WO2013129512A1 - 固体撮像装置及びこれを用いた電子カメラ - Google Patents

固体撮像装置及びこれを用いた電子カメラ Download PDF

Info

Publication number
WO2013129512A1
WO2013129512A1 PCT/JP2013/055212 JP2013055212W WO2013129512A1 WO 2013129512 A1 WO2013129512 A1 WO 2013129512A1 JP 2013055212 W JP2013055212 W JP 2013055212W WO 2013129512 A1 WO2013129512 A1 WO 2013129512A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
period
imaging device
state imaging
solid
Prior art date
Application number
PCT/JP2013/055212
Other languages
English (en)
French (fr)
Inventor
洋二郎 手塚
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to US14/381,050 priority Critical patent/US9325924B2/en
Priority to CN201380022283.3A priority patent/CN104255025B/zh
Publication of WO2013129512A1 publication Critical patent/WO2013129512A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/67Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
    • H04N25/671Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction
    • H04N25/677Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction for reducing the column or line fixed pattern noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors

Definitions

  • the present invention relates to a solid-state imaging device and an electronic camera using the same.
  • FIG. 3 of Patent Document 1 below discloses a configuration of “CDS circuit 3a” for one column for “pixel unit 20”.
  • the “CDS circuit 3a” is provided with a “sample hold switch sw1” for controlling the input of the image signal output from the “pixel unit 20”.
  • a “capacitor (sample hold capacitor) C31” for holding an image signal is connected to the output side of the “sample hold switch sw1”.
  • a “ramp signal supply source 31a” for supplying a ramp signal for changing the potential of the image signal held in the “capacitor C31” is connected to the opposite side of the “capacitor C31” from the “sample hold switch sw1”. .
  • connection point (node) n1 between the “sample hold switch sw1” and the “capacitor C31” is connected to the non-inverting input terminal of the “differential amplifier 33a”.
  • a “capacitor C32” is provided between the inverting input terminal and GND.
  • a “clamp switch sw2” is provided between the output terminal of the “differential amplifier 33a” and the “connection point n2” between the inverting input terminal and the “capacitor C32”.
  • both sides of the second wiring are respectively supplied to supply as many GND voltages as possible to the second wiring. It will be grounded. If both sides of the second wiring are grounded, noise on the second wiring due to a disturbance or the like is reduced as compared with the case where the GND voltage is supplied to only one portion of the second wiring. The noise resistance of the wiring increases.
  • the present invention has been made in view of such circumstances, and provides a solid-state imaging device capable of reducing the influence of noise and obtaining a higher quality image, and an electronic camera using the same. To do.
  • the solid-state imaging device includes a plurality of pixels arranged two-dimensionally and a plurality of vertical signal lines that are provided for each column of the plurality of pixels and receive signals from pixels in the corresponding column. And a plurality of signal processing sections that respectively process the signals of the plurality of vertical signal lines based on the ramp signal and the reference voltage, and a first input section to which the ramp signals are input in the plurality of signal processing sections.
  • a first wiring to which the ramp signal is supplied on one side in the row direction, and a second input portion to which the reference voltage is input in the plurality of signal processing units are connected in common to the row direction. And the second wiring to which the reference voltage is not supplied on the other side in the row direction.
  • each of the signal processing units includes a comparator that performs comparison processing based on the ramp signal and the reference voltage.
  • the solid-state imaging device is the solid-state imaging device according to the second aspect, wherein the comparator is configured by an operational amplifier, and each signal processing unit is connected to a non-inverting input terminal of the comparator.
  • a sampling switch for sampling the signal or a signal corresponding thereto, a first capacitor in which one electrode is connected to the non-inverting input terminal and the other electrode is the first input unit, and one electrode is the A second capacitor connected to the inverting input terminal of the comparator and having the other electrode as the second input unit; and a feedback switch for turning on and off between the inverting input terminal and the output terminal of the comparator.
  • the solid-state imaging device is the solid-state imaging device according to the third aspect, wherein (i) the sampling switch and the feedback of each signal processing unit when the signals of the plurality of vertical signal lines are reference signals. In the first period in which the switches are turned on at the same time and turned off at the same time, the ramp signal gradually changes, and (ii) after the first period, the signals on the plurality of vertical signal lines are the plurality of signals.
  • the sampling switch of each of the signal processing units is kept off while the feedback switch of each of the signal processing units is kept off when the optical signal includes optical information photoelectrically converted by at least one of the pixels
  • the ramp signal gradually changes, and (iii) the ramp signal changes in the first period.
  • a count value corresponding to an elapsed time from a time point to an inversion time of a signal of the output unit of the comparator in each of the signal processing units in the first period, and a change signal starting point of the ramp signal in the second period A timing unit that obtains a count value corresponding to an elapsed time until a signal is inverted at the output of the comparator of each signal processing unit in the second period;
  • the solid-state imaging device is the solid-state imaging device according to the fourth aspect, wherein the time counting unit counts the clock signal from the start of change of the ramp signal in the first period and the second period. And a counter that counts the clock signal from the start of change of the ramp signal in each of the above, and each signal processing unit, the count value of the counter is input, the signal of the output unit of the comparator in the first period And a storage unit that stores the count value at the time of inversion and the count value at the time of inversion of the signal of the output unit of the comparator in the second period.
  • a solid-state imaging device is the solid-state imaging device according to the third aspect, wherein (i) the sampling switch and the feedback of each signal processing unit when the signals of the plurality of vertical signal lines are reference signals. In the first period in which the switches are turned on at the same time and turned off at the same time, the ramp signal gradually changes, and (ii) after the first period, the signals on the plurality of vertical signal lines are the plurality of signals.
  • the sampling switch of each of the signal processing units is kept off while the feedback switch of each of the signal processing units is kept off when the optical signal includes optical information photoelectrically converted by at least one of the pixels
  • the ramp signal gradually changes, and (iii) each signal processing unit has the laser signal in the first period.
  • the count is performed by performing the count operation in one of the down mode and the up mode from the change signal start time to the inversion time of the signal output from the comparator of each signal processing unit in the first period.
  • a counter that performs a counting operation from the count value in the other mode.
  • the solid-state imaging device is the solid-state imaging device according to any one of the third to sixth aspects, wherein each of the signal processing units is provided between the vertical signal line and the sampling switch. It is what has.
  • the solid-state imaging device is the solid-state imaging device according to the seventh aspect, wherein the amplification unit includes a second operational amplifier, an input capacitor connected to an inverting input terminal of the second operational amplifier, A second feedback switch for turning on and off between the inverting input terminal of the second operational amplifier and an output terminal of the second operational amplifier; the inverting input terminal of the second operational amplifier; and the second operational amplifier. And a feedback capacitor connected between the output terminals of the operational amplifier.
  • An electronic camera includes the solid-state imaging device according to any one of the first to eighth aspects.
  • the present invention it is possible to provide a solid-state imaging device capable of reducing the influence of noise and obtaining a higher quality image, and an electronic camera using the same.
  • FIG. 1 is a schematic block diagram schematically showing an electronic camera according to a first embodiment of the present invention. It is a circuit diagram which shows schematic structure of the solid-state imaging device in FIG.
  • FIG. 3 is a circuit diagram showing a pixel in FIG. 2. It is a circuit diagram which shows the pixel by a modification.
  • 2 is a timing chart illustrating an example of the operation of the solid-state imaging device in FIG. 1.
  • 6 is a timing chart showing an operation during a predetermined period in FIG. 5.
  • FIG. 3 is a schematic plan view schematically showing a specific example of a wiring pattern or the like constituting the first and second wirings in FIG. 2. It is a schematic plan view which shows typically the solid-state imaging device in FIG.
  • FIG. 10 is a schematic plan view schematically showing wiring patterns and the like constituting the first and second wirings in FIG. 9. It is a schematic plan view which shows typically the solid-state imaging device by the comparative example shown in FIG. It is a schematic plan view which shows typically the solid-state imaging device by a modification. It is a circuit diagram which shows schematic structure of the solid-state imaging device used with the electronic camera by the 2nd Embodiment of this invention.
  • FIG. 1 is a schematic block diagram schematically showing the electronic camera 1 according to the first embodiment of the present invention.
  • the electronic camera 1 according to the present embodiment is configured as, for example, a single-lens reflex digital camera.
  • the electronic camera according to the present invention is not limited to this, and is mounted on another electronic camera such as a compact camera or a mobile phone. It can also be applied to electronic cameras.
  • the photographing lens 2 is attached to the electronic camera 1.
  • the photographing lens 2 is driven by a lens control unit 3 for focus and diaphragm.
  • the imaging surface of the solid-state imaging device 4 is arranged.
  • the solid-state imaging device 4 is driven by a command from the imaging control unit 5 and outputs a digital image signal.
  • the digital signal processing unit 6 performs image processing such as digital amplification, color interpolation processing, and white balance processing on the digital image signal output from the solid-state imaging device 4.
  • the image signal processed by the digital signal processing unit 6 is temporarily stored in the memory 7.
  • the memory 7 is connected to the bus 8.
  • the bus 8 is also connected with a lens control unit 3, an imaging control unit 5, a CPU 9, a display unit 10 such as a liquid crystal display panel, a recording unit 11, an image compression unit 12 and an image processing unit 13.
  • An operation unit 14 such as a release button is connected to the CPU 9.
  • a recording medium 11a is detachably attached to the recording unit 11.
  • the CPU 9 in the electronic camera 1 calculates a defocus amount based on a detection signal from a focus detection sensor (not shown).
  • the lens control unit 3 is caused to adjust the photographing lens 2 so as to be in focus according to the focus amount. Further, the CPU 9 causes the lens control unit 3 to adjust the photographing lens 2 so that the aperture is instructed in advance by the operation unit 14. Then, the CPU 9 controls the solid-state imaging device 4 via the imaging control unit 5 in synchronization with the full pressing operation of the release button of the operation unit 14, whereby a digital image signal is read from the solid-state imaging device 4. This image signal is processed by the digital signal processing unit 6 and then temporarily stored in the memory 7.
  • the CPU 9 performs desired processing on the image signal in the memory 7 by the image processing unit 13 and the image compression unit 12 as necessary based on the command of the operation unit 14, and the recording unit 11 performs processing after processing.
  • a signal is output and recorded on the recording medium 11a.
  • FIG. 2 is a circuit diagram showing a schematic configuration of the solid-state imaging device 4 in FIG.
  • the solid-state imaging device 4 is configured as a CMOS type solid-state imaging device, but may be configured as another XY address type solid-state imaging device.
  • the solid-state imaging device 4 includes a pixel array unit 22 composed of a plurality of pixels 21 (in FIG. 2, 2 ⁇ 3 pixels 2) arranged two-dimensionally, and a plurality of pixels 21.
  • a plurality of vertical signal lines 23 provided for each column of the pixels 21 and receiving signals from the pixels 21 in the corresponding column, a constant current source 24 provided in each vertical signal line 23, a vertical scanning circuit 25, a ramp signal
  • a plurality of column circuits (signal processing units) 26 that respectively process signals of a plurality of vertical signal lines 23 based on Vramp and the reference voltage GND, a ramp signal generation circuit 27 that generates a ramp signal Vramp, a counter 28, and a control
  • a pulse generation circuit 29, a horizontal scanning circuit 30, a subtractor 31, and an output circuit 32 are provided.
  • FIG. 3 is a circuit diagram showing one pixel 21 in FIG.
  • Each pixel 21 includes a photodiode PD as a photoelectric conversion unit that generates and accumulates charges according to incident light, and a charge voltage that receives the charges and converts the charges into a voltage, as in a general CMOS image sensor.
  • a floating diffusion FD as a conversion unit
  • an amplification transistor AMP as an amplification unit that outputs a signal corresponding to the potential of the floating diffusion FD
  • a transfer transistor TX that transfers charges from the photodiode PD to the floating diffusion FD
  • a floating diffusion FD 3 has a reset transistor RES for resetting the potential and a selection transistor SEL for selecting a readout row, which are connected as shown in FIG.
  • VDD is a power supply potential.
  • the transistors AMP, TX, RES, and SEL of the pixel 21 are all nMOS transistors.
  • the gate of the transfer transistor TX is commonly connected to the control line 41 for each row, and a control signal ⁇ TX for controlling the transfer transistor TX is supplied from the vertical scanning circuit 25 thereto.
  • the gate of the reset transistor RES is commonly connected to the control line 42 for each row, and a control signal ⁇ RES for controlling the reset transistor RES is supplied from the vertical scanning circuit 25 to the control line 42.
  • the gates of the selection transistors SEL are commonly connected to the control line 43 for each row, and a control signal ⁇ SEL for controlling the selection transistor SEL is supplied from the vertical scanning circuit 25 to the selection line SEL.
  • the photodiode PD of each pixel 21 generates a signal charge according to the amount of incident light (subject light).
  • the transfer transistor TX is turned on during the high level period of the control signal ⁇ TX, and transfers the charge of the photodiode PD to the floating diffusion FD.
  • the reset transistor RES is turned on during the high level period (period of the power supply potential VDD) of the control signal ⁇ RES, and resets the floating diffusion FD.
  • the amplification transistor AMP has its drain connected to the power supply potential VDD, its gate connected to the floating diffusion FD, its source connected to the drain of the selection transistor SEL, and a constant current source 24 (not shown in FIG. 3). 2) is configured as a load.
  • the amplification transistor AMP outputs a read signal to the vertical signal line 23 via the selection transistor SEL according to the voltage value of the floating diffusion FD.
  • the selection transistor SEL is turned on during the high level period of the control signal ⁇ SEL, and connects the source of the amplification transistor AMP to the vertical signal line 23.
  • the vertical scanning circuit 25 outputs control signals ⁇ SEL, ⁇ RES, and ⁇ TX for each row of the pixels 21, and performs well-known control of the row address of the pixel array unit 22 and vertical scanning. By this control, the output signal (analog signal) of the pixel 2 in the corresponding column is supplied to each vertical signal line 23.
  • the configuration of the pixel 21 is not limited to the configuration shown in FIG.
  • the configuration shown in FIG. 4 may be adopted as the configuration of the pixel 21.
  • FIG. 4 is a circuit diagram showing a pixel 21 according to a modification. 4, elements that are the same as or correspond to those in FIG. 3 are given the same reference numerals, and redundant descriptions thereof are omitted.
