열전도층(146)은, 예를 들어, 열전도도가 상대적으로 높은, 알루미늄을 포함하여 구성되므로, 제 2 부(204)의 열전도 특성을 증가시킬 수 있다. 나아가, 제 2 부(204)는, 예를 들어, 알루미늄을 포함하며, 복수의 탄소층들(113)과 열전도층(146)의 외부면을 둘러싸는 캐닝부(144)를 구비한다. 복수의 탄소층들(113)을 구성하는 탄소는, 예를 들어, 표 1에 개시된, 등방성탄소 또는 이방성탄소를 포함하여 구성될 수 있다. 또한, 변형된 실시예에서, 복수의 탄소층들(113)은 알루미늄과 탄소의 소결복합재로 구성될 수도 있다. The first part 410 may include a ceramic material, and may include, for example, aluminum nitride (AlN) or alumina (Al 2 O 3 ). The second part 204 is a hybrid composite including carbon, and includes a plurality of carbon layers 113 and aluminum disposed apart from each other, and a thermal conductive layer 146 interposed between the plurality of carbon layers 113. It is provided. Since the thermal conductive layer 146 includes, for example, aluminum having a relatively high thermal conductivity, the thermal conductivity of the second portion 204 may be increased. Further, the second portion 204 includes, for example, aluminum and includes a plurality of carbon layers 113 and a canning portion 144 surrounding the outer surface of the thermal conductive layer 146. Carbon constituting the plurality of carbon layers 113 may include, for example, isotropic carbon or anisotropic carbon, which is disclosed in Table 1 below. Also, in the modified embodiment, the plurality of carbon layers 113 may be made of a sintered composite of aluminum and carbon.
제 1 부(410)가 질화알루미늄(AlN)을 포함하여 구성되는 경우, 제 1 부(410)와 제 2 부(204)는 직접 브레이징 접합될 수 있으나, 제 1 부(410)가 알루미나(Al2O3)를 포함하여 구성되는 경우, 제 1 부(410)는 제 2 부(204)와 대향하는 면 상에 형성된 몰리브덴-망간 메탈라이징층을 개재하여 제 2 부(204)와 브레이징 접합될 수 있다. When the first part 410 includes aluminum nitride (AlN), the first part 410 and the second part 204 may be directly brazed, but the first part 410 is made of alumina (AlN). 2 O 3 ), the first portion 410 may be brazed to the second portion 204 via a molybdenum-manganese metallization layer formed on a surface opposite the second portion 204. Can be.
캐닝부(144)는 복수의 탄소층들(113)과 열전도층(146)에서 상호접촉면을 제외한 상면, 하면 및 측면들을 둘러싸도록 캐닝 공정을 수행하여 구현될 수 있으며, 알루미늄을 포함하여 구성될 수 있다. 예를 들어, 캐닝부(144)는 복수의 탄소층들(113) 및 열전도층(146)의 외부면 상에, Al4047 계열 합금을 포함하는 필러를 개재하여, Al6061 계열 합금을 포함하는 알루미늄 판재를 배치한 후에, 열처리함으로써 형성될 수 있다. 한편, 복수의 탄소층들(113) 및 열전도층(146)으로 구성된 적층 구조체 상에 캐닝 공정을 수행하기 이전에, 선택적으로, 상기 적층 구조체 상에 금속층을 형성하는 메탈라이징 공정을 먼저 수행할 수도 있다. The canning unit 144 may be implemented by performing a canning process to surround the top, bottom, and side surfaces of the plurality of carbon layers 113 and the thermal conductive layer 146 except for the mutual contact surface, and may include aluminum. have. For example, the canning unit 144 may be formed on the outer surface of the plurality of carbon layers 113 and the thermal conductive layer 146 by interposing a filler including an Al4047 series alloy, and forming an aluminum plate including an Al6061 series alloy. After placement, it may be formed by heat treatment. Meanwhile, before performing a canning process on the laminate structure composed of the plurality of carbon layers 113 and the heat conductive layer 146, optionally, a metallizing process of forming a metal layer on the laminate structure may be performed first. have.
