WO2013129542A1 - Hla-a*31:01アレルの検出方法 - Google Patents

Hla-a*31:01アレルの検出方法 Download PDF

Info

Publication number
WO2013129542A1
WO2013129542A1 PCT/JP2013/055285 JP2013055285W WO2013129542A1 WO 2013129542 A1 WO2013129542 A1 WO 2013129542A1 JP 2013055285 W JP2013055285 W JP 2013055285W WO 2013129542 A1 WO2013129542 A1 WO 2013129542A1
Authority
WO
WIPO (PCT)
Prior art keywords
hla
single nucleotide
primer
sequence
allele
Prior art date
Application number
PCT/JP2013/055285
Other languages
English (en)
French (fr)
Inventor
正幸 青木
充明 久保
直哉 細野
Original Assignee
独立行政法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人理化学研究所 filed Critical 独立行政法人理化学研究所
Priority to EP13754011.8A priority Critical patent/EP2821503B1/en
Priority to US14/381,678 priority patent/US9879314B2/en
Priority to JP2014502349A priority patent/JP6346557B2/ja
Publication of WO2013129542A1 publication Critical patent/WO2013129542A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6818Hybridisation assays characterised by the detection means involving interaction of two or more labels, e.g. resonant energy transfer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6881Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for tissue or cell typing, e.g. human leukocyte antigen [HLA] probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/172Haplotypes