  • the configuration shown in FIG. 4 differs from the configuration shown in FIG. 3 in that, for each of two pixels 21 adjacent in the column direction, the two pixels 21 are a set of a floating diffusion FD, an amplification transistor AMP, a reset transistor RES, and a selection.
  • the transistor SEL is shared.
  • the vertical scanning circuit 25 is configured to output control signals ⁇ SEL, ⁇ RES, ⁇ TX1, and ⁇ TX2 as shown in FIG. 4 instead of the control signals ⁇ SEL, ⁇ RES, and ⁇ TX as shown in FIG.
  • the transistor SEL is shared.
  • the vertical scanning circuit 25 is configured to output control signals ⁇ SEL, ⁇ RES, ⁇ TX1, and ⁇ TX2 as shown in FIG. 4 instead of the control signals ⁇ SEL, ⁇ RES, and ⁇ TX as shown in FIG.
  • FIG. 4 two pixels 21 (21-1, 21-2) sharing one set of floating diffusion FD, amplification transistor AMP, reset transistor RES, and selection transistor SEL are shown as a pixel block BL.
  • the photodiode PD and the transfer transistor TX of the upper pixel 21-1 in the pixel block BL are respectively denoted by reference symbols PD1 and TX1, and the photodiode PD of the lower pixel 21-2 in the pixel block BL.
  • the transfer transistor TX are indicated by symbols PD2 and TX2, respectively.
  • the control signal supplied to the gate of the transfer transistor TX1 is ⁇ TX1
  • the control signal supplied to the gate electrode of the transfer transistor TX2 is ⁇ TX2.
  • n indicates a pixel row, but in FIG. 4, n indicates a row of the pixel block BL.
  • One row of the pixel block BL corresponds to two rows of the pixels 21.
  • the vertical scanning circuit 25 receives the control signal from the imaging control unit 5 in FIG. 1 and outputs the control signals ⁇ SEL, ⁇ RES, ⁇ TX1, and ⁇ TX2 for each row of the pixels 21, respectively.
  • a read operation can be realized.
  • the output signal of the pixel 21 includes an optical signal corresponding to an information signal including predetermined information and a dark signal corresponding to a reference signal including a reference component to be subtracted from the information signal. is there.
  • the optical signal is a signal including optical information photoelectrically converted by the pixel 21.
  • the dark signal is a signal output from the pixel 21 when the floating diffusion FD is reset, and the optical signal is transferred from the signal charge of the photodiode FD to the floating diffusion FD. Is a signal that is output from the pixel 21 at the time, and a signal on which a dark signal is superimposed.
  • Each column circuit 26 has an amplification unit 51.
  • the amplifying unit 51 includes an operational amplifier (second operational amplifier) OP, an input capacitor CA, a feedback capacitor CG, and a clamp control switch (second feedback switch) that is turned on / off according to the clamp control signal ⁇ CARST. ) CARST and outputs an information signal and a reference signal corresponding to the signal of the corresponding vertical signal line 23 from the output terminal of the operational amplifier OP.
  • a constant potential Vref is applied by the potential supply unit 33 to the non-inverting input terminal (+ input terminal) of the operational amplifier OP.
  • the vertical signal line 23 is connected to the inverting input terminal ( ⁇ input terminal) of the operational amplifier OP via the input capacitor CA.
  • a feedback capacitor CG and a clamp control switch CARST are connected in parallel between the inverting input terminal of the operational amplifier OP and the output terminal of the operational amplifier OP.
  • the operational amplifier OP is configured using a differential amplifier circuit or the like.
  • the control input portions of the clamp control switch CARST of each column circuit 26 are connected in common, and a clamp control signal ⁇ CARST is supplied from the control pulse generation circuit 29 thereto.
  • the clamp control switch CARST is turned on when the clamp control signal ⁇ CARST is at a high level, and turned off when the clamp control signal ⁇ CARST is at a low level.
  • the clamp control switch CARST when the signal ⁇ CARST becomes high level, the clamp control switch CARST is turned on, the inverting input terminal and the output terminal of the operational amplifier OP are short-circuited, and the output terminal of the operational amplifier OP is set at a predetermined potential. Clamped to Vref. Thereafter, when the voltage of the vertical signal line 23 changes by ⁇ V in a state where the signal ⁇ CARST is set to the low level and the clamp control switch CARST is turned off, the signal at the output terminal of the operational amplifier OP becomes ⁇ Vref ⁇ (CA / CG) ⁇ ⁇ V ⁇ .
  • an inversion gain ⁇ CA / CG
  • ⁇ CARST is once set to a high level for a predetermined period, ⁇ CARST is returned to a low level when a dark signal is output to the vertical signal line 23, and then an optical signal is output to the vertical signal line 23. Is done.
  • the output signal of the operational amplifier OP when ⁇ CARST is returned to the low level is also referred to as the dark signal, and the signal and potential are indicated by Vd.
  • the output signal of the operational amplifier OP when the optical signal is subsequently output to the vertical scanning circuit 25 is also called an optical signal, and the signal and potential are indicated by Vs.
  • the elements other than the amplification unit 51 in each column circuit 26 together with the ramp signal generation circuit 27 and the counter 28 constitute an AD converter.
  • the ramp signal generation circuit 27 and the counter 28 are provided in common for all the columns. Therefore, in this embodiment, one AD converter is provided corresponding to each vertical signal line 23, but the ramp signal generation circuit 27 and the counter 28 among the components of each AD converter are provided. Is shared by all AD converters. The configuration and operation of the AD converter will be described later.
  • the horizontal scanning circuit 30 supplies a control signal for horizontal scanning to a data storage unit 52 (to be described later) of the column circuit 26 of each column, and the first and second m bits for each column obtained by each AD converter.
  • 2 digital values (the count values stored in the latch A and the latch B, which are independent storage areas of the data storage unit 52 of each column circuit 26), are sequentially supplied to the first and second horizontal signal lines 34 of m bits. , 35 to the subtractor 31.
  • the subtractor 31 takes the difference between the received first and second digital values, acquires an m-bit digital value indicating the difference, and sends this to the output circuit 32.
  • the output circuit 32 converts the received digital value, for example, from parallel to serial and outputs it to the outside (digital signal processing unit 6 in FIG. 1) as a serial digital signal.
  • the control pulse generation circuit 29 is based on a master clock (not shown) received from the imaging control unit 5 in FIG. 1 and clock signals and timings necessary for each operation of the vertical scanning circuit 25, AD converter, horizontal scanning circuit 30, and the like. Signals are generated and these signals are supplied to the corresponding circuit parts.
  • the basics of the solid-state imaging device 4 according to the present embodiment are the same except for the configuration and operation of the AD converter (ramp signal generation circuit 27, counter 28, and part other than the amplification unit 51 in the column circuit 26) in FIG.
  • the typical operation is the same as that of a conventional general CMOS image sensor.
  • the ramp signal generation circuit 27 generates a ramp signal Vramp as shown in FIG. 6 to be described later based on the signal from the control pulse generation circuit 29.
  • the configuration of the ramp signal generation circuit 27 is not limited at all. For example, a configuration using a DA converter that DA converts the count value of the counter 28 may be employed, or other known various configurations may be employed. Also good.
  • the counter 28 receives a command from the control pulse generating circuit 29, starts and stops the counting operation, counts the clock signal from the control pulse generating circuit 29 during the counting operation, and connects the n-bit signal line 36.
  • the n-bit count value is supplied to a data storage unit 52 (to be described later) of each column circuit 26.
  • Each column circuit 26 has a comparator COM that performs comparison processing based on the ramp signal Vramp and the reference voltage GND.
  • the comparator COM is composed of an operational amplifier.
  • Each column circuit 26 is connected to the non-inverting input terminal of the comparator COM, and a sampling switch SW1 that samples an output signal of the operational amplifier OP of the amplifier 51 (a signal corresponding to the signal of the optical signal 3 to the vertical scanning circuit 25);
  • a first capacitor C1 whose one electrode is connected to the non-inverting input terminal of the comparator COM and the ramp signal Vramp is inputted to the other electrode, and one electrode is connected to the inverting input terminal of the comparator COM and is connected to the other electrode as a reference
  • a second capacitor C2 to which the voltage GND is input, and a feedback switch SW2 that turns on and off between the inverting input terminal of the comparator COM and the output terminal of the comparator are included.
  • the other electrode of the first capacitor C1 of each column circuit 26 serves as a first input portion of the column circuit 26 to which the ramp signal Vramp is input.
  • the other electrode (first input portion) of the first capacitor C1 of each column circuit 26 is commonly connected by a first wiring 61, and a ramp signal Vramp is supplied from the ramp signal generation circuit 27 thereto.
  • the other electrode of the second capacitor C2 of each column circuit 26 is a second input portion of the column circuit 26 to which the reference voltage GND is input.
  • the other electrode (second input portion) of the second capacitor C2 of each column circuit 26 is connected in common by a second wiring 62, and a reference voltage GND is supplied thereto.
  • the ground potential GND is supplied as the reference voltage, but another constant potential may be supplied as the reference voltage.
  • the supply status of the first and second wirings 61 and 62 and the ramp signal Vramp and the reference voltage GND to them will be described in detail later.
  • the control input section of the sampling switch SW1 of each column circuit 26 is connected in common, and a control signal ⁇ SPL is supplied from the control pulse generation circuit 29 thereto.
  • Sampling switch SW1 is turned on when control signal ⁇ SPL is at a high level, and turned off when control signal ⁇ SPL is at a low level.
  • the control input section of the feedback switch SW2 of each column circuit 26 is connected in common, and a control signal ⁇ ADC is supplied from the control pulse generating circuit 29 thereto.
  • the feedback switch SW2 is turned on when the control signal ⁇ ADC is at a high level, and turned off when the control signal ⁇ ADC is at a low level.
  • Each column circuit 26 has a data storage unit 52.
  • the data storage unit 52 has n-bit latches A and B as independent storage areas.
  • the data storage unit 52 receives the output signal Vout of the comparator COM as a latch command signal, and latches the count value supplied from the counter 28 via the signal line 36 when the output signal Vout of the comparator COM is inverted.
  • the data storage unit 52 follows a control signal ⁇ LCH from the control pulse generation circuit 29 (a signal for instructing which of the latches A and B to store) in a first period t11-t12 in FIG.
  • the count value at the time of inversion of the output signal Vout of the comparator COM is stored in the latch A, and the count value at the time of inversion of the output signal Vout of the comparator COM in the second period t17-t18 in FIG. Store in B.
  • the counter 28 starts the count operation from the change start time t11 of the ramp signal Vramp in the first period t11-t12 in FIG. 6 according to the command from the control pulse generation circuit 29, and also in the second period in FIG.
  • the counting operation is started from the change start time t17 of the ramp signal Vramp from t17 to t18. Therefore, the count values stored in the latches A and B of the data storage unit 52 indicate the respective elapsed times from the change start time t11, t17 of the ramp signal Vramp to the inversion time of the output signal Vout of the comparator COM.
  • the data storage unit 52 and the counter 28 constitute a time measuring unit that obtains count values corresponding to the elapsed times thereof.
  • the data storage unit 52 receives the control signal from the horizontal scanning circuit 30, converts the count values stored in the latches A and B into m-bit digital values, and converts the m-bit horizontal signal lines 34 and 35 into m-bit digital values. Are sent to the subtractor 31 via each of these.
  • FIG. 5 is a timing chart showing an example of the operation of the solid-state imaging device 4 in the present embodiment.
  • a mechanical shutter not shown
  • the nth row readout period ..
  • the readout period (one horizontal period) of each row is composed of a vertical transfer period (including an AD conversion period) of the row and a horizontal transfer period (horizontal scanning period) of the row subsequent thereto.
  • T1 represents a vertical transfer period of the read period of the first row
  • T2 represents a vertical transfer period of the read period of the second row
  • Tn represents a vertical transfer period of the read period of the nth row.
  • FIG. 6 is a timing chart showing the operation in the vertical transfer period Tn of the readout period of the nth row in FIG.
  • the vertical transfer period Tn starts at time t1 and ends at time t18.
  • the control signal ⁇ RES (n) is maintained at the high level, and the reset transistor RES of the pixel 21 in the n-th row is maintained in the on state.
  • the control signal ⁇ RES (n) is set to the low level, and the reset transistor RES of the pixel 21 in the n-th row is turned off.
  • the off state of the reset transistor RES is maintained until time t16.
  • the control signal ⁇ CARST is set to the high level, and after time t3, the control signal ⁇ CARST is set to the low level.
  • the ramp signal Vramp remains at the ground potential GND.
  • GND ground potential
  • control signal ⁇ ADC is set to the high level, the feedback switch SW2 is turned on, and the comparator COM functions as a voltage follower.
  • the control signal ⁇ ADC is set to low level, the feedback switch SW2 is turned off, and the comparator COM functions as a comparator.
  • the control signal ⁇ SPL is set to the high level and the sampling switch SW1 is turned on. After time t6, control signal ⁇ SPL is maintained at the low level until time t14.
  • the sampling switch SW1 Since the sampling switch SW1 is on during the period t5-t6, the dark signal Vd output from the amplifier 51 is sampled and accumulated in the first capacitor C1, and the dark signal is input to the non-inverting input terminal of the comparator COM. Vd is supplied. The level of the dark signal Vd accumulated in the first capacitor C1 is determined at time t6, and this level is maintained after time t6. In the period t5-t7, the dark signal Vd is supplied to the non-inverting input terminal of the comparator COM functioning as a voltage follower. Therefore, the dark signal Vd is sampled by the sampling switch SW1 ⁇ the comparator COM during the voltage follower operation ⁇ the feedback switch. The second capacitor C2 is also sampled through the SW2 path.
  • the dark signal (Vd + Voff) carrying the offset Voff of the comparator COM is accumulated in the second capacitor C2, and is supplied to the inverting input terminal of the comparator COM.
  • the level of the dark signal (Vd + Voff) accumulated in the second capacitor C2 is determined at time t7, and this level is maintained after time t7.
  • the control signal ⁇ TX (n) in the n-th row is once set to the high level, and the transfer transistor TX of the pixel 21 in the n-th row is turned on. Thereby, the output signal of the amplifying unit 51 becomes the optical signal Vs. At this time, since the sampling switch SW1 is off, the output signal of the amplifier does not affect the sampling state of the dark signal Vd in the capacitors C1 and C2.
  • the ramp signal Vramp rises from the ground potential GND to a predetermined potential at time t9 after time t7, is maintained at the predetermined potential from time t9 to time t11, and gradually decreases in proportion to the elapsed time from time t11 to time t12. Then, the potential at time t12 is maintained until time t13, returned to the original ground potential GND at time t13, and maintained at ground potential GND until time t16.
  • the reason why the level of the ramp signal Vramp at the time point t11 is raised is to increase the AD conversion accuracy even when the dark signal Vd is close to the zero level.
  • the dark signal Vd is accumulated in the first capacitor C1 during this period, so that the non-inverting input of the comparator COM
  • the terminal is supplied with the superimposed signal (Vd + Vramp) of the ramp signal Vramp and the dark signal Vd, while the inverting input terminal of the comparator COM is supplied with the dark signal (Vd + Voff) with the offset Voff.
  • the output signal Vout of the comparator COM is inverted.
