WO2013129641A1 - 回転電機に配設される界磁極用磁石体を構成する磁石片を、永久磁石体を割断して製造する割断方法及び割断装置 - Google Patents

回転電機に配設される界磁極用磁石体を構成する磁石片を、永久磁石体を割断して製造する割断方法及び割断装置 Download PDF

Info

Publication number
WO2013129641A1
WO2013129641A1 PCT/JP2013/055615 JP2013055615W WO2013129641A1 WO 2013129641 A1 WO2013129641 A1 WO 2013129641A1 JP 2013055615 W JP2013055615 W JP 2013055615W WO 2013129641 A1 WO2013129641 A1 WO 2013129641A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet body
cleaving
magnet
offset
cutting
Prior art date
Application number
PCT/JP2013/055615
Other languages
English (en)
French (fr)
Inventor
泰久 小池
西村 公男
渡辺 英樹
関川 岳
靖志 松下
一宏 高市
晃久 堀
巧 大島
倫人 岸
国朋 石黒
敏文 白木
重征 石井
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2013129641A1 publication Critical patent/WO2013129641A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F3/00Severing by means other than cutting; Apparatus therefor
    • B26F3/002Precutting and tensioning or breaking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets

Definitions

  • the present invention relates to a cleaving method and a cleaving apparatus for cleaving a permanent magnet body to produce a magnet piece constituting a field pole magnet body disposed in a rotating electrical machine.
  • a field pole magnet body disposed in a permanent magnet rotating electrical machine a plate-like magnet body (hereinafter simply referred to as “magnet body”) is cleaved into a plurality of magnet pieces, and the plurality of magnet pieces are bonded to each other.
  • a field pole magnet body formed by doing so is known.
  • Such a field pole magnet body is formed of a plurality of magnet pieces, so that the volume of each magnet piece can be reduced, and the eddy current generated in the magnet piece due to the fluctuation of the magnetic field due to the rotation of the rotor is reduced. be able to. Thereby, the heat generation of the field pole magnet body accompanying the generation of the eddy current can be suppressed, and irreversible thermal demagnetization can be prevented.
  • JP2009-148201A places a magnet body provided with a notch along a planned cutting line on a die that supports the magnetic body at both ends perpendicular to the planned cutting line, and the upper part of the planned cutting line is lowered downward. It discloses that a plurality of magnet pieces are manufactured by cutting a magnet body along a planned cutting line by being pushed by a punch.
  • the magnet body is fed in the longitudinal direction on the die, and is cleaved by the punch one by one from the tip in the feeding direction.
  • the magnet body is cleaved by pushing the punch downward from the upper part of the cleaving line in a state where both sides of the cleaving line are supported by the die. That is, the magnet body is cleaved by three-point bending.
  • the length of the magnet body is different between the feeding direction side of the magnet body and the side opposite to the feeding direction across the portion where the bending load acts.
  • the magnet body on the feed direction side is the length of one magnet piece because it is the magnet piece itself after cleaving, while the magnet body on the side opposite to the feed direction is except for the last cleaving. And has a length of at least two magnet pieces.
  • the present invention has been made in view of such a technical problem, and provides a cleaving method and a cleaving apparatus capable of preventing an abnormal crack from an oblique crack from a crack starting position when a magnet body is cleaved.
  • the purpose is to do.
  • a cleaving method for cleaving a permanent magnet body and manufacturing a magnet piece constituting a field pole magnet body disposed in a rotating electrical machine includes a step of sending the magnet body to a position where the fragile portion is disposed between the two fulcrums in a state where the fragile portion is provided on the lower surface along the planned cleaving position and supported by two fulcrums from below. And a step of cleaving the magnet body into a magnet body after cleaving and a magnet piece smaller than the magnet body after cleaving by pressing the magnet body from above the fragile portion between both fulcrums. The pressing position of the magnet body is offset from the fragile portion to the magnet body side after cleaving.
  • a cleaving apparatus for cleaving a permanent magnet body to produce a magnet piece constituting a field pole magnet body disposed in a rotating electrical machine.
  • This cleaving device feeds the magnet body to the position where the fragile portion is disposed between the fulcrum and the support portion that supports the fragile portion formed on the lower surface along the planned cleaving position from below with two fulcrums.
  • the pressing position of the magnet body is offset from the fragile portion to the magnet body side after cleaving.
  • FIG. 1A is a schematic configuration diagram illustrating a configuration of a main part of a permanent magnet type motor to which a field pole magnet body composed of magnet pieces manufactured by a cleaving method and a cleaving apparatus according to the present embodiment is applied.
  • FIG. 1B is a cross-sectional view showing a II cross section of the permanent magnet type motor of FIG. 1A.
  • FIG. 2 is a configuration diagram showing the configuration of the field pole magnet body.
  • FIG. 3A is a diagram for explaining a grooving step of a magnet body.
  • FIG. 3B is a diagram for explaining a deburring process of the magnet body.
  • FIG. 3C is a diagram for explaining a cleaving process of the magnet body.
  • FIG. 3A is a diagram for explaining a grooving step of a magnet body.
  • FIG. 3B is a diagram for explaining a deburring process of the magnet body.
  • FIG. 3C is a diagram for explaining a cleaving
  • FIG. 4A is a diagram illustrating a cleaving process of the cleaving apparatus in the comparative example.
  • FIG. 4B is a diagram illustrating a cleaving process of the cleaving apparatus in the comparative example.
  • FIG. 5 is a diagram illustrating the moment acting on the magnet body in the comparative example.
  • FIG. 6A is a diagram illustrating a cleaving process of the cleaving apparatus according to the first embodiment.
  • Drawing 6B is a figure showing the cleaving process of the cleaving device in a 1st embodiment.
  • Drawing 6C is a figure showing the cleaving process of the cleaving device in a 1st embodiment.
  • FIG. 6D is a figure showing the cleaving process of the cleaving device in a 1st embodiment.
  • FIG. 6E is a diagram illustrating a cleaving process of the cleaving apparatus according to the first embodiment.
  • FIG. 6F is a diagram illustrating a cleaving process of the cleaving apparatus according to the first embodiment.
  • FIG. 7 is a diagram illustrating the moment acting on the magnet body in the first embodiment.
  • FIG. 8A is a diagram illustrating a cleaving process of the cleaving apparatus according to the second embodiment.
  • FIG. 8B is a diagram illustrating a cleaving process of the cleaving apparatus according to the second embodiment.
  • FIG. 8C is a diagram illustrating a cleaving process of the cleaving apparatus according to the second embodiment.
  • FIG. 8D is a diagram illustrating a cleaving process of the cleaving apparatus according to the second embodiment.
  • FIG. 8E is a diagram illustrating a cleaving process of the cleaving apparatus according to the second embodiment.
  • FIG. 8F is a diagram illustrating a cleaving process of the cleaving apparatus according to the second embodiment.
  • FIG. 9 is a diagram illustrating the moment acting on the magnet body in the second embodiment.
  • FIG. 10A is a diagram illustrating a cleaving process of the cleaving apparatus according to the third embodiment.
  • FIG. 10B is a diagram illustrating a cleaving process of the cleaving apparatus according to the third embodiment.
  • FIG. 10C is a diagram illustrating a cleaving process of the cleaving apparatus according to the third embodiment.