Definitions

  • the present invention relates to a method for detecting an HLA-A * 31 : 01 allele, a method for determining the risk of drug eruption with an antiepileptic drug using the detection result obtained by the detection method, and a reagent used in the detection method.
  • Drug eruptions are typical of cutaneous adverse drug reactions (cADRs) and are characterized as acute inflammatory reactions of the skin and mucous membranes caused by drugs. Drug eruption is dose-independent, unpredictable, and often fatal. Drug eruptions range from mild to severe, including severe Stevens-Johnson Syndrome (SJS), toxic epidermis known as the three major severe drug eruptions. Examples include necrosis (toxic epithelial necrolysis (TEN)) and drug-induced hypersensitivity syndrome (DIHS).
  • SJS severe Stevens-Johnson Syndrome
  • TEN toxic epidermis
  • DIHS drug-induced hypersensitivity syndrome
  • CBZ carbamazepine
  • HLA-B * 1502 allele human leukocyte antigen (HLA) -B * 1502 allele is very strongly associated with SJS and TEN induced by CBZ.
  • Non-Patent Document 1 the allele frequency of the HLA locus varies markedly depending on race.
  • the HLA-B * 1502 allele is present at a frequency of 8.6% in Southeast Asians (Non-patent Document 1), but in Japanese and Caucasians. It exists only at a frequency of 0.1% (http://www.allelefrequencies.net). Therefore, in Japanese and Caucasians, the HLA-B * 1502 allele is not a useful genetic factor for predicting CBZ-induced SJS and TEN.
  • Non-Patent Documents 4 to 6 Several methods for identifying the genotype of HLA have been reported (Non-Patent Documents 4 to 6), but these methods have room for improvement in that they require a lot of labor and time.
  • HLA genotypes have been identified using next-generation sequencers (Non-Patent Documents 7 to 9), but there is room for improvement in that the reaction time is long and the cost is high.
  • HLA-A * 31 : 01 allele is detected by combining the PCR method and the invader method.
  • the object of the present invention is to provide a method for detecting the HLA-A * 31 : 01 allele.
  • the present inventors have found a single nucleotide polymorphism capable of detecting the HLA-A * 31 : 01 allele simply, rapidly and accurately. Further, the present inventors have found that the HLA-A * 31 : 01 allele can be detected simply, quickly and accurately by combining the PCR method and the invader method. Based on these findings, the present inventors have completed the present invention.
  • the present invention is as follows. [1] One or more single nucleotide polymorphisms characterizing HLA-A * 31 : 01 are analyzed, and the presence or absence of HLA-A * 31 : 01 is determined based on the analysis result -A * 31 : 01 detection method. [2] The method, wherein a single nucleotide polymorphism is analyzed by a combination of a sequence-specific primer PCR method and an invader plus method. [3] The method, wherein at least one or more single nucleotide polymorphisms selected from rs1059449, rs41541222, rs1059471, rs1059457, and rs41562315 are analyzed.
  • Sequence-specific primer set comprising (A) and (B) below: (A) a sequence having a length of 10 bases or more having a first single nucleotide polymorphism characterizing HLA-A * 31:01 in the base sequence shown in SEQ ID NO: 1 or its complementary sequence at the 3 ′ end; A first primer having the single nucleotide polymorphism at the 3 ′ end of the primer; (B) a sequence having a length of 10 bases or more having a second single nucleotide polymorphism characterizing HLA-A * 31:01 in the base sequence shown in SEQ ID NO: 1 or its complementary sequence at the 3 ′ end, and A second primer having the single nucleotide polymorphism at the 3 ′ end of the primer, which is paired with the first primer from the first single nucleotide polymorphism of HLA-A * 31 : 01
  • the primer set wherein the first single nucleotide polymorphism is rs41541222 or rs1059457, and the second single nucleotide polymorphism is rs41562315.
  • a probe set comprising an invader probe and an allele probe targeting the invader with a single nucleotide polymorphism characterizing HLA-A * 31:01.
  • the probe set wherein the single nucleotide polymorphism is rs1059471 or rs1059457.
  • a detection reagent for HLA-A * 31:01 comprising the primer set and the probe set,
  • the single nucleotide polymorphism which is a target of the invader is a single nucleotide polymorphism existing between the first single nucleotide polymorphism and the second single nucleotide polymorphism.
  • the figure which shows the calculation result of a specificity score The figure which shows the alignment of 42 types of HLA-A allele which exists in Japanese population with allele frequency> 0.001%.
  • the “*” in the intron 2 region indicates that the sequence has not been determined.
  • “-” Indicates that the type of base is the same as HLA-A * 31:01.
  • the figure and photograph which show the result of the HLA-A * 31 : 01 assay of a JCH sample (n 90).
  • the detection method of the present invention comprises analyzing one or more single nucleotide polymorphisms (SNPs) characterizing HLA-A * 31:01, and judging the presence or absence of HLA-a * 31:01 based, a method for detecting HLA-a * 31:01.
  • SNPs single nucleotide polymorphisms
  • the above “1 or more” may be 1, 2, 2, 3, or more.
  • “determination of presence / absence of HLA-A * 31 : 01” includes determination of whether or not a subject has an HLA-A * 31 : 01 allele and whether or not the subject has HLA-A * A determination is made whether the probability of having a 31:01 allele is high or low.
  • the detection method of the present invention for example, it may be determined whether or not the subject has the HLA-A * 31 : 01 allele. Further, in the detection method of the present invention, for example, it is possible to determine whether or not a subject has HLA-A * 31 : 01.
  • “analysis” of SNP and “analysis” of SNP are synonymous.
  • the HLA-A gene is a gene encoding the heavy chain of an HLA class I molecule.
  • Specific examples of the HLA-A gene include the region of 29910309 to 29913661 of GenBank Accession No. NC — 000006.11. 1729 kinds of alleles of HLA-A gene are registered in IMGT / HLA Database (October 13, 2011; version 3.6.0), and HLA-A * 31 : 01 allele is one of them. .
  • the base sequence of the HLA-A * 31:01 allele is shown in SEQ ID NO: 1.
  • HLA-A * 31:01 characterize SNP: not particularly limited as long as (HLA-A * 31 01- discriminating SNP) a.
  • SNP characterizing HLA-A * 31:01 refers to a SNP that can distinguish HLA-A * 31:01 from one or more alleles selected from other HLA-A alleles.
  • the “specificity score” is the difference between HLA-A * 31 : 01 and other HLA-A alleles for each known base for 1729 known HLA-A alleles starting from the translation start point. Is. Specifically, first, the base of the translation start point of HLA-A * 31:01 serving as a reference is compared with the corresponding base of the other HLA-A allele, and +1 is added if the base is different. Since the base of the translation start point, that is, A of the start codon ATG is common to all HLA-A alleles, the specificity score at the translation start point is zero.
  • a specificity score is calculated using the base position of HLA-A * 31 : 01 as a parameter.
  • the higher the specificity score the more specific the base position is for HLA-A * 31 : 01, ie, the more distinct HLA-A * 31 : 01 can be from many other HLA-A alleles.
  • the specificity score at a certain base position is X
  • the SNP at that base position distinguishes HLA-A * 31:01 from X alleles among other HLA-A alleles. SNP that can be.
  • SNPs with high specificity scores in the second half of exon 2 of the HLA-A gene there are SNPs with high specificity scores in the second half of exon 2 of the HLA-A gene.
  • SNPs with high specificity scores in the second half of exon 2 of the HLA-A gene For example, rs1059449, rs41541222, and rs1059471 present in exon 2 have a specificity score of 1500 or more, and rs1136659 and rs80321556 present in exon 2 have a specificity score of 1000 or more. Any of these SNPs can be particularly preferably used for detection of HLA-A * 31 : 01.
  • the rs number indicates the registration number of the dbSNP database (http // www.ncbi.nlm.nih.gov / projects / SNP /) of National Center for Biotechnology Information.
  • SNPs there are some SNPs in which a plurality of rs numbers are assigned to a single SNP.
  • the SNP specified by the rs number may be assigned only the rs number, and rs numbers other than the rs number are assigned at the same time. It may be.
  • “SNP characterizing HLA-A * 31 : 01” is preferably selected in consideration of the allele frequency of each HLA-A allele in the race to which the subject belongs. That is, the “SNP characterizing HLA-A * 31 : 01” is an SNP that can distinguish HLA-A * 31 : 01 from other HLA-A alleles with high allele frequency in the race to which the subject belongs. Preferably there is.
  • “SNP characterize the HLA-A * 31:01” is, HLA-A * and 31:01, HLA-A * 31 present at an allele frequency> 0.001% in races subject belongs: SNPs that can be distinguished from HLA-A alleles other than 01 are preferred.
  • HLA-A * 31:01 allele in the central bone marrow center there are 42 types including the HLA-A * 31:01 allele in the central bone marrow center as being present at an allele frequency> 0.001% in the Japanese population. (42 types described in FIG. 2 described later). Therefore, when detecting HLA-A * 31 : 01 in a Japanese subject, “SNP characterizing HLA-A * 31 : 01” is at least HLA-A * 31 : 01 and the other 41 SNPs that can be distinguished from one or more alleles selected from a species HLA-A allele are preferred.
  • rs1059449, rs41541222, and rs1059471 exemplified above are not particularly limited, but can be preferably used for detection of HLA-A * 31 : 01 in a Japanese subject.
  • the “SNP characterizing HLA-A * 31: 01” is preferably an SNP with a high specificity score.
  • the SNP having a high specificity score for example, those selected from the top 10 SNPs arranged in descending order by specificity score are preferable, and those selected from the top 5 SNPs are more preferable.
  • Specific examples of the SNP having a high specificity score include rs41541222, rs1059449, rs1059471, rs1136659, rs1059506, rs1059536, rs1059517, rs80321556, rs9260156, and rs1059509.
  • the specificity score may be, for example, calculated for all HLA-A alleles, or calculated for HLA-A alleles present at an allele frequency> 0.001% in the race to which the subject belongs. It may be.
  • “SNP characterizing HLA-A * 31: 01” is based on the known HLA-A gene sequence information, the above-mentioned specificity score, HLA-A * 31: 01 and other The selection can be made in consideration of the homology of the base sequence with each HLA-A allele.
  • “SNP characterizing HLA-A * 31: 01” has a high specificity score and high homology with HLA-A * 31: 01 and allele frequency in the population to which the subject belongs.
  • the SNP is such that the HLA-A allele is not detected with HLA-A * 31: 01.
  • the size of the amplified product by PCR is about 200 bp or less, specifically, for example, 120 to What becomes about 160 bp is preferable.
  • SNP characterizing HLA-A * 31:01 includes SNPs in linkage disequilibrium with the above SNPs.
  • SNPs in linkage disequilibrium with the above SNPs can be identified using, for example, the HapMap database (http://www.hapmap.org/index.html.ja).
  • SNPs in linkage disequilibrium with the above-mentioned SNPs are obtained by, for example, analyzing DNA sequences collected from a plurality of people (usually about 20 to 40 people) with a sequencer and searching for SNPs in linkage disequilibrium. It can also be identified.
  • SRS in linkage disequilibrium with rs1059471 includes rs41562315.
  • At least one SNP selected from rs1059449, rs41541222, rs1059471, rs1059457, and rs41562315 may be analyzed.
  • sequences having a total length of 121 bp including SNP bases and a region of 60 bp before and after that are shown in SEQ ID NOs: 2 to 6, respectively.
  • the 61st base has a polymorphism.
  • At least rs41562315 may be analyzed.
  • at least rs41562315, rs41541222, and rs1059457 may be analyzed, and at least rs41562315, rs1059457, and rs1059471 may be analyzed.
  • analyzing the SNP includes analyzing a SNP corresponding to the SNP.
  • SNP corresponding to the above SNP means a corresponding SNP in the HLA-A gene region. That is, “analyzing a SNP corresponding to the above SNP” means that even if the HLA-A gene sequence is slightly changed at a position other than the SNP due to a difference in race, the corresponding SNP in the HLA-A gene region is determined. Analysis is included.
  • the sample used for SNP analysis is not particularly limited as long as it is a sample containing chromosomal DNA, and examples thereof include body fluids such as blood and urine, cells such as oral mucosa, and hair such as hair. Although these samples can be used directly for the analysis of SNP, it is preferable to isolate chromosomal DNA from these samples by a conventional method and analyze it.
  • the analysis of SNP can be performed by a normal gene polymorphism analysis method. Examples include, but are not limited to, sequence analysis, PCR, hybridization, invader method and the like.
  • SNP analysis for example, it may be determined which base the SNP to be analyzed is, or whether the SNP to be analyzed is the same type of base as HLA-A * 31 : 01. May be determined. That is, for example, when the type of base of a certain SNP is A in HLA-A * 31 : 01, the analysis of the SNP may determine which base of the ATGC the SNP is. Whether or not the SNP is A may be determined. In the analysis of SNP, any strand of double-stranded DNA may be analyzed.
  • Sequence analysis can be performed by a normal method. Specifically, a sequence reaction is performed using a primer set at a position of several tens of bases on the 5 ′ side of a base showing polymorphism, and the type of base at the corresponding position is determined from the analysis result. can do. In addition, it is preferable to amplify the fragment containing the SNP site in advance by PCR or the like before the sequencing reaction.
  • SNP analysis can be performed by examining the presence or absence of amplification by PCR.
  • a primer having a sequence corresponding to a region containing a base showing a polymorphism and having a 3 'end corresponding to each polymorph is prepared.
  • PCR can be performed using each primer, and the type of polymorphism can be determined depending on the presence or absence of the amplification product.
  • a method in which a DNA fragment is amplified only when the SNP to be analyzed is a specific base, It may be referred to as “sequence-specific primer PCR (SSP-PCR) method”.
  • SSP-PCR sequence-specific primer PCR
  • amplification method Japanese Patent No. 3313358
  • NASBA method Nucleic Acid Sequence-Based Amplification; Patent No. 2844386
  • ICAN method Japanese Patent Laid-Open No. 2002-233379
  • a single strand amplification method may be used.
  • PCR-SSCP single-strand conformation polymorphism
  • a base showing polymorphism when included in the restriction enzyme recognition sequence, it can be analyzed by the presence or absence of cleavage by a restriction enzyme (RFLP method).
  • RFLP method restriction enzyme
  • the DNA sample is cleaved with a restriction enzyme.
  • the DNA fragments can then be separated and the type of polymorphism determined by the size of the detected DNA fragment.
  • the SNP analysis is preferably performed by a combination of the sequence-specific primer PCR method and the invader plus method.
  • the invader plus method is a technique developed by Third Wave Technologies Co., Ltd. that performs PCR and invader reaction continuously in a single container.
  • the invader method is a technique for detecting a specific SNP by using a cleavage enzyme (also referred to as cleavage enzyme) (Cleavase) and a fluorescence resonance energy transfer (FRET) cassette, and for high-throughput SNP genotyping. Widely used.
  • the invader method is preferable in that the target SNP can be recognized more specifically than the hybridization method.
  • sequence-specific primer sequence-specific forward primer and sequence-specific reverse primer
  • invader probe an allele probe
  • allele probe a fluorescently labeled FRET probe
  • Cleavase Cleavase
  • dNTP dNTP
  • Taq polymerase a sequence-specific primer PCR including the DNA to be analyzed
  • a sequence-specific primer PCR including the DNA to be analyzed is performed, followed by an invader reaction.
  • Each sequence-specific primer has a base corresponding to the SNP to be analyzed at the 3 ′ end, so that amplification of a DNA fragment occurs only when the SNP to be analyzed is a specific base in the sequence-specific primer PCR step. Designed.
  • the allele probe and the invader probe are designed to hybridize on both sides of the SNP that is the target of the invader in the amplified fragment.
  • the allele probe has a base corresponding to the SNP to be analyzed at the 5 'end of the hybridizing portion, and further has a flap sequence on the 5' side. That is, the allele probe is designed so as to include, in order from the 5 'end, a flap sequence, an SNP as an invader target, and a sequence consisting of a DNA-specific sequence to be analyzed.
  • the invader probe is designed so that the SNP site serving as an invader target is located at the 3 'end of the probe, but the type of base at the 3' end is arbitrary.
  • the base corresponding to the SNP that is the target of the invader in the allele probe hybridizes with the SNP base only when the SNP in the amplified fragment is a specific base, and further the base at the 3 ′ end (type) of the invader probe. Is arbitrarily invaded into the hybridization site, and a triple structure is formed at the SNP site. Next, Cleavase recognizes the triple structure and cleaves the allele probe between the base corresponding to SNP and the 5 ′ end of the hybridizing portion, and a flap sequence in which a SNP base is added to the 3 ′ end is obtained. Liberate.
  • the released flap sequence hybridizes with the FRET probe to form a similar triple structure, and Cleavase recognizes the triple structure and releases the fluorescent label from the FRET probe, whereby a fluorescent signal is obtained. That is, when each of the three target SNPs is a specific base, amplification of the DNA fragment and invader reaction occur, and a fluorescent signal is obtained. PCR and subsequent invader reaction can be performed according to a conventional method. Further, as Cleavase, for example, Cleavase IV VIII or Cleavase V 2.0 can be used.
  • HLA-A * 31 : 01 can be detected based on the two SNPs that are the targets of the sequence-specific primer PCR and the SNP that is the target of the invader.
  • These SNPs can be appropriately selected in consideration of various conditions such as the specificity score of each SNP, the size of the amplified fragment, and the presence or absence of mismatches around each SNP.
  • the sequence-specific primer PCR may be performed by a combination of a sequence-specific primer and a general-purpose primer not related to polymorphism determination.
  • the detection method of the present invention when all the analyzed the SNP (s) are HLA-A * 31:01 same type of base and, subject has a HLA-A * 31:01 allele Alternatively, it can be determined that the subject may have the HLA-A * 31 : 01 allele.
  • HLA-A * 31:01 In the detection method of the present invention, together with HLA-A * 31:01 allele, HLA-A * 31:01 If HLA-A alleles other than alleles is detected, the HLA-A * 31:01 alleles other than HLA Whether the subject has the HLA-A * 31 : 01 allele, or the subject has HLA-A * 31, taking into account the number of alleles A and the allele frequency in the race to which the subject belongs : The possibility of having the 01 allele can be determined.