  • the output signal Vout of the comparator COM is inverted. Therefore, the elapsed time from the change start time t11 of the ramp signal Vramp to the inversion time of the output signal Vout of the comparator COM indicates the offset Voff. A count value indicating this elapsed time (that is, offset Voff) is stored in the latch A of the data storage unit 52.
  • the sampling switch SW1 of each column circuit 26 and the feedback Among the periods in which the switch SW2 is once turned on at the time t5-t6 and then turned off at the same time, this is the first period in which the ramp signal Vramp gradually changes.
  • the length of the first period t11-t12 is wasted so that the output signal Vout of the comparator COM is reliably inverted within the first period t11-t12. It is set so as not to be long.
  • control signal ⁇ SPL is set to the high level and the sampling switch SW1 is turned on. After time t15, the control signal ⁇ SPL is maintained at a low level.
  • the optical signal Vs output from the amplifying unit 51 is sampled and accumulated in the first capacitor C1.
  • the level of the optical signal Vs accumulated in the first capacitor C1 is determined at time t15, and this level is maintained after time t15.
  • the dark signal (Vd + Voff) carrying the offset Voff of the comparator COM remains accumulated in the second capacitor C2 and remains supplied to the inverting input terminal of the comparator COM.
  • the ramp signal Vramp rises from the ground potential GND to a predetermined potential at time t16 after time t15, is maintained at the predetermined potential from time t6 to time t17, and gradually decreases in proportion to the elapsed time from time t17 to time t18. As a result, the original ground potential GND is restored at time t18. Note that the level of the ramp signal Vramp at the time point t17 is raised in order to increase AD conversion accuracy even when the dark signal Vd is close to zero level.
  • the column circuit 26 After the first period t11-t12, when the output signal of the amplifier 51 is the optical signal Vs (and when the signal of the vertical signal line 23 is an optical signal), the column circuit 26 The second period in which the ramp signal Vramp gradually changes in the period in which the sampling switch SW1 of each column circuit 26 is once turned on in the period t14-t15 and turned off while the feedback switch SW2 is kept off. It has become.
  • the length of the second period t17-t18 is wasted so that the output signal Vout of the comparator COM is reliably inverted within the second period t17-t18. It is set so as not to be long.
  • the horizontal transfer period of the n-th row readout period follows.
  • the horizontal scanning circuit 30 performs horizontal scanning in accordance with the control signal from the control pulse generating circuit 29 and stores it in the latch A and the latch B of the data storage unit 52 described later of the column circuit 26 of each column.
  • the first and second count values thus sent are sequentially sent to the subtractor 31 via the first and second horizontal signal lines 34 and 35 of m bits.
  • the subtractor 31 obtains a difference between the received first and second digital values (corresponding to the difference between the optical signal Vs and the dark signal Vd), acquires an m-bit digital value indicating the difference, and outputs this
  • the data is sent to the circuit 32.
  • the output circuit 32 converts the received digital value into a signal of a predetermined signal format, and outputs it to the outside (the digital signal processing unit 6 in FIG. 1) as image data.
  • the subtracter 31 is removed, and the first and second digital values are output to the digital signal processing unit 6 in FIG. 1 via the output circuit 32, and the digital signal processing unit 6 outputs the first and second digital values. You may make it take the difference of a digital value.
  • the reading period of the nth row has been described above, but the operation of the reading period of other rows is the same as the operation of the reading period of the nth row.
  • the readout period (one horizontal period) of each row is sequentially performed without overlapping.
  • the present invention is not limited to this, and it is possible to partially overlap the readout period of one row and the readout period of the next row.
  • the control signal ⁇ SEL (n) may be set to the low level after time t16, and the next n + 1-th reading period may be started slightly later than time t16.
  • the ramp signal generation circuit 27 is arranged on one side (left side in FIG. 2) in the row direction in the solid-state imaging device 4, and the first of each column circuit 26 is arranged.
  • a ramp signal Vramp is supplied to the left side in FIG. 2 of the first wiring 61 that commonly connects the other electrodes (first input portions) of the capacitors C1.
  • the reference voltage GND is applied to the left side in FIG. 2 of the second wiring 62 that commonly connects the other electrode (second input portion) of the second capacitor C2 of each column circuit 26.
  • the reference voltage GND is not supplied to the right side of the second wiring 62 in FIG.
  • FIG. 7 is a schematic plan view schematically showing a specific example of the wiring patterns 61a, 61b, 62a, 62b and the like constituting the first and second wirings 61, 62 in FIG.
  • the left and right sides in FIG. 7 coincide with the left and right sides in FIG. 2, and the left and right direction in FIG. 7 coincides with the row direction of the pixels 21.
  • the first wiring 61 is connected to the main wiring pattern 61a by the main wiring pattern 61a extending in the row direction (left-right direction in FIG. 7) and the contact portion 61c in the column direction (in FIG. 7).
  • the sub-wiring pattern 61b is connected to the first capacitor C1 of each column circuit 26.
  • the sub wiring pattern 61b is indicated by a broken line.
  • the left side of the main wiring pattern 61a in FIG. 7 is connected to the ramp signal generating circuit 27, and the ramp signal Vramp is supplied to the left side of the main wiring pattern 61a in FIG.
  • the second wiring 62 is connected to the main wiring pattern 62a by the main wiring pattern 62a extending in the row direction (left-right direction in FIG. 7) and the contact portion 62c (in FIG. 7).
  • the sub-wiring pattern 62b is connected to the second capacitor C2 of each column circuit 26.
  • the sub wiring pattern 62b is indicated by a broken line.
  • the left side of the main wiring pattern 62a in FIG. 7 is connected to the electrode pad 63d for supplying the ground voltage GND, and the reference voltage GND is supplied to the left side of the main wiring pattern 62a in FIG.
  • no electrode pad is connected to the right side of the main wiring pattern 62a in FIG.
  • FIG. 8 is a schematic plan view schematically showing the solid-state imaging device 4 in FIG. 1 (that is, the solid-state imaging device 4 shown in FIG. 2).
  • the solid-state imaging device 4 seals the chip 71 on which the circuit shown in FIG. 2 is mounted, a concave package body 72 having an opening 72a and containing the chip 71, and having a predetermined light transmission characteristic. And a lid 73.
  • electrode pads 63a to 63g are formed on the chip 71.
  • An electrode pad 63d in FIG. 8 indicates the electrode pad 63d for supplying the ground voltage GND in FIG.
  • the package main body 72 is provided with internal terminals 73a to 73h and external terminals 74a to 74h electrically connected to the terminals one to one.
  • the internal terminals 73a to 73g and the electrode pads 63a to 63g of the chip 71 are electrically connected by bonding wires 75, respectively.
  • the internal terminal 73h and the external terminal 74h are not used as spares.
  • FIG. 9 is a circuit diagram showing a schematic configuration of the solid-state imaging device 104 according to the comparative example, and corresponds to FIG.
  • FIG. 10 is a schematic plan view schematically showing the wiring patterns 61a, 61b, 62a, 62b and the like constituting the first and second wirings 61, 62 in FIG. 9, and corresponds to FIG.
  • FIG. 11 is a schematic plan view schematically showing the solid-state imaging device 104 according to the comparative example shown in FIG. 9, and corresponds to FIG. 9 to 11, elements that are the same as or correspond to those in FIGS. 2, 7, and 8 are assigned the same reference numerals, and redundant descriptions thereof are omitted.
  • the difference between the solid-state imaging device 104 according to this comparative example and the solid-state imaging device 4 of the present embodiment is as follows.
  • the reference voltage GND is not supplied to the right side of the second wiring 62 in FIG.
  • the reference voltage GND is supplied not only on the left side in FIG. 9 of the second wiring 62 but also on the right side in FIG. 9 in order to improve the noise resistance of the second wiring 62.
  • an electrode pad is connected to the right side of the main wiring pattern 62a of the second wiring 62 in FIG.
  • the electrode pad 63h for supplying the ground voltage GND is connected to the right side of the main wiring pattern 62a of the second wiring 62 in FIG.
  • the chip 71 is not provided with the electrode pad 63h, and the internal terminal 73h and the external terminal 74h are not used as spares.
  • the chip 71 is provided with the electrode pad 63h, and the electrode pad 63h and the internal terminal 73h are electrically connected by the bonding wire 75, and the external terminal 74h is connected to the internal terminal.
  • the ground voltage GND is supplied to the electrode pad 63h through 73h.
  • the ramp signal Vramp is supplied from the ramp signal generation circuit 27 to the left side of the first wiring 61 in the drawing, when noise is applied to the first wiring 61 due to disturbance or the like, The noise level on the left side of the first wiring 61 in the drawing is relatively low, the noise level on the right side in the drawing of the first wiring 61 is relatively high, and the noise level at the left and right center in the drawing of the first wiring 61 is moderate. It becomes.
  • the reference voltage GND is supplied to both the left and right sides of the second wiring 62 in the figure, so that when noise is applied to the second wiring 62 due to disturbance or the like, the second wiring 62
  • the noise level on the left side of the figure is relatively small
  • the noise level on the right side of the second wiring 62 in the figure is also relatively small
  • the noise level at the center of the left and right sides of the second wiring 62 is moderate. Therefore, in the comparative example, the noise level distribution state in the second wiring 62 is different from the noise distribution state in the first wiring 61, and the noise level and the second wiring on the right side of the first wiring 61 in the drawing are different.
  • the difference between the level of noise applied to the ramp signal Vramp and the level of noise applied to the reference voltage GND is compared by the comparator COM for AD conversion.
  • the difference in the level of noise on each of the two signals increases. Therefore, in the comparative example, in the column circuit 26 in the right column in the drawing, the error of the comparison result by the comparator COM for AD conversion becomes large, and the AD conversion error becomes large. As a result, in the obtained image, vertical stripes affected by the noise appear, and the image quality deteriorates.
  • the second wiring 62 is caused by disturbance or the like.
  • the noise level on the left side of the second wiring 62 in the drawing is relatively low
  • the noise level on the right side of the second wiring 62 in the drawing is relatively high
  • the noise level is moderate. Therefore, in the present embodiment, the noise level distribution state in the second wiring 62 is the same as the noise distribution state in the first wiring 61, and the first level is not only on the left side and the left and right center in the figure but also on the right side.
  • the difference between the noise level of the wiring 61 and the noise level of the second wiring 62 is reduced.
  • two signals to be compared by the comparator COM for AD conversion (a signal input to the non-inverting input terminal of the comparator COM and a comparator)
  • the difference in the level of the noise on each of the signals input to the inverting input terminal of COM is reduced. Therefore, in the present embodiment, in any column circuit 26 in any column, the difference between the level of noise applied to the ramp signal Vramp and the level of noise applied to the reference voltage GND, and thus the comparison by the comparator COM for AD conversion.
  • the error in the result is reduced and the AD conversion error is reduced.
  • vertical stripes affected by the noise are reduced in the obtained image, and the image quality is improved.
  • FIG. 12 is a schematic plan view schematically showing a solid-state imaging device 204 according to a modification that can be used in place of the solid-state imaging device 4 in the present embodiment, and corresponds to FIGS. 8 and 11.
  • the solid-state imaging device 204 is obtained by removing the bonding wire 75 between the electrode pad 63h and the internal terminal 73h in the solid-state imaging device 104 according to the comparative example, and the other points are exactly the same as the solid-state imaging device 104 according to the comparative example. It is. Also with this solid-state imaging device 204, it is possible to realize the supply status of the reference voltage GND to the second wiring 62 shown in FIG.
  • the solid-state imaging device 104 according to the comparative example can be used in place of the solid-state imaging device 4 depending on how it is used. That is, when the solid-state imaging device 104 according to the comparative example is used, in the wiring board or the like on which the solid-state imaging device 4 is mounted, the external terminal 74h is electrically floated without being connected to the location of the reference voltage GND. The supply status of the reference voltage GND to the second wiring 62 shown in FIG.
  • FIG. 13 is a circuit diagram showing a schematic configuration of the solid-state imaging device 304 used in the electronic camera according to the second embodiment of the present invention, and corresponds to FIG. 13, elements that are the same as or correspond to those in FIG. 2 are given the same reference numerals, and redundant descriptions thereof are omitted.
  • the electronic camera according to this embodiment is different from the electronic camera 1 according to the first embodiment in that a solid-state imaging device 304 is used instead of the solid-state imaging device 4.
  • the difference between the solid-state imaging device 304 and the solid-state imaging device 4 is as follows.
  • an up / down counter 81 is provided in each column circuit 26 in FIG. 2 in place of the data storage unit 52, the counter 28 and the subtractor 31 are removed, and the horizontal signal line Instead of 34 and 35, a horizontal signal line 82 is provided.
  • control for instructing whether the up / down counter 81 operates in the down count mode or the up count mode from the control pulse generation circuit 29 to the up / down counter 81 of each column circuit 26 The signal ⁇ UD is input.
  • the up / down counter 81 also receives the count clock ⁇ CLK from the control pulse generation circuit 29.
  • the control signal ⁇ UD and the count clock ⁇ CLK are input in common to the up / down counter 81 of each column circuit 26.
  • the output signal of the corresponding comparator COM is also input to the up / down counter 81.
  • the up / down counter 81 outputs the output signal Vout of the comparator COM in the first period t11-t12 from the change start time t11 of the ramp signal Vramp in the first period t11-t12 in the vertical transfer period Tn of the n-th readout period. Until the time of inversion, the count clock ⁇ CLK is counted in one of the down count mode and the up count mode, and the count value at the time of inversion is held. Further, the up / down counter 81 outputs the output of the comparator COM in the second period t17-t18 from the change start time t17 of the ramp signal Vramp in the second period t17-t18 in the vertical transfer period Tn of the n-th readout period.
  • the count clock ⁇ CLK is counted from the previously held count value in the other mode of the down count mode and the up count mode, and the count value at the inversion time is held.
  • the held count value is equivalent to the difference between the count value stored in the latch A of the data storage unit 52 and the count value stored in the latch B of the data storage unit 52 in the first embodiment. .
  • the horizontal transfer period of the n-th row readout period follows.
  • the horizontal scanning circuit 30 performs horizontal scanning in accordance with the control signal from the control pulse generating circuit 29, and sequentially counts the count value held in the up / down counter 81 of the column circuit 26 of each column by m bits.
  • the output circuit 32 converts the received digital value into a signal of a predetermined signal format, and outputs it to the outside (the digital signal processing unit 6 in FIG. 1) as image data.
  • the reading period of the nth row has been described above, but the operation of the reading period of other rows is the same as the operation of the reading period of the nth row.
  • a simple inverting amplifier may be used as an amplifying unit in place of the amplifying unit 51 in each column circuit 26.
  • the amplification unit 51 may be removed and the vertical signal line 23 may be directly connected to the sampling switch SW1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

