WO2013129103A1 - Hall element - Google Patents

Hall element Download PDF

Info

Publication number
WO2013129103A1
WO2013129103A1 PCT/JP2013/053354 JP2013053354W WO2013129103A1 WO 2013129103 A1 WO2013129103 A1 WO 2013129103A1 JP 2013053354 W JP2013053354 W JP 2013053354W WO 2013129103 A1 WO2013129103 A1 WO 2013129103A1
Authority
WO
WIPO (PCT)
Prior art keywords
hall element
well
type
conductivity type
polysilicon film
Prior art date
Application number
PCT/JP2013/053354
Other languages
French (fr)
Japanese (ja)
Inventor
美香 海老原
嘉胤 廣瀬
Original Assignee
セイコーインスツル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツル株式会社 filed Critical セイコーインスツル株式会社
Publication of WO2013129103A1 publication Critical patent/WO2013129103A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • H10N52/101Semiconductor Hall-effect devices

Definitions

  • the present invention relates to a Hall element.
  • FIG. 6A is a plan view of a conventional Hall element
  • FIG. 6B is a YY sectional view of the conventional Hall element
  • FIG. 6C is a ZZ in the plan view of the conventional Hall element. It is sectional drawing.
  • a Hall current flows from the N-type diffusion layer 32 to the N-type diffusion layer 33.
  • a Hall current flows perpendicularly to both the current and the magnetic field to generate a Hall voltage. That is, a Hall voltage is generated between the N-type diffusion layer 31 and the N-type diffusion layer 34 (see, for example, Patent Document 1).
  • the current path in the Hall element 30 is formed on the surface of the N-type well 36 which is the outermost surface of the P-type substrate 37.
  • the N-type well 36 On the surface of the N-type well 36, dirt, dust, etc. generated during cleaning in the manufacturing process of the Hall element 30 adhere. Or there is a flaw or an interface between the silicon and the silicon oxide film. Therefore, the current path of the Hall element 30 is affected by these effects.
  • the current path in the Hall element 30 is also affected by the interface state between the N-type well 36 and the insulating film thereon. All of these become sources of noise, and the characteristics of the Hall voltage generated by the Hall element 30 are varied.
  • An object of the present invention is to provide a Hall element with little characteristic variation.
  • the present invention provides a first conductivity type substrate, a second conductivity type well provided on the substrate, an insulating film provided on the surface of the well, and the same as the well or A potential lower than that of the well is applied, a first conductivity type polysilicon film provided on the insulating film, a depletion layer generated on the well below the insulating film, and the second conductivity
  • a first conductivity type first diffusion layer and a fourth diffusion layer provided opposite to each other in the vicinity of the surface of the mold well, and the polysilicon film in the vicinity of the surface of the second conductivity type well.
  • a second conductive type second and third diffusion layers provided opposite to each other with a straight line connecting the first and fourth diffusion layers and the second and third diffusion layers.
  • a Hall element in which a connecting straight line intersects.
  • the current path in the Hall element is not formed on the surface of the second conductivity type well, which is the outermost surface of the first conductivity type substrate, and is generated on the second conductivity type well below the insulating film. Formed under the depletion layer. Therefore, the current path in the Hall element is not affected by cleaning, dust, etc. in the Hall element manufacturing process, or the influence of defects and interface states, so that variations in Hall voltage characteristics generated by the Hall element are suppressed.
  • FIG. 1 It is a figure which shows a Hall element
  • (A) is a top view of a Hall element
  • (B) is YY sectional drawing in the top view of a Hall element
  • (C) is ZZ sectional drawing in the top view of a Hall element. is there.
  • (A) is a thing in case the voltage of an N type polysilicon film is a ground voltage
  • (B) is a case where the voltage of an N type polysilicon film is a reference voltage lower than a ground voltage belongs to.
  • (A) is a thing in case the voltage of a P-type polysilicon film is a ground voltage
  • (B) is a case where the voltage of a P-type polysilicon film is a reference voltage lower than a ground voltage belongs to.
  • (A) is a top view of the conventional Hall element
  • (B) is YY sectional drawing in the top view of the conventional Hall element
  • (C) is the conventional Hall element. It is ZZ sectional drawing in the top view.
  • FIG. 1 is a view showing a Hall element
  • (A) is a plan view of the Hall element
  • (B) is a cross-sectional view along YY in the plan view of the Hall element
  • (C) is a plan view of the Hall element. It is sectional drawing along ZZ in a figure.
  • a P-type substrate 7 is provided with an N-type well 6 that is square in plan view.
  • An insulating film 5 is provided on the N-type well 6 except for the four corners of the Hall element 10.
  • An N-type polysilicon film 8 is provided on the insulating film 5.
  • N-type diffusion layers 1 to 4 are provided above the N-type well 6.
  • the N-type diffusion layers 1 to 4 are respectively provided at the edges (four corners) of the N-type well 6 in the plan view.