  • FIG. 11 is a diagram illustrating a notch groove of a magnet body in the third embodiment.
  • the first embodiment will be described.
  • FIG. 1B showing the II cross section of FIG. 1A and FIG. 1A is a permanent magnet embedded rotation to which a field pole magnet body 80 composed of a magnet piece manufactured by the cleaving method and cleaving apparatus in this embodiment is applied.
  • Electric machine A hereinafter simply referred to as “rotary electric machine A” is shown.
  • Rotating electrical machine A includes an annular stator 10 that constitutes a part of a casing, and a cylindrical rotor 20 that is arranged coaxially with the stator 10.
  • the stator 10 includes a stator core 11 and a plurality of coils 12.
  • the plurality of coils 12 are accommodated in slots 13 formed at equal angular intervals on the same circumference around the axis O in the stator core 11.
  • the rotor 20 includes a rotor core 21, a rotating shaft 23 that rotates integrally with the rotor core 21, and a plurality of field pole magnet bodies 80.
  • the plurality of field pole magnet bodies 80 are centered on the axis O.
  • the slots 22 are formed at equal angular intervals on the same circumference.
  • the field pole magnet body 80 accommodated in the slot 22 of the rotor 20 is configured as an aggregate of magnet pieces 31 in which a plurality of magnet pieces 31 are aligned in a line.
  • the magnet piece 31 is divided
  • the field pole magnet body 80 is configured by bonding the divided sections of a plurality of divided magnet pieces 31 with a resin 32.
  • the resin 32 used for example, a resin having a heat resistance of about 200 ° C. is used, and the adjacent magnet pieces 31 are electrically insulated from each other.
  • a weakened portion made of a notch groove 33 or the like is formed in advance in a portion (scheduled cutting line) of the magnet body 30 as shown in FIG. 3A. It is effective to do.
  • the notch groove 33 to be provided is deeper from the surface and the sharpness of the tip of the notch groove 33 is sharper, the flatness of the cut section when cleaved as the magnet piece 31 is improved.
  • a method of forming the notch groove 33 As a method of forming the notch groove 33, a method of forming the magnet body 30 by a groove forming protrusion provided in the mold of the magnet body 30, a method of machining such as a dicer or a slicer, or the like by laser beam irradiation. There are methods, wire cut electric discharge machining and the like.
  • FIG. 4A and 4B schematically show a cleaving apparatus 40 in a comparative example that performs the cleaving process shown in FIG. 3C.
  • the cleaving device 40 is placed in a state where the magnet body 30 is bridged between the pair of dies 41, 42, and the punch 43 is lowered from the upper part to the bridged portion, and the magnet body 30 is cleaved by three-point bending. Device.
  • the cleaving device 40 includes a pair of dies 41 and 42 as lower molds that lay and mount the magnet body 30, a punch 43 that cleaves the magnet body 30 by pushing in a portion where the magnet body 30 is bridged, and a magnet And a magnet conveying device 44 that sends the body 30 in order from one end to the punch 43 (FIG. 4A).
  • the punch 43 cleaves the magnet body 30 by pressing the upper surface of the magnet body 30 spanned between the pair of dies 41 and 42 downward.
  • the punch 43 is positioned so that the tip is positioned between the pair of dies 41 and 42, and is driven by, for example, a servo press, a mechanical press, a hydraulic press, or the like.
  • the cleaving device 40 is configured as described above, and the magnet body 30 provided with the notch groove 33 is placed over the upper surfaces of the pair of dies 41 and 42.
  • the magnet body 30 is positioned on the pair of dies 41 and 42 so that a desired position to be cleaved, that is, a notch groove 33 provided in advance in the planned cleaving line is located on the side facing the dies 41 and 42 side. Placed on.
  • the punch 43 is lowered by the magnet conveying device 44 in a state in which the cutout groove 33 as the planned cutting line is positioned in the middle between the pair of dies 41 and 42.
  • the punch 43 presses the back side of the notch groove 33 downward, and the magnet body 30 is cut by three-point bending of the edge portions 41a and 42a of the punch 43 and the pair of dies 41 and 42 adjacent to each other. Cleaving along the notch 33 (FIG. 4B).
  • the magnet piece 31 and the magnet body 30 remaining after cleaving are different in size. That is, the magnet piece 31 is always smaller except when the last cleaving is performed.
  • the crack 35 that progresses upward from the notch groove 33 which is the starting position of the crack 35 at the time of cleaving, tilts toward the magnet piece 31 and progresses obliquely, and may become an abnormal crack.
  • the adjacent edges 41a and 42a of the pair of dies are set as two fulcrums 45 and 46, and the punch 43 It can be considered as a three-point bending with the contact portion 47 as a one-point concentrated load.
  • a positive moment acts so that the magnet body 30 between the fulcrums 45 and 46 has a downward convex shape with the contact portion 47 of the punch 43 as the center.
  • the left and right symmetrical triangular shapes with the contact portion 47 of the punch 43 as the maximum value are formed.
  • the negative moment acts so that the magnet body 30 between the fulcrums 45 and 46 has a convex shape upward with the left fulcrum 45 as the center.
  • the fulcrum 45 has a triangular shape with the lowest value (absolute value is the maximum value).
  • the cleaving process of the magnet body 30 is performed as follows.
  • FIGS. 6A to 6F are diagrams showing a cleaving process of the cleaving apparatus 60A in the present embodiment.
  • the feed direction position of the magnet body 30 placed on the pair of dies 61 and 62 is set so that the notch groove 33 is located at the front end side in the feed direction of the magnet body 30 from the contact portion 73 of the punch 63 (in the drawing).
  • the feed amount of the magnet body 30 is adjusted so as to be offset to the right side (FIG. 6A). That is, when the magnet body 30 is cleaved, the cutout groove 33 is not disposed directly below the contact portion 73 of the punch 63 but is shifted by a predetermined offset amount in the feeding direction of the magnet body 30.
  • the conveyance of the magnet body 30 is performed by the magnet conveyance device 64.
  • the magnet conveying device 64 is configured by combining, for example, an AC servo motor and a ball screw, and can feed the magnet body 30 by a predetermined amount in the feeding direction and stop at an arbitrary position.
  • the M diagram in which the bending stress P1 due to the pressing force of the punch 63, the moment M1 due to the weight and inertia of the magnet body 30, and the bending stresses P1 and M1 are overlapped is the same as FIG.
  • the magnet body 30 is arranged so that the cutout groove 33 of the magnet body 30 is offset to the right side from the contact portion 73 of the punch 63.
  • the starting position of the crack 35 is a notch groove 33 which is a fragile part. Furthermore, the progress position of the crack 35 is shifted to the right from the contact portion 73 of the punch 63 due to the bias of the entire bending stress. Therefore, deviation between the start position of the crack 35 and the progress position of the crack 35 is suppressed.
  • the punch 63 is lowered and the magnet body 30 is pressed to cleave the first piece of the magnet body 30 (FIG. 6B).
  • the magnet body 30 is fed by one magnet piece in the feeding direction by the magnet conveying device 64 (FIG. 6C).
  • the feed amount of the magnet body 30, that is, the offset amount of the notch groove 33 is set smaller than that at the time of the first piece in FIG. 6A.
  • the offset amount of the notch groove 33 is set to zero, and the notch groove 33 is directly below the contact portion 73 of the punch 63. To be located. In this state, the punch 63 is lowered to perform the final cleaving of the magnet body 30 (FIG. 6F).