 固体撮像装置は、2次元状に配置された複数の画素と、複数の画素の列毎に設けられ対応する列の画素からの信号を受け取る複数の垂直信号線と、ランプ信号及び基準電圧に基づいて複数の垂直信号線の信号をそれぞれ処理する複数の信号処理部と、複数の信号処理部におけるランプ信号が入力される第1の入力部を共通に接続し、行方向の一方側においてランプ信号が供給される第1の配線と、複数の信号処理部における基準電圧が入力される第2の入力部を共通に接続し、行方向の一方側において基準電圧が供給されるとともに行方向の他方側において基準電圧が供給されない第2の配線とを備える。

Description

固体撮像装置及びこれを用いた電子カメラ
 本発明は、固体撮像装置及びこれを用いた電子カメラに関するものである。
 下記特許文献1の図3には、「画素部20」に対する1列分の「CDS回路3a」の構成が開示されている。
 この「CDS回路3a」には、「画素部20」から出力された画像信号の入力を制御する「サンプルホールド用スイッチsw1」が設けられている。「サンプルホールド用スイッチsw1」の出力側には、画像信号を保持するための「コンデンサ(サンプルホールド用コンデンサ)C31」が接続されている。「コンデンサC31」の、「サンプルホールド用スイッチsw1」の反対側には「コンデンサC31」に保持された画像信号の電位を変化させるランプ信号を供給する「ランプ信号供給源31a」が接続されている。
 また、「サンプルホールド用スイッチsw1」と「コンデンサC31」との「接続点(ノード)n1」は、「差動アンプ33a」の非反転入力端子に接続されている。また、反転入力端子とGNDの間には「コンデンサC32」が設けられている。「差動アンプ33a」の出力端子と、反転入力端子と「コンデンサC32」との「接続点n2」との間には、「クランプスイッチsw2」が設けられている。
日本国特開2008-11284号公報
 前記従来の「CDS回路3a」を「画素部20」の各列に対して設ける場合、1つの「ランプ信号供給源31a」を各列の「CDS回路3a」に対して共通して設け、各列の「CDS回路3a」の「コンデンサC31」のランプ信号入力部を第1の配線で共通に接続し、前記第1の配線の一方側において「ランプ信号供給源31a」を接続し、各列の「CDS回路3a」の「コンデンサC32」のGND電圧入力部(一方電極)を第2の配線で共通に接続し、前記第2の配線に基準電圧としてのGND電圧を供給する。このとき、耐ノイズ性を高めるための電気回路設計におけるGND電圧供給手法の技術常識に従って、前記第2の配線のできるだけ多くの箇所にGND電圧を供給するべく、前記第2の配線の両側をそれぞれ接地することになる。前記第2の配線の両側をそれぞれ接地すれば、前記第2の配線の一箇所のみにGND電圧を供給する場合に比べて、外乱等によって第2の配線に乗るノイズが小さくなり、前記第2の配線の耐ノイズ性が高まる。
 しかしながら、本発明者の研究の結果、この場合には、前記第2の配線の耐ノイズ性を高めることが逆に、処理後に得られる画像に現れるノイズの影響を増大させる原因になってしまうことが、判明した。この点については、後に、本発明と比較される比較例の説明において詳述する。
 本発明は、このような事情に鑑みてなされたもので、ノイズの影響を低減することができ、より高画質の画像を得ることができる固体撮像装置、及び、これを用いた電子カメラを提供する。
 本発明の第1の態様による固体撮像装置は、2次元状に配置された複数の画素と、前記複数の画素の列毎に設けられ対応する列の画素からの信号を受け取る複数の垂直信号線と、ランプ信号及び基準電圧に基づいて前記複数の垂直信号線の信号をそれぞれ処理する複数の信号処理部と、前記複数の信号処理部における前記ランプ信号が入力される第1の入力部を共通に接続し、行方向の一方側において前記ランプ信号が供給される第1の配線と、前記複数の信号処理部における前記基準電圧が入力される第2の入力部を共通に接続し、行方向の前記一方側において前記基準電圧が供給されるとともに行方向の他方側において前記基準電圧が供給されない第2の配線と、を備えたものである。
 本発明の第2の態様による固体撮像装置は、前記第1の態様において、前記各信号処理部は、前記ランプ信号及び前記基準電圧に基づく比較処理を行うコンパレータを有するものである。
 本発明の第3の態様による固体撮像装置は、前記第2の態様において、前記コンパレータは演算増幅器で構成され、前記各信号処理部は、前記コンパレータの非反転入力端子に接続され前記垂直信号線の信号又はこれに応じた信号をサンプリングするサンプリングスイッチと、一方電極が前記非反転入力端子に接続されるとともに他方電極が前記第1の入力部とされた第1の容量と、一方電極が前記コンパレータの反転入力端子に接続されるとともに他方電極が前記第2の入力部とされた第2の容量と、前記反転入力端子と前記コンパレータの出力端子との間をオンオフする帰還スイッチと、を有するものである。
 本発明の第4の態様による固体撮像装置は、前記第3の態様において、(i)前記複数の垂直信号線の信号が基準信号である場合において前記各信号処理部の前記サンプリングスイッチ及び前記帰還スイッチが一旦同時にオンにされてから同時にオフにされている第1の期間において、前記ランプ信号は漸次変化し、(ii)前記第1の期間の後に前記複数の垂直信号線の信号が前記複数の画素のうちの少なくとも1つの画素で光電変換された光情報を含む光信号である場合において前記各信号処理部の前記帰還スイッチがオフに維持されたまま前記各信号処理部の前記サンプリングスイッチが一旦オンにされてからオフにされている第2の期間において、前記ランプ信号は漸次変化し、(iii)前記第1の期間における前記ランプ信号の変化開始時点から前記第1の期間における前記各信号処理部の前記コンパレータの出力部の信号の反転時点までの経過時間に応じたカウント値、及び、前記第2の期間における前記ランプ信号の変化開始時点から前記第2の期間における前記各信号処理部の前記コンパレータの出力部の信号の反転時点までの経過時間に応じたカウント値を得る計時部を、備えたものである。
 本発明の第5の態様による固体撮像装置は、前記第4の態様において、前記計時部は、前記第1の期間における前記ランプ信号の変化開始時点からクロック信号をカウントするとともに前記第2の期間における前記ランプ信号の変化開始時点からクロック信号をカウントするカウンタと、前記各信号処理部に設けられ、前記カウンタのカウント値が入力されて、前記第1の期間における前記コンパレータの出力部の信号の前記反転時点での前記カウント値、及び、前記第2の期間における前記コンパレータの出力部の信号の前記反転時点での前記カウント値をそれぞれ記憶する記憶部とを、有するものである。
 本発明の第6の態様による固体撮像装置は、前記第3の態様において、(i)前記複数の垂直信号線の信号が基準信号である場合において前記各信号処理部の前記サンプリングスイッチ及び前記帰還スイッチが一旦同時にオンにされてから同時にオフにされている第1の期間において、前記ランプ信号は漸次変化し、(ii)前記第1の期間の後に前記複数の垂直信号線の信号が前記複数の画素のうちの少なくとも1つの画素で光電変換された光情報を含む光信号である場合において前記各信号処理部の前記帰還スイッチがオフに維持されたまま前記各信号処理部の前記サンプリングスイッチが一旦オンにされてからオフにされている第2の期間において、前記ランプ信号は漸次変化し、(iii)各信号処理部は、前記第1の期間における前記ランプ信号の変化開始時点から前記第1の期間における前記各信号処理部の前記コンパレータの出力部の信号の反転時点まで、ダウンモード及びアップモードのうちの一方のモードでカウント動作を行うことによってカウント値を取得し、前記第2の期間における前記ランプ信号の変化開始時点から前記第2の期間における前記各信号処理部の前記コンパレータの出力部の信号の反転時点まで、ダウンモード及びアップモードのうちの他方のモードで前記カウント値からカウント動作を行うカウンタを、有するものである。
 本発明の第7の態様による固体撮像装置は、前記第3乃至第6のいずれかの態様において、前記各信号処理部は、前記垂直信号線と前記サンプリングスイッチとの間に設けられた増幅部を有するものである。
 本発明の第8の態様による固体撮像装置は、前記第7の態様において、前記増幅部は、第2の演算増幅器と、前記第2の演算増幅器の反転入力端子に接続された入力容量と、前記第2の演算増幅器の前記反転入力端子と前記第2の演算増幅器の出力端子との間をオンオフする第2の帰還スイッチと、前記第2の演算増幅器の前記反転入力端子と前記第2の演算増幅器の前記出力端子との間に接続された帰還容量と、を有するものである。
 本発明の第9の態様による電子カメラは、前記第1乃至第8のいずれかの態様による固体撮像装置を備えたものである。
 本発明によれば、ノイズの影響を低減することができ、より高画質の画像を得ることができる固体撮像装置、及び、これを用いた電子カメラを提供することができる。
本発明の第1の実施の形態による電子カメラを模式的に示す概略ブロック図である。 図1中の固体撮像装置の概略構成を示す回路図である。 図2中の画素を示す回路図である。 変形例による画素を示す回路図である。 図1中の固体撮像装置の動作の一例を示すタイミングチャートである。 図5中の所定期間の動作を示すタイミングチャートである。 図2中の第1及び第2の配線を構成する配線パターン等の具体例を模式的に示す概略平面図である。 図1中の固体撮像装置を模式的に示す概略平面図である。 比較例による固体撮像装置の概略構成を示す回路図である。 図9中の第1及び第2の配線を構成する配線パターン等を模式的に示す概略平面図である。 図9に示す比較例による固体撮像装置を模式的に示す概略平面図である。 変形例による固体撮像装置を模式的に示す概略平面図である。 本発明の第2の実施の形態による電子カメラで用いられる固体撮像装置の概略構成を示す回路図である。
 以下、本発明による固体撮像装置及び電子カメラについて、図面を参照して説明する。
 [第1の実施の形態]
 図1は、本発明の第1の実施の形態による電子カメラ1を模式的に示す概略ブロック図である。
 本実施の形態による電子カメラ1は、例えば一眼レフのデジタルカメラとして構成されるが、本発明による電子カメラは、これに限らず、コンパクトカメラなどの他の電子カメラや、携帯電話に搭載された電子カメラなどにも適用することができる。
 電子カメラ1には、撮影レンズ2が装着される。この撮影レンズ2は、レンズ制御部3によってフォーカスや絞りが駆動される。この撮影レンズ2の像空間には、固体撮像装置4の撮像面が配置される。
 固体撮像装置4は、撮像制御部5の指令によって駆動され、デジタルの画像信号を出力する。デジタル信号処理部6は、固体撮像装置4から出力されるデジタルの画像信号に対して、デジタル増幅、色補間処理、ホワイトバランス処理などの画像処理等を行う。デジタル信号処理部6により処理された画像信号は、メモリ7に一旦蓄積される。メモリ7は、バス8に接続されている。バス8には、レンズ制御部3、撮像制御部5、CPU9、液晶表示パネル等の表示部10、記録部11、画像圧縮部12及び画像処理部13なども接続される。CPU9には、レリーズ釦などの操作部14が接続される。また、記録部11には記録媒体11aが着脱自在に装着される。
 本実施の形態では、操作部14のレリーズ釦の半押し操作が行われると、電子カメラ1内のCPU9は、図示しない焦点検出センサからの検出信号に基づいてデフォーカス量を算出し、このデフォーカス量に応じて合焦状態となるように、レンズ制御部3に撮影レンズ2を調節させる。また、CPU9は、予め操作部14により指令された絞りとなるように、レンズ制御部3に撮影レンズ2を調節させる。そして、操作部14のレリーズ釦の全押し操作に同期して、CPU9が撮像制御部5を介して固体撮像装置4を制御することによって、固体撮像装置4からデジタルの画像信号が読み出される。この画像信号は、デジタル信号処理部6により処理された後に、メモリ7に一旦格納される。その後、CPU9は、操作部14の指令に基づき、メモリ7内の画像信号に対して必要に応じて画像処理部13や画像圧縮部12にて所望の処理を行い、記録部11に処理後の信号を出力させ記録媒体11aに記録する。
 図2は、図1中の固体撮像装置4の概略構成を示す回路図である。本実施の形態では、固体撮像装置4は、CMOS型の固体撮像装置として構成されているが、他のXYアドレス型固体撮像装置として構成してもよい。
 図2に示すように、固体撮像装置4は、2次元状に配置された複数の画素21(図2では、2×3個の画素2を示す。)からなる画素アレイ部22と、複数の画素21の列毎に設けられ対応する列の画素21からの信号を受け取る複数の垂直信号線23と、各垂直信号線23に設けられた定電流源24と、垂直走査回路25と、ランプ信号Vramp及び基準電圧GNDに基づいて複数の垂直信号線23の信号をそれぞれ処理する複数のカラム回路(信号処理部)26と、ランプ信号Vrampを発生するランプ信号発生回路27と、カウンタ28と、制御パルス発生回路29と、水平走査回路30と、減算器31と、出力回路32とを備えている。