  • HLA-A * 31:01 allele when HLA-A alleles other than HLA-A * 31:01 allele is detected, if necessary, HLA-A * 31: An operation for distinguishing the 01 allele from the HLA-A allele other than the HLA-A * 31: 01 allele may be performed.
  • HLA-A * 31 : 01 allele is known to be associated with carbamazepine (CBZ) -induced cADR (CBZ-induced cADR) (non-patented) References 2, 3). Therefore, the risk of drug eruption due to antiepileptic drugs such as CBZ can be determined based on the detection result of the HLA-A * 31 : 01 allele. That is, the present invention provides an antiepileptic drug characterized by detecting an HLA-A * 31 : 01 allele by the detection method of the present invention and examining the risk of drug eruption due to an antiepileptic drug based on the detection result.
  • the “drug eruption risk” is a risk indicating whether or not a drug eruption is caused by administration of an antiepileptic drug, and a risk indicating whether or not the degree of drug eruption is worsened by administration of an antiepileptic drug.
  • “test” means a test for predicting whether drug eruption is caused by administration of an antiepileptic drug, and predicting whether the degree of drug eruption is worsened by administration of an antiepileptic drug. Including inspection to do.
  • the determination method of the present invention when the subject has the HLA-A * 31 : 01 allele, it is determined that the risk of drug eruption due to antiepileptic drugs is high. Further, in the determination method of the present invention, when the subject does not have the HLA-A * 31 : 01 allele, it is determined that the risk of drug eruption due to an antiepileptic drug is low.
  • the drug rash is not particularly limited, and Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), drug-induced hypersensitivity syndrome (DIHS) ), Erythema multiforeme (EM), disseminated erythema papule (MPE), erythema, erythroderma, and fixed drug eruption (fixed drug eruption).
  • SJS Stevens-Johnson syndrome
  • TEN toxic epidermal necrolysis
  • DIHS drug-induced hypersensitivity syndrome
  • EM Erythema multiforeme
  • MPE disseminated erythema papule
  • erythema erythroderma
  • fixed drug eruption fixed drug eruption
  • the antiepileptic drug is not particularly limited, but is preferably an iminostilbene drug, and more preferably carbamazepine (CBZ).
  • the race to which the determination method of the present invention can be applied is not particularly limited, and examples thereof include Japanese and Caucasian.
  • one or more SNPs selected from other SNPs related to drug eruption risk due to antiepileptic drugs may be analyzed together.
  • SNPs include SNPs contained in the human sixth chromosome short arm 21.33 region (6p21.33 region) (Patent Document 2).
  • SNPs included in the 6p21.33 region include, for example, rs1633021, rs2571375, rs1116221, rs2844796, rs1736971, rs1611133, rs2074475, rs7760172, rs2517673, rs2524005, rs12665039, and rs1362088, and those SNPs in linkage disequilibrium There are certain SNPs (Patent Document 2).
  • Detection reagent of the present invention also provides detection reagents such as primers and probes for detecting the HLA-A * 31 : 01 allele.
  • the primer examples include a primer that can be used for PCR for amplifying the polymorphic site, or a primer that can be used for sequence analysis (sequencing) of the polymorphic site.
  • a primer that can amplify or sequence a region containing SNP characterizing HLA-A * 31:01 in SEQ ID NO: 1, or a nucleotide sequence in any of SEQ ID NOS: 2 to 6 examples include primers that can amplify or sequence the region containing the 61st base.
  • the length of such a primer is preferably 10 to 50 bases, more preferably 15 to 35 bases, and further preferably 20 to 35 bases.
  • the 5 ′ region of the base preferably 30 to 100 bases
  • examples include a primer having an upstream sequence and a primer having a sequence complementary to the 3 ′ region of the base, preferably a region downstream of 30 to 100 bases.
  • the analysis of the polymorphism in the amplified DNA fragment can be performed by the above-exemplified technique such as the invader method.
  • a primer used to determine a polymorphism based on the presence or absence of amplification by PCR has a sequence containing the above-mentioned base and includes a primer containing the above-mentioned base on the 3 ′ side or the above-mentioned base. Examples thereof include a primer having a sequence complementary to the sequence and containing a base complementary to the above base on the 3 ′ side.
  • the primer used in combination with the sequence-specific primer may be another sequence-specific primer or a general-purpose primer that is not involved in polymorphism determination. When a sequence-specific primer is used in combination with another sequence-specific primer, it is expected that HLA-A * 31 : 01 can be detected more correctly.
  • HLA-A * 31:01 in the nucleotide sequence shown in SEQ ID NO: 1 or its complementary sequence is characterized.
  • examples include a primer having a sequence of 10 bases or more having a single nucleotide polymorphism at the 3 ′ end and having the single nucleotide polymorphism at the 3 ′ end of the primer.
  • examples of the set of sequence-specific primers in which a DNA fragment is amplified when the HLA-A * 31 : 01 allele is present include a set including the following (A) and (B).
  • a first primer having the single nucleotide polymorphism at the 3 ′ end of the primer (B) a sequence having a length of 10 bases or more having a second single nucleotide polymorphism characterizing HLA-A * 31:01 in the base sequence shown in SEQ ID NO: 1 or its complementary sequence at the 3 ′ end, and
  • the phrase “having the single nucleotide polymorphism at the 3 ′ end of the primer” means that the SNP site characterizing the HLA-A * 31:01 in the sequence having a length of 10 bases or more is the 3 ′ end of the primer. Means it is located in
  • the “length of 10 bases or more” may be, for example, a length of 10 bases or more, a length of 15 bases or more, or a length of 20 bases or more.
  • the “length of 10 bases or more” may be, for example, 50 bases or less, or 35 bases or less.
  • Each sequence-specific primer may have an arbitrary base sequence on the 5 'side.
  • 15 bases on the 3 ′ side of the primer are bases of SEQ ID NO: 1. This means that the sequence consists of a 15-base sequence having the first SNP at the 3 ′ end in the sequence or its complementary sequence, and the remaining portion, that is, 5 bases on the 5 ′ side may be any sequence.
  • the SNPs that characterize the first and second HLA-A * 31:01 are appropriately selected in consideration of various conditions such as the specificity score of each SNP, the size of the amplified fragment, and the presence or absence of mismatches around each SNP. can do.
  • the first single nucleotide polymorphism may be rs41541222 or rs1059457
  • the second single nucleotide polymorphism may be rs41562315.
  • sequence-specific primers corresponding to rs41541222, rs1059457, and rs41562315 specifically, for example, primer F1 (CCGTGGATAGAGCAGGAGAGGCCT; SEQ ID NO: 7), primer F2 (GAGAGGCCTGAGTATTGGGACCAGGAG; SEQ ID NO: 8), primer R (TGACCTGCGCCCCGGGCT; SEQ ID NO: 9) ).
  • the sequence-specific primer may be, for example, a primer having a base sequence consisting of 10 bases or more on the 3 ′ side of these primers, and a base with an arbitrary base sequence added to the 5 ′ end of the base sequence. It may be a primer having a sequence.
  • each sequence-specific primer has an allele other than HLA-A * 31 : 01 by changing the base at the 3 ′ end to a base corresponding to an allele other than HLA-A * 31 : 01 It is possible to design sequence-specific primers that amplify DNA fragments.
  • the probe examples include a probe that includes the polymorphic site and can determine the type of base at the polymorphic site depending on the presence or absence of hybridization. Specifically, a sequence containing a SNP characterizing HLA-A * 31:01 in SEQ ID NO: 1, or a probe having a length of 10 bases or more having a complementary sequence thereof, or a base in any of SEQ ID NOs: 2 to 6 Examples include a probe having a length of 10 bases or more having a sequence containing the 61st base of the sequence or a complementary sequence thereof. The length of the probe is preferably 15 to 35 bases, more preferably 20 to 35 bases.
  • examples of the probe set used in the invader method include a set including an invader probe and an allele probe that target the invader with a single nucleotide polymorphism characterizing HLA-A * 31 : 01.
  • Such a probe can be designed using software such as Universal Invader Design Software.
  • the invader / allele probe can be designed such that the invader reaction proceeds when HLA-A * 31 : 01 is present.
  • Examples of such an invader / allele probe set include the following sets (C) and (D).
  • C a sequence having a length of 10 bases or more having a single nucleotide polymorphism characterizing HLA-A * 31:01 in the nucleotide sequence shown in SEQ ID NO: 1 or its complementary sequence at the 3 ′ end,
  • An invader probe having a type at the 3 ′ end of the probe and the base of the single nucleotide polymorphism is a base selected from A, T, G, and C;
  • D From the 5 ′ to 3 ′ direction, a flap sequence and a single nucleotide polymorphism characterizing HLA-A * 31:01 in the nucleotide sequence shown in SEQ ID NO: 1 or its complementary sequence at the 5 ′ end
  • An allele probe comprising a sequence having a length of at least a base, which is designed so that an invader reaction proceeds when HLA-A * 31 : 01 is present in a pair with the
  • the SNP site characterizing the above HLA-A * 31:01 in the length sequence is located at the 3 ′ end of the probe, which means that the type of the base may be arbitrary.
  • the “length of 10 bases or more” may be, for example, a length of 10 bases or more, a length of 15 bases or more, or a length of 20 bases or more.
  • the “length of 10 bases or more” may be, for example, 50 bases or less, or 35 bases or less.
  • the invader probe may have an arbitrary base sequence on the 5 'side.
  • the allele probe may have an arbitrary base sequence on the 5 'side and / or 3' side.
  • 15 bases on the 3 ′ side of the probe are the base sequences of SEQ ID NO: 1 or its complementary sequence. It consists of a 15-base sequence having 1 SNP at the 3 ′ end, and the remaining part, that is, 5′-side 5 bases, may be an arbitrary sequence.
  • the SNP that is the target of the invader can be appropriately selected in consideration of various conditions such as the SNP specificity score and the presence or absence of mismatches around the SNP.
  • the SNP that is the target of the invader may be rs1059457 or rs1059471.
  • Specific examples of the invader probe and allele probe that target rs1059457 as an invader include invader probe 1 (CCTGAGTATTGGGACCAGGAT; SEQ ID NO: 10) and allele probe 1 (FAM) (ATGACGTGGCAGACGACACGGAATGTGAAGG; SEQ ID NO: 11).
  • the allele probe may be, for example, a probe having a flap sequence in these allele probe base sequences followed by a base sequence of 10 bases or more, and arbitrary at the 5 ′ end and / or 3 ′ end of the base sequence.
  • a probe having a base sequence to which is added may be used.
  • the 14 bases on the 5 'side of the allele probe 1 (FAM) and allele probe 2 (FAM) are flap sequences for FAM. Therefore, when using a label other than FAM for the invader method, the flap arrangement can be changed to one corresponding to a label other than FAM.
  • the detection reagent of the present invention may include a sequence-specific primer set and a probe set used for the invader method.
  • the single nucleotide polymorphism that is the target of the invader is derived from the single nucleotide polymorphism existing between the first single nucleotide polymorphism and the second single nucleotide polymorphism. Just choose.
  • the detection reagent of the present invention includes those selected from polymerases and buffers for PCR, reagents for hybridization, FRET probes for invader reaction, Cleavase, and the like. There may be.
  • HLA-A * 31 : 01 : 02 and “HLA-A * 31 : 01” are the same.
  • the HLA-A * 31 : 01 allele was detected by combining the sequence-specific primer PCR and the Invader Plus method.
  • Genomic DNA samples include three groups of HapMap samples: 90 Japanese and Han ethnic samples (JCH) that are not related to each other; 90 North American and Western European Utah states Resident sample (CEU); 90 Nigerian Ibadan Yoruba samples (YRI) were used. All HapMap samples were purchased from Coriell Institute for Genomic Research. HLA-A genotype data of HapMap samples were obtained from Non-Patent Document 7 (Erlich RL. Et al. BMC Genomics. 2011; 12: 42.). 13 of the JCH samples (14.4%) and 4 of the CEU samples (4.4%) have the HLA-A * 31 : 01 allele, and all YRI samples have HLA-A * 31 : 01 Did not have an allele.
  • JCH Japanese and Han ethnic samples
  • CEU North American and Western European Utah states Resident sample
  • YRI 90 Nigerian Ibadan Yoruba samples
  • Primer and probe design was carried out according to the following procedure with reference to a previous report (Hosono N. et al. Pharmacogenet Genomics. 2010; 20: 630-633.).
  • probe sequence design Universal Invader Design Software was used. Information on the HLA-A allele was obtained from the IMGT / HLA Database (http://www.ebi.ac.uk/imgt/hla/).
  • HLA-A * 31:01 alleles characterize SNPs: we searched for (HLA-A * 31 01- discriminating SNPs). As a result, several SNPs were found in exon 2 that could distinguish the HLA-A * 31 : 01 allele from other HLA-A alleles.
  • the alignment and SNPs of the 42 HLA-A alleles are shown in FIG.
  • rs41541222 at base position 372 was identified as the most discriminative SNP.
  • the “base position” refers to the HLA-A gene translation start point (ie, A of the start codon ATG) as base number 1, and thereafter counted in the 3 ′ direction of the gene in order.
  • the second most distinct SNP was rs1059471 at base position 419, and the third most distinct SNP was rs1059449 at base position 367.
  • rs1059457 at base position 390 was selected as an invader target site in consideration of the number of base mismatches around the invader target site.
  • Invader probe 1 and allele probe 1 (FAM) using rs1059457 as the target site of the invader were designed using Universal Invader Design Software.
  • a primer / probes-set consisting of forward primer F1, reverse primer R, invader probe 1, and allele probe 1 (FAM) is referred to as set 1.
  • a second primer / probe set (hereinafter referred to as set 2) was designed to reinforce the results of HLA typing with set 1.
  • the reverse primer R was common to set 1 and set 2.
  • the forward primer F2 of set 2 was designed to have a base at the 3 'end corresponding to rs1059457, which is the target site of the invader of set 1.
  • rs1059471 which is the second most distinct SNP was selected as an invader target site, and invader probe 2 and allele probe 2 (FAM) were designed.
  • HLA-A * 31:11 other than HLA-A * 31:01 Is considered to be detected.
  • the allele frequency of HLA-A * 31:11 in Japanese population is extremely rare and 0.002%, allele frequency of HLA-A * 31:01 8.65% (ie HLA-A * 31: Therefore, each designed primer / probe set was judged to be selective for HLA-A * 31 : 01.
  • the Invader Plus assay was performed in 96 well plates using ABI 7500 Fast real-time PCR system (Applied Biosystems, Foster City, CA).
  • the reaction mixture is 1 x Signal Buffer, 1 x FRET Mix (FRET22 / FRET7), Cleavase VIII 60 ng (all of these are manufactured by Third Wave Technologies), 10 ⁇ M ROX (Sigma, MO, USA), 900 nM forward and reverse primers, 400 nM invader probe, 800 nM allele probe, 0.25 U Ex Taq HS DNA polymerase (Takara, Shiga, Japan), 400 ⁇ M dNTP mixture (Takara, Shiga, Japan), and It consists of 5 ng genomic DNA.
  • PCR was started at 95 ° C. for 20 seconds and performed at 35 cycles ⁇ (98 ° C. for 3 seconds and 68 ° C. for 30 seconds). After PCR, an invader reaction was performed at 99 ° C. for 30 seconds and 63 ° C. for 10 minutes. The total reaction time was about 45 minutes. During the invader reaction, the fluorescence signal was measured every 30 seconds. Furthermore, the PCR product after the Invader Plus assay was electrophoresed using a 2% agarose gel to evaluate the efficiency and specificity of each primer set.
  • HLA-A * 31:01 in addition to HLA-A * 31:01 among the known 1729 HLA-A alleles when using either set 1 or set 2.
  • the A allele may be detected.
  • 45 types of HLA-A alleles are considered to have no allele frequency according to the Allele frequency net registration information and do not affect the detection of HLA-A * 31 : 01.
  • the remaining seven species are distributed in various races with a relatively low frequency (0.006% to 5.5%) (Table 2).
  • the Caucasian population has an HLA-A * 3102 allele with a frequency of 1% or more.
  • HLA-A * 3102 may be detected with a frequency of 1% or more in addition to HLA-A * 31 : 01.
  • another primer / probe set targeting SNP that can distinguish HLA-A * 31:01 and HLA-A * 3102 is designed, and primer of set 1 or set 2 is used. / What is necessary is just to use together with a probe set. Since both set 1 and set 2 detect the HLA-A * 31 : 01 signal using only the FAM channel, analysis can be performed simultaneously by using the VIC fluorescence channel with other primer / probe sets.
  • An example of a SNP that can distinguish HLA-A * 31:01 and HLA-A * 3102 is rs1059460.
  • HLA-A * 31 : 11 that is rarely present in the Japanese population cannot be distinguished from HLA-A * 31 : 01.
  • the relationship between HLA-A * 31 : 11 and drug eruption risk is unknown, but as described above, HLA-A * 31 : 11 can be converted to HLA-A * 31 : 01 by using another primer / probe set together. Can be distinguished.
  • SNPs that can distinguish HLA-A * 31:01 and HLA-A * 31:11 include the SNP at base position 936 (without rs number) in exon 3.
  • HLA class I alleles are known to have high homology with each other, the possibility of amplification from other HLA regions on the genome was examined by the following procedure.
  • UCSC Blat Search http://genome.ucsc.edu/index.html
  • relatively high homology with the region amplified by the primer set of set 1 or set 2 up to 87.6% Regions with were found in the HLA-L, HLA-B, and HLA-C regions. Therefore, whether or not these regions were amplified with the set 1 or set 2 primer set was examined using dbMHC Sequence Alignment Viewer based on the registration data of IMGT / HLA Database version 3.6.0.
  • HLA-B * 40: 22N and HLA-B * 40: 134) in 2329 HLA-B alleles could be amplified, but 1291 HLA-C alleles. And none of the alleles that could be amplified in the five HLA-L alleles.
  • the above two HLA-B alleles are identical to HLA-A * 31:01 in the base of the target site of the invader, so the primer / probe set of set 1 or set 2 cannot be distinguished from HLA-A * 31:01. According to the registered information of Allele frequency net, the allele frequency of these two HLA-B alleles is zero, so the possibility of amplification of other HLA regions on the genome with the primer / probe set of set 1 or set 2 It is considered low.
  • the HLA-A * 31:01 allele can be detected.
  • the HLA-A * 31 : 01 allele can be detected simply, rapidly, and accurately by measuring a specific SNP (s).
  • the HLA-A * 31 : 01 allele can be detected simply, rapidly and accurately by combining the PCR method and the invader method. Further, it can be predicted by using the detection results of HLA-A * 31:01 allele, a drug eruption risks of antiepileptic drugs associated with HLA-A * 31:01 allele. Therefore, the present invention is effective in determining whether or not an antiepileptic drug can be administered, and contributes to drug treatment with an antiepileptic drug.