복수의 탄소층들(113), 열전도층(146) 및 캐닝부(144)로 구성되는 하이브리드복합체(204)의 열팽창계수 α2 는 하기의 수학식 4와 같이 캐닝부(144) 및 열전도층(146)의 열팽창계수(αAl)와 부피분율(tAl)의 곱과 복수의 탄소층들(113)의 열팽창계수(αg)와 부피분율(tg)의 곱의 합과 같다. 여기에서 각 구성요소의 부피분율은 하이브리드복합체의 전체 두께에 대한 각 구성요소의 총 두께의 비에 해당하는데, 두께의 방향은 도면에서 A-A'선을 따른 방향(y 방향)을 의미한다. The thermal expansion coefficient α 2 of the hybrid composite 204 composed of the plurality of carbon layers 113, the thermal conductive layer 146, and the canning unit 144 may be represented by the canning unit 144 and the thermal conductive layer ( It is equal to the sum of the product of the coefficient of thermal expansion α Al and the volume fraction t Al of 146 and the product of the coefficient of thermal expansion α g and the volume fraction t g of the carbon layers 113. Here, the volume fraction of each component corresponds to the ratio of the total thickness of each component to the total thickness of the hybrid composite, and the direction of the thickness refers to the direction (y direction) along the line A-A 'in the figure.
[수학식 4][Equation 4]
α2 = αAl tAl + αg tg α 2 = α Al t Al + α g t g
표 4는 복수의 탄소층들(113), 열전도층(146) 및 캐닝부(144)로 구성되는 다양한 실시예들에 따른 하이브리드복합체(204)의 열팽창계수를 나타낸다. 복수의 탄소층들(113), 열전도층(146) 및 캐닝부(144)의 부피분율을 조절하고, 복수의 탄소층들(113)을 구성하는 탄소재의 종류를 적절하게 선택함으로써, 하이브리드복합체(204)의 열팽창계수를 적절하게 설계할 수 있다. Table 4 shows the coefficient of thermal expansion of the hybrid composite 204 according to various embodiments consisting of a plurality of carbon layers 113, the thermal conductive layer 146 and the canning unit 144. By controlling the volume fraction of the plurality of carbon layers 113, the thermal conductive layer 146, and the canning unit 144, and appropriately selecting the kind of carbon material constituting the plurality of carbon layers 113, the hybrid composite body The thermal expansion coefficient of 204 can be appropriately designed.
[표 4]TABLE 4
Figure PCTKR2013001684-appb-I000004
Figure PCTKR2013001684-appb-I000004
본 발명의 상기 실시예들에 의한 이종접합 구조체에서 구현된 하이브리드복합체(204)의 열팽창계수 α2 는 세라믹(410)의 열팽창계수 α1 와 일정 수준 범위 이내로 제어될 수 있으며, 예를 들어, 상기 수학식 2의 관계를 만족할 수 있다. The thermal expansion coefficient α 2 of the hybrid composite 204 implemented in the heterojunction structure according to the embodiments of the present invention may be controlled within a predetermined level range with the thermal expansion coefficient α 1 of the ceramic 410, for example, The relationship of Equation 2 may be satisfied.
구체적으로 살펴보면, 제 1 부(410)를 구성하는 세라믹이 열팽창계수가 7.8 인 알루미나인 경우, 표 4의 케이스 1 내지 3에서 구현된, 제 2 부(204)를 구성하는 하이브리드복합체의 열팽창계수(7.69, 7.72, 또는 7.84)는 상기 수학식 2를 만족한다. 제 1 부(410)를 구성하는 세라믹재의 열팽창계수와 하이브리드복합체(204)의 열팽창계수의 상대적인 차이가 작을수록, 이종접합 구조체에 발생하는 열응력이 낮아져 구조적으로 안정될 수 있다.Specifically, when the ceramic constituting the first portion 410 is alumina having a coefficient of thermal expansion of 7.8, the coefficient of thermal expansion of the hybrid composite constituting the second portion 204, implemented in cases 1 to 3 of Table 4, 7.69, 7.72, or 7.84 satisfies Equation 2 above. The smaller the relative difference between the coefficient of thermal expansion of the ceramic material constituting the first part 410 and the coefficient of thermal expansion of the hybrid composite 204 is, the lower the thermal stress generated in the heterojunction structure can be structurally stable.