  • the notch groove 33 is offset to the right side from the contact portion 73 of the punch 63, so that the deviation between the start position of the crack 35 and the progress position of the crack 35 is reduced. can do. Therefore, it is possible to prevent the crack 35 from developing obliquely and becoming an abnormal crack.
  • the crack 35 can be prevented from progressing obliquely, it is not necessary to increase the depth of the cutout groove 33, so that the amount of magnet lost by the groove processing can be suppressed, and the field pole magnet body 80 is obtained. In some cases, a large magnetic force can be secured.
  • the offset amount of the notch groove 33 is set so as to increase as the size difference between the magnet piece 31 and the magnet body 30 after the cleaving increases, and thus changes according to the difference in size between the two.
  • the start position of the crack 35 can be changed in accordance with the progress position of the crack 35, and the deviation between the start position of the crack 35 and the progress position of the crack 35 can be more reliably suppressed.
  • FIG. 8A to 8F are diagrams showing the cleaving process of the cleaving apparatus 60B in the present embodiment.
  • the contact portion 73 of the punch 63 with respect to the magnet body 30 placed on the pair of dies 61 and 62 is offset to the rear end side (left side in the drawing) of the magnet body 30 (FIG. 8A). ). That is, when the magnet body 30 is cleaved, the punch 63 presses a position shifted by a predetermined offset amount from the notch groove 33 to the side opposite to the feed direction of the magnet body 30 instead of the upper portion of the notch groove 33.
  • the movement of the punch 63 along the feeding direction of the magnet body 30 is performed by the punch adjusting mechanism 65.
  • the punch adjusting mechanism 65 is configured by combining, for example, an AC servo motor and a ball screw, and can move the punch 63 by a predetermined amount along the feeding direction of the magnet body 30 and can stop at an arbitrary position.
  • the M diagram in which the bending stress P1 due to the pressing force of the punch 63, the moment M1 due to the weight and inertia of the magnet body 30, and the bending stresses P1 and M1 are overlapped is the same as FIG.
  • the punch 63 is disposed so that the contact portion 73 of the punch 63 is offset to the left side of the notch groove 33 of the magnet body 30.
  • the starting position of the crack 35 is a notch groove 33 which is a fragile part. Furthermore, the progress position of the crack 35 is shifted to the right from the contact portion 73 of the punch 63 due to the bias of the entire bending stress. Therefore, deviation between the start position of the crack 35 and the progress position of the crack 35 is suppressed.
  • the magnet body 30 is fed by one magnet piece in the feeding direction by the magnet conveying device 64, and the contact portion 73 of the punch 63 is shifted to the left side of the notch groove 33 by a predetermined offset amount. In this manner, the punch 63 is moved (FIG. 8C).
  • the movement amount of the punch 63 that is, the offset amount from the notch groove 33 of the punch 63 is set smaller than that at the time of the first piece in FIG. 8A. This is because the difference in size between the magnet body 30 after the cleaving and the magnet piece 31 is smaller than when the first piece is cleaved, and the deviation in bending stress at the time of cleaving is smaller than when the first piece is cleaved. .
  • the offset amount of the punch 63 is set to zero, and the punch 63 is positioned directly above the notch groove 33 (FIG. 8E). In this state, the punch 63 is lowered to perform the final cleaving of the magnet body 30 (FIG. 8F).
  • the contact portion 73 of the punch 63 is offset to the left side of the notch groove 33, so that the deviation between the start position of the crack 35 and the progress position of the crack 35 is reduced. can do.
  • the crack 35 can be prevented from progressing obliquely, it is not necessary to increase the depth of the cutout groove 33, so that the amount of magnet lost by the groove processing can be suppressed, and the field pole magnet body 80 is obtained. In some cases, a large magnetic force can be secured.
  • the offset amount of the punch 63 is set so as to increase as the size difference between the magnet piece 31 and the magnet body 30 after cleaving increases, the crack 35 changes according to the difference in size between the two.
  • the start position of the crack 35 can be changed according to the progress position of the crack 35, and the deviation between the start position of the crack 35 and the progress position of the crack 35 can be more reliably suppressed.
  • the third embodiment will be described.
  • FIGS. 10A to 10C are diagrams showing a cleaving process of the cleaving apparatus 60C in the present embodiment.
  • the feed amount of the magnet body 30 is constant for each cleaving, and the punch 63 is a fixed type that does not move in the lateral direction only by driving in the vertical direction. Instead, the position of the notch groove 33 provided in the magnet body 30 is different from the first and second embodiments.
  • FIG. 11 is a diagram illustrating the notch groove 33 of the magnet body 30.
  • the offset amount between the notch groove 33 and the contact portion 73 of the punch 63 gradually decreases.
  • the pitch Ln between the cutout grooves 33 is set in advance so that the offset amount of the cutout groove 33 at each cutting is an appropriate value, and the offset amount is zero at the last cutting.
  • the magnet conveyance device 64 sends the magnet body 30 so that the notch groove 33 is disposed at a position offset to the right side by a predetermined offset amount from the contact portion 73 of the punch 63 (see FIG. 10A). Thereafter, the punch 63 is lowered to cleave the magnet body 30.
  • the magnet conveyance device 64 sends the magnet body 30 by the same amount B as the feeding amount of the first piece.
  • the offset amount of the cutout groove 33 is smaller than that in the case of the first piece if the feed amount of the magnet body 30 is the same ( FIG. 10B).
  • the punch 63 is lowered to cleave the magnet body 30.
  • the cleaving is repeated as described above, and at the last cleaving, the magnet conveyance device 64 sends the magnet body 30 by the feed amount B in the same manner. At this time, the offset amount of the notch groove 33 becomes zero (FIG. 10C). Thereafter, the punch 63 is lowered to cleave the magnet body 30.
  • the notch groove 33 is provided so that the pitch increases from the front end side to the rear end side along the feeding direction of the magnet body 30, so that the notch groove 33 at the time of cleaving
  • the offset amount with the contact part 73 of the punch 63 can be changed for each cleaving. Therefore, the deviation between the start position of the crack 35 and the progress position of the crack 35 can be reduced, and the crack 35 can be prevented from developing obliquely and becoming an abnormal crack.
  • the magnet conveying device 64 further reduces the magnet body 30 without providing the punch adjusting mechanism 65 of the second embodiment.
  • An appropriate offset amount can be ensured without changing the feed amount for each cleaving. Therefore, the offset amount at the time of cleaving can be adjusted with a simpler configuration, and abnormal cracking of the magnet body 30 can be prevented.
  • the crack 35 can be prevented from progressing obliquely, it is not necessary to increase the depth of the cutout groove 33, so that the amount of magnet lost by the groove processing can be suppressed, and the field pole magnet body 80 is obtained. In some cases, a large magnetic force can be secured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Mechanical Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