Abstract

HLA-A31:01アレルを検出する方法を提供する。HLA-A31:01を特徴づける1またはそれ以上の一塩基多型を分析し、該分析結果に基づいてHLA-A31:01の存在の有無を判定する。

Description

HLA-A*31:01アレルの検出方法
 本発明はHLA-A31:01アレルの検出方法、当該検出方法による検出結果を利用した抗てんかん薬による薬疹リスクの判定方法、および当該検出方法に用いられる試薬に関する。
 薬疹は、薬物による皮膚障害(cutaneous adverse drug reactions;cADRs)の代表的なものであり、薬物によって引き起こされる皮膚や粘膜の急性炎症反応として特徴付けられる。薬疹は、用量非依存性、予測不可能であり、且つ、しばしば命に関わる。薬疹は症状の軽微なものから重篤なものまで多岐にわたるが、重篤なものとしては、3大重症薬疹として知られるスティーブンス・ジョンソン症候群(Stevens-Johnson syndrome;SJS)、中毒性表皮壊死症(toxic epidermal necrolysis;TEN)、および薬剤性過敏症症候群(Drug-induced hypersensitivity syndrome;DIHS)が挙げられる。
 ほぼ全ての薬物は薬疹を誘発するリスクを有することが報告されているが、中でも、抗てんかん薬であるカルバマゼピン(carbamazepine;CBZ)はSJS、TEN、およびDIHSを含む種々の薬疹を誘発しうることが知られている。
 これまでの研究により、T細胞性アレルギー反応が薬疹の発症に関与していると考えられているが、詳細な発症機序は明らかとなっていない。また、ヒトヘルペスウイルス6型(HHV-6)の再活性化が発熱や肝炎等のDIHSの諸症状に関与することが示唆されているが、その発症機序は明らかとなっていない。
 CBZに関しては、台湾人被検者を用いた研究により、ヒト白血球抗原(human leukocyte antigen;HLA)-B1502アレルがCBZにより誘発されるSJSやTENと極めて強く関連していることが証明されている(非特許文献1)。しかしながら、HLA遺伝子座のアレル頻度は人種によって顕著に異なり、例えば、HLA-B1502アレルは東南アジア人では8.6%の頻度で存在するが(非特許文献1)、日本人や白人では0.1%の頻度でしか存在しない(http://www.allelefrequencies.net)。したがって、日本人や白人では、HLA-B1502アレルはCBZにより誘発されるSJSやTENの予測に有用な遺伝的因子とは言えない。
 近年、日本人被検者において、HLA-A31:01アレルとCBZにより誘発されるcADR(CBZ-induced cADR)との関連が見出された。すなわち、CBZにより誘発されるcADR患者の60.7%がHLA-A31:01アレルを有していたのに対し、CBZ耐性被検者では12.5%のみがHLA-A31:01アレルを有していた(オッズ比=10.8、P=3.64×10-15)(非特許文献2)。また、ヨーロッパ人集団においても、HLA-A31:01アレルとCBZにより誘発されるcADRとの関連が報告されている(非特許文献3)。したがって、HLA-A31:01アレルを有する被検者を同定するための遺伝薬理学的試験は、日本人およびヨーロッパ人の両集団において、CBZにより誘発されるcADRの発生率を低減するのに有用である。
 HLAの遺伝型を同定する方法はいくつか報告されているが(非特許文献4~6)、それらの方法は多くの手間と時間を要するという点で改善の余地があった。また、近年、次世代シーケンサーを利用したHLAの遺伝型の同定が行われているが(非特許文献7~9)、反応時間が長くコストがかかるという点で改善の余地がある。
 また、PCR法とインベーダー法とを組み合わせることによりHLA-A31:01アレルを検出することは知られていない。
Chung WH. et al. Nature. 2004 Apr 1;428(6982):486. Ozeki T. et al. Hum Mol Genet. 2011;20:1034-1041. McCormack M. et al. N Engl J Med. 2011;3641:1134-1143. Adams SD. et al. Tumori. 2001;87:S40-43. Itoh Y. et al. Hum Immunol. 2006;67:374-385. Faner R. et al. Hum Immunol. 2006;67:374-385. Erlich RL. et al. BMC Genomics. 2011;12:42. Lind C. et al. Hum Immunol. 2010;71:1033-1042. Gabriel C. et al. Hum Immunol. 2009;70:960-964.
 本発明は、HLA-A31:01アレルを検出する方法を提供することを課題とする。
 本発明者らは上記課題の解決のために鋭意検討した結果、HLA-A31:01アレルを簡便、迅速、且つ正確に検出できる一塩基多型を見出した。また、本発明者らは、PCR法とインベーダー法とを組み合わせることによりHLA-A31:01アレルを簡便、迅速、且つ正確に検出できることを見出した。これらの知見に基づき、本発明者らは本発明を完成させた。
 すなわち、本発明は以下の通りである。
[1]
 HLA-A31:01を特徴づける1またはそれ以上の一塩基多型を分析し、該分析結果に基づいてHLA-A31:01の存在の有無を判定することを特徴とする、HLA-A31:01の検出方法。
[2]
 配列特異的プライマーPCR法とインベーダープラス法の組み合わせにより一塩基多型が分析される、前記方法。
[3]
 少なくともrs1059449、rs41541222、rs1059471、rs1059457、およびrs41562315から選択される1またはそれ以上の一塩基多型が分析される、前記方法。
[4]
 少なくともrs41562315が分析される、前記方法。
[5]
 前記方法によりHLA-A31:01を検出し、該検出結果に基づいて抗てんかん薬による薬疹リスクを検査することを特徴とする、抗てんかん薬による薬疹リスクの判定方法。
[6]
 前記抗てんかん薬がカルバマゼピンである、前記方法。
[7]
 下記(A)および(B)を含む配列特異的プライマーセット:
(A)配列番号1に示す塩基配列またはその相補配列におけるHLA-A31:01を特徴づける第1の一塩基多型を3’末端に有する10塩基以上の長さの配列を含み、且つ、該一塩基多型をプライマーの3’末端に有する第1のプライマー;
(B)配列番号1に示す塩基配列またはその相補配列におけるHLA-A31:01を特徴づける第2の一塩基多型を3’末端に有する10塩基以上の長さの配列を含み、且つ、該一塩基多型をプライマーの3’末端に有する第2のプライマーであって、前記第1のプライマーと対になってHLA-A31:01の前記第1の一塩基多型から前記第2の一塩基多型までを含む領域を増幅するように設計された、プライマー。
[8]
 前記第1の一塩基多型がrs41541222またはrs1059457であり、前記第2の一塩基多型がrs41562315である、前記プライマーセット。
[9]
 HLA-A31:01を特徴づける一塩基多型をインベーダーのターゲットとするインベーダープローブおよびアレルプローブを含むプローブセット。
[10]
 前記一塩基多型がrs1059471またはrs1059457である、前記プローブセット。
[11]
 前記プライマーセットおよび前記プローブセットを含む、HLA-A31:01の検出用試薬であって、
 前記インベーダーのターゲットである一塩基多型は、前記第1の一塩基多型と前記第2の一塩基多型の間に存在する一塩基多型である、試薬。
特異性スコアの算出結果を示す図。 日本人集団においてアレル頻度>0.001%で存在する42種のHLA-Aアレルのアラインメントを示す図。イントロン2領域の「*」は、配列が未決定であることを示す。「-」は、塩基の種類がHLA-A31:01と同一であることを示す。 セット1およびセット2のプライマーおよびプローブの位置を示す図。 JCHサンプル(n=90)のHLA-A31:01アッセイの結果を示す図および写真。 CEUサンプル(n=90)およびYRIサンプル(n=90)のHLA-A31:01アッセイの結果を示す図。
<1>HLA-A31:01の検出方法
 本発明の検出方法は、HLA-A31:01を特徴づける1またはそれ以上の一塩基多型(SNP)を分析し、該分析結果に基づいてHLA-A31:01の存在の有無を判定することを特徴とする、HLA-A31:01の検出方法である。上記「1またはそれ以上」とは、1であってもよく、2であってもよく、3であってもよく、それ以上であってもよい。本発明において、「HLA-A31:01の存在の有無の判定」には、被検者がHLA-A31:01アレルを有するかどうかの判定、および被検者がHLA-A31:01アレルを有する可能性が高いか低いかの判定が含まれる。すなわち、本発明の検出方法においては、例えば、被検者がHLA-A31:01アレルを有するかどうかが判定されてよい。また、本発明の検出方法においては、例えば、被検者がHLA-A31:01を有する可能性の高低が判定されてよい。なお、本発明において、SNPの「分析」とSNPの「解析」は同義である。
 HLA-A遺伝子は、HLAクラスI分子の重鎖をコードする遺伝子である。HLA-A遺伝子として、具体的には、GenBank Accession No. NC_000006.11の29910309~29913661の領域が挙げられる。HLA-A遺伝子のアレルとしては1729種がIMGT/HLA Databaseに登録されており(2011年10月13日付;バージョン3.6.0)、HLA-A31:01アレルはその1つである。HLA-A31:01アレルの塩基配列を配列番号1に示す。
 分析されるSNPは、HLA-A31:01を特徴づけるSNP(HLA-A*31:01-discriminating SNP)であれば特に制限されない。「HLA-A31:01を特徴づけるSNP」とは、HLA-A31:01と、他のHLA-Aアレルから選択される1またはそれ以上のアレルとを区別できるSNPをいう。
 以下、HLA-A31:01を特徴づける程度を「特異性スコア(Specificity score)」という概念を導入して説明する。「特異性スコア」とは、既知の1729種のHLA-Aアレルについて、HLA-A31:01と他のHLA-Aアレルとの差異を、翻訳開始点から始めて1塩基毎に得点化したものである。具体的には、まずレファレンスとなるHLA-A31:01の翻訳開始点の塩基を、他のHLA-Aアレルの相当する塩基と各々比較して、塩基が違えば+1を加算する。翻訳開始点の塩基、すなわち開始コドンATGのAはいずれのHLA-Aアレルでも共通であるため翻訳開始点における特異性スコアはゼロである。この操作を順次1塩基ごとに全長3216bp(アレルごとに多少の差がある)の塩基に渡って繰り返していくと、HLA-A31:01の塩基位置をパラメータとした特異性スコアが算出される。定義上、特異性スコアが高い程、その塩基位置がHLA-A31:01に特異的である、すなわち、HLA-A31:01と他の多くのHLA-Aアレルとを区別できることを示す。また、言い換えれば、ある塩基位置の特異性スコアがXである場合、その塩基位置のSNPは、HLA-A31:01と、他のHLA-Aアレルの内、X種のアレルとを区別できるSNPである。
 HLA-A遺伝子領域における特異性スコアの分布を図1に示す。特に、HLA-A遺伝子のエクソン2の後半には特異性スコアの高いSNPsが存在する。例えば、エクソン2に存在するrs1059449、rs41541222、およびrs1059471は特異性スコアが1500以上であり、エクソン2に存在するrs1136659およびrs80321556は特異性スコアが1000以上である。これらのSNPsはいずれもHLA-A31:01の検出に特に好ましく用いることができる。ここで、rs番号はNational Center for Biotechnology InformationのdbSNPデータベース(http//www.ncbi.nlm.nih.gov/projects/SNP/)の登録番号を示す。なお、SNPsの中には単一のSNPに複数のrs番号が割り当てられているものも存在する。本発明においてrs番号で特定されるSNPは、当該rs番号が割り当てられている限り、当該rs番号のみが割り当てられているものであってもよく、当該rs番号以外のrs番号が同時に割り当てられているものであってもよい。
 また、「HLA-A31:01を特徴づけるSNP」は、被検者が属する人種における各HLA-Aアレルのアレル頻度を考慮して選択するのが好ましい。すなわち、「HLA-A31:01を特徴づけるSNP」は、HLA-A31:01と、被検者が属する人種においてアレル頻度が高い他のHLA-Aアレルとを区別できるSNPであるのが好ましい。例えば、「HLA-A31:01を特徴づけるSNP」は、HLA-A31:01と、被検者が属する人種においてアレル頻度>0.001%で存在するHLA-A31:01以外のHLA-Aアレルとを区別できるSNPであるのが好ましい。
 例えば、既知の1729種のHLA-Aアレルの内、日本人集団においてアレル頻度>0.001%で存在するものとしては、HLA-A31:01アレルを含む全部で42種が中央骨髄センターより報告されている(後述する図2に記載の42種)。よって、日本人被検者のHLA-A31:01を検出する場合、「HLA-A31:01を特徴づけるSNP」は、少なくとも、HLA-A31:01と、それ以外の41種のHLA-Aアレルから選択される1またはそれ以上のアレルとを区別できるSNPであるのが好ましい。例えば、上記例示したrs1059449、rs41541222、rs1059471は、特に制限されないが、日本人被検者におけるHLA-A31:01の検出に好ましく用いることができる。
 本発明において、「HLA-A*31:01を特徴づけるSNP」としては、特異性スコアが高いSNPが好ましい。特異性スコアが高いSNPとしては、例えば、特異性スコアで降順に並べた際の上位10のSNPsから選択されるものが好ましく、上位5のSNPsから選択されるものがより好ましい。特異性スコアが高いSNPとして、具体的には、例えば、rs41541222、rs1059449、rs1059471、rs1136659、rs1059506、rs1059536、rs1059517、rs80321556、rs9260156、rs1059509が挙げられる。本発明においては、少なくとも1つの特異性スコアが高いSNPが分析されるのが好ましく、少なくとも2つの特異性スコアが高いSNPが分析されるのがより好ましい。特異性スコアは、例えば、全HLA-Aアレルについて算出されたものであってもよく、被検者が属する人種においてアレル頻度>0.001%で存在するHLA-Aアレルについて算出されたものであってもよい。
 また、本発明において、「HLA-A*31:01を特徴づけるSNP」は、既知のHLA-A遺伝子の配列情報に基づき、上述の特異性スコア、およびHLA-A*31:01と他の各HLA-Aアレルとの塩基配列の相同性を考慮して選択することができる。例えば、「HLA-A*31:01を特徴づけるSNP」は、特異性スコアが高く、且つ、HLA-A*31:01との相同性及び被検者の属する集団におけるアレル頻度がいずれも高いHLA-AアレルがHLA-A*31:01とともに検出されないようなSNPであるのが好ましい。
 また、「HLA-A*31:01を特徴づけるSNP」を配列特異的プライマーPCRにより解析する場合、当該SNPとしては、PCRによる増幅産物のサイズがおよそ200bp以下、具体的には、例えば120~160bp程度となるものが好ましい。
 また、「HLA-A31:01を特徴づけるSNP」としては、上記のSNPと連鎖不平衡にあるSNPが挙げられる。ここで「上記のSNPと連鎖不平衡にあるSNP」とは、上記のSNPとr>0.5、好ましくはr>0.8、さらに好ましくはr>0.9、特に好ましくはr=1の関係を満たすSNPをいう。上記のSNPと連鎖不平衡にあるSNPは、例えば、HapMapデータベース(http://www.hapmap.org/index.html.ja)等を用いて同定することができる。また、上記のSNPと連鎖不平衡にあるSNPは、例えば、複数人(通常は20~40人程度)から採取したDNAをシークエンサーにて配列解析し、連鎖不平衡にあるSNPを探索することにより同定することもできる。例えば、rs1059471と連鎖不平衡にあるSNPとしてはrs41562315が挙げられる。
 本発明においては、例えば、少なくともrs1059449、rs41541222、rs1059471、rs1059457、およびrs41562315から選択される1またはそれ以上のSNPが分析されてよい。これら5つのSNPsについて、SNP塩基及びその前後60bpの領域を含む合計121bpの長さの配列を、それぞれ配列番号2~6に示した。61番目の塩基が多型を有する。