지금까지 설명한 이종접합 구조체에서, 도 1에 도시된 탄소를 포함하는 구조체(201)와 도 5 내지 도 7에 도시된 하이브리드복합체(202, 203, 204)는 복잡형상에 대한 절삭가공성이 우수하고, 높은 열전도 특성을 가질 뿐만 아니라, 열팽창계수가 알루미나 세라믹(7.8 x 10-6/k) 및 질화알루미늄 세라믹(4.5 x 10-6/k)에 근접하여 이종접합 구조체의 열응력을 저감 시킬 수 있다. 즉, 본 발명의 실시예들에 의하면, 세라믹과 접합되는 상대재인 종래의 알루미늄재 또는 동재 대신 탄소재 및 그 하이브리드 복합소재를 적용하며, 브레이징 접합에 의해 양호한 접합 계면을 가지는 이종접합 구조체를 구현할 수 있으므로, 넓고 급격한 온도 싸이클에서도 내구성을 가지고 사용할 수 있는 구조체를 제공할 수 있다. In the heterojunction structure described so far, the structure 201 including the carbon shown in FIG. 1 and the hybrid composites 202, 203, and 204 shown in FIGS. 5 to 7 have excellent machinability to complex shapes, In addition to having high thermal conductivity, the thermal expansion coefficient is close to alumina ceramics (7.8 x 10 -6 / k) and aluminum nitride ceramics (4.5 x 10 -6 / k) to reduce the thermal stress of the heterojunction structure. That is, according to the embodiments of the present invention, the carbon material and its hybrid composite material may be applied instead of the conventional aluminum material or copper material that is joined to the ceramic, and a heterojunction structure having a good bonding interface may be realized by brazing. Therefore, it is possible to provide a structure that can be used with durability even in a wide and rapid temperature cycle.
이하에서는, 본 발명의 실시예들에 의한 이종접합 구조체의 제조방법을 설명하고자 한다. 도 8a 내지 도 8f는 본 발명의 또 다른 실시예에 의한 이종접합 구조체를 제조하는 방법을 도해하는 도면들로서, 예시적으로, 도 5에 도시된 이종접합 구조체를 제조하는 방법을 도해한다. Hereinafter, a method of manufacturing a heterojunction structure according to embodiments of the present invention will be described. 8A to 8F illustrate a method of manufacturing a heterojunction structure according to another embodiment of the present invention, and exemplarily illustrate a method of manufacturing the heterojunction structure shown in FIG. 5.
먼저, 도 8a를 참조하면, 탄소를 포함하는 바디부(112)로 구성된 구조체를 준비한다. 탄소를 포함하는 바디부(112)로 구성된 구조체에 대한 설명은 도 5를 참조하여 앞에서 설명한 부분과 동일하므로 여기에서는 생략한다. 한편, 본 발명의 변형된 실시예에서, 탄소를 포함하는 바디부(112)로 구성된 구조체는, 도 6에 도시된 것처럼, 서로 이격되어 배치되는 복수의 탄소층들(113) 및 복수의 탄소층들(113) 사이에 개재하는 알루미늄과 탄소의 소결복합층(114)으로 구성된 적층 구조체로 대체될 수 있다. 또한, 본 발명의 변형된 다른 실시예에서, 탄소를 포함하는 바디부(112)로 구성된 구조체는, 도 7에 도시된 것처럼, 서로 이격되어 배치되는 복수의 탄소층들(113) 및 복수의 탄소층들(113) 사이에 개재하는 열전도층(146)으로 구성된 적층 구조체로 대체될 수 있다. First, referring to FIG. 8A, a structure including a body part 112 including carbon is prepared. Description of the structure consisting of the body portion 112 including the carbon is the same as that described above with reference to Figure 5 will be omitted here. On the other hand, in a modified embodiment of the present invention, the structure consisting of the body portion 112 containing carbon, as shown in Figure 6, a plurality of carbon layers 113 and a plurality of carbon layers disposed spaced apart from each other It can be replaced by a laminated structure composed of a sintered composite layer 114 of aluminum and carbon interposed between the (113). In addition, in another modified embodiment of the present invention, the structure composed of the body portion 112 including carbon, as shown in Figure 7, a plurality of carbon layers 113 and a plurality of carbon disposed to be spaced apart from each other It may be replaced by a laminated structure composed of a thermally conductive layer 146 interposed between the layers 113.