  • the N-type diffusion layer 1 and the N-type diffusion layer 4 are opposed to each other.
  • the N-type diffusion layer 3 face each other.
  • the straight line connecting the N-type diffusion layer 1 and the N-type diffusion layer 4 intersects the straight line connecting the N-type diffusion layer 2 and the N-type diffusion layer 3.
  • the N-type well 6 is a diffusion layer having a lower impurity concentration and a deeper impurity distribution than the N-type diffusion layers 1 to 4.
  • FIG. 2 is a diagram illustrating the circuit connection of the Hall elements.
  • FIG. 3 is a diagram illustrating circuit connection of the Hall elements.
  • 4A and 4B are energy band diagrams.
  • FIG. 4A shows the case where the voltage of the N-type polysilicon film is the ground voltage
  • FIG. 4B shows the reference voltage where the voltage of the N-type polysilicon film is lower than the ground voltage. Is the case.
  • the positive terminal of the power source 21 is connected to the N-type diffusion layer 2 and the negative terminal of the power source 21 is connected to the N-type diffusion layer 3.
  • a voltage lower than the voltage applied to the N-type diffusion layer 2 is applied to the N-type polysilicon film 8.
  • a voltmeter 22 for measuring the Hall voltage is provided between the N-type diffusion layer 1 and the N-type diffusion layer 4.
  • the negative reference voltage VREF when a reference voltage VREF lower than the ground voltage is applied to the N-type polysilicon film 8 by the circuit shown in FIG. 3, the negative reference voltage VREF generates the upper part of the N-type well 6 below the insulating film 5. It is possible to control the formation of a depletion layer. Specifically, when the reference voltage VREF is lowered, the intrinsic Fermi level approaches the Fermi level, and a depletion layer can be formed on the surface of the N-type well 6 as shown in FIG. When the voltage is lowered (the absolute value is increased on the negative side), the depletion layer further expands accordingly.
  • the surface of the N-type well 6 has almost no electrons as a current carrier due to depletion, so that the current flowing between the N-type diffusion layers 2 and 3 is lower than the depletion layer near the surface. Then, it flows inside the N-type well 6 which is a deeper portion. Therefore, the hole current that appears when there is a magnetic field also flows inside the N-type well 6, and a Hall voltage is generated between the N-type diffusion layer 1 and the N-type diffusion layer 4. The Hall voltage is measured by a voltmeter 22.
  • the N-type well 6 is free from dirt, dust and scratches present on the surface of the semiconductor substrate and is not affected by the interface. By operating in such a state, noise that affects the Hall current that determines the characteristics of the Hall element is reduced, and variation can be reduced.
  • an operational amplifier, a comparator, and a reference voltage generation circuit may be provided instead of the voltmeter 22.
  • the operational amplifier amplifies the Hall voltage.
  • the reference voltage generation circuit generates a reference voltage.
  • the comparator compares the amplified Hall voltage with a reference voltage. When the Hall voltage after amplification is higher than the reference voltage, the output logic of the comparator becomes high level, and when it is low, it becomes low level.
  • FIG. 5 shows an energy band diagram when a P-type polysilicon film is used. Since the Fermi level is different between the P-type polysilicon film and the N-type polysilicon film 8, the energy band diagrams are also different, and the Fermi level of the P-type polysilicon film and the N-type polysilicon film 8 is shown in FIG. In the thermal equilibrium state where the two coincide with each other, the vicinity of the surface of the N-type well is almost depleted. Therefore, when the device is operated as it is, the hole current flows through the N-type well under the depletion layer.
  • FIG. 5B shows this state.
  • the depletion layer is formed at a position slightly inside the surface. Therefore, the hole current flows further inside the N-type well region below the depletion layer. In this way, the depth at which the hole current flows can be controlled by controlling the potential difference between the P-type polysilicon film and the N-type well region.
  • Hall element 1-4 N-type diffusion layer 5 Insulating film 6 N-type well 7 P-type substrate 8 N-type polysilicon film

Landscapes

  • Hall/Mr Elements (AREA)

Abstract

Provided is a Hall element having little variation in characteristics of a generated Hall voltage. The Hall element includes an n-type well (6) square in plan and provided on a p-type substrate (7), an insulating film (5) provided on the n-type well (6) except for the four corners of the Hall element (10), an n-type polysilicon film (8) provided on the insulating film (5), and n-type diffusion layers (1 to 4) provided on the n-type well (6) at the four corners of the Hall element (10). Since a depletion layer is produced at an upper part of the n-type well (6) under the insulating layer (5), Hall current flows under the depletion layer. Therefore, the Hall current is neither affected by stains, dust, or scratches that may exist on the surface of the semiconductor substrate, nor affected by the interface between an oxide film and the semiconductor.