 回転電機に配設される界磁極用磁石体を構成する磁石片を、永久磁石体を割断して製造する割断方法は、割断予定位置に沿って下面に脆弱部を備えた磁石体を、下方から2つの支点で支持した状態で両支点間に脆弱部が配置される位置まで磁石体を送る工程と、両支点間の脆弱部の上方から磁石体を押圧することで磁石体を割断後磁石体と割断後磁石体より小さい磁石片とに割断する工程と、を含む。磁石体の押圧位置は、脆弱部より割断後磁石体側にオフセットしている。

Description

回転電機に配設される界磁極用磁石体を構成する磁石片を、永久磁石体を割断して製造する割断方法及び割断装置
 本発明は、回転電機に配設される界磁極用磁石体を構成する磁石片を、永久磁石体を割断して製造する割断方法及び割断装置に関するものである。
 永久磁石回転電機に配設される界磁極用磁石体として、板状の磁石体(以下、単に「磁石体」と示す)を割断して複数の磁石片とし、この複数の磁石片同士を接着することによって形成した界磁極用磁石体が知られている。このような界磁極用磁石体は、複数の磁石片で形成されるため個々の磁石片の体積を小さくすることができ、ロータの回転による磁界の変動によって磁石片に発生する渦電流を低減させることができる。これにより、渦電流の発生に伴う界磁極用磁石体の発熱を抑制し、不可逆な熱減磁を防止することができる。
 JP2009-142081Aは、割断予定線に沿って切り欠きを設けた磁石体を、割断予定線と垂直方向の両端部において磁石体を支持するダイに載置し、割断予定線の上部を下方へとパンチによって押し込むことで、磁石体を割断予定線に沿って割断して複数の磁石片を製造することを開示している。
 磁石体は、ダイ上で長手方向に送られ、送り方向の先端部から順に1個ずつパンチによって割断されていく。磁石体は割断予定線の両側をダイによって支持された状態で、割断予定線の上部からパンチを下方向に押し込むことで割断される。つまり、磁石体は3点曲げによって割断される。
 曲げ荷重が作用する箇所を挟んで磁石体の送り方向側と、送り方向と反対側とでは、磁石体の長さが異なる。すなわち、送り方向側の磁石体は、割断後の磁石片そのものであるから磁石片1個分の長さであるのに対して、送り方向と反対側の磁石体は、最後の割断時を除いて磁石片2個分以上の長さを有する。
 したがって、送り方向と反対側の磁石体には、支持点より後方の磁石体の自重及び慣性によってモーメントが発生する。これにより、磁石体に生じる曲げ応力が割断予定線より送り方向側にずれることになる。
 よって、亀裂開始位置である割断予定線の切り欠きから磁石体の送り方向へ向けて斜めに亀裂が進展し、異常割れが発生する可能性がある。
 本発明は、このような技術的課題に鑑みてなされたものであり、磁石体の割断時に亀裂開始位置から斜めに亀裂が進展して異常割れとなることを防止できる割断方法及び割断装置を提供することを目的とする。
 本発明のある態様によれば、回転電機に配設される界磁極用磁石体を構成する磁石片を、永久磁石体を割断して製造する割断方法が提供される。この割断方法は、割断予定位置に沿って下面に脆弱部を備えた磁石体を、下方から2つの支点で支持した状態で両支点間に脆弱部が配置される位置まで磁石体を送る工程と、両支点間の脆弱部の上方から磁石体を押圧することで磁石体を割断後磁石体と割断後磁石体より小さい磁石片とに割断する工程と、を含む。磁石体の押圧位置は、脆弱部より割断後磁石体側にオフセットしている。
 本発明の別の態様によれば、回転電機に配設される界磁極用磁石体を構成する磁石片を、永久磁石体を割断して製造する割断装置が提供される。この割断装置は、割断予定位置に沿って下面に脆弱部が形成された磁石体を下方から2つの支点で支持する支持部と、両支点間に脆弱部が配置される位置まで磁石体を送る送り手段と、両支点間の脆弱部の上方から磁石体を押圧することで磁石体を割断後磁石体と割断後磁石体より小さい磁石片とに割断する割断手段と、を備える。磁石体の押圧位置は、脆弱部より割断後磁石体側にオフセットしている。
 本発明の実施形態、本発明の利点については、添付された図面を参照しながら以下に詳細に説明する。
図1Aは、本実施形態における割断方法及び割断装置によって製造された磁石片から構成される界磁極用磁石体を適用した永久磁石型電動機の主要部の構成を示す概略構成図である。 図1Bは、図1Aの永久磁石型電動機のI-I断面を示す断面図である。 図2は、界磁極用磁石体の構成を示す構成図である。 図3Aは、磁石体の溝入れ工程について説明するための図である。 図3Bは、磁石体のバリ取り工程について説明するための図である。 図3Cは、磁石体の割断工程について説明するための図である。 図4Aは、比較例における割断装置の割断工程を示す図である。 図4Bは、比較例における割断装置の割断工程を示す図である。 図5は、比較例において磁石体に作用するモーメントについて説明した図である。 図6Aは、第1実施形態における割断装置の割断工程を示した図である。 図6Bは、第1実施形態における割断装置の割断工程を示した図である。 図6Cは、第1実施形態における割断装置の割断工程を示した図である。 図6Dは、第1実施形態における割断装置の割断工程を示した図である。 図6Eは、第1実施形態における割断装置の割断工程を示した図である。 図6Fは、第1実施形態における割断装置の割断工程を示した図である。 図7は、第1実施形態において磁石体に作用するモーメントについて説明した図である。 図8Aは、第2実施形態における割断装置の割断工程を示した図である。 図8Bは、第2実施形態における割断装置の割断工程を示した図である。 図8Cは、第2実施形態における割断装置の割断工程を示した図である。 図8Dは、第2実施形態における割断装置の割断工程を示した図である。 図8Eは、第2実施形態における割断装置の割断工程を示した図である。 図8Fは、第2実施形態における割断装置の割断工程を示した図である。 図9は、第2実施形態において磁石体に作用するモーメントについて説明した図である。 図10Aは、第3実施形態における割断装置の割断工程を示した図である。 図10Bは、第3実施形態における割断装置の割断工程を示した図である。 図10Cは、第3実施形態における割断装置の割断工程を示した図である。 図11は、第3実施形態における磁石体の切り欠き溝について説明した図である。
 以下では図面を参照して本発明の実施の形態について詳しく説明する。
 第1実施形態について説明する。
 図1A及び図1AのI-I断面を示す図1Bは、本実施形態における割断方法及び割断装置によって製造された磁石片から構成される界磁極用磁石体80を適用した永久磁石埋込型回転電機A(以下、単に「回転電機A」という)を示している。
 回転電機Aは、ケーシングの一部を構成する円環形のステータ10と、このステータ10と同軸的に配置された円柱形のロータ20とから構成される。
 ステータ10は、ステータコア11と、複数のコイル12とから構成され、複数のコイル12はステータコア11に軸心Oを中心とした同一円周上に等角度間隔で形成されるスロット13に収設される。
 ロータ20は、ロータコア21と、ロータコア21と一体的に回転する回転軸23と、複数の界磁極用磁石体80とから構成され、複数の界磁極用磁石体80は軸心Oを中心とした同一円周上に等角度間隔で形成されるスロット22に収設される。
 ロータ20のスロット22に収設される界磁極用磁石体80は、図2に示すように、複数の磁石片31を一列に整列させた磁石片31の集合体として構成される。磁石片31は、長方形の上下面を有する板状の磁石体30を長方形の短辺方向に沿って割断することにより分割される。界磁極用磁石体80は、分割された複数の磁石片31の割断面同士を樹脂32により接着して構成される。使用される樹脂32は、例えば200℃程度の耐熱性能を備えるものが使用され、隣接する磁石片31同士を電気的に絶縁する。これにより、作用する磁界の変動により磁石片31に発生する渦電流を個々の磁石片31内に留めることで低減させ、渦電流に伴う界磁極用磁石体80の発熱を抑制して、不可逆な熱減磁を防止することができる。
 次に、図3A~図3Cを参照して板状の磁石体30から複数の磁石片31を製造する過程について説明する。