계속하여, 도 8b 및 8c를 참조하면, 구조체(112)의 외부면(상호 접촉면을 제외한 상면, 하면 및 측면) 상에, 제 1 필러(122)를 개재하여, 스텐레스 포일(stainless foil, 124)을 배치한 후에, 구조체(112), 제 1 필러(122) 및 스텐레스 포일(124)을, 예를 들어, 1050℃의 온도에서 30분 동안, 제 1 열처리함으로써, 구조체(112)의 외부면을 둘러싸는 메탈라이징층(126)을 형성할 수 있다. 제 1 필러(122)는, 예를 들어, BNi2를 포함할 수 있다.8B and 8C, a stainless foil 124 is provided on an outer surface (upper surface, lower surface and side surfaces except for mutual contact surfaces) of the structure 112 via a first filler 122. After arranging the structure 112, the first filler 122 and the stainless foil 124 were first heat treated, for example, at a temperature of 1050 ° C. for 30 minutes to form an outer surface of the structure 112. The surrounding metalizing layer 126 may be formed. The first filler 122 may include, for example, BNi 2 .
계속하여, 도 8d 및 도 8e를 참조하면, 외부면에 메탈라이징층(126)이 형성된 구조체(112) 상에, 제 2 필러(141)를 개재하여, 알루미늄 판재(142)를 배치한다. 알루미늄 판재(142)는 알루미늄을 포함하는 케이스로 이해될 수도 있다. 그 후에 구조체(112), 제 2 필러(141) 및 알루미늄 판재(142)를, 예를 들어, 600℃의 온도에서 30분 동안, 제 2 열처리하여 구조체(112) 상에 캐닝부(144)를 형성함으로써, 탄소를 포함하는 제 2 부(202)가 구현된다. 제 2 필러(141)는, 예를 들어, 12%의 규소가 함유된 알루미늄 합금인 Al4047 계열의 합금을 포함할 수 있다. 알루미늄 판재(142)는, 예를 들어, Al6061 계열의 합금을 포함할 수 있다. 8D and 8E, the aluminum plate 142 is disposed on the structure 112 on which the metallization layer 126 is formed on the outer surface via the second filler 141. The aluminum plate 142 may be understood as a case containing aluminum. Thereafter, the structure 112, the second filler 141, and the aluminum plate 142 are subjected to a second heat treatment, for example, at a temperature of 600 ° C. for 30 minutes, thereby forming the canning portion 144 on the structure 112. By forming, a second portion 202 comprising carbon is implemented. The second filler 141 may include, for example, an Al4047 series alloy that is an aluminum alloy containing 12% of silicon. The aluminum plate 142 may include, for example, an Al6061 series alloy.
계속하여, 도 8e 및 도 8f를 참조하면, 세라믹을 포함하는 제 1 부(410)를 준비하고, 제 1 부(410)와 제 2 부(202)를 브레이징 접합한다. 브레이징 접합은, 예를 들어, Al4047 계열 합금을 포함하는, 제 3 필러(312)를 제 1 부(410)와 제 2 부(202) 사이에 개재한 후에, 600℃의 온도에서 30분 동안, 제 3 열처리함으로써 수행될 수 있다. 8E and 8F, a first part 410 including ceramic is prepared, and the first part 410 and the second part 202 are brazed. The brazing joint is, for example, 30 minutes at a temperature of 600 ° C. after interposing a third filler 312 between the first portion 410 and the second portion 202, which includes, for example, an Al4047 series alloy. It can be performed by a third heat treatment.
브레이징 접합 공정에 의하여, 브레이징 접합부(310)가 제 1 부(410)와 제 2 부(201) 사이에 개재된다. 브레이징 접합부(310)는 브레이징 접합에 사용되는 필러와 접합모재 중 적어도 일부가 용융확산되는 이종접합부로 이해될 수 있으며, 도면에서는 명시적으로 도시하였으나, 실제로 구현된 구조체에서는 제 1 부(410) 및/또는 제 2 부(202)와 명확하게 구분되지 않을 수 있다. By the brazing bonding process, the brazing bonding portion 310 is interposed between the first portion 410 and the second portion 201. The brazing joint 310 may be understood as a heterojunction in which at least a portion of the filler and the joining base material used for the brazing joint are melt-diffused. Although explicitly illustrated in the drawings, the brazing joint 310 may include the first part 410 and And / or may not be distinct from the second portion 202.