Description

ホール素子Hall element
 本発明は、ホール素子に関する。 The present invention relates to a Hall element.
 従来のホール素子について図6を用いて説明する。図6の(A)は従来のホール素子の平面図であり、同(B)は従来のホール素子の平面図におけるYY断面図であり、同(C)は従来のホール素子の平面図におけるZZ断面図である。 A conventional Hall element will be described with reference to FIG. 6A is a plan view of a conventional Hall element, FIG. 6B is a YY sectional view of the conventional Hall element, and FIG. 6C is a ZZ in the plan view of the conventional Hall element. It is sectional drawing.
 ホール素子30ではN型拡散層32とN型拡散層33との間に電源電圧を印加するので、N型拡散層32からN型拡散層33に電流が流れる。この時、ホール素子30を流れる電流の向きと異なる方向の磁界を印加すると、電流及び磁界の双方に対して垂直にホール電流が流れ、ホール電圧を発生する。つまり、N型拡散層31とN型拡散層34との間に、ホール電圧が発生する(例えば、特許文献1参照)。 In the Hall element 30, since a power supply voltage is applied between the N-type diffusion layer 32 and the N-type diffusion layer 33, a current flows from the N-type diffusion layer 32 to the N-type diffusion layer 33. At this time, when a magnetic field having a direction different from the direction of the current flowing through the Hall element 30 is applied, a Hall current flows perpendicularly to both the current and the magnetic field to generate a Hall voltage. That is, a Hall voltage is generated between the N-type diffusion layer 31 and the N-type diffusion layer 34 (see, for example, Patent Document 1).
特開2008-008883号公報(図17)Japanese Patent Laying-Open No. 2008-008883 (FIG. 17)
 ここで、従来の技術では、ホール素子30での電流経路は、P型基板37の最表面であるN型ウェル36の表面に形成される。このN型ウェル36の表面には、ホール素子30の製造プロセスで、洗浄時に発生した汚れ、ゴミ等が付着する。あるいはキズやシリコンとシリコン酸化膜との界面が存在している。そのため、ホール素子30の電流経路は、これらの影響を受けてしまう。また、ホール素子30での電流経路は、N型ウェル36とその上の絶縁膜との間の界面準位の影響も受ける。これらはすべてノイズの元となり、ホール素子30が発生するホール電圧の特性を、ばらつかせる。 Here, in the conventional technique, the current path in the Hall element 30 is formed on the surface of the N-type well 36 which is the outermost surface of the P-type substrate 37. On the surface of the N-type well 36, dirt, dust, etc. generated during cleaning in the manufacturing process of the Hall element 30 adhere. Or there is a flaw or an interface between the silicon and the silicon oxide film. Therefore, the current path of the Hall element 30 is affected by these effects. The current path in the Hall element 30 is also affected by the interface state between the N-type well 36 and the insulating film thereon. All of these become sources of noise, and the characteristics of the Hall voltage generated by the Hall element 30 are varied.
 本発明は、特性ばらつきの少ないホール素子を提供することをその課題とする。 An object of the present invention is to provide a Hall element with little characteristic variation.
 本発明は、上記課題を解決するため、第一導電型の基板と、前記基板に設けられた第二導電型のウェルと、前記ウェルの表面に設けられた絶縁膜と、前記ウェルと同じあるいは前記ウェルよりも低い電位を印加され、前記絶縁膜の上に設けられた第一導電型のポリシリコン膜と、前記絶縁膜の下の前記ウェルの上部に発生する空乏層と、前記第二導電型ウェルの表面近傍に、前記ポリシリコン膜を挟んで対向して設けられた第二導電型の第1および第4の拡散層と、前記第二導電型ウェルの表面近傍に、前記ポリシリコン膜を挟んで対向して設けられた第二導電型の第2および第3の拡散層と、を備え、前記第1および第4の拡散層を結ぶ直線と前記第2および第3の拡散層を結ぶ直線とが交叉しているホール素子を提供する。  In order to solve the above problems, the present invention provides a first conductivity type substrate, a second conductivity type well provided on the substrate, an insulating film provided on the surface of the well, and the same as the well or A potential lower than that of the well is applied, a first conductivity type polysilicon film provided on the insulating film, a depletion layer generated on the well below the insulating film, and the second conductivity A first conductivity type first diffusion layer and a fourth diffusion layer provided opposite to each other in the vicinity of the surface of the mold well, and the polysilicon film in the vicinity of the surface of the second conductivity type well. A second conductive type second and third diffusion layers provided opposite to each other with a straight line connecting the first and fourth diffusion layers and the second and third diffusion layers. Provided is a Hall element in which a connecting straight line intersects.