 磁石体30を複数の磁石片31に割断するために、磁石体30の割断しようとする部位(割断予定線)に、図3Aに示すように、予め切り欠き溝33等から成る脆弱部を形成することが有効である。設ける切り欠き溝33は、表面からの深さが深いほど、また、切り欠き溝33の先端の尖りが鋭いほど、磁石片31として割断した場合の割断面の平面度が向上する。
 切り欠き溝33の形成方法としては、磁石体30の成形型に設けた溝形成用の突条により磁石体30の成形工程で設ける方法、ダイサーやスライサー等の機械加工による方法、レーザビーム照射による方法、ワイヤカット放電加工等がある。
 切り欠き溝33が形成される際、切り欠き溝33に沿ってバリ34が発生するので、このバリ34を、図3Bに示すように、バリ取り工程において除去する。
 続いて、割断工程において、切り欠き溝33を下にした状態で切り欠き溝33のない側から溝33に対応する位置を後述するパンチによって押圧することで、図3Cに示すように、磁石体30が切り欠き溝33に沿って割断されて複数の磁石片31となる。
 図4A及び図4Bは、図3Cに示す割断工程を行う比較例における割断装置40の概略を示している。
 割断装置40は、一対のダイ41、42間に磁石体30を架け渡した状態で載置し、架け渡した部分に上部からパンチ43を下降させて、磁石体30を3点曲げにより割断する装置である。割断装置40は、磁石体30を架け渡して載置する下型としての一対のダイ41、42と、磁石体30の架け渡した部分を押し込むことで磁石体30を割断させるパンチ43と、磁石体30を一端部から順にパンチ43の直下に送る磁石搬送装置44と、を備える(図4A)。
 パンチ43は、一対のダイ41、42に架け渡された磁石体30の上面を下方へ押圧することで磁石体30を割断させる。パンチ43は、先端が一対のダイ41、42間の中間に位置するように位置決めされており、例えばサーボプレス、機械プレス、油圧プレスなどによって駆動される。
 割断装置40は以上のように構成され、切り欠き溝33を設けた磁石体30を一対のダイ41、42の上面に架け渡して載置する。なお、磁石体30は、割断させたい所望の位置、即ち、割断予定線に予め設ける切り欠き溝33が、ダイ41、42側に対面する側に位置するように、一対のダイ41、42上に載置される。
 そして、磁石搬送装置44によって、割断予定線としての切り欠き溝33が一対のダイ41、42間の中間に位置するように位置合わせした状態で、パンチ43を下降させる。パンチ43を下降させるとパンチ43が切り欠き溝33の裏側を下方へと押圧し、パンチ43及び一対のダイ41、42の互いに隣接する縁部41a、42aの3点曲げにより磁石体30は切り欠き溝33に沿って割断される(図4B)。
 ところで、磁石体30は、一端側から順に磁石片1個分ずつ割断されるので、磁石片31と割断後に残る磁石体30とは大きさが異なる。すなわち、最後の割断が行われる場合以外は常に磁石片31の方が小さい。
 これにより、割断時の亀裂35の開始位置である切り欠き溝33から上方へと進展する亀裂35が磁石片31の方へと傾いて斜めに進展し、異常割れとなる場合がある。
 この異常割れについて、図5の模式図を参照しながら説明する。
 一対のダイ41、42上に載置された磁石体30をパンチ43によって下方へと押圧することは、一対のダイの隣接する縁部41a、42aを2つの支点45、46とし、パンチ43の当接部位47を1点集中荷重とした3点曲げとして考えることができる。
 この場合、パンチ43の押圧力を曲げ応力P1とし、図中左側の支点45より他端側(図中左側)の磁石体30の自重及び慣性によるモーメントをM1とすると、図5に示すようになる。割断後に磁石片31となる側の磁石体30は、右側の支点46より右側の部分が小さいので、自重及び慣性によるモーメントはほとんど作用しない。
 曲げ応力P1のM図は、図示のように、パンチ43の当接部位47を中心として両支点45、46間の磁石体30を下方に凸形状となるように正のモーメントが作用することから、パンチ43の当接部位47を最大値とする左右対称な三角形状となる。
 一方、モーメントM1のM図は、図示のように、左側の支点45を中心として両支点45、46間の磁石体30を上方に凸形状となるように負のモーメントが作用することから、左側の支点45を最低値(絶対値が最大値)とする三角形状となる。
 磁石体30の割断時には、上記した曲げ応力P1とモーメントM1とが同時に作用することから、P1のM図とM1のM図とを重ね合わせると、全体の曲げ応力はパンチ43の当接部位47より右側に偏ってしまう。
 これにより、亀裂35は粗材の弱い切り欠き溝33から開始するが、右側に偏って上方へと進展し、異常割れが生じる。
 そこで、本実施形態では、磁石体30の割断工程を以下のように行っている。
 図6A~図6Fは、本実施形態における割断装置60Aの割断工程を示した図である。本実施形態では、一対のダイ61、62上に載置された磁石体30の送り方向位置を、切り欠き溝33がパンチ63の当接部位73より磁石体30の送り方向先端側(図中右側)にオフセットした位置となるように磁石体30の送り量を調節する(図6A)。つまり、磁石体30の割断時、切り欠き溝33はパンチ63の当接部位73の直下ではなく、磁石体30の送り方向に所定のオフセット量だけずれて配置される。
 磁石体30の搬送は、磁石搬送装置64によって行われる。磁石搬送装置64は、例えばACサーボモータとボールネジとを組み合わせて構成され、磁石体30を送り方向に所定量だけ送り、任意の位置で止めることができる。
 磁石体30におけるモーメントの作用について図7の模式図を参照して説明する。
 パンチ63の押圧力による曲げ応力P1と、磁石体30の自重及び慣性によるモーメントM1と、曲げ応力P1とM1とを重ねたM図は、それぞれ図5と同様である。本実施形態では、磁石体30の切り欠き溝33がパンチ63の当接部位73より右側にオフセットするように磁石体30が配置される。
 亀裂35の開始位置は脆弱部である切り欠き溝33となる。さらに、亀裂35の進展位置は、全体の曲げ応力の偏りによってパンチ63の当接部位73より右側にずれる。よって、亀裂35の開始位置と亀裂35の進展位置とのずれが抑制される。
 これにより、切り欠き溝33から進展する亀裂35が、左右に偏ることなく上方へと進展し、斜めに傾いて割断されることを防止することができる。
 上記のように磁石体30を位置決めした状態でパンチ63を下降させて磁石体30を押圧することで、磁石体30の1片目を割断する(図6B)。
 次に、磁石搬送装置64によって磁石体30を送り方向へと磁石片1個分だけ送る(図6C)。この時、磁石体30の送り量、すなわち切り欠き溝33のオフセット量は、図6Aにおける1片目の割断時より小さく設定する。
 これは、1片目の割断時に比べて割断後の磁石体30と磁石片31との間の大きさの差が小さく、割断時の曲げ応力の偏りが1片目の割断時より小さくなるからである。
 この状態で、パンチ63を下降させて磁石体30を割断する(図6D)。このようにして磁石片31を順次割断していき、最後の割断を行うため磁石体30を送り方向に送る(図6E)。
 この時、割断後の磁石体30と磁石片31との間の大きさは同一であるので、切り欠き溝33のオフセット量をゼロとし、切り欠き溝33をパンチ63の当接部位73の直下に位置させる。この状態で、パンチ63を下降させて磁石体30の最後の割断を行う(図6F)。
 以上のように本実施形態では、磁石体30の割断時に切り欠き溝33をパンチ63の当接部位73より右側にオフセットさせるので、亀裂35の開始位置と亀裂35の進展位置とのずれを小さくすることができる。よって、亀裂35が斜めに進展して異常割れとなることを防止することができる。
 さらに、亀裂35が斜めに進展することを防止できることで切り欠き溝33の深さを深くする必要がなくなるので、溝加工によって失われる磁石量を抑えることができ、界磁極用磁石体80とした場合により大きな磁力を確保することができる。
 さらに、亀裂35が斜めに進展することを防止できることで切り欠き溝33の底のRを小さくする必要がなくなるので、切り欠き溝33を加工する工具先端のRを大きくすることができ、工具の摩耗を防ぐことができる。