한편, 캐닝부(144)를 형성하기 위하여 수행된 상기 제 2 열처리와 브레이징 접합을 위하여 수행된 상기 제 3 열처리는 동일한 열처리조건으로 동시에 수행되는 열처리일 수 있다. 이는, 상기 제 2 열처리에 필요한 제 2 필러(141)와 상기 제 3 열처리에 필요한 제 3 필러(312)가 동일한 Al4047 계열의 합금으로 구성될 수 있으며, 열처리 온도와 시간이 동일할 수 있기 때문에 가능하다. 따라서 본 발명의 실시예에 의한 이종접합 구조체의 제조방법에 따르면, 캐닝부(144)를 형성하기 위하여 수행된 상기 제 2 열처리 및 브레이징 접합을 위하여 수행된 상기 제 3 열처리를 각각 따로 수행하지 않고 동시에 동일한 조건으로 한 번에 수행할 수 있으므로, 이종접합 구조체에 인가되는 열적 부담이 낮아지며, 나아가, 생산비용을 낮출 수 있는 효과를 기대할 수 있다. Meanwhile, the second heat treatment performed to form the canning unit 144 and the third heat treatment performed for brazing bonding may be heat treatments performed simultaneously under the same heat treatment conditions. This is because the second filler 141 required for the second heat treatment and the third filler 312 required for the third heat treatment may be made of the same Al4047-based alloy, and may have the same heat treatment temperature and time. Do. Therefore, according to the method of manufacturing a heterojunction structure according to an embodiment of the present invention, the second heat treatment performed for forming the canning unit 144 and the third heat treatment performed for brazing bonding are not performed separately, respectively. Since it can be performed at the same time at the same time, the thermal burden applied to the heterojunction structure is lowered, and furthermore, the effect of lowering the production cost can be expected.
한편, 도 8e 및 도 8f와 같이, 제 1 부(410)가 질화알루미늄(AlN)을 포함하여 구성되는 경우, 제 1 부(410)와 제 2 부(202)는 직접 브레이징 접합될 수 있으나, 도 9a 및 도 9b와 같이, 제 1 부(410)가 알루미나(Al2O3)를 포함하여 구성되는 경우, 제 1 부(410)는 제 2 부(202)와 대향하는 면 상에 형성된 몰리브덴-망간 메탈라이징층(320)을 개재하여 제 2 부(202)와 브레이징 접합될 수 있다. Meanwhile, as shown in FIGS. 8E and 8F, when the first part 410 includes aluminum nitride (AlN), the first part 410 and the second part 202 may be directly brazed. 9A and 9B, when the first portion 410 includes alumina (Al 2 O 3 ), the first portion 410 is formed of molybdenum on a surface opposite to the second portion 202. It may be brazed to the second portion 202 through the manganese metallization layer 320.
지금까지 본 발명의 다양한 실시예들에 의한 이종접합 구조체 및 그 제조방법을 설명하였다. 특히, 캐닝부(144), 열전도층(146), 제 1 부(410)를 구성하는 세라믹재, 제 1 필러(122), 제 2 필러(141), 제 3 필러(312), 메탈라이징층(126, 320), 금속 판재(142) 및 금속 포일(124) 등을 설명하는 부분에서 언급된 구성물질은 예시적인 것이며, 이에 의하여 본 발명의 기술적 사상이 한정되지 않음은 명백하다. The heterojunction structure and its manufacturing method according to various embodiments of the present invention have been described so far. In particular, the canning unit 144, the thermal conductive layer 146, the ceramic material constituting the first portion 410, the first filler 122, the second filler 141, the third filler 312, the metallizing layer Components 126 and 320, the metal plate 142 and the metal foil 124, and the like mentioned above are illustrative, and it is apparent that the technical spirit of the present invention is not limited thereto.
발명의 특정 실시예들에 대한 이상의 설명은 예시 및 설명을 목적으로 제공되었다. 따라서 본 발명은 상기 실시예들에 한정되지 않으며, 본 발명의 기술적 사상 내에서 해당 분야에서 통상의 지식을 가진 자에 의하여 상기 실시예들을 조합하여 실시하는 등 여러 가지 많은 수정 및 변경이 가능함은 명백하다.The foregoing description of specific embodiments of the invention has been presented for purposes of illustration and description. Therefore, the present invention is not limited to the above embodiments, and various modifications and changes can be made by those skilled in the art within the technical spirit of the present invention in combination with the above embodiments. Do.

Claims (20)

  1. 세라믹을 포함하는 제 1 부; 및A first portion comprising a ceramic; And
    탄소를 포함하며, 상기 제 1 부와 브레이징 접합된, 제 2 부;A second portion comprising carbon and brazing bonded to the first portion;
    를 구비하는 이종접합 구조체.Heterojunction structure having a.