 本発明によれば、ホール素子での電流経路を、第一導電型基板の最表面である第二導電型ウェルの表面に形成せず、絶縁膜の下の第二導電型ウェルの上部に発生する空乏層の下に形成する。そのために、ホール素子での電流経路はホール素子の製造プロセスでの洗浄やゴミ等の影響あるいは欠陥や界面準位の影響を受けないので、ホール素子が発生するホール電圧の特性のばらつきが抑制される。 According to the present invention, the current path in the Hall element is not formed on the surface of the second conductivity type well, which is the outermost surface of the first conductivity type substrate, and is generated on the second conductivity type well below the insulating film. Formed under the depletion layer. Therefore, the current path in the Hall element is not affected by cleaning, dust, etc. in the Hall element manufacturing process, or the influence of defects and interface states, so that variations in Hall voltage characteristics generated by the Hall element are suppressed. The
ホール素子を示す図であり、(A)はホール素子の平面図であり、(B)はホール素子の平面図におけるYY断面図であり、(C)はホール素子の平面図におけるZZ断面図である。It is a figure which shows a Hall element, (A) is a top view of a Hall element, (B) is YY sectional drawing in the top view of a Hall element, (C) is ZZ sectional drawing in the top view of a Hall element. is there. ホール素子の回路接続を例示する図である。It is a figure which illustrates the circuit connection of a Hall element. ホール素子の回路接続を例示する図である。It is a figure which illustrates the circuit connection of a Hall element. エネルギーバンド図であり、(A)はN型ポリシリコン膜の電圧が接地電圧である場合のものであり、(B)はN型ポリシリコン膜の電圧が接地電圧よりも低い基準電圧である場合のものである。It is an energy band figure, (A) is a thing in case the voltage of an N type polysilicon film is a ground voltage, (B) is a case where the voltage of an N type polysilicon film is a reference voltage lower than a ground voltage belongs to. エネルギーバンド図であり、(A)はP型ポリシリコン膜の電圧が接地電圧である場合のものであり、(B)はP型ポリシリコン膜の電圧が接地電圧よりも低い基準電圧である場合のものである。It is an energy band figure, (A) is a thing in case the voltage of a P-type polysilicon film is a ground voltage, (B) is a case where the voltage of a P-type polysilicon film is a reference voltage lower than a ground voltage belongs to. 従来のホール素子を示す図であり、(A)は従来のホール素子の平面図であり、(B)は従来のホール素子の平面図におけるYY断面図であり、(C)は従来のホール素子の平面図におけるZZ断面図である。It is a figure which shows the conventional Hall element, (A) is a top view of the conventional Hall element, (B) is YY sectional drawing in the top view of the conventional Hall element, (C) is the conventional Hall element. It is ZZ sectional drawing in the top view.
 以下、本発明の実施形態について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 まず、ホール素子の構造について説明する。図1はホール素子を示す図であり、(A)はホール素子の平面図であり、(B)はホール素子の平面図におけるYYに沿った断面図であり、(C)はホール素子の平面図におけるZZに沿った断面図である。 First, the structure of the Hall element will be described. FIG. 1 is a view showing a Hall element, (A) is a plan view of the Hall element, (B) is a cross-sectional view along YY in the plan view of the Hall element, and (C) is a plan view of the Hall element. It is sectional drawing along ZZ in a figure.
 P型基板7に、平面図で正方形になるN型ウェル6を設ける。ホール素子10の四隅を除き、N型ウェル6の上に、絶縁膜5を設ける。絶縁膜5の上に、N型ポリシリコン膜8を設ける。ホール素子10の四隅に、N型ウェル6の上部に、N型拡散層1~4を設ける。ここで、N型拡散層1~4はN型ウェル6の平面図での縁(四隅)にそれぞれ設けられ、N型拡散層1とN型拡散層4とは対向し、N型拡散層2とN型拡散層3とは対向する。N型拡散層1とN型拡散層4を結ぶ直線は、N型拡散層2とN型拡散層3を結ぶ直線と交叉する。なお、N型ウェル6は、N型拡散層1~4よりも、不純物濃度は薄く、深い不純物の分布を持つ拡散層である。 A P-type substrate 7 is provided with an N-type well 6 that is square in plan view. An insulating film 5 is provided on the N-type well 6 except for the four corners of the Hall element 10. An N-type polysilicon film 8 is provided on the insulating film 5. At the four corners of the Hall element 10, N-type diffusion layers 1 to 4 are provided above the N-type well 6. Here, the N-type diffusion layers 1 to 4 are respectively provided at the edges (four corners) of the N-type well 6 in the plan view. The N-type diffusion layer 1 and the N-type diffusion layer 4 are opposed to each other. And the N-type diffusion layer 3 face each other. The straight line connecting the N-type diffusion layer 1 and the N-type diffusion layer 4 intersects the straight line connecting the N-type diffusion layer 2 and the N-type diffusion layer 3. The N-type well 6 is a diffusion layer having a lower impurity concentration and a deeper impurity distribution than the N-type diffusion layers 1 to 4.