 図3は、図2中の1つの画素21を示す回路図である。各画素21は、一般的なCMOSイメージセンサと同様に、入射光に応じた電荷を生成し蓄積する光電変換部としてのフォトダイオードPDと、前記電荷を受け取って前記電荷を電圧に変換する電荷電圧変換部としてのフローティングディフュージョンFDと、フローティングディフュージョンFDの電位に応じた信号を出力する増幅部としての増幅トランジスタAMPと、フォトダイオードPDからフローティングディフュージョンFDに電荷を転送する転送トランジスタTXと、フローティングディフュージョンFDの電位をリセットするリセットトランジスタRESと、読み出し行を選択するための選択トランジスタSELとを有し、図3に示すように接続されている。図3において、VDDは電源電位である。なお、本実施の形態では、画素21のトランジスタAMP,TX,RES,SELは、全てnMOSトランジスタである。
 転送トランジスタTXのゲートは行毎に制御線41に共通に接続され、そこには、転送トランジスタTXを制御する制御信号φTXが垂直走査回路25から供給される。リセットトランジスタRESのゲートは行毎に制御線42に共通に接続され、そこには、リセットトランジスタRESを制御する制御信号φRESが垂直走査回路25から供給される。選択トランジスタSELのゲートは行毎に制御線43に共通に接続され、そこには、選択トランジスタSELを制御する制御信号φSELが垂直走査回路25から供給される。各制御信号φTXを行毎に区別する場合、n行目の制御信号φTXは符号φTX(n)で示す。この点は、制御信号φRES,φSELについても同様である。
 各画素21のフォトダイオードPDは、入射光の光量(被写体光)に応じて信号電荷を生成する。転送トランジスタTXは、制御信号φTXのハイレベル期間にオンし、フォトダイオードPDの電荷をフローティングディフュージョンFDに転送する。リセットトランジスタRESは、制御信号φRESのハイレベル期間(電源電位VDDの期間)にオンし、フローティングディフュージョンFDをリセットする。
 増幅トランジスタAMPは、そのドレインが電源電位VDDに接続され、そのゲートがフローティングディフュージョンFDに接続され、そのソースが選択トランジスタSELのドレインに接続され、定電流源24(図3では図示せず、図2を参照)を負荷とするソースフォロア回路を構成している。増幅トランジスタAMPは、フローティングディフュージョンFDの電圧値に応じて、選択トランジスタSELを介して垂直信号線23に読み出し信号を出力する。選択トランジスタSELは、制御信号φSELのハイレベル期間にオンし、増幅トランジスタAMPのソースを垂直信号線23に接続する。
 垂直走査回路25は、画素21の行毎に、制御信号φSEL,φRES,φTXをそれぞれ出力し、画素アレイ部22の行アドレスや垂直走査の周知の制御を行う。この制御によって、各垂直信号線23には、それに対応する列の画素2の出力信号(アナログ信号)が供給される。
 画素21の構成は、前述した図3に示す構成に限らない。例えば、画素21の構成として、図4に示す構成を採用してもよい。図4は、変形例による画素21を示す回路図である。図4において、図3中の要素と同一又は対応する要素には同一符号を付し、その重複する説明は省略する。
 図4に示す構成が図3に示す構成と異なる所は、列方向に隣り合う2つの画素21毎に、当該2つの画素21が1組のフローティングディフュージョンFD、増幅トランジスタAMP、リセットトランジスタRES及び選択トランジスタSELを共有している点である。この変形例では、垂直走査回路25は、図3に示すような制御信号φSEL,φRES,φTXに代えて、図4に示すような制御信号φSEL,φRES,φTX1,φTX2を出力するように構成される。
 図4では、1組のフローティングディフュージョンFD、増幅トランジスタAMP、リセットトランジスタRES及び選択トランジスタSELを共有する2つの画素21(21-1,21-2)を、画素ブロックBLとして示している。また、図3では、画素ブロックBL内の上側の画素21-1のフォトダイオードPD及び転送トランジスタTXをそれぞれ符号PD1,TX1で示し、画素ブロックBL内の下側の画素21-2のフォトダイオードPD及び転送トランジスタTXをそれぞれ符号PD2,TX2で示し、両者を区別している。また、転送トランジスタTX1のゲートに供給される制御信号をφTX1とし、転送トランジスタTX2のゲート電極に供給される制御信号をφTX2とし、両者を区別している。なお、図3ではnは画素行を示しているが、図4ではnは画素ブロックBLの行を示している。画素ブロックBLの1行は、画素21の2行に相当している。
 この変形例では、垂直走査回路25は、図1中の撮像制御部5からの制御信号を受けて、画素21の行毎に、制御信号φSEL,φRES,φTX1,φTX2をそれぞれ出力することで、読み出し動作を実現することができる。
 画素21の出力信号には、一般的なCMOSイメージセンサと同様に、所定情報を含む情報信号に相当する光信号と、前記情報信号から差し引くべき基準成分を含む基準信号に相当するダーク信号とがある。前記光信号は、画素21で光電変換された光情報を含む信号である。具体的には、本実施の形態では、ダーク信号は、フローティングディフュージョンFDがリセットされたときに画素21から出力される信号であり、光信号は、フォトダイオードFDの信号電荷がフローティングディフュージョンFDに転送されたときに画素21から出力される信号であり、ダーク信号が重畳された信号である。
 各カラム回路26は、増幅部51を有している。本実施の形態では、増幅部51は、演算増幅器(第2の演算増幅器)OP、入力容量CA、帰還容量CG、及び、クランプ制御信号φCARSTに応じてオンオフするクランプ制御スイッチ(第2の帰還スイッチ)CARSTを有し、演算増幅器OPの出力端子から、対応する垂直信号線23の信号に応じた情報信号及び基準信号を出力する。演算増幅器OPの非反転入力端子(+入力端子)には、電位供給部33により一定電位Vrefが印加されている。垂直信号線23が入力容量CAを介して演算増幅器OPの反転入力端子(-入力端子)に接続されている。また、演算増幅器OPの反転入力端子と演算増幅器OPの出力端子との間に、帰還容量CG及びクランプ制御スイッチCARSTが並列に接続されている。演算増幅器OPは、差動増幅回路等を用いて構成されている。各カラム回路26のクランプ制御スイッチCARSTの制御入力部は共通して接続され、そこには制御パルス発生回路29からクランプ制御信号φCARSTが供給される。クランプ制御スイッチCARSTは、クランプ制御信号φCARSTがハイレベルの場合にオンし、クランプ制御信号φCARSTがローレベルの場合にオフする。
 この増幅部51によれば、信号φCARSTがハイレベルになると、クランプ制御スイッチCARSTがオンして演算増幅器OPの反転入力端子と出力端子との間が短絡し、演算増幅器OPの出力端子が所定電位Vrefにクランプされる。その後、信号φCARSTがローレベルにされてクランプ制御スイッチCARSTがオフした状態において、垂直信号線23の電圧がΔVだけ変化すると、演算増幅器OPの出力端子の信号は、{Vref-(CA/CG)×ΔV}となる。このように、クランプ制御スイッチCARSTがオフすると、入力容量CAと帰還容量CGの比で反転ゲイン(-CA/CG)が得られる。
 後述するように、所定期間だけ一旦φCARSTがハイレベルにされ、垂直信号線23にダーク信号が出力されているときにφCARSTがローレベルに戻され、その後に、垂直信号線23に光信号が出力される。以下の説明では、垂直信号線23にダーク信号が出力されているときにφCARSTをローレベルに戻したときの演算増幅器OPの出力信号もダーク信号呼び、その信号及び電位をVdで示す。また、その後に垂直走査回路25に光信号が出力されたときの演算増幅器OPの出力信号も光信号と呼び、その信号及び電位をVsで示す。
 各カラム回路26における増幅部51以外の要素が、ランプ信号発生回路27及びカウンタ28と共に、AD変換器を構成している。ランプ信号発生回路27及びカウンタ28は、全ての列について共通して1つ設けられている。したがって、本実施の形態では、各垂直信号線23に対応してそれぞれ1つずつAD変換器が設けられているが、各AD変換器の構成要素のうちのランプ信号発生回路27及びカウンタ28については、全てのAD変換器によって共有されている。AD変換器の構成及び動作については、後述する。
 水平走査回路30は、水平走査のための制御信号を各列のカラム回路26の後述するデータ記憶部52に供給し、各AD変換器により得られた各列毎のmビットの第1及び第2のデジタル値(各カラム回路26のデータ記憶部52の独立した記憶領域であるラッチA及びラッチBにそれぞれ記憶されたカウント値)を、順次mビットの第1及び第2の水平信号線34,35を介して減算器31に送出させる。減算器31は、受け取った第1及び第2のデジタル値の差分を取り、その差分を示すmビットのデジタル値を取得し、これを出力回路32に送出させる。出力回路32は、受け取ったデジタル値を、例えばパラレル-シリアル変換してシリアルデジタル信号として、外部(図1中のデジタル信号処理部6)へ出力させる。
 制御パルス発生回路29は、図1中の撮像制御部5から受け取った図示しないマスタークロックに基づいて、垂直走査回路25、AD変換器及び水平走査回路30などの各動作に必要なクロック信号やタイミング信号を生成し、これらの信号を該当する回路部分に供給する。
 図2中のAD変換器(ランプ信号発生回路27、カウンタ28、及び、カラム回路26における増幅部51以外の部分)の構成及びその作用を除いて、本実施の形態における固体撮像装置4の基本的な動作は、従来の一般的なCMOSイメージセンサと同様である。
 ランプ信号発生回路27は、制御パルス発生回路29からの信号に基づいて、後述する図6に示すようなランプ信号Vrampを発生する。ランプ信号発生回路27の構成は何ら限定されず、例えば、カウンタ28のカウント値をDA変換するDA変換器を用いた構成を採用してもよいし、他の周知の種々の構成を採用してもよい。
 カウンタ28は、制御パルス発生回路29からの指令を受けて、カウント動作の開始及び停止を行い、カウント動作中に、制御パルス発生回路29からのクロック信号をカウントし、nビットの信号線36を介してnビットのカウント値を各カラム回路26の後述するデータ記憶部52に供給する。
 各カラム回路26は、ランプ信号Vramp及び基準電圧GNDに基づく比較処理を行うコンパレータCOMを有している。コンパレータCOMは、演算増幅器で構成されている。各カラム回路26は、コンパレータCOMの非反転入力端子に接続され増幅部51の演算増幅器OPの出力信号(垂直走査回路25に光信号3の信号に応じた信号)をサンプリングするサンプリングスイッチSW1と、一方電極がコンパレータCOMの非反転入力端子に接続されるとともに他方電極にランプ信号Vrampが入力される第1の容量C1と、一方電極がコンパレータCOMの反転入力端子に接続されるとともに他方電極に基準電圧GNDが入力される第2の容量C2と、コンパレータCOMの反転入力端子とコンパレータの出力端子との間をオンオフする帰還スイッチSW2と、を有している。
 本実施の形態では、各カラム回路26の第1の容量C1の前記他方電極が、ランプ信号Vrampが入力されるカラム回路26の第1の入力部となっている。各カラム回路26の第1の容量C1の前記他方電極(第1の入力部)は、第1の配線61によって共通に接続され、そこにはランプ信号発生回路27からランプ信号Vrampが供給される。また、各カラム回路26の第2の容量C2の前記他方電極が、基準電圧GNDが入力されるカラム回路26の第2の入力部となっている。各カラム回路26の第2の容量C2の前記他方電極(第2の入力部)は、第2の配線62によって共通に接続され、そこには基準電圧GNDが供給される。本実施の形態では、この基準電圧として接地電位GNDが供給されるが、その基準電圧として他の一定電位を供給してもよい。第1及び第2の配線61,62やそれらに対するランプ信号Vramp及び基準電圧GNDの供給状況については、後に詳述する。
 各カラム回路26のサンプリングスイッチSW1の制御入力部は共通して接続され、そこには制御パルス発生回路29から制御信号φSPLが供給される。サンプリングスイッチSW1は、制御信号φSPLがハイレベルの場合にオンし、制御信号φSPLがローレベルの場合にオフする。
 各カラム回路26の帰還スイッチSW2の制御入力部は共通して接続され、そこには制御パルス発生回路29から制御信号φADCが供給される。帰還スイッチSW2は、制御信号φADCがハイレベルの場合にオンし、制御信号φADCがローレベルの場合にオフする。