  2. 제 1 항에 있어서, 상기 제 2 부는 탄소를 포함하는 하이브리드복합체를 구비하는, 이종접합 구조체. The heterojunction structure of claim 1, wherein the second part comprises a hybrid composite including carbon.
  3. 제 2 항에 있어서, 상기 하이브리드복합체는 The method of claim 2, wherein the hybrid complex
    탄소를 포함하는 바디부; 및A body part containing carbon; And
    알루미늄을 포함하며, 상기 바디부의 외부면을 둘러싸는, 캐닝(canning)부;A canning portion comprising aluminum and surrounding an outer surface of the body portion;
    를 구비하는, 이종접합 구조체.Heterojunction structure having a.
  4. 제 2 항에 있어서, 상기 하이브리드복합체는 The method of claim 2, wherein the hybrid complex
    서로 이격되어 배치되는 복수의 탄소층들;A plurality of carbon layers disposed spaced apart from each other;
    상기 복수의 탄소층들 사이에 개재하는 알루미늄과 탄소의 소결복합층; 및A sintered composite layer of aluminum and carbon interposed between the plurality of carbon layers; And
    알루미늄을 포함하며, 상기 복수의 탄소층들과 상기 소결복합층의 외부면을 둘러싸는, 캐닝부;A canning unit comprising aluminum and surrounding the outer surfaces of the plurality of carbon layers and the sintered composite layer;
    를 구비하는, 이종접합 구조체.Heterojunction structure having a.
  5. 제 2 항에 있어서, 상기 하이브리드복합체는 The method of claim 2, wherein the hybrid complex
    서로 이격되어 배치되는 복수의 탄소층들;A plurality of carbon layers disposed spaced apart from each other;
    알루미늄을 포함하며, 상기 복수의 탄소층들 사이에 개재하는 열전도층; 및A heat conductive layer including aluminum and interposed between the plurality of carbon layers; And
    알루미늄을 포함하며, 상기 복수의 탄소층들과 상기 열전도층의 외부면을 둘러싸는, 캐닝부;A canning unit including aluminum and surrounding the outer surfaces of the plurality of carbon layers and the thermal conductive layer;
    를 구비하는, 이종접합 구조체.Heterojunction structure having a.
  6. 제 2 항에 있어서, 상기 하이브리드복합체의 열팽창계수 α2 는 상기 세라믹의 열팽창계수 α1 와 (α1 x 0.9) < α2 < (α1 x 1.1) 의 관계를 만족하는, 이종접합 구조체.The heterojunction structure according to claim 2, wherein the thermal expansion coefficient α 2 of the hybrid composite satisfies the relationship between the thermal expansion coefficient α 1 of the ceramic and (α 1 x 0.9) <α 2 <(α 1 x 1.1).
  7. 제 1 항에 있어서, 상기 제 2 부는 탄소로만 구성된 바디부인, 이종접합 구조체. The heterojunction structure of claim 1, wherein the second portion is a body portion composed only of carbon.
  8. 제 1 항에 있어서, 상기 탄소는 등방성탄소 및 이방성탄소 중에서 적어도 어느 하나를 포함하는, 이종접합 구조체.The heterojunction structure of claim 1, wherein the carbon comprises at least one of isotropic carbon and anisotropic carbon.
  9. 제 1 항에 있어서, 상기 세라믹은 질화알루미늄(AlN)을 포함하며, 상기 제 1 부는 상기 제 2 부와 직접 브레이징 접합된, 이종접합 구조체.2. The heterojunction structure of claim 1, wherein the ceramic comprises aluminum nitride (AlN), the first portion being directly brazed to the second portion.
  10. 제 1 항에 있어서, 상기 세라믹은 알루미나(Al2O3)를 포함하며, 상기 제 1 부는 상기 제 2 부와 대향하는 면 상에 형성된 몰리브덴-망간 메탈라이징층을 개재하여 상기 제 2 부와 브레이징 접합된, 이종접합 구조체.The ceramic of claim 1, wherein the ceramic comprises alumina (Al 2 O 3 ), and the first part is brazed with the second part via a molybdenum-manganese metallization layer formed on a surface facing the second part. Bonded, heterojunction structure.
  11. 세라믹을 포함하는 제 1 부를 준비하는 단계;Preparing a first part comprising a ceramic;
    탄소를 포함하는 제 2 부를 형성하는 단계; 및Forming a second portion comprising carbon; And
    상기 제 1 부와 상기 제 2 부를 브레이징 접합하는 단계;Brazing the first portion and the second portion;
    를 구비하는 이종접합 구조체의 제조방법.Method for producing a heterojunction structure having a.