 また、切り欠き溝33のオフセット量は、磁石片31と割断後の磁石体30との大きさの差が大きいほど大きくなるように設定されるので、両者の大きさの差に応じて変化する亀裂35の進展位置に合わせて亀裂35の開始位置を変化させることができ、亀裂35の開始位置と亀裂35の進展位置とのずれをより確実に抑制することができる。
 第2実施形態について説明する。
 図8A~図8Fは、本実施形態における割断装置60Bの割断工程を示した図である。本実施形態では、一対のダイ61、62上に載置された磁石体30に対するパンチ63の当接部位73を、磁石体30の送り方向後端側(図中左側)にオフセットさせる(図8A)。つまり、磁石体30の割断時、パンチ63は切り欠き溝33の上部ではなく、切り欠き溝33から磁石体30の送り方向とは反対側に所定のオフセット量だけずれた位置を押圧する。
 磁石体30の送り方向に沿ったパンチ63の移動は、パンチ調節機構65によって行われる。パンチ調節機構65は、例えばACサーボモータとボールネジとを組み合わせて構成され、パンチ63を磁石体30の送り方向に沿って所定量だけ移動させ、任意の位置で止めることができる。
 磁石体30におけるモーメントの作用について図9の模式図を参照して説明する。
 パンチ63の押圧力による曲げ応力P1と、磁石体30の自重及び慣性によるモーメントM1と、曲げ応力P1とM1とを重ねたM図は、それぞれ図5と同様である。本実施形態では、パンチ63の当接部位73が磁石体30の切り欠き溝33より左側にオフセットするようにパンチ63が配置される。
 亀裂35の開始位置は脆弱部である切り欠き溝33となる。さらに、亀裂35の進展位置は、全体の曲げ応力の偏りによってパンチ63の当接部位73より右側にずれる。よって、亀裂35の開始位置と亀裂35の進展位置とのずれが抑制される。
 これにより、切り欠き溝33から進展する亀裂35が、左右に偏ることなく上方へと進展し、斜めに傾いて割断することを防止することができる。
 上記のようにパンチ63を位置決めした状態でパンチ63を下降させて磁石体30を押圧することで、磁石体30の1片目を割断する(図8B)。
 次に、磁石搬送装置64によって磁石体30を送り方向へと磁石片1個分だけ送り、さらにパンチ63の当接部位73が切り欠き溝33より左側に所定のオフセット量だけずれた位置となるようにパンチ63を移動させる(図8C)。
 この時、パンチ63の移動量、すなわちパンチ63の切り欠き溝33からのオフセット量は、図8Aにおける1片目の割断時より小さく設定する。これは、1片目の割断時に比べて割断後の磁石体30と磁石片31との間の大きさの差が小さく、割断時の曲げ応力の偏りが1片目の割断時より小さくなるからである。
 この状態で、パンチ63を下降させて磁石体30を割断する(図8D)。このようにして磁石片31を順次割断していき、最後の割断を行うため磁石体30を送り方向に送る(図8E)。
 この時、割断後の磁石体30と磁石片31との間の大きさは同一であるので、パンチ63のオフセット量をゼロとし、パンチ63を切り欠き溝33の真上に位置させる(図8E)。この状態で、パンチ63を下降させて磁石体30の最後の割断を行う(図8F)。
 以上のように本実施形態では、磁石体30の割断時にパンチ63の当接部位73を切り欠き溝33より左側にオフセットさせるので、亀裂35の開始位置と亀裂35の進展位置とのずれを小さくすることができる。
 さらに、亀裂35が斜めに進展することを防止できることで切り欠き溝33の深さを深くする必要がなくなるので、溝加工によって失われる磁石量を抑えることができ、界磁極用磁石体80とした場合により大きな磁力を確保することができる。
 さらに、亀裂35が斜めに進展することを防止できることで切り欠き溝33の底のRを小さくする必要がなくなるので、切り欠き溝33を加工する工具先端のRを大きくすることができ、工具の摩耗を防ぐことができる。
 また、パンチ63のオフセット量は、磁石片31と割断後の磁石体30との大きさの差が大きいほど大きくなるように設定されるので、両者の大きさの差に応じて変化する亀裂35の進展位置に合わせて亀裂35の開始位置を変化させることができ、亀裂35の開始位置と亀裂35の進展位置とのずれをより確実に抑制することができる。
 第3実施形態について説明する。
 図10A~図10Cは、本実施形態における割断装置60Cの割断工程を示した図である。本実施形態では、磁石体30の送り量は割断ごとに一定であり、さらにパンチ63は上下方向の駆動のみで横方向に移動しない固定式である。代わりに、磁石体30に設けられる切り欠き溝33の位置が第1及び第2実施形態とは異なる。
 図11は、磁石体30の切り欠き溝33について説明した図である。
 本実施形態では、切り欠き溝33を磁石体30の送り方向に沿って等間隔に配置するのではなく、送り方向先端側から後端側に行くにつれて、切り欠き溝33間のピッチが徐々に大きくなるように配置した。つまり、図11に示すように、切り欠き溝33間の距離Ln(n=1、2、・・5)は、右側から左側へ行くにつれて順に大きくなっている。
 これにより、割断工程時に、磁石体30を同一の送り量で送った場合に切り欠き溝33とパンチ63の当接部位73とのオフセット量は徐々に小さくなる。各切り欠き溝33間のピッチLnは、各割断時における切り欠き溝33のオフセット量が適切な値になり、最後の割断時にはオフセット量がゼロとなるように予め設定される。
 本実施形態における割断工程について説明する。
 最初の一片目の割断時、磁石搬送装置64は、切り欠き溝33がパンチ63の当接部位73から所定のオフセット量だけ右側にオフセットした位置に配置されるように磁石体30を送る(図10A)。その後、パンチ63を下降させて磁石体30を割断する。
 続く2片目の割断時、磁石搬送装置64は、磁石体30を1片目の送り量と同じ量Bだけ送る。この時、切り欠き溝33間のピッチは1片目の割断時より大きくなっているので、磁石体30の送り量が同一であれば切り欠き溝33のオフセット量は1片目の場合より小さくなる(図10B)。その後、パンチ63を下降させて磁石体30を割断する。
 上記のように割断を繰り返し、最後の割断時、磁石搬送装置64は、磁石体30を同様に送り量Bだけ送る。この時、切り欠き溝33のオフセット量はゼロとなる(図10C)。その後、パンチ63を下降させて磁石体30を割断する。
 以上のように本実施形態では、切り欠き溝33を磁石体30の送り方向に沿って先端側から後端側へ行くほどピッチが大きくなるように設けたので、割断時の切り欠き溝33とパンチ63の当接部位73とのオフセット量を割断ごとに変化させることができる。よって、亀裂35の開始位置と亀裂35の進展位置とのずれを小さくすることができ、亀裂35が斜めに進展して異常割れとなることを防止することができる。
 さらに、オフセット量は、予め磁石体30に設けた切り欠き溝33のピッチに応じて変化するので、第2実施形態のパンチ調節機構65を設けることなく、さらに磁石搬送装置64による磁石体30の送り量を割断ごとに変化させることなく、適切なオフセット量を確保することができる。よって、より簡素な構成で割断時のオフセット量を調節でき、磁石体30の異常割れを防止することができる。
 さらに、亀裂35が斜めに進展することを防止できることで切り欠き溝33の深さを深くする必要がなくなるので、溝加工によって失われる磁石量を抑えることができ、界磁極用磁石体80とした場合により大きな磁力を確保することができる。
 さらに、亀裂35が斜めに進展することを防止できることで切り欠き溝33の底のRを小さくする必要がなくなるので、切り欠き溝33を加工する工具先端のRを大きくすることができ、工具の摩耗を防ぐことができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例を示したものに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 本願は2012年3月1日に日本国特許庁に出願された特願2012-045208に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (10)