 各カラム回路26は、データ記憶部52を有している。データ記憶部52は、内部に独立した記憶領域としてのそれぞれnビットの、ラッチAとラッチBとを有している。データ記憶部52は、コンパレータCOMの出力信号Voutをラッチ指令信号として受け、コンパレータCOMの出力信号Voutが反転した時点でカウンタ28から信号線36を介して供給されているカウント値をラッチする。このとき、データ記憶部52は、制御パルス発生回路29からの制御信号φLCH(ラッチA,Bのいずれに記憶させるかを指令する信号)に従って、後述する図6中の第1の期間t11-t12におけるコンパレータCOMの出力信号Voutの反転時点でのカウント値をラッチAに記憶し、後述する図6中の第2の期間t17-t18におけるコンパレータCOMの出力信号Voutの反転時点でのカウント値をラッチBに記憶する。
 カウンタ28は、制御パルス発生回路29からの指令によって、図6中の第1の期間t11-t12におけるランプ信号Vrampの変化開始時点t11からカウント動作を開始するとともに、図6中の第2の期間t17-t18におけるランプ信号Vrampの変化開始時点t17からカウント動作を開始する。したがって、データ記憶部52のラッチA,Bに記憶されたカウント値は、ランプ信号Vrampの変化開始時点t11,t17からコンパレータCOMの出力信号Voutの反転時点までの各経過時間を示す。このように、データ記憶部52及びカウンタ28は、それらの経過時間に応じたカウント値をそれぞれ得る計時部を構成している。データ記憶部52は、水平走査回路30からの制御信号を受けて、ラッチA,Bにそれぞれ記憶しているカウント値を、mビットのデジタル値に変換してmビットの水平信号線34,35をそれぞれ介して減算器31に送出させる。
 図5は、本実施の形態における固体撮像装置4の動作の一例を示すタイミングチャートである。動作を開始すると、メカニカルシャッタ(図示せず)が所定期間(露光期間)T0開かれた後、1行目の読み出し期間、2行目の読み出し期間、・・・、n行目の読み出し期間、・・・が行われ、1行目から最終行まで1行ずつ順次読み出し動作が繰り返される。各行の読み出し期間(1水平期間)は、当該行の垂直転送期間(AD変換期間を含む)とこれに引き続く当該行の水平転送期間(水平走査期間)とからなる。図5において、T1は1行目の読み出し期間の垂直転送期間、T2は2行目の読み出し期間の垂直転送期間、Tnはn行目の読み出し期間の垂直転送期間を示している。図5に示すように、各行の読み出し期間の垂直転送期間において、当該行の制御信号φSELがハイレベルにされ、当該行の画素21の選択トランジスタSELがオンする。
 図6は、図4中のn行目の読み出し期間の垂直転送期間Tnの動作を示すタイミングチャートである。垂直転送期間Tnは、時点t1で開始し、時点t18で終了する。
 時点t1後の時点t2まで、制御信号φRES(n)がハイレベルに維持されて、n行目の画素21のリセットトランジスタRESがオン状態に維持される。時点t2で、制御信号φRES(n)がローレベルにされ、n行目の画素21のリセットトランジスタRESがオフにされる。リセットトランジスタRESのオフ状態は、時点t16まで維持される。時点t2から時点t3までの期間において、制御信号φCARSTがハイレベルにされ、時点t3以降は制御信号φCARSTがローレベルにされる。その結果、時点t3から後述する時点t8までの期間において、増幅部51の出力信号はダーク信号Vdとなる。
 時点t1後の時点t9まで、ランプ信号Vrampは、接地電位GNDとなっている。もっとも、接地電位GNDに代えて、他の一定電位にしてもよい。
 時点t4から時点t7までの期間において、制御信号φADCがハイレベルにされて帰還スイッチSW2がオンし、コンパレータCOMはボルテージフォロワとして機能する。時点t7以降は、制御信号φADCがローレベルにされて帰還スイッチSW2がオフし、コンパレータCOMは、コンパレータとして機能する。時点t4後の時点t5から時点t7前の時点t6までの期間において、制御信号φSPLがハイレベルにされてサンプリングスイッチSW1がオンにされる。時点t6以降は時点t14まで、制御信号φSPLがローレベルに維持される。
 期間t5-t6において、サンプリングスイッチSW1がオンであるので、増幅部51から出力されているダーク信号Vdが、第1の容量C1にサンプリングされて蓄積され、コンパレータCOMの非反転入力端子にダーク信号Vdが供給された状態となる。第1の容量C1に蓄積されるダーク信号Vdのレベルは時点t6で定まり、このレベルは時点t6以降も維持される。また、期間t5-t7において、ダーク信号Vdは、ボルテージフォロワとして機能するコンパレータCOMの非反転入力端子に供給されるので、ダーク信号Vdは、サンプリングスイッチSW1→ボルテージフォロワ動作時のコンパレータCOM→帰還スイッチSW2の経路で第2の容量C2にもサンプリングされる。このとき、コンパレータCOMのオフセットVoffが乗ったダーク信号(Vd+Voff)が第2の容量C2に蓄積され、これがコンパレータCOMの反転入力端子に供給された状態となる。第2の容量C2に蓄積されるダーク信号(Vd+Voff)のレベルは時点t7で定まり、このレベルは時点t7以降も維持される。
 時点t7後の時点t8から時点t10までの期間において、n行目の制御信号φTX(n)が一旦ハイレベルにされてn行目の画素21の転送トランジスタTXがオンする。これにより、増幅部51の出力信号は光信号Vsとなる。このとき、サンプリングスイッチSW1はオフしているので、増幅部の出力信号は容量C1,C2におけるダーク信号Vdのサンプリング状態に影響を与えない。
 ランプ信号Vrampは、時点t7後の時点t9において接地電位GNDから所定電位に立ち上げられ、時点t9から時点t11までその所定電位に維持され、時点t11から時点t12まで経過時間に比例して漸次低下していき、時点t12の電位を時点t13まで維持し、時点t13で元の接地電位GNDに戻され、時点t16まで接地電位GNDに維持されている。なお、時点t11でのランプ信号Vrampのレベルを持ち上げているのは、ダーク信号Vdがゼロレベルに近くてもAD変換精度を高めるためである。
 今、ランプ信号Vrampが接地電位GNDから変化している期間t9-t13について考えると、この期間では、第1の容量C1にはダーク信号Vdが蓄積されていることから、コンパレータCOMの非反転入力端子にはランプ信号Vrampとダーク信号Vdとの重畳信号(Vd+Vramp)が供給される一方で、コンパレータCOMの反転入力端子にはオフセットVoffが乗ったダーク信号(Vd+Voff)が供給されることになる。コンパレータCOMの非反転入力端子の入力信号が、コンパレータCOMの反転入力端子の入力信号と一致した時点で、コンパレータCOMの出力信号Voutが反転する。したがって、ランプ信号VrampがオフセットVoffと一致した時点で、コンパレータCOMの出力信号Voutが反転する。このため、ランプ信号Vrampの変化開始時点t11からコンパレータCOMの出力信号Voutの反転時点までの経過時間は、オフセットVoffを示すものとなる。この経過時間(すなわち、オフセットVoff)を示すカウント値がデータ記憶部52のラッチAに記憶される。
 期間t11-t12は、増幅部51の出力信号がダーク信号Vdである場合(ひいては、垂直信号線23の信号がダーク信号(基準信号)である場合)において各カラム回路26のサンプリングスイッチSW1及び帰還スイッチSW2が期間t5-t6で一旦同時にオンにされてから同時にオフにされている期間のうち、ランプ信号Vrampが漸次変化する第1の期間となっている。第1の期間t11-t12の長さは、ダーク信号Vdの可変範囲を考慮して、第1の期間t11-t12内において確実にコンパレータCOMの出力信号Voutが反転するように、かつ、無駄に長期間とならないように、設定されている。
 時点t13後の時点t14から時点t15までの期間において、制御信号φSPLがハイレベルにされてサンプリングスイッチSW1がオンにされる。時点t15以降は、制御信号φSPLがローレベルに維持される。
 期間t4-t15において、サンプリングスイッチSW1がオンであるので、増幅部51から出力されている光信号Vsが、第1の容量C1にサンプリングされて蓄積される。第1の容量C1に蓄積される光信号Vsのレベルは時点t15で定まり、このレベルは時点t15以降も維持される。一方、コンパレータCOMのオフセットVoffが乗ったダーク信号(Vd+Voff)は、第2の容量C2に蓄積されたままであり、コンパレータCOMの反転入力端子に供給された状態のままである。
 ランプ信号Vrampは、時点t15後の時点t16において接地電位GNDから所定電位に立ち上げられ、時点t6から時点t17までその所定電位に維持され、時点t17から時点t18まで経過時間に比例して漸次低下していき、時点t18で元の接地電位GNDに戻されている。なお、時点t17でのランプ信号Vrampのレベルを持ち上げているのは、ダーク信号Vdがゼロレベルに近くてもAD変換精度を高めるためである。
 今、ランプ信号Vrampが接地電位GNDから変化している期間t16-t18について考えると、この期間では、第1の容量C1には光信号Vsが蓄積されていることから、コンパレータCOMの非反転入力端子にはランプ信号Vrampと光信号Vsとの重畳信号(Vs+Vramp)が供給される一方で、コンパレータCOMの反転入力端子にはオフセットVoffが乗ったダーク信号(Vd+Voff)が供給されることになる。コンパレータCOMの非反転入力端子の入力信号が、コンパレータCOMの反転入力端子の入力信号と一致した時点で、コンパレータCOMの出力信号Voutが反転する。したがって、ランプ信号Vrampが(Vd-Vs+Voff)と一致した時点で、コンパレータCOMの出力信号Voutが反転する。このため、ランプ信号Vrampの変化開始時点t17からコンパレータCOMの出力信号Voutの反転時点までの経過時間は、(Vd-Vs+Voff)を示すものとなる。この経過時間(すなわち、(Vd-Vs+Voff))を示すカウント値がデータ記憶部52のラッチBに記憶される。
 期間t17-t18は、第1の期間t11-t12の後に増幅部51の出力信号が光信号Vsである場合(ひいては、垂直信号線23の信号が光信号である場合)において各カラム回路26の帰還スイッチSW2がオフに維持されたまま各カラム回路26のサンプリングスイッチSW1が期間t14-t15で一旦オンにされてからオフにされている期間のうち、ランプ信号Vrampが漸次変化する第2の期間となっている。第2の期間t17-t18の長さは、光信号Vsの可変範囲を考慮して、第2の期間t17-t18内において確実にコンパレータCOMの出力信号Voutが反転するように、かつ、無駄に長期間とならないように、設定されている。
 n行目の読み出し期間の垂直転送期間Tnが終了すると、引き続いてn行目の読み出し期間の水平転送期間となる。この水平転送期間において、水平走査回路30は、制御パルス発生回路29からの制御信号に従って、水平走査を行い、各列のカラム回路26の後述するデータ記憶部52のラッチA及びラッチBにそれぞれ記憶された第1及び第2のカウント値を順次mビットの第1及び第2の水平信号線34,35を介して減算器31に送出させる。減算器31は、受け取った第1及び第2のデジタル値の差分(光信号Vsとダーク信号Vdとの差分に相当)を取り、その差分を示すmビットのデジタル値を取得し、これを出力回路32に送出させる。出力回路32は、受け取ったデジタル値を、所定の信号形式の信号に変換し、画像データとして外部(図1中のデジタル信号処理部6)へ出力させる。
 なお、減算器31を取り除き、第1及び第2のデジタル値をそれぞれ出力回路32を介して図1中のデジタル信号処理部6へ出力し、デジタル信号処理部6で前記第1及び第2のデジタル値の差分を取るようにしてもよい。
 以上、n行目の読み出し期間について説明したが、他の行の読み出し期間の動作も、n行目の読み出し期間の動作と同様である。
 なお、以上説明した動作例では、各行の読み出し期間(1水平期間)が重複することなく順次行われるものとした。しかしながら、これに限らず、ある行の読み出し期間と次の行の読み出し期間とを一部重複させることも可能である。この場合、例えば、図6において、制御信号φSEL(n)を時点t16以降ローレベルにし、時点t16よりも若干後の時点から、次のn+1行目の読み出し期間を開始させてもよい。
 ところで、本実施の形態では、図2に示すように、ランプ信号発生回路27は固体撮像装置4における行方向の一方側(図2中の左側)に配置され、各カラム回路26の第1の容量C1の前記他方電極(第1の入力部)を共通に接続する第1の配線61の図2中左側に、ランプ信号Vrampが供給されている。また、本実施の形態では、各カラム回路26の第2の容量C2の前記他方電極(第2の入力部)を共通に接続する第2の配線62の図2中左側に、基準電圧GNDが供給され、第2の配線62の図2中右側には基準電圧GNDが供給されていない。