 次に、ホール素子10の動作について説明する。図2は、ホール素子の回路接続を例示する図である。図3は、ホール素子の回路接続を例示する図である。図4はエネルギーバンド図であり、(A)はN型ポリシリコン膜の電圧が接地電圧である場合のものであり、(B)はN型ポリシリコン膜の電圧が接地電圧よりも低い基準電圧である場合のものである。 Next, the operation of the Hall element 10 will be described. FIG. 2 is a diagram illustrating the circuit connection of the Hall elements. FIG. 3 is a diagram illustrating circuit connection of the Hall elements. 4A and 4B are energy band diagrams. FIG. 4A shows the case where the voltage of the N-type polysilicon film is the ground voltage, and FIG. 4B shows the reference voltage where the voltage of the N-type polysilicon film is lower than the ground voltage. Is the case.
 図3に示すように、N型拡散層2に電源21の正極端子を接続し、N型拡散層3に電源21の負極端子を接続する。N型ポリシリコン膜8にはN型拡散層2に与える電圧よりも低い電圧が印加できるようにしておく。N型拡散層1とN型拡散層4との間にはホール電圧を測るための電圧計22を設ける。 3, the positive terminal of the power source 21 is connected to the N-type diffusion layer 2 and the negative terminal of the power source 21 is connected to the N-type diffusion layer 3. A voltage lower than the voltage applied to the N-type diffusion layer 2 is applied to the N-type polysilicon film 8. A voltmeter 22 for measuring the Hall voltage is provided between the N-type diffusion layer 1 and the N-type diffusion layer 4.
 N型ポリシリコン膜8とN型ウェル6との間に電圧差がないとき、エネルギーバンドは熱平衡状態においてN型ポリシリコン膜8とN型ウェル6との間でフェルミレベルが一致するよう動く。したがって、N型ポリシリコン膜8とN型ウェル6との間で熱平衡状態が生じ、図4(A)のように、絶縁膜5の下のN型ウェル6の上部に多数キャリアである電子の蓄積層が僅かに発生する。従って、この場合N型拡散層2と3の間に流れる電流は表面を流れることになる。 When there is no voltage difference between the N-type polysilicon film 8 and the N-type well 6, the energy band moves so that the Fermi level matches between the N-type polysilicon film 8 and the N-type well 6 in a thermal equilibrium state. Therefore, a thermal equilibrium state is generated between the N-type polysilicon film 8 and the N-type well 6, and as shown in FIG. 4A, electrons of majority carriers are formed above the N-type well 6 below the insulating film 5. A slight accumulation layer is generated. Therefore, in this case, the current flowing between the N- type diffusion layers 2 and 3 flows on the surface.
 しかし、図3に示す回路により、接地電圧よりも低い基準電圧VREFをN型ポリシリコン膜8に印加すると、この負の基準電圧VREFによって、絶縁膜5の下のN型ウェル6の上部に発生する空乏層の形成を制御できる。具体的には、基準電圧VREFを低くすると、真性フェルミレベルはフェルミレベルに近づいてゆき、図4(B)のように、N型ウェル6の表面に空乏層を形成することができる。電圧を低く(負側に絶対値を大きく)するとそれに伴い空乏層がさらに広がってゆく。この状態ではN型ウェル6の表面には電流の担い手である電子は空乏化によりほとんど存在しないので、N型拡散層2と3の間を流れる電流は表面近傍の空乏層よりも下であって、より深い部分であるN型ウェル6の内部を流れることになる。したがって、磁場があるときに現れるホール電流もN型ウェル6の内部を流れることになり、N型拡散層1とN型拡散層4との間にホール電圧を発生する。ホール電圧は、電圧計22によって測定される。N型ウェル6の内部には、半導体基板表面に存在するような汚れ、ゴミ、キズはなく、界面の影響も受けることがない。このような状態で動作をさせることで、ホール素子の特性を決めるホール電流に影響を与えるノイズが低減され、ばらつきを小さくすることが可能である。 However, when a reference voltage VREF lower than the ground voltage is applied to the N-type polysilicon film 8 by the circuit shown in FIG. 3, the negative reference voltage VREF generates the upper part of the N-type well 6 below the insulating film 5. It is possible to control the formation of a depletion layer. Specifically, when the reference voltage VREF is lowered, the intrinsic Fermi level approaches the Fermi level, and a depletion layer can be formed on the surface of the N-type well 6 as shown in FIG. When the voltage is lowered (the absolute value is increased on the negative side), the depletion layer further expands accordingly. In this state, the surface of the N-type well 6 has almost no electrons as a current carrier due to depletion, so that the current flowing between the N- type diffusion layers 2 and 3 is lower than the depletion layer near the