  12. 제 11 항에 있어서, 상기 탄소를 포함하는 제 2 부를 형성하는 단계는12. The method of claim 11, wherein forming a second portion comprising carbon
    탄소를 포함하는 제 1 구조체를 형성하는 단계; 및Forming a first structure comprising carbon; And
    상기 제 1 구조체의 외부면을 둘러싸도록, 알루미늄을 포함하는 캐닝부를 형성하는 단계;Forming a canning portion comprising aluminum to surround an outer surface of the first structure;
    를 구비하는, 이종접합 구조체의 제조방법.Method for producing a heterojunction structure comprising a.
  13. 제 12 항에 있어서, 상기 제 1 구조체는 탄소를 포함하는 바디부를 구비하는, 이종접합 구조체의 제조방법.13. The method of claim 12, wherein the first structure comprises a body portion comprising carbon.
  14. 제 12 항에 있어서, 상기 제 1 구조체는 서로 이격되어 배치되는 복수의 탄소층들; 및 상기 복수의 탄소층들 사이에 개재하는 알루미늄과 탄소의 소결복합층;을 구비하는, 이종접합 구조체의 제조방법.The method of claim 12, wherein the first structure comprises: a plurality of carbon layers spaced apart from each other; And a sintered composite layer of aluminum and carbon interposed between the plurality of carbon layers.
  15. 제 12 항에 있어서, 상기 제 1 구조체는 서로 이격되어 배치되는 복수의 탄소층들; 및 알루미늄을 포함하며 상기 복수의 탄소층들 사이에 개재하는 열전도층;을 구비하는, 이종접합 구조체의 제조방법.The method of claim 12, wherein the first structure comprises: a plurality of carbon layers spaced apart from each other; And a heat conduction layer including aluminum and interposed between the plurality of carbon layers.
  16. 제 12 항에 있어서, 상기 제 1 구조체를 형성하는 단계와 상기 캐닝부를 형성하는 단계 사이에, 상기 제 1 구조체의 외부면을 둘러싸는 메탈라이징층을 형성하는 단계를 더 구비하는, 이종접합 구조체의 제조방법.13. The heterojunction structure of claim 12, further comprising forming a metallization layer surrounding an outer surface of the first structure between forming the first structure and forming the canning portion. Manufacturing method.
  17. 제 16 항에 있어서, 상기 메탈라이징층을 형성하는 단계는The method of claim 16, wherein forming the metallizing layer
    상기 제 1 구조체의 외부면 상에, 제 1 필러를 개재하여, 금속 포일을 배치하는 단계; 및Disposing a metal foil on an outer surface of the first structure via a first filler; And
    상기 제 1 구조체, 상기 제 1 필러 및 상기 금속 포일을 제 1 열처리하는 단계;First heat treating the first structure, the first filler, and the metal foil;
    를 구비하는, 이종접합 구조체의 제조방법.Method for producing a heterojunction structure comprising a.
  18. 제 12 항에 있어서, 상기 캐닝부를 형성하는 단계는The method of claim 12, wherein the forming of the canning unit
    상기 제 1 구조체의 외부면 상에, 제 2 필러를 개재하여, 알루미늄 판재를 배치하는 단계; 및Disposing an aluminum plate on an outer surface of the first structure via a second filler; And
    상기 제 1 구조체, 상기 제 2 필러 및 상기 알루미늄 판재를 제 2 열처리하는 단계;Performing a second heat treatment of the first structure, the second filler, and the aluminum plate;
    를 구비하는, 이종접합 구조체의 제조방법.Method for producing a heterojunction structure comprising a.
  19. 제 18 항에 있어서, 상기 브레이징 접합하는 단계는19. The method of claim 18, wherein the step of brazing
    상기 제 1 부와 상기 제 2 부 사이에 제 3 필러를 개재하여, 상기 제 1 부, 상기 제 2 부 및 상기 제 3 필러를 제 3 열처리하는 단계를 구비하는, 이종접합 구조체의 제조방법.And a third heat treatment of the first part, the second part, and the third filler via a third filler between the first part and the second part.
  20. 제 19 항에 있어서, 상기 제 2 필러와 상기 제 3 필러는 동일한 물질로 구성되며, 상기 제 2 열처리하는 단계와 상기 제 3 열처리하는 단계는 동일한 열처리조건으로 동시에 수행되는, 이종접합 구조체의 제조방법.20. The method of claim 19, wherein the second filler and the third filler are made of the same material, and the second heat treatment and the third heat treatment are performed simultaneously under the same heat treatment conditions. .