  1.  回転電機に配設される界磁極用磁石体を構成する磁石片を、永久磁石体を割断して製造する割断方法であって、
     割断予定位置に沿って下面に脆弱部を備えた前記磁石体を、下方から2つの支点で支持した状態で両支点間に前記脆弱部が配置される位置まで前記磁石体を送る工程と、
     両支点間の前記脆弱部の上方から前記磁石体を押圧することで前記磁石体を割断後磁石体と前記割断後磁石体より小さい磁石片とに割断する工程と、を含み、
     前記磁石体の押圧位置は、前記脆弱部より前記割断後磁石体側にオフセットしている割断方法。
  2.  請求項1に記載の割断方法であって、
     前記送る工程は、両支点間の前記脆弱部が前記磁石体の押圧位置より前記磁石片側にオフセットした位置に配置されるように前記磁石体の送り量を調節する割断方法。
  3.  請求項1に記載の割断方法であって、
     前記割断する工程は、前記磁石体の押圧位置が前記脆弱部より前記割断後磁石体側にオフセットした位置となるように押圧位置を調節する割断方法。
  4.  請求項1から請求項3までのいずれか一項に記載の割断方法であって、
     前記オフセットの量は、前記割断後磁石体と前記磁石片との大きさの差が大きいほど大きく設定される割断方法。
  5.  請求項1に記載の割断方法であって、
     前記脆弱部は、前記脆弱部間のピッチが前記磁石体の送り方向先端側から後端側にいくほど大きくなるように形成され、
     前記送る工程は、前記磁石体の割断のたびに前記磁石体を送り方向へと等しい距離だけ送り、
     前記割断する工程は、前記磁石体の送り方向に対して固定された位置で前記磁石体を押圧する割断方法。
  6.  回転電機に配設される界磁極用磁石体を構成する磁石片を、永久磁石体を割断して製造する割断装置であって、
     割断予定位置に沿って下面に脆弱部が形成された前記磁石体を下方から2つの支点で支持する支持部と、
     両支点間に前記脆弱部が配置される位置まで前記磁石体を送る送り手段と、
     両支点間の前記脆弱部の上方から前記磁石体を押圧することで前記磁石体を割断後磁石体と前記割断後磁石体より小さい磁石片とに割断する割断手段と、を備え、
     前記磁石体の押圧位置は、前記脆弱部より前記割断後磁石体側にオフセットしている割断装置。
  7.  請求項6に記載の割断装置であって、
     前記送り手段は、両支点間の前記脆弱部が前記磁石体の押圧位置より前記磁石片側にオフセットした位置に配置されるように前記磁石体の送り量を調節する割断装置。
  8.  請求項6に記載の割断装置であって、
     前記割断手段は、前記磁石体の押圧位置が前記脆弱部より前記割断後磁石体側にオフセットした位置となるように押圧位置を調節する割断装置。
  9.  請求項6から請求項8までのいずれか一項に記載の割断装置であって、
     前記オフセットの量は、前記割断後磁石体と前記磁石片との大きさの差が大きいほど大きく設定される割断装置。
  10.  請求項6に記載の割断装置であって、
     前記脆弱部は、前記脆弱部間のピッチが前記磁石体の送り方向先端側から後端側にいくほど大きくなるように形成され、
     前記送り手段は、前記磁石体の割断のたびに前記磁石体を送り方向へと等しい距離だけ送り、
     前記割断手段は、前記磁石体の送り方向に対して固定された位置で前記磁石体を下向きに押圧する割断装置。
PCT/JP2013/055615 2012-03-01 2013-03-01 回転電機に配設される界磁極用磁石体を構成する磁石片を、永久磁石体を割断して製造する割断方法及び割断装置 WO2013129641A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-045208 2012-03-01
JP2012045208A JP5849774B2 (ja) 2012-03-01 2012-03-01 回転電機に配設される界磁極用磁石体を構成する磁石片を、永久磁石体を割断して製造する割断方法及び割断装置