 図7は、図2中の第1及び第2の配線61,62を構成する配線パターン61a,61b,62a,62b等の具体例を模式的に示す概略平面図である。図7中の左右は図2中の左右と一致し、図7中の左右方向は画素21の行方向と一致している。
 図7に示す例では、第1の配線61は、行方向(図7中の左右方向)に延びた主配線パターン61aと、コンタクト部61cによって主配線パターン61aに接続され列方向(図7中の上下方向)に延びて各カラム回路26の第1の容量C1に接続される副配線パターン61bとから構成されている。図7では、副配線パターン61bの階層は主配線パターン61aの階層と異なるので、副配線パターン61bを破線で示している。主配線パターン61aの図7中の左側がランプ信号発生回路27に接続され、主配線パターン61aの図7中の左側にランプ信号Vrampが供給される。
 図7に示す例では、第2の配線62は、行方向(図7中の左右方向)に延びた主配線パターン62aと、コンタクト部62cによって主配線パターン62aに接続され列方向(図7中の上下方向)に延びて各カラム回路26の第2の容量C2に接続される副配線パターン62bとから構成されている。図7では、副配線パターン62bの階層は主配線パターン62aの階層と異なるので、副配線パターン62bを破線で示している。主配線パターン62aの図7中の左側が接地電圧GND供給用の電極パッド63dに接続され、主配線パターン62aの図7中の左側に基準電圧GNDが供給される。一方、主配線パターン62aの図7中の右側には電極パッドは接続されていない。
 図8は、図1中の固体撮像装置4(すなわち、図2に示す固体撮像装置4)を模式的に示す概略平面図である。固体撮像装置4は、図2に示す回路を搭載したチップ71と、開口72aを有しチップ71を収容した凹形状のパッケージ本体72と、所定の光透過特性を有し開口72aを封止する蓋体73とを有している。
 図8に示すように、チップ71には、電極パッド63a~63gが形成されている。図8中の電極パッド63dは、図7中の接地電圧GND供給用の電極パッド63dを示している。
 パッケージ本体72には、内部端子73a~73h、及び、これらにそれぞれ1対1に電気的に接続された外部端子74a~74hが設けられている。内部端子73a~73gとチップ71の電極パッド63a~63gとの間がそれぞれ、ボンディングワイヤ75によって電気的に接続されている。本例では、内部端子73h及び外部端子74hは、予備として使用されていない。勿論、内部端子73h及び外部端子74hを、何らかの信号を内外間で授受するために用いてもよい。
 図9は、比較例による固体撮像装置104の概略構成を示す回路図であり、図2に対応している。図10は、図9中の第1及び第2の配線61,62を構成する配線パターン61a,61b,62a,62b等を模式的に示す概略平面図であり、図7に対応している。図11は、図9に示す比較例による固体撮像装置104を模式的に示す概略平面図であり、図8に対応している。図9乃至図11において、図2、図7及び図8中の要素と同一又は対応する要素には同一符号を付し、その重複する説明は省略する。
 この比較例による固体撮像装置104が本実施の形態の固体撮像装置4と異なる所は、以下に説明する点である。
 図2及び図9に示すように、本実施の形態の固体撮像装置4では、第2の配線62の図2中右側には基準電圧GNDが供給されていないのに対し、比較例による固体撮像装置104では、第2の配線62の耐ノイズ性を高めるべく、第2の配線62の図9中の左側のみならず図9中の右側においても基準電圧GNDが供給されている。
 これを実現するため、図7及び図10に示すように、本実施の形態の固体撮像装置4では、第2の配線62の主配線パターン62aの図7中の右側には電極パッドが接続されていないのに対し、比較例による固体撮像装置104では、第2の配線62の主配線パターン62aの図7中の右側には接地電圧GND供給用の電極パッド63hが接続されている。また、図8及び図9に示すように、本実施の形態の固体撮像装置4では、チップ71に電極パッド63hが設けられておらずに内部端子73h及び外部端子74hが予備として使用されていないのに対し、比較例による固体撮像装置104では、チップ71に電極パッド63hが設けられて電極パッド63hと内部端子73hとの間がボンディングワイヤ75によって電気的に接続され、外部端子74hから内部端子73h介して電極パッド63hに接地電圧GNDが供給されるようになっている。
 比較例においても本実施の形態においても、第1の配線61の図中左側にランプ信号発生回路27からランプ信号Vrampが供給されるので、外乱等により第1の配線61にノイズが乗ると、第1の配線61の図中左側のノイズレベルは比較的小さく、第1の配線61の図中右側のノイズレベルは比較的大きく、第1の配線61の図中左右中央のノイズレベルは中程度となる。
 これに対し、比較例では、第2の配線62の図中左側及び右側の両側において基準電圧GNDが供給されるので、外乱等により第2の配線62にノイズが乗ると、第2の配線62の図中左側のノイズレベルは比較的小さく、第2の配線62の図中右側のノイズレベルも比較的小さく、第2の配線62の図中左右中央のノイズレベルは中程度となる。したがって、比較例では、第2の配線62におけるノイズレベルの分布状況が第1の配線61におけるノイズの分布状況と異なってしまい、第1の配線61の図中右側のノイズレベルと第2の配線62の図中右側のノイズレベルとの差が大きくなる。このため、比較例では、図中右側の列のカラム回路26において、ランプ信号Vrampに乗るノイズのレベルと基準電圧GNDに乗るノイズのレベルとの差、ひいては、AD変換のためにコンパレータCOMで比較される2つの信号(コンパレータCOMの非反転入力端子に入力される信号とコンパレータCOMの反転入力端子に入力される信号)にそれぞれ乗るノイズのレベルの差が大きくなる。よって、比較例では、図中右側の列のカラム回路26では、AD変換のためのコンパレータCOMによる比較結果の誤差が大きくなり、AD変換誤差が大きくなる。その結果、得られる画像において、そのノイズの影響を受けた縦筋が現れてしまい、画質が低下してしまう。
 一方、本実施の形態では、第2の配線62の図中左側において基準電圧GNDが供給され第2の配線62の図中右側において基準電圧GNDが供給されないので、外乱等により第2の配線62にノイズが乗ると、第2の配線62の図中左側のノイズレベルは比較的小さく、第2の配線62の図中右側のノイズレベルは比較的大きく、第2の配線62の図中左右中央のノイズレベルは中程度となる。したがって、本実施の形態では、第2の配線62におけるノイズレベルの分布状況が第1の配線61におけるノイズの分布状況と同様となり、図中の左側や左右中央のみならず右側においても、第1の配線61のノイズレベルと第2の配線62のノイズレベルとの差が小さくなる。このため、本実施の形態では、図中いずれの列のカラム回路26においても、AD変換のためにコンパレータCOMで比較される2つの信号(コンパレータCOMの非反転入力端子に入力される信号とコンパレータCOMの反転入力端子に入力される信号)にそれぞれ乗るノイズのレベルの差が小さくなる。よって、本実施の形態では、いずれの列のカラム回路26においても、ランプ信号Vrampに乗るノイズのレベルと基準電圧GNDに乗るノイズのレベルとの差、ひいては、AD変換のためのコンパレータCOMによる比較結果の誤差が小さくなり、AD変換誤差が小さくなる。その結果、本実施の形態では、得られる画像において、そのノイズの影響を受けた縦筋が低減され、画質が向上する。
 図12は、本実施の形態において固体撮像装置4に代えて用いることができる変形例による固体撮像装置204を模式的に示す概略平面図であり、図8及び図11に対応している。
 この固体撮像装置204は、比較例による固体撮像装置104において電極パッド63hと内部端子73hとの間のボンディングワイヤ75を取り除いたものであり、他の点は比較例による固体撮像装置104と全く同一である。この固体撮像装置204によっても、図2に示す第2の配線62に対する基準電圧GNDの供給状況を実現することができる。
 また、本発明では、比較例による固体撮像装置104であっても、その用い方によっては、固体撮像装置4に代えて用いることができる。すなわち、比較例による固体撮像装置104を用いる場合には、固体撮像装置4を搭載する配線板等において、外部端子74hを基準電圧GNDの箇所に接続せずに電気的に浮かすことで、図2に示す第2の配線62に対する基準電圧GNDの供給状況を実現することができる。
 [第2の実施の形態]
 図13は、本発明の第2の実施の形態による電子カメラで用いられる固体撮像装置304の概略構成を示す回路図であり、図2に対応している。図13において、図2中の要素と同一又は対応する要素には同一符号を付し、その重複する説明は省略する。
 本実施の形態による電子カメラが第1の実施の形態による電子カメラ1と異なる所は、固体撮像装置4に代えて、固体撮像装置304が用いられている点である。固体撮像装置304が固体撮像装置4と異なる所は、以下に説明する点である。
 固体撮像装置304では、図13に示すように、図2中の各カラム回路26においてデータ記憶部52に代えてアップダウンカウンタ81が設けられ、カウンタ28及び減算器31が取り除かれ、水平信号線34,35に代えて水平信号線82が設けられている。
 本実施の形態では、各カラム回路26のアップダウンカウンタ81には、制御パルス発生回路29から、アップダウンカウンタ81がダウンカウントモードで動作するのかアップカウントモードで動作するのかを指示するための制御信号φUDが入力されている。また、アップダウンカウンタ81には、制御パルス発生回路29からカウントクロックφCLKも入力されている。制御信号φUD及びカウントクロックφCLKはそれぞれ、各カラム回路26のアップダウンカウンタ81に共通して入力される。さらに、アップダウンカウンタ81には、対応するコンパレータCOMの出力信号も入力されている。
 アップダウンカウンタ81は、n行目の読み出し期間の垂直転送期間Tnにおいて、第1の期間t11-t12におけるランプ信号Vrampの変化開始時点t11から第1の期間t11-t12におけるコンパレータCOMの出力信号Voutの反転時点まで、ダウンカウントモード及びアップカウントモードのうちの一方のモードでカウントクロックφCLKをカウントし、その反転時点でのカウント値を保持する。また、アップダウンカウンタ81は、n行目の読み出し期間の垂直転送期間Tnにおいて、第2の期間t17-t18におけるランプ信号Vrampの変化開始時点t17から第2の期間t17-t18におけるコンパレータCOMの出力信号Voutの反転時点まで、ダウンカウントモード及びアップカウントモードのうちの他方のモードで、先に保持されていたカウント値からカウントクロックφCLKをカウントし、その反転時点でのカウント値を保持する。この保持されたカウント値は、前記第1の実施の形態において、データ記憶部52のラッチAに記憶されたカウント値とデータ記憶部52のラッチBに記憶されたカウント値の差分と等価である。
 n行目の読み出し期間の垂直転送期間Tnが終了すると、引き続いてn行目の読み出し期間の水平転送期間となる。この水平転送期間において、水平走査回路30は、制御パルス発生回路29からの制御信号に従って、水平走査を行い、各列のカラム回路26のアップダウンカウンタ81に保持されているカウント値を順次mビットの水平信号線82を介して出力回路32に送出させる。出力回路32は、受け取ったデジタル値を、所定の信号形式の信号に変換し、画像データとして外部(図1中のデジタル信号処理部6)へ出力させる。
 以上、n行目の読み出し期間について説明したが、他の行の読み出し期間の動作も、n行目の読み出し期間の動作と同様である。
 本実施の形態によっても、前記第1の実施の形態と同様の利点が得られる。
 なお、固体撮像装置4に対する前述の変形例と同様の変形を、本実施の形態における固体撮像装置304に対して適用してもよい。
 以上、本発明の各実施の形態及びその変形例について説明したが、本発明はこれらに限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
 例えば、前記第1及び第2の実施の形態において、各カラム回路26において増幅部51に代わる増幅部として単なる反転増幅器を用いてもよい。また、例えば、各カラム回路26においてにおいて、増幅部51を取り除いて、垂直信号線23をサンプリングスイッチSW1に直接に接続してもよい。
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2012年第042293号(2012年2月28日出願)