 また、本発明においては、例えば、少なくともrs41562315が分析されてよい。また、本発明においては、例えば、少なくともrs41562315、rs41541222、およびrs1059457が分析されてもよく、少なくともrs41562315、rs1059457、およびrs1059471が分析されてもよい。
 本発明において、上記SNPを解析することには、上記SNPに相当するSNPを解析することが含まれる。「上記SNPに相当するSNP」とは、HLA-A遺伝子領域における該当SNPを意味する。すなわち、「上記SNPに相当するSNPを解析する」ことには、仮に人種の違いなどによってHLA-A遺伝子配列がSNP以外の位置で若干変化したとしても、HLA-A遺伝子領域における該当SNPを解析することが含まれる。
 SNPの解析に用いる試料としては、染色体DNAを含む試料であれば特に制限されないが、例えば、血液や尿等の体液、口腔粘膜等の細胞、毛髪等の体毛が挙げられる。SNPの解析にはこれらの試料を直接使用することもできるが、これらの試料から染色体DNAを常法により単離し、これを用いて解析することが好ましい。
 SNPの解析は、通常の遺伝子多型解析方法によって行うことができる。例えば、シークエンス解析、PCR、ハイブリダイゼーション、インベーダー法などが挙げられるが、これらに限定されない。SNPの解析においては、例えば、解析対象のSNPがいずれの塩基であるかを決定してもよいし、解析対象のSNPがHLA-A31:01と同一の種類の塩基であるか否かを決定してもよい。すなわち、例えば、あるSNPの塩基の種類がHLA-A31:01においてAである場合に、当該SNPの解析においては、当該SNPがATGCのいずれの塩基であるかを決定してもよいし、当該SNPがAであるか否かを決定してもよい。また、SNPの解析においては、二本鎖DNAのいずれの鎖を分析してもよい。
 シークエンス解析は通常の方法により行うことができる。具体的には、多型を示す塩基の5’側 数十塩基の位置に設定したプライマーを使用してシークエンス反応を行い、その解析結果から、該当する位置がどの種類の塩基であるかを決定することができる。なお、シークエンス反応の前に、あらかじめSNP部位を含む断片をPCRなどによって増幅しておくことが好ましい。
 また、SNPの解析は、PCRによる増幅の有無を調べることによって行うことができる。例えば、多型を示す塩基を含む領域に対応する配列を有し、かつ、3’末端が各多型に対応するプライマーをそれぞれ用意する。それぞれのプライマーを使用してPCRを行い、増幅産物の有無によってどのタイプの多型であるかを決定することができる。本発明において、このような、解析対象のSNPに対応する塩基を3’末端に有するプライマーを用いて、解析対象のSNPが特定の塩基である場合にのみDNA断片が増幅される手法を、「配列特異的プライマーPCR(sequence-specific primer PCR;SSP-PCR)法」という場合がある。また、LAMP法(特許第3313358号明細書)、NASBA法(Nucleic Acid Sequence-Based Amplification;特許2843586号明細書)、ICAN法(特開2002-233379号公報)などによって増幅の有無を調べることもできる。その他、単鎖増幅法を用いてもよい。
 また、SNP部位を含むDNA断片を増幅し、増幅産物の電気泳動における移動度の違いによってどのタイプの多型であるかを決定することもできる。このような方法としては、例えば、PCR-SSCP(single-strand conformation polymorphism)法(Genomics. 1992 Jan 1; 12(1): 139-146.)が挙げられる。具体的には、まず、目的のSNPを含むDNAを増幅し、増幅したDNAを一本鎖DNAに解離させる。次いで、解離させた一本鎖DNAを非変性ゲル上で分離し、分離した一本鎖DNAのゲル上での移動度の違いによってどのタイプの多型であるかを決定することができる。
 さらに、多型を示す塩基が制限酵素認識配列に含まれる場合は、制限酵素による切断の有無によって解析することもできる(RFLP法)。この場合、まず、DNA試料を制限酵素により切断する。次いで、DNA断片を分離し、検出されたDNA断片の大きさによってどのタイプの多型であるかを決定することができる。
 また、ハイブリダイゼーションの有無を調べることによって多型の種類を解析することも可能である。すなわち、各塩基に対応するプローブを用意し、いずれのプローブにハイブリダイズするかを調べることによってSNPがいずれの塩基であるかを調べることもできる。
 また、本発明において、SNPの解析は、配列特異的プライマーPCR法とインベーダープラス法とを組み合わせて行うのが好ましい。インベーダープラス法は、Third Wave Technologies社が開発した、PCRとインベーダー反応を単一の容器内で連続的に行う手法である。インベーダー法は、開裂酵素(cleavage enzyme(Cleavaseともいう))と蛍光共鳴エネルギー移動(fluorescence resonance energy transfer;FRET)カセットを利用して特定のSNPを検出する手法であり、ハイスループットなSNPジェノタイピングに広く用いられている。インベーダー法は、ハイブリダイゼーション法と比較してより特異的にターゲットのSNPを認識できる点で好ましい。
 この方法では、例えば、反応液中に、配列特異的プライマー(配列特異的フォワードプライマー及び配列特異的リバースプライマー)、インベーダープローブ、アレルプローブ、蛍光ラベルされたFRETプローブ、Cleavase、dNTP、Taqポリメラーゼ、および解析対象のDNAを含めて配列特異的プライマーPCRを行い、続けて、インベーダー反応を行う。各配列特異的プライマーは解析対象のSNPに対応する塩基を3’末端に有し、配列特異的プライマーPCR工程において解析対象のSNPが特定の塩基である場合にのみDNA断片の増幅が起こるように設計される。アレルプローブおよびインベーダープローブは、増幅断片中のインベーダーのターゲットとなるSNPの両側にそれぞれハイブリダイズするように設計される。アレルプローブは、前記ハイブリダイズする部分の5’側末端に解析対象のSNPに対応する塩基を有し、そのさらに5’側にフラップ配列を有する。つまり、アレルプローブは、5’末端から順に、フラップ配列、インベーダーのターゲットとなるSNP、解析対象のDNA特異的配列からなる配列を含むように設計される。インベーダープローブは、インベーダーのターゲットとなるSNP部位がプローブの3’末端に位置するように設計されるが、当該3’末端の塩基の種類は任意である。アレルプローブ中のインベーダーのターゲットとなるSNPに対応する塩基は、増幅断片中の当該SNPが特定の塩基である場合にのみ当該SNP塩基とハイブリダイズし、さらにインベーダープローブの3’末端の塩基(種類は任意)が当該ハイブリダイズ箇所に侵入することで、当該SNP部位において三重構造が形成される。次に、Cleavaseが三重構造を認識してアレルプローブをSNPに相当する塩基と前記ハイブリダイズする部分の5’側末端の間で切断し、3’側末端にSNP塩基が付加されたフラップ配列が遊離する。遊離したフラップ配列はFRETプローブとハイブリダイズして同様の三重構造を形成し、Cleavaseが三重構造を認識してFRETプローブから蛍光ラベルを遊離させることで、蛍光シグナルが得られる。すなわち、ターゲットとなる3つのSNPsがそれぞれ特定の塩基である場合に、DNA断片の増幅とインベーダー反応が起こり、蛍光シグナルが得られる。PCRおよびそれに続くインベーダー反応は、常法に従って行うことができる。また、Cleavaseとしては、例えば、Cleavase VIIIやCleavase 2.0を用いることができる。
 この方法では、例えば、配列特異的プライマーPCRのターゲットとなる2つのSNPsおよびインベーダーのターゲットとなるSNPに基づいてHLA-A31:01を検出することができる。これらのSNPは、例えば、各SNPの特異性スコア、増幅断片のサイズ、各SNP周辺のミスマッチの有無等の諸条件を考慮して適宜選択することができる。
 また、上記ではターゲットとなる3つのSNPsに基づいてHLA-A31:01を検出する場合を例示したが、所望の検出精度を実現できる限り、ターゲットとなるSNPsの個数を増減してもよい。例えば、所望の検出精度を実現できる限り、配列特異的プライマーPCRは配列特異的プライマーと、多型の判定に関わらない汎用プライマーとの組み合わせで行ってもよい。
 なお、インベーダー反応においては、複数種のFRETプローブと、それに対応するフラップ配列を有するアレルプローブを利用することで、あるSNP部位における複数種類の塩基を同時に検出し分けることや、複数のSNPs部位の塩基がそれぞれ特定の塩基であるか否かを同時に検出することもできる。
 このようにして解析対象のSNPがいずれの塩基であるか、または解析対象のSNPがHLA-A31:01と同一の種類の塩基であるか否かを決定することで、被検者がHLA-A31:01アレルを有するか否か、あるいは、被検者がHLA-A31:01アレルを有する可能性の高低を決定できる。
 本発明の検出方法においては、解析対象のSNP(s)の全てがHLA-A31:01と同一の種類の塩基である場合に、被検者がHLA-A31:01アレルを有する、あるいは、被検者がHLA-A31:01アレルを有する可能性があると決定できる。本発明の検出方法において、HLA-A31:01アレルと共に、HLA-A31:01アレル以外のHLA-Aアレルが検出される場合は、当該HLA-A31:01アレル以外のHLA-Aアレルの数や被検者の属する人種におけるアレル頻度を考慮して、被検者がHLA-A31:01アレルを有するか否か、あるいは、被検者がHLA-A31:01アレルを有する可能性の高低を決定できる。なお、本発明の検出方法において、HLA-A31:01アレルと共に、HLA-A31:01アレル以外のHLA-Aアレルが検出される場合、必要に応じて、HLA-A31:01アレルと、当該HLA-A31:01アレル以外のHLA-Aアレルとを区別するための操作を行ってもよい。
<2>抗てんかん薬による薬疹リスクの判定方法
 HLA-A31:01アレルは、カルバマゼピン(CBZ)により誘発されるcADR(CBZ-induced cADR)と関連することが知られている(非特許文献2、3)。よって、HLA-A31:01アレルの検出結果に基づき、CBZ等の抗てんかん薬による薬疹リスクを判定できる。すなわち、本発明は、本発明の検出方法によりHLA-A31:01アレルを検出し、該検出結果に基づいて抗てんかん薬による薬疹リスクを検査することを特徴とする、抗てんかん薬による薬疹リスクの判定方法(以下、本発明の判定方法ともいう)を提供する。なお、本発明において、「薬疹リスク」とは、抗てんかん薬の投与により薬疹が発生するかどうかを示すリスク、及び抗てんかん薬の投与により薬疹の程度が悪化するかどうかを示すリスクを含む。よって、本発明において、「検査」とは、抗てんかん薬の投与により薬疹が発生するかどうかを予測するための検査、及び抗てんかん薬の投与により薬疹の程度が悪化するかどうかを予測するための検査を含む。本発明の判定方法においては、被検者がHLA-A31:01アレルを有する場合に、抗てんかん薬による薬疹リスクが高いと判定される。また、本発明の判定方法においては、被検者がHLA-A31:01アレルを有さない場合に、抗てんかん薬による薬疹リスクが低いと判定される。
 薬疹としては、特に制限されず、スティーブンス・ジョンソン症候群(Stevens-Johnson syndrome;SJS)、中毒性表皮壊死症(toxic epidermal necrolysis;TEN)、薬剤性過敏症症候群(Drug-induced hypersensitivity syndrome;DIHS)、多型性紅斑(erythema multiforeme;EM)、播種状紅斑丘疹(maculopapular eruption;MPE)、紅斑(erythema)、紅皮症(erythroderma)、および固定薬疹(fixed drug eruption)等が挙げられる。
 抗てんかん薬としては、特に制限されないが、イミノスチルベン系の薬剤であるのが好ましく、カルバマゼピン(CBZ)であるのがより好ましい。
 本発明の判定方法を適用できる人種としては、特に制限されないが、例えば、日本人や白人が挙げられる。
 本発明の判定方法においては、抗てんかん薬による薬疹リスクと関連する他のSNPsから選択される1またはそれ以上のSNPsを併せて解析してもよい。そのようなSNPsとしては、例えば、ヒトの第6染色体短腕21.33領域(6p21.33領域)に含まれるSNPsが挙げられる(特許文献2)。6p21.33領域に含まれるSNPsとして、具体的には、例えば、rs1633021、rs2571375、rs1116221、rs2844796、rs1736971、rs1611133、rs2074475、rs7760172、rs2517673、rs2524005、rs12665039、およびrs1362088、並びにそれらSNPsと連鎖不平衡にあるSNPsが挙げられる(特許文献2)。
<3>本発明の検出用試薬
 本発明はまた、HLA-A31:01アレルを検出するためのプライマーやプローブなどの検出試薬を提供する。
 プライマーとしては、上記多型部位を増幅するためのPCRに用いることのできるプライマー、又は上記多型部位を配列解析(シークエンシング)するために用いることのできるプライマーが挙げられる。具体的には、配列番号1においてHLA-A31:01を特徴づけるSNPを含む領域を増幅したりシークエンシングしたりすることのできるプライマーや、配列番号2~6のいずれかにおいて塩基配列の61番目の塩基を含む領域を増幅したりシークエンシングしたりすることのできるプライマーが挙げられる。このようなプライマーの長さは10~50塩基が好ましく、15~35塩基がより好ましく、20~35塩基がさらに好ましい。
 上記多型部位を増幅するためのPCRに用いることのできるプライマー、又は上記多型部位をシークエンシングするために用いることのできるプライマーとしては、上記塩基の5’側領域、好ましくは30~100塩基上流の配列を有するプライマーや、上記塩基の3’側領域、好ましくは30~100塩基下流の領域に相補的な配列を有するプライマーが例示される。なお、増幅されたDNA断片中の多型の解析は、例えば、インベーダー法等の上記例示した手法により実施できる。
 PCRによる増幅の有無で多型を判定するために用いるプライマー(配列特異的プライマーともいう)としては、上記塩基を含む配列を有し、上記塩基を3’側に含むプライマーや、上記塩基を含む配列の相補配列を有し、上記塩基の相補塩基を3’側に含むプライマーなどが例示される。配列特異的プライマーと対になって用いられるプライマーは、他の配列特異的プライマーであってもよいし、多型の判定に関わらない汎用プライマーであってもよい。配列特異的プライマーと他の配列特異的プライマーとを組み合わせて用いる場合、より正しくHLA-A31:01を検出できると期待される。
 HLA-A31:01アレルが存在する場合にDNA断片が増幅される配列特異的プライマーとしては、例えば、配列番号1に示す塩基配列またはその相補配列におけるHLA-A31:01を特徴づける一塩基多型を3’末端に有する10塩基以上の長さの配列を含み、且つ、該一塩基多型をプライマーの3’末端に有するプライマーが挙げられる。
 また、HLA-A31:01アレルが存在する場合にDNA断片が増幅される配列特異的プライマーのセットとしては、例えば、下記(A)および(B)を含むセットが挙げられる。
(A)配列番号1に示す塩基配列またはその相補配列におけるHLA-A31:01を特徴づける第1の一塩基多型を3’末端に有する10塩基以上の長さの配列を含み、且つ、該一塩基多型をプライマーの3’末端に有する第1のプライマー;
(B)配列番号1に示す塩基配列またはその相補配列におけるHLA-A31:01を特徴づける第2の一塩基多型を3’末端に有する10塩基以上の長さの配列を含み、且つ、該一塩基多型をプライマーの3’末端に有する第2のプライマーであって、前記第1のプライマーと対になってHLA-A31:01の前記第1の一塩基多型から前記第2の一塩基多型までを含む領域を増幅するように設計された、プライマー。
 上記「該一塩基多型をプライマーの3’末端に有する」とは、上記10塩基以上の長さの配列中の上記HLA-A31:01を特徴づけるSNP部位が、プライマーの3’末端に位置していることを意味する。上記「10塩基以上の長さ」とは、例えば、10塩基以上の長さであってもよく、15塩基以上の長さであってもよく、20塩基以上の長さであってもよい。また、上記「10塩基以上の長さ」とは、例えば、50塩基以下の長さであってもよく、35塩基以下の長さであってもよい。
 上記各配列特異的プライマーは、5’側に任意の塩基配列を有していてもよい。具体的には、例えば、第1のプライマーについて、前記「10塩基以上の長さ」が15塩基で、プライマーの全長が20塩基である場合、プライマーの3’側15塩基は配列番号1の塩基配列またはその相補配列における第1のSNPを3’末端に有する15塩基の配列からなり、残りの部分、すなわち5’側5塩基は任意の配列であってよいことを意味する。