surface. Then, it flows inside the N-type well 6 which is a deeper portion. Therefore, the hole current that appears when there is a magnetic field also flows inside the N-type well 6, and a Hall voltage is generated between the N-type diffusion layer 1 and the N-type diffusion layer 4. The Hall voltage is measured by a voltmeter 22. The N-type well 6 is free from dirt, dust and scratches present on the surface of the semiconductor substrate and is not affected by the interface. By operating in such a state, noise that affects the Hall current that determines the characteristics of the Hall element is reduced, and variation can be reduced.
 なお、オペアンプとコンパレータと基準電圧生成回路とを、電圧計22の替りに設けても良い。この時、オペアンプは、ホール電圧を増幅する。基準電圧生成回路は、基準電圧を生成する。コンパレータは、増幅後のホール電圧と基準電圧とを比較する。増幅後のホール電圧が基準電圧よりも高いと、コンパレータの出力論理はハイレベルになり、低いと、ローレベルになる。 Note that an operational amplifier, a comparator, and a reference voltage generation circuit may be provided instead of the voltmeter 22. At this time, the operational amplifier amplifies the Hall voltage. The reference voltage generation circuit generates a reference voltage. The comparator compares the amplified Hall voltage with a reference voltage. When the Hall voltage after amplification is higher than the reference voltage, the output logic of the comparator becomes high level, and when it is low, it becomes low level.
 また、P型ポリシリコン膜をN型ポリシリコン膜8の替りに用いることも可能である。P型ポリシリコン膜を用いた場合のエネルギーバンド図を図5に示す。P型ポリシリコン膜とN型ポリシリコン膜8とでは、フェルミレベルが異なるので、エネルギーバンド図も異なり、図5(A)に示すようにP型ポリシリコン膜とN型ポリシリコン膜8のフェルミレバルが一致する熱平衡状態において、N型ウェルの表面近傍はほぼ空乏状態となっている。したがって、このままホール素子として動作をさせると、ホール電流は空乏層の下である、N型ウェルの内部を流れることになる。そのため、半導体基板表面に存在するような汚れ、ゴミ、キズの影響あるいは酸化膜と半導体の界面の影響を受けることがない。N型ポリシリコン膜を用いた場合と同様に、この場合もホール素子の特性を決めるホール電流に影響を与えるノイズが低減され、ばらつきを小さくすることが可能である。 It is also possible to use a P-type polysilicon film instead of the N-type polysilicon film 8. FIG. 5 shows an energy band diagram when a P-type polysilicon film is used. Since the Fermi level is different between the P-type polysilicon film and the N-type polysilicon film 8, the energy band diagrams are also different, and the Fermi level of the P-type polysilicon film and the N-type polysilicon film 8 is shown in FIG. In the thermal equilibrium state where the two coincide with each other, the vicinity of the surface of the N-type well is almost depleted. Therefore, when the device is operated as it is, the hole current flows through the N-type well under the depletion layer. Therefore, it is not affected by dirt, dust, scratches, or the interface between the oxide film and the semiconductor that exists on the surface of the semiconductor substrate. Similar to the case of using the N-type polysilicon film, in this case, noise affecting the Hall current that determines the characteristics of the Hall element is reduced, and variation can be reduced.
 P型ポリシリコン膜の電位をN型ウェル領域の電位より低くすると、N型ウェル領域の空乏化が進み、さらには表面に反転層が形成される。この状態を示しているのが図5(B)である。この場合、空乏層は表面よりも少し内部に入ったところに形成されている。そのため、ホール電流は空乏層のさらに下の、N型ウェル領域のさらに内部を流れるようになる。このようにP型ポリシリコン膜とN型ウェル領域の間の電位差を制御することでホール電流が流れる深さを制御することが可能である。 When the potential of the P-type polysilicon film is made lower than the potential of the N-type well region, depletion of the N-type well region proceeds, and an inversion layer is formed on the surface. FIG. 5B shows this state. In this case, the depletion layer is formed at a position slightly inside the surface. Therefore, the hole current flows further inside the N-type well region below the depletion layer. In this way, the depth at which the hole current flows can be controlled by controlling the potential difference between the P-type polysilicon film and the N-type well region.
 10 ホール素子
 1~4 N型拡散層
 5 絶縁膜
 6 N型ウェル
 7 P型基板
 8 N型ポリシリコン膜
10 Hall element 1-4 N-type diffusion layer 5 Insulating film 6 N-type well 7 P-type substrate 8 N-type polysilicon film