Claims (9)

  1.  2次元状に配置された複数の画素と、
     前記複数の画素の列毎に設けられ対応する列の画素からの信号を受け取る複数の垂直信号線と、
     ランプ信号及び基準電圧に基づいて前記複数の垂直信号線の信号をそれぞれ処理する複数の信号処理部と、
     前記複数の信号処理部における前記ランプ信号が入力される第1の入力部を共通に接続し、行方向の一方側において前記ランプ信号が供給される第1の配線と、
     前記複数の信号処理部における前記基準電圧が入力される第2の入力部を共通に接続し、行方向の前記一方側において前記基準電圧が供給されるとともに行方向の他方側において前記基準電圧が供給されない第2の配線と、
     を備えた固体撮像装置。
  2.  前記各信号処理部は、前記ランプ信号及び前記基準電圧に基づく比較処理を行うコンパレータを有する請求項1記載の固体撮像装置。
  3.  前記コンパレータは演算増幅器で構成され、
     前記各信号処理部は、前記コンパレータの非反転入力端子に接続され前記垂直信号線の信号又はこれに応じた信号をサンプリングするサンプリングスイッチと、一方電極が前記非反転入力端子に接続されるとともに他方電極が前記第1の入力部とされた第1の容量と、一方電極が前記コンパレータの反転入力端子に接続されるとともに他方電極が前記第2の入力部とされた第2の容量と、前記反転入力端子と前記コンパレータの出力端子との間をオンオフする帰還スイッチと、を有する、
     請求項2記載の固体撮像装置。
  4.  前記複数の垂直信号線の信号が基準信号である場合において前記各信号処理部の前記サンプリングスイッチ及び前記帰還スイッチが一旦同時にオンにされてから同時にオフにされている第1の期間において、前記ランプ信号は漸次変化し、
     前記第1の期間の後に前記複数の垂直信号線の信号が前記複数の画素のうちの少なくとも1つの画素で光電変換された光情報を含む光信号である場合において前記各信号処理部の前記帰還スイッチがオフに維持されたまま前記各信号処理部の前記サンプリングスイッチが一旦オンにされてからオフにされている第2の期間において、前記ランプ信号は漸次変化し、
     前記第1の期間における前記ランプ信号の変化開始時点から前記第1の期間における前記各信号処理部の前記コンパレータの出力部の信号の反転時点までの経過時間に応じたカウント値、及び、前記第2の期間における前記ランプ信号の変化開始時点から前記第2の期間における前記各信号処理部の前記コンパレータの出力部の信号の反転時点までの経過時間に応じたカウント値を得る計時部を、備えた、
     請求項3記載の固体撮像装置。
  5.  前記計時部は、前記第1の期間における前記ランプ信号の変化開始時点からクロック信号をカウントするとともに前記第2の期間における前記ランプ信号の変化開始時点からクロック信号をカウントするカウンタと、前記各信号処理部に設けられ、前記カウンタのカウント値が入力されて、前記第1の期間における前記コンパレータの出力部の信号の前記反転時点での前記カウント値、及び、前記第2の期間における前記コンパレータの出力部の信号の前記反転時点での前記カウント値をそれぞれ記憶する記憶部とを、有する、
     請求項4記載の固体撮像装置。
  6.  前記複数の垂直信号線の信号が基準信号である場合において前記各信号処理部の前記サンプリングスイッチ及び前記帰還スイッチが一旦同時にオンにされてから同時にオフにされている第1の期間において、前記ランプ信号は漸次変化し、
     前記第1の期間の後に前記複数の垂直信号線の信号が前記複数の画素のうちの少なくとも1つの画素で光電変換された光情報を含む光信号である場合において前記各信号処理部の前記帰還スイッチがオフに維持されたまま前記各信号処理部の前記サンプリングスイッチが一旦オンにされてからオフにされている第2の期間において、前記ランプ信号は漸次変化し、
     各信号処理部は、前記第1の期間における前記ランプ信号の変化開始時点から前記第1の期間における前記各信号処理部の前記コンパレータの出力部の信号の反転時点まで、ダウンモード及びアップモードのうちの一方のモードでカウント動作を行うことによってカウント値を取得し、前記第2の期間における前記ランプ信号の変化開始時点から前記第2の期間における前記各信号処理部の前記コンパレータの出力部の信号の反転時点まで、ダウンモード及びアップモードのうちの他方のモードで前記カウント値からカウント動作を行うカウンタを、有する、
     請求項3記載の固体撮像装置。
  7.  前記各信号処理部は、前記垂直信号線と前記サンプリングスイッチとの間に設けられた増幅部を有する請求項3乃至6のいずれかに記載の固体撮像装置。
  8.  前記増幅部は、第2の演算増幅器と、前記第2の演算増幅器の反転入力端子に接続された入力容量と、前記第2の演算増幅器の前記反転入力端子と前記第2の演算増幅器の出力端子との間をオンオフする第2の帰還スイッチと、前記第2の演算増幅器の前記反転入力端子と前記第2の演算増幅器の前記出力端子との間に接続された帰還容量と、を有する請求項7記載の固体撮像装置。
  9.  請求項1乃至8のいずれかに記載の固体撮像装置を備えた電子カメラ。
PCT/JP2013/055212 2012-02-28 2013-02-27 固体撮像装置及びこれを用いた電子カメラ WO2013129512A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/381,050 US9325924B2 (en) 2012-02-28 2013-02-27 Solid-state image-capturing device having lines that connect input units and electronic camera using the same
CN201380022283.3A CN104255025B (zh) 2012-02-28 2013-02-27 固体成像装置以及使用该固体成像装置的电子相机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012042293A JP2013179479A (ja) 2012-02-28 2012-02-28 固体撮像装置及びこれを用いた電子カメラ
JP2012-042293 2012-02-28

Publications (1)

Publication Number Publication Date
WO2013129512A1 true WO2013129512A1 (ja) 2013-09-06

Family

ID=49082706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055212 WO2013129512A1 (ja) 2012-02-28 2013-02-27 固体撮像装置及びこれを用いた電子カメラ

Country Status (4)

Country Link
US (1) US9325924B2 (ja)
JP (1) JP2013179479A (ja)
CN (2) CN104255025B (ja)
WO (1) WO2013129512A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6351252B2 (ja) 2013-12-18 2018-07-04 キヤノン株式会社 光電変換装置の駆動方法
US9716510B2 (en) * 2015-05-12 2017-07-25 Teledyne Scientific & Imaging, Llc Comparator circuits with constant input capacitance for a column-parallel single-slope ADC
CN111510648B (zh) * 2016-05-31 2022-08-16 索尼半导体解决方案公司 传感器和系统
CN114758621B (zh) * 2022-05-13 2023-07-21 南开大学 单路斜坡型模拟像素驱动电路及其驱动方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260368U (ja) * 1988-10-25 1990-05-02
JP2003198949A (ja) * 2001-12-26 2003-07-11 Canon Inc 固体撮像装置及びシステム
JP2005348324A (ja) * 2004-06-07 2005-12-15 Canon Inc 撮像装置及び撮像システム
JP2008098722A (ja) * 2006-10-06 2008-04-24 Sony Corp 固体撮像装置、固体撮像装置の駆動方法および撮像装置
JP2009224524A (ja) * 2008-03-14 2009-10-01 Canon Inc 撮像装置及び撮像システム
JP2010251914A (ja) * 2009-04-13 2010-11-04 Toshiba Corp 電源ノイズ除去回路
JP2010263661A (ja) * 1996-03-13 2010-11-18 Canon Inc 光電変換装置、x線撮像装置、及び該装置を有するシステム
JP2013065970A (ja) * 2011-09-15 2013-04-11 Canon Inc 固体撮像装置、a/d変換器およびその制御方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4035194B2 (ja) 1996-03-13 2008-01-16 キヤノン株式会社 X線検出装置及びx線検出システム
JP3734717B2 (ja) * 2001-04-26 2006-01-11 富士通株式会社 イメージセンサ
US7633539B2 (en) 2004-06-07 2009-12-15 Canon Kabushiki Kaisha Image pickup device with analog-to-digital converter
JP4247995B2 (ja) * 2005-02-03 2009-04-02 富士通マイクロエレクトロニクス株式会社 固体撮像素子のデータ読出回路、撮像装置および固体撮像素子のデータ読出方法
JP2008011284A (ja) 2006-06-30 2008-01-17 Fujitsu Ltd 画像処理回路、撮像回路および電子機器
JP4242427B2 (ja) * 2007-02-01 2009-03-25 シャープ株式会社 増幅型固体撮像装置
JP2009081705A (ja) * 2007-09-26 2009-04-16 Panasonic Corp 固体撮像装置、受光強度測定装置、および受光強度測定方法
JP4774064B2 (ja) * 2008-02-07 2011-09-14 シャープ株式会社 A/d変換回路及び固体撮像装置
JP2012010055A (ja) * 2010-06-24 2012-01-12 Sony Corp 固体撮像装置
US8743258B2 (en) * 2010-11-29 2014-06-03 Samsung Electronics Co., Ltd. Correlated double sampling circuit, method thereof and devices having the same
US8405747B2 (en) * 2011-02-17 2013-03-26 Omnivision Technologies, Inc. Analog row black level calibration for CMOS image sensor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260368U (ja) * 1988-10-25 1990-05-02
JP2010263661A (ja) * 1996-03-13 2010-11-18 Canon Inc 光電変換装置、x線撮像装置、及び該装置を有するシステム
JP2003198949A (ja) * 2001-12-26 2003-07-11 Canon Inc 固体撮像装置及びシステム
JP2005348324A (ja) * 2004-06-07 2005-12-15 Canon Inc 撮像装置及び撮像システム
JP2008098722A (ja) * 2006-10-06 2008-04-24 Sony Corp 固体撮像装置、固体撮像装置の駆動方法および撮像装置
JP2009224524A (ja) * 2008-03-14 2009-10-01 Canon Inc 撮像装置及び撮像システム
JP2010251914A (ja) * 2009-04-13 2010-11-04 Toshiba Corp 電源ノイズ除去回路
JP2013065970A (ja) * 2011-09-15 2013-04-11 Canon Inc 固体撮像装置、a/d変換器およびその制御方法

Also Published As

Publication number Publication date
CN107197181A (zh) 2017-09-22
US9325924B2 (en) 2016-04-26
CN107197181B (zh) 2020-03-20
CN104255025B (zh) 2017-08-11
CN104255025A (zh) 2014-12-31
US20150116558A1 (en) 2015-04-30
JP2013179479A (ja) 2013-09-09

Similar Documents

Publication Publication Date Title
US7852393B2 (en) Photoelectric conversion apparatus and image sensing system using the same
US7697042B2 (en) Solid-state image pickup device and camera
JP5178458B2 (ja) 固体撮像装置、撮像システム、および、固体撮像装置の駆動方法
JP5205155B2 (ja) 固体撮像素子
JP4677310B2 (ja) イメージセンサの検出回路
US20090009635A1 (en) Solid-state imaging device and imaging apparatus
CN107018296B (zh) 摄像装置
JP7116599B2 (ja) 撮像装置、半導体装置及びカメラ
JP2000165754A (ja) 固体撮像装置および固体撮像装置の信号読出し方法
JPWO2013140872A1 (ja) 固体撮像装置及び電子機器
JP2006197393A (ja) 固体撮像装置、カメラ、及び固体撮像装置の駆動方法
JP2002330349A (ja) Xyアドレス型固体撮像装置
JP6245882B2 (ja) 光電変換装置および撮像システム
JP2015097304A (ja) 比較回路およびそれを用いた撮像素子並びに比較回路の制御方法
JP2010114487A (ja) 固体撮像装置、撮像装置
WO2013129512A1 (ja) 固体撮像装置及びこれを用いた電子カメラ
JP6213599B2 (ja) 撮像素子及び撮像装置
JP6245856B2 (ja) 光電変換装置、光電変換システム
CN113228623B (zh) 超高动态范围cmos传感器
JP2006217421A (ja) 固体撮像装置
JP6673310B2 (ja) 撮像素子及び撮像装置
JP2016111376A (ja) 撮像装置、撮像システム、及び撮像装置の駆動方法
JP2009225301A (ja) 光電変換装置の駆動方法
JP2007036457A (ja) 撮像装置
JP6967173B1 (ja) 撮像素子及び撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13755315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14381050

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13755315

Country of ref document: EP

Kind code of ref document: A1