 第1および第2のHLA-A31:01を特徴づけるSNPは、例えば、各SNPの特異性スコア、増幅断片のサイズ、各SNP周辺のミスマッチの有無等の諸条件を考慮して適宜選択することができる。具体的には、例えば、前記第1の一塩基多型はrs41541222またはrs1059457であってよく、前記第2の一塩基多型はrs41562315であってよい。rs41541222、rs1059457、およびrs41562315に対応する配列特異的プライマーとして、具体的には、例えば、プライマーF1(CCGTGGATAGAGCAGGAGAGGCCT;配列番号7)、プライマーF2(GAGAGGCCTGAGTATTGGGACCAGGAG;配列番号8)、プライマーR(TGACCTGCGCCCCGGGCT;配列番号9)がそれぞれ挙げられる。また、配列特異的プライマーは、例えば、これらのプライマーの3’側10塩基以上からなる塩基配列を有するプライマーであってもよく、当該塩基配列の5’末端に任意の塩基配列が付加された塩基配列を有するプライマーであってもよい。
 なお、上記各配列特異的プライマーにおいて、3’末端の塩基をHLA-A31:01以外のアレルに対応する塩基に変更することで、HLA-A31:01以外のアレルが存在する場合にDNA断片が増幅される配列特異的プライマーを設計することができる。
 また、プローブとしては、上記多型部位を含み、ハイブリダイズの有無によって多型部位の塩基の種類を判定できるプローブが挙げられる。具体的には、配列番号1におけるHLA-A31:01を特徴づけるSNPを含む配列、又はその相補配列を有する10塩基以上の長さのプローブや、配列番号2~6のいずれかにおいて塩基配列の61番目の塩基を含む配列、又はその相補配列を有する10塩基以上の長さのプローブが挙げられる。プローブの長さは好ましくは、15~35塩基であり、より好ましくは20~35塩基である。
 また、インベーダー法に用いられるプローブセットとしては、HLA-A31:01を特徴づける一塩基多型をインベーダーのターゲットとするインベーダープローブおよびアレルプローブを含むセットが挙げられる。そのようなプローブは、例えば、Universal Invader Design Software等のソフトウェアを利用して設計することができる。インベーダー/アレルプローブは、HLA-A31:01が存在する場合にインベーダー反応が進行するように設計することができる。
 そのようなインベーダー/アレルプローブのセットとしては、例えば、下記(C)および(D)を含むセットが挙げられる。
(C)配列番号1に示す塩基配列またはその相補配列におけるHLA-A31:01を特徴づける一塩基多型を3’末端に有する10塩基以上の長さの配列を含み、該一塩基多型をプローブの3’末端に有し、且つ、該一塩基多型の塩基がA、T、G、Cから選択される塩基である、インベーダープローブ;
(D)5’から3’方向に向けて、フラップ配列、および配列番号1に示す塩基配列またはその相補配列におけるHLA-A31:01を特徴づける一塩基多型を5’末端に有する10塩基以上の長さの配列を含むアレルプローブであって、前記インベーダープローブと対になってHLA-A31:01が存在する場合にインベーダー反応が進行するように設計された、プローブ。
 上記「該一塩基多型をプローブの3’末端に有し、且つ、該一塩基多型の塩基がA、T、G、Cから選択される塩基である」とは、上記10塩基以上の長さの配列中の上記HLA-A31:01を特徴づけるSNP部位が、プローブの3’末端に位置しているが、その塩基の種類は任意のものでよいことを意味する。上記「10塩基以上の長さ」とは、例えば、10塩基以上の長さであってもよく、15塩基以上の長さであってもよく、20塩基以上の長さであってもよい。また、上記「10塩基以上の長さ」とは、例えば、50塩基以下の長さであってもよく、35塩基以下の長さであってもよい。
 上記インベーダープローブは5’側に任意の塩基配列を有していてもよい。また、上記アレルプローブは5’側および/または3’側に任意の塩基配列を有していてもよい。例えば、インベーダープローブについて、前記「10塩基以上の長さ」が15塩基で、プローブの全長が20塩基である場合、プローブの3’側15塩基は配列番号1の塩基配列またはその相補配列における第1のSNPを3’末端に有する15塩基の配列からなり、残りの部分、すなわち5’側5塩基は任意の配列であってよいことを意味する。
 インベーダーのターゲットであるSNPは、例えば、SNPの特異性スコアやSNP周辺のミスマッチの有無等の諸条件を考慮して適宜選択することができる。具体的には、例えば、インベーダーのターゲットであるSNPは、rs1059457またはrs1059471であってよい。rs1059457をインベーダーのターゲットとするインベーダープローブおよびアレルプローブとして、具体的には、例えば、インベーダープローブ1(CCTGAGTATTGGGACCAGGAT;配列番号10)およびアレルプローブ1(FAM)(ATGACGTGGCAGACGACACGGAATGTGAAGG;配列番号11)が挙げられる。また、rs1059471をインベーダーのターゲットとするインベーダープローブおよびアレルプローブとして、具体的には、例えば、インベーダープローブ2(TGAAGGCCCACTCACAGAA;配列番号12)およびアレルプローブ2(FAM)(ATGACGTGGCAGACTTGACCGAGTGGACC;配列番号13)が挙げられる。また、インベーダープローブは、例えば、これらのインベーダープローブの3’側10塩基以上からなる塩基配列を有するプローブであってもよく、当該塩基配列の5’末端に任意の塩基配列が付加された塩基配列を有するプローブであってもよい。また、アレルプローブは、例えば、これらのアレルプローブ塩基配列におけるフラップ配列とそれに続く10塩基以上の塩基配列を有するプローブであってもよく、当該塩基配列の5’末端および/または3’末端に任意の塩基配列が付加された塩基配列を有するプローブであってもよい。
 上記アレルプローブ1(FAM)およびアレルプローブ2(FAM)の5’側14塩基は、FAM用のフラップ配列である。よって、インベーダー法にFAM以外のラベルを利用する場合は、当該フラップ配列をFAM以外のラベルに対応したものに変更することができる。
 本発明の検出用試薬は、配列特異的プライマーセットおよびインベーダー法に用いるプローブセットを含むものであってもよい。これらプライマーセットおよびプローブセットを組み合わせて用いる場合、インベーダーのターゲットである一塩基多型は、前記第1の一塩基多型と前記第2の一塩基多型の間に存在する一塩基多型から選択すればよい。
 また、本発明の検出用試薬はこれらのプライマーおよび/またはプローブに加えて、PCR用のポリメラーゼやバッファー、ハイブリダイゼーション用試薬、インベーダー反応用のFRETプローブやCleavase等から選択されるものを含むものであってもよい。
 以下、本発明を実施例によりさらに具体的に説明する。但し、本発明はこれらの実施例に限定されない。なお、本実施例において、「HLA-A31:01:02」と「HLA-A31:01」は同じものである。
 本実施例では、配列特異的プライマーPCRとインベーダープラス法とを組み合わせてHLA-A31:01アレルの検出を行った。
(1)ゲノムDNAサンプル
 ゲノムDNAサンプルとしては、3グループのHapMapサンプル、すなわち、互いに血縁関係のない90名の日本人および漢民族のサンプル(JCH);90名の北欧系および西欧系のユタ州住民のサンプル(CEU);90名のナイジェリアのイバダンのヨルバ人のサンプル(YRI)を用いた。全てのHapMapサンプルは、Coriell Institute for Genomic Researchから購入した。HapMapサンプルのHLA-A遺伝子型データは、非特許文献7(Erlich RL. et al. BMC Genomics. 2011;12:42.)から取得した。JCHサンプル中13名(14.4%)およびCEUサンプル中4名(4.4%)がHLA-A31:01アレルを有しており、YRIサンプルはいずれもHLA-A31:01アレルを有していなかった。
(2)プライマーおよびプローブの設計
 プライマーおよびプローブの設計は、既報(Hosono N. et al. Pharmacogenet Genomics. 2010;20:630-633.)を参考に、以下の手順で行った。また、プローブの配列設計にはUniversal Invader Design Softwareを用いた。HLA-Aアレルの情報は、IMGT/HLA Database (http://www.ebi.ac.uk/imgt/hla/)から取得した。
 既知の1729種のHLA-Aアレルの内、日本人集団においてアレル頻度>0.001%で存在するものとしては、HLA-A31:01アレルを含む全部で42種が中央骨髄センターより報告されている(n=223589)。そこで、当該42種のHLA-Aアレルに限定して、HLA-A31:01アレルを特徴づけるSNPs(HLA-A*31:01-discriminating SNPs)の探索を行った。その結果、HLA-A31:01アレルを他のHLA-Aアレルから区別できるいくつかのSNPsがエクソン2において見出された。前記42種のHLA-AアレルのアラインメントとSNPsを図2に示す。
 dbMHC Sequence Alignment Viewerを用いて各HLA-Aアレルを比較したところ、塩基位置372のrs41541222が、最も区別的(discriminative)なSNPとして同定された。なお、「塩基位置」とは、HLA-A遺伝子の翻訳開始点(すなわち、開始コドンATGのA)を塩基番号1として、以下、同遺伝子の3’方向に順にカウントしたものである。また、2番目に区別的なSNPは塩基位置419のrs1059471、3番目に区別的なSNPは塩基位置367のrs1059449であった。
 これらSNPsの位置を考慮し、最も区別的なrs41541222に対応する塩基を3’末端に有するフォワードプライマーF1を設計した。
 次に、2番目に区別的なrs1059471に対応する塩基を3’末端に有するリバースプライマーの設計を試みた。しかしながら、当該リバースプライマーとF1を組み合わせた場合、おそらくは増幅サイズが短いことが原因で、適切なインベーダー/アレルプローブをUniversal Invader Design Softwareを用いて設計できなかった。そこで、HLA-A31:01を特徴づける他の候補SNPの探索を行ったところ、エクソン2近傍のイントロン2内にrs41562315(塩基位置485)が見出された。イントロン領域の配列情報は不完全であったが、利用可能な110個のゲノム配列を比較したところ、rs41562315はrs1059471と完全連鎖不平衡にあることが示唆された。そこで、rs41562315に対応する塩基を3’末端に有するリバースプライマーRを設計した。
 次に、インベーダーのターゲット部位周辺の塩基のミスマッチの個数を考慮して、塩基位置390のrs1059457をインベーダーのターゲット部位として選択した。Universal Invader Design Softwareを用いて、rs1059457をインベーダーのターゲット部位とするインベーダープローブ1およびアレルプローブ1(FAM)を設計した。なお、以下、フォワードプライマーF1、リバースプライマーR、インベーダープローブ1、およびアレルプローブ1(FAM)からなるプライマー/プローブセット(primers/probes set)をセット1と称する。
 さらに、セット1によるHLAタイピングの結果を補強するため、第2のプライマー/プローブセット(以下、セット2と称する)を設計した。リバースプライマーRはセット1とセット2で共通とした。セット2のフォワードプライマーF2は、セット1のインベーダーのターゲット部位であるrs1059457に対応する塩基を3’末端に有するように設計した。また、2番目に区別的なSNPであるrs1059471をインベーダーターゲット部位として選択し、インベーダープローブ2およびアレルプローブ2(FAM)を設計した。
 各セットのプライマーおよびプローブの位置を図3に、塩基配列を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 なお、セット1とセット2のいずれを用いた場合にも、日本人集団においてアレル頻度>0.001%で存在するSNPsの内、HLA-A31:01以外にHLA-A31:11が検出されると考えられる。しかしながら、日本人集団におけるHLA-A31:11のアレル頻度は0.002%と極めてまれであり、HLA-A31:01のアレル頻度は8.65%(すなわちHLA-A31:11のアレル頻度の4325倍)であることから、上記設計した各プライマー/プローブセットはHLA-A31:01選択的であると判断した。
(3)インベーダープラスアッセイ
 インベーダープラスアッセイは、ABI 7500 Fast real-time PCR system (Applied Biosystems, Foster City, CA)を用い、96ウェルプレートで行った。反応液は、総反応液量10 μl当たり、1 x Signal Buffer、1 x FRET Mix (FRET22/FRET7)、Cleavase VIII 60 ng(以上、いずれもThird Wave Technologies製)、10 μM ROX (Sigma, MO, USA)、900 nM 各フォワードプライマーおよびリバースプライマー、400 nM インベーダープローブ、800 nM アレルプローブ、0.25 U Ex Taq HS DNA polymerase (Takara, Shiga, Japan)、400 μM dNTP mixture (Takara, Shiga, Japan)、およびゲノムDNA 5 ngからなる。PCRは、95℃ 20秒で開始し、35サイクル×(98℃ 3秒と68℃ 30秒)で行った。PCR後、続けて、99℃ 30秒と63℃ 10分でインベーダー反応を行った。総反応時間は約45分であった。インベーダー反応中、蛍光シグナルを30秒毎に測定した。さらに、2%アガロースゲルを用いてインベーダープラスアッセイ後のPCR産物の電気泳動を行い、各プライマーセットの効率と特異性を評価した。
(4)結果
 JCHサンプル(n=90)を解析した結果を図4に示す。いずれのプライマー/プローブセットを用いた場合にも、偽陽性のシグナルは認められず、HLA-A31:01陽性サンプル(n=13)をHLA-A31:01陰性サンプル(n=77)と正しく区別することができた。また、アガロースゲル電気泳動の結果によれば、いずれのプライマーセットを用いた場合にも、SSP-PCR工程でターゲットのゲノム領域が選択的に増幅されていることが示唆された。
 また、CEUサンプル(n=90)およびYRIサンプル(n=90)を解析した結果を図5に示す。いずれのプライマー/プローブセットを用いた場合にも、CEUサンプル中のHLA-A31:01陽性サンプル(n=4)を正しく検出できた。また、いずれのプライマー/プローブセットを用いた場合にも、HLA-A31:01陽性サンプルの存在しないYRIサンプルでは陽性シグナルは現れず、HLA-A31:01以外のHLA-Aアレルとの交差反応は認められなかった。
 以上より、セット1とセット2のいずれのプライマー/プローブセットを用いた場合にも、HLA-A31:01アレルの有無を正しく検出できることが明らかとなった。
 なお、in silico解析によれば、セット1とセット2のいずれを用いた場合にも、既知の1729種のHLA-Aアレルの内、HLA-A31:01に加えて52種のHLA-Aアレルが検出される可能性がある。52種の内、45種のHLA-Aアレルは、Allele frequency netの登録情報によればアレル頻度がゼロであり、HLA-A31:01の検出に影響しないと考えられる。一方、残りの7種は、比較的低い頻度ではあるが種々の人種に分布している(0.006%~5.5%)(表2)。例えば、白人集団はHLA-A3102アレルを1%以上の頻度で有している。よって、セット1またはセット2のプライマー/プローブセットで白人集団を解析すると、HLA-A31:01に加えて、HLA-A3102が1%以上の頻度で検出される可能性がある。このような誤検出を防ぐには、例えば、HLA-A31:01とHLA-A3102を区別できるSNPをターゲットとする他のプライマー/プローブセットを設計し、セット1またはセット2のプライマー/プローブセットと併用すればよい。セット1とセット2のいずれもFAMチャネルのみを利用してHLA-A31:01のシグナルを検出しているため、他のプライマー/プローブセットでVIC蛍光チャネルを利用すれば同時に解析できる。HLA-A31:01とHLA-A3102を区別できるSNPとしては、例えば、rs1059460が挙げられる。
Figure JPOXMLDOC01-appb-T000002
 