Claims (6)

  1.  第一導電型の基板と、
     前記基板に設けられた第二導電型のウェルと、
     前記ウェルの表面に設けられた絶縁膜と、
     前記ウェルと同じあるいは前記ウェルよりも低い電位を印加され、前記絶縁膜の上に設けられた第一導電型のポリシリコン膜と、
     前記絶縁膜の下の前記ウェルの上部に発生する空乏層と、
     前記第二導電型ウェルの表面近傍に、前記ポリシリコン膜を挟んで対向して設けられた第二導電型の第1および第4の拡散層と、
     前記第二導電型ウェルの表面近傍に、前記ポリシリコン膜を挟んで対向して設けられた第二導電型の第2および第3の拡散層と、を備え、
    前記第1および第4の拡散層を結ぶ直線と前記第2および第3の拡散層を結ぶ直線とが交叉しているホール素子。
    A first conductivity type substrate;
    A second conductivity type well provided on the substrate;
    An insulating film provided on the surface of the well;
    A first conductive type polysilicon film provided on the insulating film, to which the same potential as the well or lower than the well is applied;
    A depletion layer generated above the well under the insulating film;
    A first conductivity type first diffusion layer and a fourth diffusion layer provided in the vicinity of the surface of the second conductivity type well opposite to each other with the polysilicon film interposed therebetween;
    A second conductivity type second and third diffusion layers provided opposite to each other across the polysilicon film in the vicinity of the surface of the second conductivity type well;
    A Hall element in which a straight line connecting the first and fourth diffusion layers intersects with a straight line connecting the second and third diffusion layers.
  2.  前記第二導電型ウェルは、平面図において正方形である請求項1に記載のホール素子。 The Hall element according to claim 1, wherein the second conductivity type well is square in a plan view.
  3.  前記第1乃至第4の拡散層は、平面図において前記ウェルの四隅にそれぞれ設けられている請求項2記載のホール素子。 3. The Hall element according to claim 2, wherein the first to fourth diffusion layers are respectively provided at four corners of the well in a plan view.
  4.  第一導電型の基板と、
     前記基板に設けられた第二導電型のウェルと、
     前記ウェルの表面に設けられた絶縁膜と、
     前記ウェルよりも低い電位を印加され、前記絶縁膜の上に設けられた第二導電型のポリシリコン膜と、
     前記絶縁膜の下の前記ウェルの上部に発生する空乏層と、
     前記第二導電型ウェルの表面近傍に、前記ポリシリコン膜を挟んで対向して設けられた第二導電型の第1および第4の拡散層と、
     前記第二導電型ウェルの表面近傍に、前記ポリシリコン膜を挟んで対向して設けられた第二導電型の第2および第3の拡散層と、を備え、
    前記第1および第4の拡散層を結ぶ直線と前記第2および第3の拡散層を結ぶ直線が交叉しているホール素子。
    A first conductivity type substrate;
    A second conductivity type well provided on the substrate;
    An insulating film provided on the surface of the well;
    A potential lower than that of the well, and a second conductive type polysilicon film provided on the insulating film;
    A depletion layer generated above the well under the insulating film;
    A first conductivity type first diffusion layer and a fourth diffusion layer provided in the vicinity of the surface of the second conductivity type well opposite to each other with the polysilicon film interposed therebetween;
    A second conductivity type second and third diffusion layers provided opposite to each other across the polysilicon film in the vicinity of the surface of the second conductivity type well;
    A Hall element in which a straight line connecting the first and fourth diffusion layers intersects with a straight line connecting the second and third diffusion layers.
  5.  前記第二導電型ウェルは、平面図において正方形である請求項4に記載のホール素子。 The Hall element according to claim 4, wherein the second conductivity type well is square in a plan view.
  6.  前記第1乃至第4の拡散層は、平面図において前記ウェルの四隅にそれぞれ設けられている請求項5記載のホール素子。 6. The Hall element according to claim 5, wherein the first to fourth diffusion layers are respectively provided at four corners of the well in a plan view.
PCT/JP2013/053354 2012-03-02 2013-02-13 Hall element WO2013129103A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-047103 2012-03-02
JP2012047103A JP2013183097A (en) 2012-03-02 2012-03-02 Hall element