Publications (1)

Publication Number Publication Date
WO2013129641A1 true WO2013129641A1 (ja) 2013-09-06

Family

ID=49082828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055615 WO2013129641A1 (ja) 2012-03-01 2013-03-01 回転電機に配設される界磁極用磁石体を構成する磁石片を、永久磁石体を割断して製造する割断方法及び割断装置

Country Status (2)

Country Link
JP (1) JP5849774B2 (ja)
WO (1) WO2013129641A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110136950A (zh) * 2019-05-24 2019-08-16 衢州后瑞机械设备有限公司 一种复合软磁材料的加工工艺

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6217382B2 (ja) * 2013-12-24 2017-10-25 豊田合成株式会社 基板分割方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009142081A (ja) * 2007-12-06 2009-06-25 Toyota Motor Corp 永久磁石とその製造方法、およびロータとipmモータ
WO2011004490A1 (ja) * 2009-07-10 2011-01-13 トヨタ自動車株式会社 磁石割断装置及び磁石の割断方法
JP2011125105A (ja) * 2009-12-09 2011-06-23 Toyota Motor Corp 割断磁石を備えたモータとその製造方法
WO2011145433A1 (ja) * 2010-05-19 2011-11-24 日産自動車株式会社 回転電機に配設される永久磁石およびその製造方法
WO2011158710A1 (ja) * 2010-06-17 2011-12-22 日産自動車株式会社 回転電機に配設される永久磁石の製造装置およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009142081A (ja) * 2007-12-06 2009-06-25 Toyota Motor Corp 永久磁石とその製造方法、およびロータとipmモータ
WO2011004490A1 (ja) * 2009-07-10 2011-01-13 トヨタ自動車株式会社 磁石割断装置及び磁石の割断方法
JP2011125105A (ja) * 2009-12-09 2011-06-23 Toyota Motor Corp 割断磁石を備えたモータとその製造方法
WO2011145433A1 (ja) * 2010-05-19 2011-11-24 日産自動車株式会社 回転電機に配設される永久磁石およびその製造方法
WO2011158710A1 (ja) * 2010-06-17 2011-12-22 日産自動車株式会社 回転電機に配設される永久磁石の製造装置およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110136950A (zh) * 2019-05-24 2019-08-16 衢州后瑞机械设备有限公司 一种复合软磁材料的加工工艺

Also Published As

Publication number Publication date
JP5849774B2 (ja) 2016-02-03
JP2013183519A (ja) 2013-09-12

Similar Documents

Publication Publication Date Title
JP6393019B2 (ja) 界磁極用磁石体の製造装置およびその製造方法
JP5614096B2 (ja) 回転電機のロータコアに埋込まれる永久磁石およびその製造方法
JP5761384B2 (ja) 界磁極用磁石体を構成する磁石片の製造方法
JP6079887B2 (ja) 回転電機に配設される界磁極用磁石体を構成する磁石片を製造する割断方法及び割断装置
WO2013129641A1 (ja) 回転電機に配設される界磁極用磁石体を構成する磁石片を、永久磁石体を割断して製造する割断方法及び割断装置
EP3057207B1 (en) Method and device for manufacturing magnet pieces configuring a field pole magnet to be arranged in a rotary machine
JP5919888B2 (ja) 回転電機に配設される界磁極用磁石体を構成する磁石片を、永久磁石体を割断して製造する割断方法及び割断装置
WO2013125513A1 (ja) 界磁極用磁石体を構成する磁石片の製造方法および製造装置
JP5929310B2 (ja) 界磁極用磁石体を構成する磁石片の製造方法
JP5994447B2 (ja) 界磁極用磁石体を構成する磁石片の製造装置及びその製造方法
JP5935257B2 (ja) 界磁極用磁石体の製造装置およびその製造方法
JP5906768B2 (ja) 界磁極用磁石体を構成する磁石片の製造装置及びその製造方法
JP5761383B2 (ja) 界磁極用磁石体の製造方法
JP6015458B2 (ja) 界磁極用磁石体とその製造方法および製造装置
WO2013115301A1 (ja) 界磁極用磁石体を構成する磁石片の製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13755091

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13755091

Country of ref document: EP

Kind code of ref document: A1