 また、上述の通り、セット1とセット2のいずれを用いた場合にも、日本人集団においてまれに存在するHLA-A31:11をHLA-A31:01と区別できない。HLA-A31:11と薬疹リスクとの関連は未知であるが、上記と同様、他のプライマー/プローブセットを併用することでHLA-A31:11をHLA-A31:01と区別できる。HLA-A31:01とHLA-A31:11を区別できるSNPとしては、例えば、エクソン3における塩基位置936のSNP(rs番号なし)が挙げられる。
 さらに、HLAクラスIアレルは互いに相同性が高いことが知られていることから、ゲノム上の他のHLA領域から増幅が起こる可能性を以下の手順で検討した。UCSC Blat Search(http://genome.ucsc.edu/index.html)で検索したところ、セット1またはセット2のプライマーセットで増幅される領域と比較的高い相同性(最大で87.6%)を有する領域が、HLA-L、HLA-B、およびHLA-C領域に見出された。そこで、それらの領域がセット1またはセット2のプライマーセットで増幅されるかどうかを、IMGT/HLA Database version 3.6.0の登録データに基づきdbMHC Sequence Alignment Viewerを用いて検討した。なお、イントロン領域の配列情報は不完全であるためリバースプライマーRの3’末端のミスマッチの有無は無視した。その結果、2329種のHLA-Bアレル中の2つのアレル(HLA-B40:22NおよびHLA-B40:134)は増幅される可能性があったが、1291種のHLA-Cアレルおよび5種のHLA-Lアレル中に増幅される可能性のあるアレルはなかった。上記2つのHLA-Bアレルはインベーダーのターゲット部位の塩基もHLA-A31:01と同一であるためセット1またはセット2のプライマー/プローブセットではHLA-A31:01と区別できないが、Allele frequency netの登録情報によればこれら2つのHLA-Bアレルのアレル頻度はゼロであるため、セット1またはセット2のプライマー/プローブセットでゲノム上の他のHLA領域が増幅される可能性は低いと考えられる。
 本発明によれば、HLA-A31:01アレルを検出することができる。特に、本発明の一態様においては、特定のSNP(s)を測定することによりHLA-A31:01アレルを簡便、迅速、且つ正確に検出できる。また、特に、本発明の一態様においては、PCR法とインベーダー法とを組み合わせることによりHLA-A31:01アレルを簡便、迅速、且つ正確に検出できる。また、HLA-A31:01アレルの検出結果を利用して、HLA-A31:01アレルと関連する抗てんかん薬による薬疹リスクを予測することができる。したがって、本発明は、抗てんかん薬の投与の可否を決定するのに有効であり、抗てんかん薬による薬物治療に貢献するものである。