Publications (1)

Publication Number Publication Date
WO2013129103A1 true WO2013129103A1 (en) 2013-09-06

Family

ID=49082305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053354 WO2013129103A1 (en) 2012-03-02 2013-02-13 Hall element

Country Status (3)

Country Link
JP (1) JP2013183097A (en)
TW (1) TW201401593A (en)
WO (1) WO2013129103A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270773A (en) * 1997-03-26 1998-10-09 Toshiba Corp Hall element
JP2004296469A (en) * 2003-03-25 2004-10-21 Denso Corp Hall element
JP2006128400A (en) * 2004-10-28 2006-05-18 Denso Corp Vertical hall element
JP2008008883A (en) * 2006-06-02 2008-01-17 Denso Corp Magnetometric sensor and sensor
JP2010129930A (en) * 2008-11-28 2010-06-10 Sanyo Electric Co Ltd Optical and magnetic integrated type sensor, and electronic apparatus mounted with the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270773A (en) * 1997-03-26 1998-10-09 Toshiba Corp Hall element
JP2004296469A (en) * 2003-03-25 2004-10-21 Denso Corp Hall element
JP2006128400A (en) * 2004-10-28 2006-05-18 Denso Corp Vertical hall element
JP2008008883A (en) * 2006-06-02 2008-01-17 Denso Corp Magnetometric sensor and sensor
JP2010129930A (en) * 2008-11-28 2010-06-10 Sanyo Electric Co Ltd Optical and magnetic integrated type sensor, and electronic apparatus mounted with the same

Also Published As

Publication number Publication date
TW201401593A (en) 2014-01-01
JP2013183097A (en) 2013-09-12

Similar Documents

Publication Publication Date Title
US8427140B2 (en) Hall sensor
US20120001279A1 (en) Hall sensor
JP2012204836A (en) Vertical hall sensor and method for producing vertical hall sensor
TWI518880B (en) Semiconductor device and reference voltage genertating circuit for semiconductor device
KR101903828B1 (en) Hall sensor based on semiconductor device
US9599682B2 (en) Vertical hall element
KR20170107379A (en) Magnetic sensor and method of manufacturing the same
JP2016111333A (en) Vertical hole device
WO2013129103A1 (en) Hall element
TWI477018B (en) Transient voltage suppressor circuit, and diode device therefor and manufacturing method thereof
KR20130014952A (en) Poly silicon resistor, reference voltage circuit comprising the same, and manufacturing mehtod of poly silicon resistor
CN101819941A (en) Testing structure of integrity of semiconductor device gate oxide
JP2018190793A (en) Semiconductor device
TWI666774B (en) High voltage metal oxide semiconductor field effect transistor
JP2013201229A (en) Hall sensor
TWI729257B (en) Semiconductor device
KR101821400B1 (en) Active element based on 2d material
WO2018121673A1 (en) Semi-conductor device
CN104779294A (en) Groove-type power MOS transistor and manufacturing method thereof as well as integrated circuit
JP2013080792A (en) Hall element
TWI685106B (en) High voltage Schottky diode
JP3995911B2 (en) Semiconductor magnetic sensor and manufacturing method thereof
JP2013026335A (en) Manufacturing method of semiconductor element and manufacturing method of esd protection element
CN109473541B (en) Heterojunction silicon magneto-dependent triode and manufacturing process method
CN104485358B (en) A kind of its manufacture method of the semiconductor devices based on trap generation mechanism and application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13754884

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13754884

Country of ref document: EP

Kind code of ref document: A1