PCT/KR2013/001684 2012-02-29 2013-02-28 Heterojunction structure and method for manufacturing same WO2013129891A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0021442 2012-02-29
KR20120021442 2012-02-29
KR1020120086714A KR101411956B1 (en) 2012-02-29 2012-08-08 Heterostructure and method of fabricating the same
KR10-2012-0086714 2012-08-08

Publications (1)

Publication Number Publication Date
WO2013129891A1 true WO2013129891A1 (en) 2013-09-06

Family

ID=49083006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/001684 WO2013129891A1 (en) 2012-02-29 2013-02-28 Heterojunction structure and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2013129891A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981761A (en) * 1988-06-03 1991-01-01 Hitachi, Ltd. Ceramic and metal bonded composite
KR960013553A (en) * 1994-10-08 1996-05-22 김영욱 Filler composition for ceramic joining and ceramic joining method using the same
US5807626A (en) * 1995-07-21 1998-09-15 Kabushiki Kaisha Toshiba Ceramic circuit board
EP1500455A1 (en) * 2003-07-24 2005-01-26 Ansaldo Ricerche S.p.A. Method for obtaining high-resistance brazed joints of multiple-layer composite materials of ceramic/ceramic and metal/ceramic type, and multiple-layer composite materials obtained through the said method
KR20120078270A (en) * 2010-12-31 2012-07-10 한국생산기술연구원 Susceptor using low thermal expansion composite materials and method for manufacturing esc component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981761A (en) * 1988-06-03 1991-01-01 Hitachi, Ltd. Ceramic and metal bonded composite
KR960013553A (en) * 1994-10-08 1996-05-22 김영욱 Filler composition for ceramic joining and ceramic joining method using the same
US5807626A (en) * 1995-07-21 1998-09-15 Kabushiki Kaisha Toshiba Ceramic circuit board
EP1500455A1 (en) * 2003-07-24 2005-01-26 Ansaldo Ricerche S.p.A. Method for obtaining high-resistance brazed joints of multiple-layer composite materials of ceramic/ceramic and metal/ceramic type, and multiple-layer composite materials obtained through the said method
KR20120078270A (en) * 2010-12-31 2012-07-10 한국생산기술연구원 Susceptor using low thermal expansion composite materials and method for manufacturing esc component

Similar Documents

Publication Publication Date Title
TWI730624B (en) Electrostatic chuck having thermally isolated zones with minimal crosstalk
KR101986682B1 (en) Substrate support assembly having metal bonded protective layer
US6503368B1 (en) Substrate support having bonded sections and method
TWI445128B (en) Electrostatic sucker
US7416793B2 (en) Electrostatic chuck and manufacturing method for the same, and alumina sintered member and manufacturing method for the same
JP2019031434A (en) Transient liquid phase, and pressureless joining of aluminum nitride components
KR100411215B1 (en) Wafer holder for semiconductor manufacturing apparatus
US9300229B2 (en) Electrostatic chuck
JP2638649B2 (en) Electrostatic chuck
JP2015514661A5 (en)
TW201409607A (en) Electrostatic chuck
KR101411956B1 (en) Heterostructure and method of fabricating the same
JPH1041377A (en) Electrostatic chuck
WO2013129891A1 (en) Heterojunction structure and method for manufacturing same
JPH0870036A (en) Electrostatic chuck
JP2010511297A (en) Electronic member module and manufacturing method thereof
WO2021235721A1 (en) Method for manufacturing ceramic circuit board
JP2010093001A (en) Method of manufacturing metal-ceramic substrate or copper-ceramic substrate, and base used for the method
JP2000031254A (en) Ceramic electrostatic chuck and manufacture thereof
WO2022039441A1 (en) Power module and manufacturing method therefor
WO2021033553A1 (en) Ceramic substrate, circuit board and method for producing same, and power module
WO2022054989A1 (en) Ceramic heater
JP2023043968A (en) holding device
JP2021141230A (en) Ceramic heater with heat shielding effect or electrostatic chuck with ceramic heater, and manufacturing method thereof
JP4088515B2 (en) Electrostatic chuck

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13754976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13754976

Country of ref document: EP

Kind code of ref document: A1