Claims (11)

  1.  HLA-A31:01を特徴づける1またはそれ以上の一塩基多型を分析し、該分析結果に基づいてHLA-A31:01の存在の有無を判定することを特徴とする、HLA-A31:01の検出方法。
  2.  配列特異的プライマーPCR法とインベーダープラス法の組み合わせにより一塩基多型が分析される、請求項1に記載の方法。
  3.  少なくともrs1059449、rs41541222、rs1059471、rs1059457、およびrs41562315から選択される1またはそれ以上の一塩基多型が分析される、請求項1または2に記載の方法。
  4.  少なくともrs41562315が分析される、請求項1~3のいずれか1項に記載の方法。
  5.  請求項1~4のいずれか1項に記載の方法によりHLA-A31:01を検出し、該検出結果に基づいて抗てんかん薬による薬疹リスクを検査することを特徴とする、抗てんかん薬による薬疹リスクの判定方法。
  6.  前記抗てんかん薬がカルバマゼピンである、請求項5に記載の方法。
  7.  下記(A)および(B)を含む配列特異的プライマーセット:
    (A)配列番号1に示す塩基配列またはその相補配列におけるHLA-A31:01を特徴づける第1の一塩基多型を3’末端に有する10塩基以上の長さの配列を含み、且つ、該一塩基多型をプライマーの3’末端に有する第1のプライマー;
    (B)配列番号1に示す塩基配列またはその相補配列におけるHLA-A31:01を特徴づける第2の一塩基多型を3’末端に有する10塩基以上の長さの配列を含み、且つ、該一塩基多型をプライマーの3’末端に有する第2のプライマーであって、前記第1のプライマーと対になってHLA-A31:01の前記第1の一塩基多型から前記第2の一塩基多型までを含む領域を増幅するように設計された、プライマー。
  8.  前記第1の一塩基多型がrs41541222またはrs1059457であり、前記第2の一塩基多型がrs41562315である、請求項7に記載のプライマーセット。
  9.  HLA-A31:01を特徴づける一塩基多型をインベーダーのターゲットとするインベーダープローブおよびアレルプローブを含むプローブセット。
  10.  前記一塩基多型がrs1059471またはrs1059457である、請求項9に記載のプローブセット。
  11.  請求項7または8に記載のプライマーセットおよび請求項9または10に記載のプローブセットを含む、HLA-A31:01の検出用試薬であって、
     前記インベーダーのターゲットである一塩基多型は、前記第1の一塩基多型と前記第2の一塩基多型の間に存在する一塩基多型である、試薬。
PCT/JP2013/055285 2012-02-29 2013-02-28 Hla-a*31:01アレルの検出方法 WO2013129542A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13754011.8A EP2821503B1 (en) 2012-02-29 2013-02-28 Method for detecting hla-a*31:01 allele
US14/381,678 US9879314B2 (en) 2012-02-29 2013-02-28 Method for detecting HLA-A*31:01 allele
JP2014502349A JP6346557B2 (ja) 2012-02-29 2013-02-28 Hla−a*31:01アレルの検出方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012044752 2012-02-29
JP2012-044752 2012-02-29

Publications (1)

Publication Number Publication Date
WO2013129542A1 true WO2013129542A1 (ja) 2013-09-06

Family

ID=49082734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055285 WO2013129542A1 (ja) 2012-02-29 2013-02-28 Hla-a*31:01アレルの検出方法

Country Status (4)

Country Link
US (1) US9879314B2 (ja)
EP (1) EP2821503B1 (ja)
JP (1) JP6346557B2 (ja)
WO (1) WO2013129542A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020178537A (ja) * 2019-04-23 2020-11-05 ジェネシスヘルスケア株式会社 てんかんのリスクを判定する方法
EP3981001A4 (en) * 2019-06-07 2023-09-27 Mount Sinai Genomics, Inc. POLYMORPHIC MARKERS FOR PHARMACOGENETIC HLA RISK ALLELES

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3516057A4 (en) * 2016-09-26 2020-06-03 Sirona Genomics, Inc. METHOD FOR GENOTYPING HUMAN LEUKOCYTE ANTIGEN AND DETERMINING HAPLOTYP DIVERSITY IN A POPULATION
CN106755530B (zh) * 2017-02-24 2021-01-01 陕西佰美基因股份有限公司 一种检测hla-a*31:01等位基因的mgb探针实时荧光pcr方法及其引物探针组合
WO2021262589A1 (en) * 2020-06-23 2021-12-30 Genomind, Inc. Detection of specific hla alleles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2843586B2 (ja) 1987-06-19 1999-01-06 アクゾ・ノベル・ナムローゼ・フェンノートシャップ 転写に基づいた核酸増幅/検出系
JP3313358B2 (ja) 1998-11-09 2002-08-12 栄研化学株式会社 核酸の合成方法
JP2002233379A (ja) 2001-02-08 2002-08-20 Takara Holdings Inc 核酸の増幅方法
JP2009261358A (ja) * 2008-04-28 2009-11-12 Igaku Seibutsugaku Kenkyusho:Kk Hla−drb1遺伝子を含むヒト遺伝子のアレル多型のタイピング方法及びこれに用いるキット
JP2010104360A (ja) * 2008-10-01 2010-05-13 Shimadzu Corp 遺伝子多型判定方法
JP2012187082A (ja) * 2011-03-14 2012-10-04 Institute Of Physical & Chemical Research 第6染色体短腕21.33領域の一塩基多型に基づく抗てんかん薬による薬疹リスクの検査方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9805918D0 (en) * 1998-03-19 1998-05-13 Nycomed Amersham Plc Sequencing by hybridisation
GB0916013D0 (en) * 2009-09-11 2009-10-28 King S College London Method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2843586B2 (ja) 1987-06-19 1999-01-06 アクゾ・ノベル・ナムローゼ・フェンノートシャップ 転写に基づいた核酸増幅/検出系
JP3313358B2 (ja) 1998-11-09 2002-08-12 栄研化学株式会社 核酸の合成方法
JP2002233379A (ja) 2001-02-08 2002-08-20 Takara Holdings Inc 核酸の増幅方法
JP2009261358A (ja) * 2008-04-28 2009-11-12 Igaku Seibutsugaku Kenkyusho:Kk Hla−drb1遺伝子を含むヒト遺伝子のアレル多型のタイピング方法及びこれに用いるキット
JP2010104360A (ja) * 2008-10-01 2010-05-13 Shimadzu Corp 遺伝子多型判定方法
JP2012187082A (ja) * 2011-03-14 2012-10-04 Institute Of Physical & Chemical Research 第6染色体短腕21.33領域の一塩基多型に基づく抗てんかん薬による薬疹リスクの検査方法

Non-Patent Citations (17)

* Cited by examiner, † Cited by third party
Title
ADAMS SD. ET AL., TUMORI, vol. 87, 2001, pages 40 - 43
AOKI, M. ET AL.: "New pharmacogenetic test for detecting an HLA-A*31:01 allele using the InvaderPlus assay", PHARMACOGENETICS AND GENOMICS, vol. 22, March 2012 (2012-03-01), pages 441 - 446, XP008174640 *
CHUNG WH. ET AL., NATURE, vol. 428, no. 6982, 1 April 2004 (2004-04-01), pages 486
ERLICH RL. ET AL., BMC GENOMICS., vol. 12, 2011, pages 42
FANER R. ET AL., HUM IMMUNOL., vol. 67, 2006, pages 374 - 385
GABRIEL C. ET AL., HUM IMMUNOL., vol. 70, 2009, pages 960 - 964
GENOMICS, vol. 12, no. 1, 1 January 1992 (1992-01-01), pages 139 - 146
HOSONO N. ET AL., PHARMACOGENET GENOMICS, vol. 20, 2010, pages 630 - 633
HOSONO, N. ET AL.: "Development of new HLA-B*3505 genotyping method using Invader assay", PHARMACOGENETICS AND GENOMICS, vol. 20, 2010, pages 630 - 633, XP055161282 *
ITOH Y. ET AL., HUM IMMUNOL., vol. 67, 2006, pages 374 - 385
LIND C. ET AL., HUM IMMUNOL., vol. 71, 2010, pages 1033 - 1042
MCCORMACK M. ET AL., N ENGL J MED., vol. 3641, 2011, pages 1134 - 1143
MCCORMACK, M. ET AL.: "HLA-A*3101 and Carbamazepine-Induced Hypersensitivity Reactions in Europeans", N. ENGL. J. MED., vol. 364, 2011, pages 1134 - 1143, XP055161278 *
OZEKI T. ET AL., HUM MOL GENET., vol. 20, 2011, pages 1034 - 1041
OZEKI, T. ET AL.: "Genome-wide association study identifies HLA-A*3101 allele as a genetic risk factor for carbamazepine-induced cutaneous adverse drug reactions in Japanese population", HUMAN MOLECULAR GENETICS, vol. 20, no. 5, 2011, pages 1034 - 1041, XP055161277 *
See also references of EP2821503A4
TAISEI MUSHIRODA: "SNP o Tsukatta Order Made Iryo no Jitsugen e", RIKEN NEWS, vol. 7, no. 361, July 2011 (2011-07-01), pages 2 - 5, XP055166125 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020178537A (ja) * 2019-04-23 2020-11-05 ジェネシスヘルスケア株式会社 てんかんのリスクを判定する方法
JP7107883B2 (ja) 2019-04-23 2022-07-27 ジェネシスヘルスケア株式会社 てんかんのリスクを判定する方法
EP3981001A4 (en) * 2019-06-07 2023-09-27 Mount Sinai Genomics, Inc. POLYMORPHIC MARKERS FOR PHARMACOGENETIC HLA RISK ALLELES

Also Published As

Publication number Publication date
US9879314B2 (en) 2018-01-30
EP2821503A4 (en) 2015-10-14
JP6346557B2 (ja) 2018-06-20
JPWO2013129542A1 (ja) 2015-07-30
EP2821503A1 (en) 2015-01-07
EP2821503B1 (en) 2018-11-07
US20150072874A1 (en) 2015-03-12

Similar Documents

Publication Publication Date Title
US8962280B2 (en) Methods for detecting DNA orginating from different individuals
US11542556B2 (en) Single nucleotide polymorphism in HLA-B*15:02 and use thereof
JP6346557B2 (ja) Hla−a*31:01アレルの検出方法
JP5899527B2 (ja) 第6染色体短腕21.33領域の一塩基多型に基づく抗てんかん薬による薬疹リスクの検査方法
JP2023109998A (ja) マイクロサテライト不安定性の検出
WO2017112738A1 (en) Methods for measuring microsatellite instability
WO2011148715A1 (ja) 正常眼圧緑内障疾患感受性遺伝子及びその利用
KR101023194B1 (ko) 아토피 피부염 진단용 마커 및 그의 용도
CN110029162B (zh) 一种用于检测系统性红斑狼疮易感性位于非编码基因区的snp标志物及其应用
TWI351436B (en) Method for detecting a risk of the development of
JP6233022B2 (ja) Hla−a*24グループの判定方法
WO2012056694A1 (ja) 乳がん発症感受性の判定方法
CN105765077B (zh) 测定抗甲状腺药物诱导的粒细胞缺乏症风险的检测方法以及测定用试剂盒
US20220017963A1 (en) Methods, Compositions and Systems for Detecting PNPLA3 Allelic Variants
US11028442B2 (en) Simultaneous detection of multiple nucleic acid templates using modified primers
KR102156699B1 (ko) 소음인 판별용 조성물
WO2024008955A1 (en) Method of screening for severe covid-19 susceptibility
JP2021185787A (ja) 病的バリアントを利用した前立腺がんの検査方法
JP2021145608A (ja) 治療抵抗性高血圧の検査方法
JP5954724B2 (ja) 第6染色体短腕22領域または第9染色体長腕21領域の一塩基多型に基づく肥満の検査方法
JP2016149988A (ja) 自閉症スペクトラムの検査方法。
JP2009089687A (ja) 遺伝子多型の識別方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13754011

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014502349

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14381678

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013754011

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013754011

Country of ref document: EP